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Abstract

As an attempt to complete black hole thermodynamics, Stephen Hawking showed in 1974 that black
holes emit thermal radiation [1]. This result has since been vastly disputed, both because it violates
the classical notion that black holes are regions of spacetime from which nothing can escape, but
also because it leads to a paradox: The thermal radiation which causes the black hole to evaporate
contains no information about the black hole. Thus, information appears to be lost — despite the
deterministic nature of the physical theories describing the phenomenon [2]. As an attempt to solve
this paradox, some researchers have suggested that horizon-formation is avoided in stellar collapse
models due to the presence of a so-called pre-Hawking radiation |3} 4]. This proposal is based on
claims that Hawking-like radiation also occurs in collapse models where a horizon never forms [5-8].
It has further been proposed that this radiation may prevent black holes from forming at all [9]. On
the other hand, others claim that such a radiation is too weak to play a crucial role in the course of
stellar collapse and that its existence leads to serious physical inconsistencies |[L0H13]. The question
of whether a horizon is needed in order for Hawking radiation to occur therefore seems to be at the
very heart of this discussion. This further seems to be closely related to the questions of where and
when the Hawking particles are created. Because of the global nature of event horizons these latter
concerns are intrinsically difficult to address. We do not hope to solve this problem in this thesis.
Rather, we aim to narrow down the discussion to its essentials. In the attempt to do just that, we
study the possibility of Hawking radiation from a subclass of exotic compact objects (ECOs) which
look exactly like black holes to distant observers [14]. From our highly idealised models we do not
find evidence of Hawking radiation from horizonless objects. However, more advanced and realistic
models are needed in order to properly conclude that event horizons are necessary for particle creation,
and thus the dispute remains unresolved.
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Chapter 1
Introduction

A black hole is a region of spacetime from which nothing can escape — not even light. It was therefore
rather surprising when Stephen Hawking proposed in 1974 that black holes radiate particles [1} [15].
This thermal radiation of particles, which today is widely known as Hawking radiation, was found
to arise in semi-classical models of black hole formation from stellar collapse. Being a semi-classical
quantum effect, the controversy between the well-established theory of black holes in general relativity
and the possibility of black hole radiation from quantum field theory has since inspired numerous
researchers to investigate the theoretical framework around the phenomenon of black hole particle
creation. This has led to many different calculations of Hawking radiation, and a deeper insight into
its more fundamental nature; already the year after Hawking's proposal, William Unruh showed that
the Hawking effect is not merely a gravitational artifact by demonstrating that also flat spacetimes
constitute a similar radiation — a phenomenon now called the Unruh effect [16]. The fundamentality
of the Hawking effect is further supported by results from analogue models of general relativity, such
as acoustic models of trans-sonic fluid flow [17H19].

Assuming that Hawking radiation exists does, however, also lead to serious physical inconsistencies.
Ranging highest in popularity is the so-called information loss paradox: If black holes radiate thermally,
leading to black hole evaporation, information will be lost. Yet, because quantum mechanics postulate
unitary time evolution and general relativity obeys causality and energy-momentum conservation, such
a loss of information simply cannot take place. We thus encounter a paradox [2, [20].

As an attempt to solve this paradox it has been proposed that a Hawking-like radiation prevents
the formation of an event horizon in models of stellar collapse |3, 4] — a result which may further
suggest that black holes do not exist [9]. The main assumption upon which these results rest is part of
a long-standing and still unresolved dispute on the necessity of horizons in the calculations of Hawking
radiation. From the ongoing discussion it seems like the question of whether horizons are necessary
for Hawking radiation is closely related to the question of where and when the Hawking particles are
created. In the original derivation of Hawking radiation and much of the well-established literature on
the topic, the entire history of the spacetime is needed in order to obtain particle production |15} [21}
22]. However, as pointed out by Visser in his attempt to boil the discussion down to its essentials,
one should be “a little alarmed if the question of whether or not a black hole is radiating now depends
on what it is doing in the infinite future” [18|. Hence, if the generation of particles starts before the
star has collapsed to a black hole, it seems rather puzzling that its existence depends on whether an
event horizon forms in the future. This argument has led some researchers to conjecture that only
the existence of a locally defined apparent horizon is necessary to obtain particle creation [18} [23].
Others further suggest that no horizon of any kind is needed for particles to be created [6 |7} [24,
25|, and that there exists a so-called pre-Hawking radiation which may alter the collapse of the star
[3} 14, 19]. In spite of claiming interesting phenomena, it has been argued that the above-mentioned
consequences of a pre-Hawking radiation lead to physical fallacies. Particularly, it has been claimed
that the stress-energy tensor of such a radiation is far too small to alter stellar collapse and further



that this radiation leads to tachyonic collapse velocities [10413].

Despite numerous theoretical derivations of Hawking radiation, its existence has not yet been
verified by observations. Moreover, distinguishing event horizons from very compact objects through
measurements is intrinsically difficult [26]. Hence, if Hawking radiation is found to exist by experimental
detection, it is still not clear whether the radiation actually comes from a black hole or from an object
arbitrarily close to the Schwarzschild radius, which looks like a black hole to distant observers |3 |4,
14]. Nevertheless, with the discovery of gravitational waves and recent advancements in observations
within the field, a fair possibility to measure both the existence of Hawking radiation and the imprint
of a horizon or a near-horizon surface, which will serve useful to separate the former from the latter,
now seems to be at hand [27, 28].

In the strive to understand the bewilderment of whether or not horizons are important for Hawking
radiation, the aim of this thesis is to narrow down the discussion in order to get a better idea of its
essentials. We will do this by having a closer look at the need for horizons in the original derivation of
Hawking radiation, and investigate whether a similar argumentation can be used to obtain particle
creation in different horizon-less scenarios. The outline of this thesis will therefore be as follows:
Starting out with a condensed introduction of the main properties and consequences of quantum field
theory in curved spacetime in chapter [2] we will in chapter [3| continue by presenting the derivations of
Hawking radiation in the spacetime of an eternal Schwarzschild black hole and in the spacetime of a
star collapsing to form a Schwarzschild black hole. Motivated by the discussion of Hawking radiation
from horizonless objects and recent discoveries pointing in the direction of the possibility of Hawking
radiation from exotic compact objects (ECOs), chapter [4] will be devoted to studying special classes of
stellar collapse forming ECOs and static ECOs. As we will see, little evidence will be found for the
existence of Hawking radiation in the studied horizon-less scenarios. In chapter p| follows a discussion
of what we have found and possible implications, and finally in chapter [6] we summarize and propose
directions of further investigation.

We will mostly work in two dimensional spacetimes with metric signature (+—), meaning that the
time component is defined to have a positive sign in the metric, whereas the spatial component has a
negative sign. Throughout this thesis we will also set G =h =c¢ = 1.



Chapter 2
Quantum Field Theory in Curved Spacetime

Quantum field theory in curved spacetime may be considered as a linear order approach to a unification
of quantum field theory and general relativity. In general terms, this theoretical investigation assumes
that a metric on a given manifold can be split into a background metric, gfw, and a small perturbation
to this metric, g, as
Juv = Qﬁv + Guv- (2.1)

From Einstein's equations, which reveal how the curvature of spacetime reacts to the presence of
matter and energy, the perturbation to the background metric can equally be interpreted as part of
the energy-momentum tensor, T,.~. In this sense, a first order approach to quantum gravity can be
introduced as an approach in which the arbitrary, classical background metric, gfw, stays fixed and the
perturbation, g,., represented by the fields propagating on top of this background, is quantized. This
quantization method, also known as the “background field” method, was first used by DeWitt [21].

For an n-dimensional spacetime that is infinitely differentiable, globally hyperbolic and pseudo-
Riemannian, the corresponding line element can be expressed as

ds? =guvdxtdx¥, u,v=012.,(n-1), (2.2)

where g,y is the pseudo-Riemannian metric with signature (+ — — ... =), where the plus sign is
assigned to the time dimension and each minus sign is assigned to one of the (n—1) spatial dimensions
[21].

With such a general spacetime in mind, a natural starting point for introducing quantum field
theory in curved spacetime is to observe how a scalar field evolves in the spacetime.

2.1 Scalar Field on a Curved Background

Since the motion of a scalar field can be traced back to the action,
S = Jdnxﬁ, (2.3)

and the action depends on the Lagrangian density, £, one is first prompted to obtain a description of
the Lagrangian density in order to describe the evolution of the scalar field. The Lagrangian density of
a scalar field ¢, propagating in a spacetime with metric g,., is given by

£ = Vg™ VbV — (m? + £R) 67} (24

where g = det g, M is the mass of the scalar field and R is the curvature scalar. The term ER¢p?
governs the coupling between the scalar field and the gravitational field, parameterized by the constant
&. This constant may take multiple values, but two numerical values are of special interest in the



literature: the minimal coupling for £ = 0, and the conformal coupling for & = (n —2)/(4(n —1)).
The names are well suited, as setting & = 0 in Eq. gives the Lagrangian density one obtains when
using the principal of minimal coupling to generalize the theory in flat spacetime to curved spacetime,
and the latter choice of & yields a conformally invariant action when the mass of the scalar field is zero.
A conformal transformation is a transformation which shrinks or stretches spacetime in the sense that

gp.v :Q2(X)guv (25)

for a non-vanishing function Q(x).
Setting the variation of the action in Eq. with respect to the field ¢ to zero, we obtain the
field equation
(O+m>+ER) ¢ =0, (2.6)

which is also known as the Klein—-Gordon equation. The operator [ acting on the scalar field ¢, is
defined as

1
Ob = 9V, Vud = —=0, |VIglg" 0,6 . (2.7)

Vgl

To get to the last equality we have used that the covariant divergence of a vector VM can be written
as [29]

V. VH = \;@au (\@v“) , (2.8)

together with metric compatibility and that partial derivatives and covariant derivatives coincide when
acting on a scalar field.
We further define the scalar product between two scalar fields as

(1, ba) = —iL VI921dT  b1d .3, (2.9)

where dZ* is a future directed volume element orthogonal to the spacelike hypersurface L, and gy is
the determinant of the induced metric on the hypersurface. This product is independent of the choice
of spacelike hypersurface £, as can be shown by making use of Gauss' theorem. Also,

G103 = h10, 3 — G50, D1 (2.10)

Solving Eq. (2.6]) we find that there exists a complete set of mode solutions fi(x) orthonormal in
the scalar product given in Eq. (2.9), so that

(fi, fir) = 0" Lk —k'); (ff, fr) = =" 1(k—k'); (fi. ) =0. (2.11)

Here we have used a continuous normalization of the modes . A discrete description of the modes
may be obtained by solving Eq. in a box of dimensions L, and impose periodic boundary conditions
on the field &. Then the Dirac delta functions in Eq. reduce to Kronecker delta functions and
the integral [ d™ 'k in Eq. is substituted by the sum (27t/L)™~* Y, instead. The integral is
reattained from the sum by letting L — oo ﬂ This set of modes is complete, so we can write the field

¢ as
¢ = Jd“‘lk (akfk + alfii) . (2.12)

Since we want to study a quantum field propagating on top of a classical spacetime, we need to
impose equal time commutation relations for the coefficients ay and alT(. Thus these coefficients must
obey the following, equal time commutation relations

[ak,ak/} =0; {alt, alt/] =0; {ak,al,} =5tk —k'). (2.13)

LIn the literature it is common to introduce quantum field theory in curved spacetime with a discrete normalization
of the field modes. However, | have chosen to use a continuum normalization in this introductory chapter in order to
stay consistent with later calculations.



Additionally, there exists a vacuum state |0¢) which is annihilated by all operators ay so that,
ax |0¢) =0, Vk. (2.14)

From this vacuum state a complete Fock basis of the corresponding Hilbert space of possible quantum
states can be created by repeated action of the operators al on the vacuum state. The operators ay
and al are interpreted as annihilation and creation operators, respectively, for the modes fy.
Generally, there is nothing unique with the set of modes fi. As a matter of fact, we are free to
choose a different complete and orthonormal set of mode solutions to Eq. . Naming these modes

gk, we may expand the scalar field ¢ in terms of these modes and their complex conjugates, as
&= | @ i (bugw + bk (2.15)

As in the previous case, the coefficients by and blt are interpreted as annihilation and creation operators
for the gx-modes, and satisfy the commutation relations

[bw, i | =0; [bfbf,| =0; [ox, bl | =" k). (2.16)
Moreover, the vacuum state [0g) is defined such that
by [04) =0, Vk, (2.17)

and repeated action by bl yields an entire Fock basis for the same Hilbert space as before.
Since the set {fy} serves as a complete set of solutions to Eq. (2.6), we may express the modes g
as linear combinations of these. We thus write

gk = J'dn_lk/ (o Tier + Bkk’fﬁ/) , (2.18)

with some complex coefficients oyq and Biks. Using Eq. (2.18) and the orthonormality of the modes
i in Eq. (2.11]), we may continue by observing that the coefficients oy and Bk’ can be obtained
by computing the scalar products

(gk, fir) = Jdn_lk//{kak” (fierr, Tier) + Buaaerr (Fierr, Tier) } = otuacr,
(2.19)
(g, fr/) = J'dn_lk//{kak” (fierr, Tier) + Buacr (Fierr, Tir) } = —Praer-

Because of the orthonormality in the sets of modes gy and fy, as well as the anti-linearity of the
second argument in the scalar product defined in Eq. (2.9)), the coefficients ouq and Brks must obey
the following normalization conditions:

Jdnilk/ (oﬁkk/ (Xl)://k/ - Bkk’ﬁ;//k/) = 6“71(1(// - k),
(2.20)
Jdn_lk/ (okk’ Brrkr — Bk o) = 0.

From this we see that we can express the modes fy in terms of the modes gy in a similar way, namely
as

fx = J i i ((xlt/kgk’ — Bk/kglt’) . (2.21)

The relations given in Eq. (2.18)) and Eq. (2.21)) are called Bogolubov transformations. Naturally,
then, the coefficients oyqr and Pk are called Bogolubov coefficients [21} [29].



Equating Eq. (2.12) and Eq. (2.15)), taking the inner product with gx on both sides and making
use of the orthonormality in the modes gy, we obtain the following expression for the operator by,

by = J‘dnilk/ {ak/ (fkf. gk) + (llil(fi:/, gk)}
(2.22)
= J‘dnilk/ <O(i:k/ ag’/ — Bltk’ al/) )

where we in the last step have made use of Eq. (2.21)). Likewise, the operator aj can be expressed in
terms of by as

ax = J'dn_lkl (ak/kbk’ + B]t’kblt’> . (223)

Let us now assume that two distinct static observers use the modes gx and fx respectively to
describe the same Hilbert space. For the observer using the modes fy, the expectation value of
fix-mode particles in the vacuum state |0¢) is

(0¢laf axl0f) =0, Vk, (2.24)

as readily follows from Eq. (2.14). The observer with the modes g and the operators by and bi,
however, measures that the number of gx-mode particles in the state |0¢) is

<0f|bl1;bk|0f> = dn_lkldn_lk// <Of| ((ka/al - Bkk/ak) ((xltk” QA — Bltk” (llJr(//) ‘0f>
_ dn—lk/dn—lk//ﬁkklﬁik” <0f‘ak,a;f(”|0f> (2.25)
= | d™ K B )

J

where we have used Eq. (2.22) and the relation
apal, —af, ae = 8"k — k). (2.26)

Consequently, instead of a vacuum state devoid of particles, the stationary observer using the
modes gx measures that there are

<0f\b;r(bk|0f> = Jdn_lk/|6kk’|2 (2.27)

gk-mode particles in the vacuum state |0¢). In general, Byks # 0, so the state |0¢) does not appear
vacuous to this observer.

At this point it may be suitable to stop and ponder: How can observers disagree on the number of
particles in a given state? The answer seems to be hidden in our understanding of the concept of
particles.

2.2 The Meaning of Vacuum and Particles

The fact that different observers can measure an unequal amount of particles in a given state is not
some special feature of curved spacetimes: Up to this very point we have kept the discussion quite
general. Nothing stops us from choosing the metric in Eq. to describe flat spacetime, and the
above derivation of vacuum expectation values for different observers holds in flat spacetimes as well.

Nevertheless, flat spacetimes conduct one special feature that cannot be generalized to curved
spacetimes: The existence of a timelike Killing vector. This single property ensures that the concept of
vacuum and particles is well-defined in flat spacetimes. We will illustrate this for Minkowski spacetime
in the following.



A set of solutions to Eq. (2.6]) in four-dimensional Minkowski spacetime (setting & = 0) takes the
form
fk x e*lwt+1k-x. (228)

In this spacetime we can always find coordinates in which the metric is independent of the time
coordinate, so there exists a timelike Killing vector, 9, throughout this spacetime. Insisting that the
angular frequency, w, of the mode oscillations always stays positive, the mode solutions in Eq. (2.28))
can be divided into so-called positive- and negative frequency modesE] defined respectively as

0¢fx = —1wfy, w >0,

e (2.29)

atfk == lwfk, w > 0
Performing a Lorentz transformation or a translation on the frame in which Eq. (2.29) is defined, will
not change the signs of the positive- and negative frequency modes. This can be illustrated by a
boost of Eq. (2.29)) into a frame of constant velocity v. Then the spacetime coordinate x* is boosted
into a new spacetime coordinate x’*, and the boosted time derivative takes the form

ox™

at/ = Tﬂa” :‘Y(l +V)au. (230)

Here we have used the inverse Lorentz transformations t = y(t’ + v -x’) and x = y(x’ + vt’) with

v =1/v1—v2. Thus the boosted version of Eq. (2.29) is

oxH s /
atlfk - Waufk = —1w fk, w > 0,
* axu * : ! % ! (231)
atfk == Tﬂaufk = 1w fk' w > 0,

with boosted frequency w’ = y(w — v - k).

Hence, in this spacetime there exists a natural set of inertial observers, related to each other
through actions of the Poincaré group (Lorentz transformations and translations), which all agree on
the division into positive- and negative frequency modes. Going back to the calculations earlier, then,
in order for the modes fy and gi to both satisfy Eq. (2.29)), they cannot be described by admixtures
of creation and annihilation operators. Hence the coefficient By in Eq. and Eq. must
vanish and the vacuum state |0¢) of the observer with the modes fy coincides with the vacuum state
of the observer with basis modes g.

Because the metric of curved spacetimes cannot generally be expressed in a way such that it is
independent of the time coordinate, it is normally not possible to find a timelike Killing vector — from
which we can define positive and negative frequency modes — all over the spacetime. Thus, in curved
spacetimes, a natural set of inertial observers agreeing on what is vacuum can not, in general, be
found. When going from flat spacetimes to curved spacetimes we have lost the reason to prefer any
set of observers to the others.

This does not, of course, mean that the measurements from a given particle detector cannot be
trusted. A particle detector following a specific trajectory will indeed measure the number of particles
that it encounters along its trajectory. In fact, such a detector will define positive- and negative
frequency modes with respect to the directional covariant derivative along its trajectory, using its
proper time t. Thus, according to this detector, positive frequency modes are all modes fy that satisfy

W
%vufk = —i(,Ufk. (232)
Particles observed by this detector are perfectly well-defined. As a matter of fact, Eq. is just a
generalized version of the first equation in Eq. . In other words, the above statement is just a

2Despite their names, these modes do not have negative or positive frequencies (we do indeed demand w > 0).
Rather, their names correspond to the sign of the eigenvalue of the time derivative-operator acting on the modes fy.
The time derivative of the negative frequency modes pulls down a factor +iw, as opposed to the minus sign which is
common for standard planar waves.



general way of stating that particles are well-defined for all freely falling observers. Nevertheless, a
different observer will not generally be able to find such modes fy that satisfy Eq. .

There do, however, exist spacetimes for which a separation into positive- and negative frequency
modes is well-defined throughout the spacetime. This can, for example, be done in a static spacetime.
In such spacetimes there exists a hypersurface-orthogonal timelike Killing vector, K* [29]. From this
Killing vector we are always able to find a set of coordinates fy that satisfy the coordinate-invariant

version of Eq. (2.29)),

Lyxfe = K“aufk = —iwfy, w >0,

_ (2.33)
Lxfp =KMO, ff =iwff,  w>0.

2.3 Gravitational Particle Production

Having discussed the meaning of particles and vacuum in general spacetimes, we are now ready to
examine how to understand the disagreement on the number of particles in the state |[0¢). A physical
interpretation of the result in Eq. is that the observer using the modes gi actually measures a
radiation of particles in the vacuum state of the observer using the modes fi. Exactly what gives rise
to these particles physically, depends on the properties of the spacetimes in question. In particular, as
we discussed in the previous section, the possibility to choose different sets of observers from which
the concept of particles can be defined in a natural way, is related to the existence of timelike Killing
vectors in the given spacetime. We call such sets of observers natural. In the following we will look at
an example of how to interpret the radiation of particles for a specific class of spacetimes.

Assume that in a given spacetime there exist two asymptotic regions in the future and in the past
that both contain a natural set of observers, from which a privileged vacuum state can be defined.
We call these two regions the in- and out-region of the spacetime, and their corresponding vacuum
states the in- and out-vacuum. In the in-region, the in-vacuum will remain devoid of particles to
all natural observers in this region. Outside this region, however, freely-falling particle detectors will
not in general measure that this state is devoid of particles. Specifically, this in-vacuum will not
coincide with the out-vacuum, which is devoid of particles as observed by the natural set of observers
in the out-region. Despite having made no assumptions on the region of spacetime in between the in-
and out-region, we may say that the particles observed in the in-vacuum by natural observers in the
out-region, comes from the changing gravitational field of the spacetime [21].

By the equivalence principle, we should therefore expect that an accelerated observer in flat
spacetime measures a radiation of particles in the vacuum state of an inertial observer. As we will
demonstrate in the following, this is indeed the case. For simplicity, this demonstration will be
restricted to a class of uniformly accelerated observers in two-dimensional Minkowski spacetime.

An inertial observer in a two-dimensional Minkowski spacetime will have a line element of the form

ds? = dt? — dx?. (2.34)

In two dimensions, minimal- and conformal coupling coincide. Hence, we need not worry about the
coupling between the curvature scalar and the scalar field ¢ in Eq. (2.6)), as this term vanishes anyway.
Thus, since we are considering a massless scalar field, we are looking for solutions of the differential
equation

O¢ = (07 —03) ¢ =0. (2.35)
A set of solutions to this differential equation consists of orthonormal mode solutions
1 —iwt4+ikx
fi = e , (2.36)
4w

which we can combine to form the following expression for the field ¢:

b= Jdk (akfk + a*kf;:) . (2.37)



Consequently, the vacuum state for inertial observers in Minkowski space is defined as the state
satisfying
Ay ‘0;\/[> =0 Vk. (2.38)

An observer moving with a constant acceleration, «, in the x-direction of Minkowski spacetime,
will follow a hyperbolic trajectory parameterized by
ST S (2.39)
2’ ’

1 1

This equation is solved by hyperbolic functions t = o~ * sinh oct and x = a~* cosh at. By inserting
these hyperbolic expressions for x and t into the metric given in Eq. (2.34)), we see that the parameter
T is actually the proper time of the accelerating observer. Defining coordinates (1, §) such that

o =ae %; T=e%p, (2.40)

with —oco <1, & < 00, the coordinates t and x satisfying Eq. (2.39)) can be recast as

1
t = —e%sinhan
‘11 (2.41)
X = ae“‘i cosh an.

Here we have chosen the solution of Eq. (2.39)) with x > [t|. The other solution, with x < |t], is

obtained by flipping the signs of x and t in Eq. (2.41).
In terms of these coordinates, the line element in Eq. (2.34) takes the form

ds? = e29% (dn? — d&?). (2.42)

Minkowski spacetime expressed in terms of the coordinates (1, &) defined in Eq. is known
as Rindler space. An observer moving along a path of constant acceleration in this spacetime is
called a Rindler observer. Such an observer follows a path satisfying & = constant, which corresponds
to a hyperbola. Paths of constant n are straight lines in this spacetime. The causal structure of
Minkowski spacetime expressed in Rindler coordinates is depicted in the Minkowski diagram in figure
Following the path of a Rindler observer throughout this spacetime, we may notice that the
observer's acceleration is confined by a Cauchy horizorE] both in the future and in the past. These
horizons are denoted H and H™ in figure[2.1} and correspond to the lines x = t in inertial coordinates.
According to an inertial Minkowski observer, Rindler observers thus approach the speed of light as
n — too.

Making use of the relation for the action of the d’Alembertian on a scalar field given in Eq. (2.7),
we obtain the following wave equation expressed in Rindler coordinates:

O¢p =e 25 (37 — %) ¢ =0. (2.43)

Since the metric in Eq. (2.42) is just a conformal transformation of the metric of Minkowski spacetime
given in Eq. (2.34)), a normalized set of solutions to the Klein-Gordon equation, Eq. (2.43]), consists

of plane waves of the form
1

gk = ———e ‘WntikE (2.44)
4w
with w = |k| > 0 and —co0 < k < oo0.
From Eq. (2.42) we may observe that the metric of Rindler space is independent of the time
coordinate 1. Hence, the operator 0, is a timelike Killing vector in this spacetime, which we can

use to define positive- and negative frequency modes. However, this Killing vector only points in the

3A Cauchy horizon marks the boundary of all future or all past causally connected events inside a given domain of
the spacetime in question. Unlike an event horizon, a Cauchy horizon does not mark a surface beyond which timelike
curves cannot escape to infinity [29].
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Figure 2.1: Rindler space. Curves of constant 1 are straight lines and curves of constant & are
hyperbolas. Region | corresponds to the coordinate transformation given in Eq. (2.41)), whereas
flipping the sign of the coordinates x and t in the same transformation gives region Il. All Rindler
observers are asymptotic to the future- and past Cauchy horizons H* and H™.

future timelike direction in region | in Eq. . In region IV, this vector points in the past timelike
direction. A future timelike Killing vector in region IV is thus 0_,; = —0,,. In other words, we need to
divide the solutions in Eq. into two sets of solutions, one that corresponds to positive frequency
modes in region |, and another that corresponds to positive frequency modes in region IV. Thus we
write the mode solutions as . .

1 { 417“,U e*l(UT]Jrlka 1

9 0 na

(2.45)

@) _ U I
Ok \/ﬁelwn+1k£ v -
It is important to note that the coordinates (1], &) used in Eq. cannot, strictly speaking, be
used simultaneously for both region | and region IV, since they range from —oco to oo in both cases.
However, because we want Eq. to apply in both regions, we keep this notation — but make an
explicit distinction between the two regions, when needed.

The two sets of mode solutions in Eq. form, together with their complex conjugates, a
complete set of basis modes for the Hilbert space of solutions to Eq. . This is due to the fact
that these modes can be analytically extended into the spacelike regions Il and Il in figure 2.1} Hence,
we may expand the field ¢ as

(1 Dt (1)= 2) (2 2)t (2)*
0= [ (5010 + o b7 4217 (249
The vacuum state corresponding to this expansion satisfies
by 0g) = bi7 [0g) =0 V. (2.47)

This vacuum state does not coincide with the vacuum state |0p) given in Eq. (2.38)) for an inertial
Minkowski observer. To see this, follow the surface t =0 in figure and observe from Eq. (2.45)

that the modes glil) are non-zero only for x > 0. Thus we cannot expand these modes in terms
of only positive-frequency Minkowski modes all over Minkowski space. The annihilation operator
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b](:) must therefore be an admixture of the inertial Minkowski observer’s annihilation and creation
operators, corresponding to a non-zero By /-coefficient in Eq. . Hence, the vacuum expectation
value of these Rindler modes in the Minkowski vacuum is non-zero, as we can see by comparison with
Eq. (2.27). A similar argument can be used for the modes 91(<2) and their corresponding annihilation
operator, b](f).

Now we may continue by the same reasoning as presented in the previous section and find the
Bogolubov coefficients connecting the Minkowski modes to the Rindler modes, and then calculate the
vacuum expectation value for the Rindler observer in the Minkowski vacuum. However, a different,
less cumbersome approach can be found by realizing that we can create two linear combinations of
the modes in Eq. which share the same vacuum state as the inertial Minkowski observer. These
modes take the form [29]

(1) _ 1 nw/2a (1) | —mw/2a ()
hk - . (e gk +e g,k ) '
\/2sinh 722
(2) 1 /2a,(2) /2a (1) (2:48)
hk = (eﬂw agk + efrtw ag_k*> )
\/2sinh 722
Again, we may expand the scalar field ¢ in terms of these basis modes as
b= [t (e 4 el R+ P o), (2.49)
where now
cMom) =l jop) =0 k. (2.50)

This latter statement, that the observer using the modes in Eq. share vacuum state with
inertial Minkowski observers, comes from the fact that these modes can be fully expressed in terms
of positive-frequency Minkowski modes. By writing the gl(j'Q)—modes in Eq. in terms of the
coordinates x and t, this becomes evident.

In the same way as we obtained the relations given in Eq. and Eq. in the previous

section, we may now write the operators b]il) and b,(f) in terms of the operators clil) and cf) by

equating Eq. (2.46) with Eq. (2.49) and taking the inner products with the modes glil) and gf],
respectively. This yields the relations

1 *
b(l) - +/2sinh =& (emv/mcl(cl) + einw/mc(jl ) !
a
(2) 1 /2a.(2) /2a.(1) (251)
b = (e““’ e e acfk*) .
\/2sinh 722
A Rindler observer in region | will thus measure that the number of particles in mode k is
(Om| bfj”bg) opm) = SorEs (Oml e*“W/“c(_lﬁc(_liT (V)
a (2.52)
T e2nw/a _ 1 (O)’

where we have used Eq. and that the state clim |On) is a normalized one-particle state. We
obtain the same result for region Il if we instead use the number operator bf”bf) in Eq. (2.52).
The infinity encountered in the delta-function above is an artifact of the chosen normalization of the
basis modes, given in Eq. (2.11)), and hence the normalization of the operators defined in Eq. (2.13).
If we instead chose to normalize these modes as wave packets centered around a peak frequency, we
would have gotten a finite result in Eq. (2.52)).

The vacuum expectation value in Eq. is a Planck spectrum of radiation at temperature
T = a/2nkg, where kg is the Boltzmann constant [21]. What this relation actually tells us, then,
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is that a uniformly accelerated observer in Minkowski spacetime will observe a thermal spectrum of
particles in the vacuum state of an inertial Minkowski observer [16]. Because Unruh was the first to
point out this effect, it has been baptized the Unruh effect. The temperature T = a/27tkg is in reality
the temperature of the radiation as measured by an accelerated observer following the path & =0,
which from Egq. feels an acceleration o« = a. Accelerated observers following different paths of
constant & will thus in general observe a temperature proportional to their acceleration «, namely |21,

2]
x

T= .
27TkB

In this chapter we have found that some observers measure particles where others observe none.
This surely sounds like science fiction, and not something that should be taken seriously. Indeed,
when computing the expectation value of the normal-ordered energy-momentum tensor of the scalar
field ¢ in the Minkowski vacuum, the result is zero — for all observers. Hence, observers measuring
a flux of particles in the Minkowski vacuum will also find that the vacuum expectation value of the
energy-momentum tensor is zero. This seems to violate energy conservation, and we may be tempted
to conclude that these observed particles are not real [21].

One way out of this apparent paradox is to consider what causes the acceleration in the first place.
In order for an accelerated detector to maintain constant acceleration, some sort of constant work
must be performed on it. This work gives rise to the creation of particles. From the point of view of
an inertial Minkowski observer, the accelerating detector both emits and absorbs particles. Hence the
detected particles are created as a consequence of the constant acceleration |21} 29].

(2.53)
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Chapter 3
Derivation of Hawking Radiation

In 1975, Stephen Hawking found that black holes radiate; a thermal radiation which later has been
known as Hawking radiation. That black holes radiate is a rather surprising result, given the definition
of black holes in the classical theory of general relativity: Black holes are regions of spacetime where
gravity is so strong that nothing can escape from them — not even light. As a consequence, Hawking's
result has since its first presentation been vastly disputed.

Because the creation of particles was first derived in the spacetime of a spherically symmetric star
collapsing to a Schwarzschild black hole [15], many readers have been led to the incorrect conclusion
that Hawking radiation is a manifestly gravitational artifact. However, already the year after Hawking's
result, Unruh showed that also uniformly accelerated observers in flat spacetimes observe a thermal
spectrum of particles in the traditional Minkowski spacetime [16]. Moreover, research over the recent
years has shown that Hawking radiation can be derived through many different approaches, some of
which have nothing to do with gravity [18]. Despite this intriguing remark, we will, for the purpose of
this thesis, restrict the derivations of Hawking radiation to the spacetimes of an eternal black hole
and a collapsing star.

3.1 Hawking Radiation from Eternal Black Holes

In the previous chapter we saw that an observer which accelerates constantly registers particles in the
vacuum state of an inertial Minkowski observer. From the equivalence principle, we know that there is
no way in which we can separate constant acceleration from a curved background spacetime, locally.
Therefore we expect that a freely-falling observer propagating through a static, curved spacetime
which is asymptotically flat, will observe particles being created by the spacetime curvature. This is
indeed the case for an eternal black hole.

An eternal black hole can be described by the unique vacuum solution to Einstein's equations with
spherical symmetry: the Schwarzschild metric. For simplicity, we will keep the following discussion
in two dimensions. The four-dimensional treatment and results are essentially the same, and the
two-dimensional approach corresponds to treating each two-sphere in the four-dimensional spacetime
as a single point in the two-dimensional spacetime. In two dimensions, the Schwarzschild line element
for a black hole of mass M is given by

2
ds® = (1 - ?4) dudv, (3.1)

where the null coordinates u and v are defined as

*

u=t—r

3.2
v=t+1" (3.2)
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Also, the radial coordinate satisfies
.
* = 2M] ‘——1‘. 3.3
=14 n M (3.3)

This spacetime is asymptotically flat, which can easily be shown by sending + — oo in Eq.
and Eq. . Thus for a massless scalar field ¢ in the asymptotic region of this spacetime, one
natural basis of solutions to the wave equation reduces to a set of plane waves proportional to e~ t&v
and e 1®V_ Following the reasoning from the previous chapter, these modes will have a corresponding
vacuum state |0s) that is devoid of particles for all inertial observers in these regions of spacetime.

From Egq. we see that the metric becomes singular at the radial coordinate distance r = 2M.
These modes will oscillate rapidly at the event horizon of the black hole, situated at r = 2M.
Transforming to Kruskal coordinates [21],

il =—4Me W/*M

v = 4Me"/*M, (34)
the two-dimensional line element becomes
M o
ds? = Te_r/ZMdudV. (3.5)

This line element is regular all over the Schwarzschild spacetime, except for at the physical singularity
atr=0.

The line element of Schwarzschild spacetime expressed in terms of Kruskal coordinates is conformal
to Minkowski spacetime. Thus there exists a Killing vector in these coordinates from which positive-
and negative-frequency modes can be defined. A different set of modes serving as a natural basis of
solutions to the wave equation in the Schwarzschild spacetime, can therefore be found. These modes
are plane waves of the form e~ *®“% and e~*®“V. Moreover, there exists a vacuum state |Ox) for these
modes which does not coincide with the vacuum state |0g).

Now we may proceed as before by expressing the scalar field ¢ in both sets of modes, and find a
relation between the annihilation- and creation operators of the two observers. Having obtained such
a relation, we may further find the expectation value of the number operator in the vacuum state of
the observer using the Kruskal coordinates in Eq. . Rather than going through the details of this
calculation, we will use the equivalence principle to argue that a Schwarzschild observer will find a
thermal radiation of particles in the Kruskal vacuum.

The reasoning goes as follows: Firstly, we may observe that the Minkowski line element in Eq.
can be written in terms of null coordinates (i, V) as

ds? = dt? — dx? = didv. (3.6)

Using Eq. (2.41) and defining Rindler null coordinates u’ =1 — & and v/ =n + &, the coordinates
(1t,V) can be written as

1
o (3.7)
V=t+x=—e?.

a

Comparing Eq. with Eq. (3.4), we see that setting a = 1/4M yields the same relation
between the Minkowski null coordinates (i, ¥) and the Rindler null coordinates (u’,v’) as between
the Kruskal coordinates (1, V) and the Schwarzschild coordinates (u,v). Furthermore, k = 1/4M
is the surface gravity of a Schwarzschild black hole of mass M, so the acceleration, a, of a Rindler
observer following the path & = 0 in Rindler space is equivalent to the surface gravity, k, on the event
horizon of the Schwarzschild black hole. This is thus in complete agreement with the equivalence
principle, which states that constant acceleration cannot be distinguished from gravitation locally.
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t = constant

Figure 3.1: Penrose diagram of Schwarzschild spacetime. The future and past event horizons are
marked by the lines of radial coordinate 1 = R. These horizons divide the spacetime into four separate
regions: Regions Il and IV correspond to a black and a white hole, respectively, and regions | and Il
represent two causally disconnected, asymptotically flat spacetime regions. The singularities at 1 =0
are proper singularities of the spacetime. Null rays travel along lines parallel to the event horizons.

As a matter of fact, the Penrose diagram figure [2.1] depicts the exact same causal structure as that
of a Schwarzschild black hole spacetime, shown in figure 3.1} More specifically, the horizon structure
is identical in both spacetimes. As one can readily see from figure the event horizons in the
Schwarzschild spacetime divide the spacetime into four separate regions. Regions Il and IV correspond
to a black and a white hole, respectively, and regions | and Il represent two causally disconnected,
asymptotically flat spacetime regions. The Schwarzschild modes can be defined in these latter two
regions in a similar manner as the Rindler modes in Eq. [16]. Additionally, these modes can
be extended analytically into the whole spacetime, yielding a similar field expansion for a massless
scalar field ¢, as in Eq. . Hence the vacuum state |Os) for a Schwarzschild observer is closely
correlated with the vacuum state |Ogr) defined in Eq. for a Rindler observer. Similarly, the
Kruskal vacuum |0k ) corresponds to the Minkowski vacuum |On). Thus the vacuum states |0s) and
|0x) do not coincide.

Adopting the same arguments as for the accelerated observer in Minkowski spacetime, we are able
to combine the Schwarzschild modes into a set of modes which share vacuum state with the Kruskal
modes. Therefore, we may relate the operator transformations of the Schwarzschild- and Kruskal
coordinates in the exact same way as for the Rindler- and Minkowski observers in Eq. . In
particular, a static Schwarzschild observer at a radius somewhat larger than the Schwarzschild radius
will observe — over sufficiently short length- and timescales — a thermal flux of particles of temperature
T = a/2nkg emerging from the vacuum state of a freely falling observer. In a static spacetime that
is asymptotically flat, the surface gravity is just the red-shifted acceleration of a static observer close
to the event horizon, as measured by an observer at infinity. Hence, a static observer far away from
the Schwarzschild black hole will observe a spectrum of thermal radiation of temperature

. K
T omkg!

(3.8)

emerging from the black hole [29).

At the end of the previous chapter we discussed the origin of the particles observed by a uniformly
accelerated detector in the vacuum state of an inertial Minkowski observer. As mentioned, one possible
interpretation of the phenomenon was that the detected particles were created as a consequence of
the work needed to keep the detector's acceleration constant. This interpretation does not translate
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very well to curved spacetimes, as it is restricted to local measurements only. Instead, a more useful
interpretation can be found by looking at the global derivation of Hawking radiation: In a black
hole spacetime the Kruskal modes e *®“" are positive frequency with respect to the operator dg
which is a Killing vector on the black hole past horizon H™. Similarly, the Schwarzschild modes
proportional to e 1%V are positive frequency with respect to the Killing vector d,, on the surface
J~. Both these sets of modes can thus be described as modes propagating into the asymptotically
flat regions of Schwarzschild spacetime, corresponding to a flux of particles emerging out from the
black hole. Similarly, the time reversed modes e **¥ on H* and e 1®% on J* correspond to thermal
radiation entering the black hole. Hence, an eternal black hole emits and absorbs thermal radiation,
being in thermal equilibrium with its surroundings. This thermal radiation is most famously known as
Hawking radiation [21].

Nothing in the argumentation above demands any time dependence of the spacetime in question.
This discussion thus suggests that the Hawking effect is a consequence of the causal and topological
structure of spacetime, rather than the geometry in question [21]. An eternal black hole is nevertheless
not a physically realistic object. Rather, black holes are thought to be formed from collapsing stars.
This is the main reason for disposing with the model of an eternal black hole in the following, and
instead focus on Hawking radiation from stars collapsing to black holes. We will, however, use a
simplified collapse model for the further discussion, letting the star undergo a spherically symmetric
collapse to a Schwarzschild black hole. Such collapse models have been studied in great detail, which
will make it a lot easier to pin-point the time and place in which the Hawking radiation may occur
later on.

3.2 Hawking Radiation from a Collapsing Object

As already mentioned, multiple methods have been developed to show the existence of Hawking
radiation. In the following we will mainly follow the derivation presented in Birrel and Davies' Quantum
fields in curved space [21]. Many of the arguments presented in this section will be tweaked slightly in
chapter [4] on Hawking radiation from ECOs. For this reason, the following discussion will be rather
detailed.

Let us start out with a collapsing spherical star of mass M. Initially, this star is at rest with a
surface fixed at 1 = Ry. At the time t = T = 0, the star starts to collapse. Outside the object the
spacetime takes the form

ds? = C(r)dudv, (3.9)

where C(r) = (1 —2M/r) and the null coordinates (u,v) are defined by

T dr/
u:t—J — =t—1"+Rg,

C(r!
ko 1T (310)
T * R*
v=t-— =t+1 —Ry.
J'Ro C(r") 0
The time coordinate t is the coordinate used by an inertial observer, far away from the body.
Similarly, the metric inside the star can be written in terms of null coordinates (U, V) as
ds®> = A(U, V)dudv (3.11)
for some function A, where the null coordinates are defined by
u:T—T+R0, (312)
V=1+r1r— Ro. ’

The coordinates u,v,U and V are chosen such that at some given time t = T = 0, we have
u=U=v =YV =0 at the surface of the star.
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Figure 3.2: Minkowski diagram showing the wordline of the star’s surface, r = R(t). All null rays
crossing the surface at the time t = T = 0 are defined to have the constant value zero. The coordinates
V and U mark incoming and outgoing null rays, respectively, on the inside of the star, whereas the
coordinates v and u correspond to incoming and outgoing null rays outside the star.

We will study null rays starting at J—, propagating through the star and ending up on J*. Null
rays going out to J* run along worldlines of constant null coordinates u and U, and incoming null rays
from J~ run along worldlines described by constant v and V. There will exist some relation between
the inside and outside null coordinates |21} 24|. We express these transformations as

U = «(u),
v=p(V),

where we have assumed no reflections on the surface of the star so that the outgoing internal null
coordinate smoothly turns into the outgoing external coordinate, and equivalently for the incoming
null coordinates. At the point T = 0, we observe from Eq. (3.12) that

(3.13)

V =U-—2R,.

We are thus able to relate the null coordinate v to the null coordinate u at the point 1 = 0 by further

noting that
v=B(V)=B(U-2Ro) = p(x(u) — 2Ro). (3.14)

Our task now is to solve the wave equation in Eq. (2.6) for a massless scalar field ¢ in this
spacetime. Because this spacetime is asymptotically flat, the mode solutions reduce to standard
exponential functions on 3~ and J*, so these solutions must be proportional to

efiwv + efiwu’ (315)

where w = v/k2 4+ m2 and k = |k|. Furthermore, the modes proportional to e~V correspond to
incoming modes from J~ and the modes proportional to e t® correspond to outgoing modes on J™.
Instead of reflecting the metrics in Eq. and Eq. at r = 0, we restrict our treatment to the
region T > 0, imposing the boundary condition ¢ = 0 at v = 0. Thus incoming null rays are reflected
smoothly into outgoing null rays at this point. Using Eq. and the boundary condition for ¢, we
see from Eq. that the outgoing modes can be expressed as

,iwu|T:0 _ 7iwv|T:0 — _efiwﬁ(oc(u)fﬂ%) (316)

e —€e
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Inserting this into Eq. (3.15)) and normalizing the modes in the scalar product Eq. (2.9)), we obtain
the mode solutions

i (e—iwv _ e—iwﬁ((x(u)—2Ro)) ’ (317)
4w

where the modes of the form e **V are incoming waves which then get transferred into outgoing
waves of the form e~ twPB (x(u)=2Ro])
We seek continuity between the mathematical description of the interior of the star with the

exterior. Specifically, we impose that the two line elements Eq. (3.9) and Eq. (3.11)) are equal on the
surface of the star, at r = R(t). This yields

du C(r) dv

— =— : 3.18
dulr=k(t) A(U,V)dVlr=r(7) ( )
At the surface r = R(T) these derivatives can further be expressed as
N -1
dup o (dwytdup o fat R (1-R)
du lr=R(1) - drt dt lr=R(7) o dt C r=R(T)
1 | (3.19)
dv dv\ " dv N—1(dt R
uidl i = —(1+R =200
dVlr=gr(7) (dr) dtlr=R(1) ( + ) <dT + C) r=R(1)’

where we have set R = dR/dt and made use of Eq. (3.10) and Eq. (3.12)). Inserting these expressions
into Eq. (3.18]) we find an expression for dt/dt, which when inserted back into Eq. ([3.19) yields the
following relations

c(1-Rr)

W, = | =
au S =R0 T Gy lrmre) \/AC (1—?2) +R2*R’
(3.20)
DY
av T=R(T) T qV|r=R(x) C (1 +R) |

where the parameters C, U and V are evaluated on the surface v = R(1).
As we approach the event horizon, C — 0. Hence, we may expand Eq. (3.20)) in the limit

AC(1—R?)/R?2 <« 1. Additiqnally, because the star is collapsing, R < 0 and thus VR2 = —R. To
leading order in x = AC(1 — R?)/R?, this yields

ioc(u)‘ _a T op
™ r=R(T) ~ qut | r—Rr (1) 2R (3.21)
G AR
v r=R(0) T qV |r—r(x) 2R

where we have absorbed a minus sign into the order of magnitude estimate in the equation for the
derivative of f3.

Before integrating Eq. (3.21)), we need to know more about the functions C and A on the surface
r = R(T). First, we expand the function C(R) around its value on the event horizon R = R;:

C(R) = C(Ry) + 25
or

From the first equation in Eq. (3.21])), we may further observe that to O(R — Rs) we can write

(R—Rs) + O((R—Ry)?). (3.22)

r=Rg

R 1 10C

. (R=Ry)du, (3.23)
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where we have used that C(Rg) = 0. _ _
Observing from Eq. (3.12) that dU/dt =1 — R and that Rdt = dR, we may write Eq. (3.23) as

1
R R dR = kdu, (3.24)
where we have defined LacC
K= 3 s, (325)

Physically, the quantity « is interpreted as the surface gravity of the black hole [21]. For a Schwarzschild
black hole, we have k = 1/2R; = 1/4M. Integrating Eq. (3.24)) we further obtain the relation

ku = —In|Rg — R(T)| + constant. (3.26)
We may also expand R(T) close to the event horizon. This expansion is given by
R(T) = Rs +v(ts — 1) + O((1s — 7)), (3.27)

where Ry = R(Ts) and ¥ = —R(7;). Making use of this expansion together with the definition of
U given in Eq. (3.12) we have, to O(ts — T) — which from Eq. (3.27)) is the same as expanding to

O(R —Rg), that

Ults, Ry) — U(T,R) = (s — 1) + (R—Ry) = “TY(R—RSJ. (3.28)

Thus we may rewrite Eq. (3.26)) as

ku = —In|U+ Rg — Ry — 7| + constant. (3.29)

Inverting Eq. (3.29) we get that
U = o(u) ox e “* + constant (3.30)

for late times (i.e. for T~ T5).

As U — T — R + Ro, we see from Eq. that uw — oco. The null ray u = co coincides with
the event horizon of the black hole. Following this ray backwards in time, we see that it turns into the
last null ray v = vg emerging from past null infinity that propagates through the center of the star
and escapes the star before it turns into a black hole. This is depicted in the Penrose diagram [3.3]
Here the pink line represents the null ray v = vg turning into the ray u = oo, which coincides with
the horizon of the black hole. The orange lines are null rays leaving J= for values v < vg and v > vy,
respectively. The former propagates through the star to J* and the latter gets trapped by the event
horizon of the black hole.

Denote the pink null ray in figure[3.3] v and the orange null ray that escapes to J* y’. Further
assume that this latter ray leaves J~ just before the ray 7y leaves this null surface. Following the ray y
from J~ all the way to future null infinity, we see that it emerges from a finite value v = vg on J~ and
ends up at I at an infinite value of . The ray y’, on the other hand, leaves J~ for a finite value v’
which is a little bit smaller than vg, and ends up at J* at a finite value u = u’. Hence there must be
an infinite number of equispaced null rays u = constant between the null coordinates u = u’ and
u = oco. When tracing these null rays backwards in time from J* to J—, they pile up between the rays
v’ and y. Consequently there is only a narrow range of values for v and V that make up the late time
asymptotic region of J*.

Hence, to compute the experience of an observer at late times (i.e. for large values of u), we may
set A to be approximately constant in the null coordinate V in Eq. (3.21)). Integrating this equation

we get that

1
v=_pRV)~ —AV% + constant, (3.31)

20



(=

Figure 3.3: Penrose diagram of a collapsing star. The pink line depicts the last null ray originating on
J~ that propagates through the collapsing star and escapes to J* just before the star collapses to a
black hole. Furthermore, the dotted line marks the horizon of the black hole, and the grey area depicts
the interior of the star. The orange line corresponds to a null ray that leaves = for v < vg, ending
up on J*, and the blue line corresponds to a null ray that leaves I~ for v > vg and thus continues
through the event horizon of the black hole, towards the singularity at r = 0. The wavy line depicts
the singularity of the spacetime, and the line r = 0 is the origin of spherical coordinates.

where we have set R = —y since we look at a very narrow range of the spacetime.

Using Eq. (3.14) together with Eq. (3.30) and Eq. (3.31) we see that at late times, the phase
factor of the outgoing modes in Eq. (3.17)) is given by

1
v =B (x(u) —2Rg) = —A(e™ " + constant — 2Ry) Y + constant = —ce™ " + d, (3.32)

where ¢ and d are constants. The mode solutions Eq. ([3.17)) thus take the form

i —iwv iw(ce*"“—d])
e —e (3.33)
VAnw (
1

In other words, the outgoing modes suffer an increasing redshift of e-folding time k—*.

Since the mode solutions to the wave equation in this spacetime are simple plane waves on J~, an
inertial observer measuring the number of particles in the vacuum state will observe that it is devoid
of particles. An inertial observer in the region J*, on the other hand, will measure a flux of particles
coming out from the vacuum of the observer on J~. This is due to the redshift in the outgoing modes.
As before, the spectrum of the flux of particles going out from this vacuum state can be found by
computing the Bogolubov coefficients relating the modes Eq. and the modes used by an inertial
observer in the region Jt.

However, instead of using the late time modes defined on J*, we will rather invert the mode
functions Eq. and compute the Bogolubov transformations close to the null surface J=. The
reason for making this transition is that on J~ there is a natural bound on the coordinate v giving rise
to radiation on J*, since all rays leaving J~ after some coordinate v = vg will enter the black hole
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horizon and never get out. Thus we aim to write the outgoing mode solutions of the Klein-Gordon
equation such that the modes are standard outgoing modes on J*, but take a more complicated form
on J~. To make this transition we must therefore invert the modes Eq. (3.33).

Defining F(u) = B(a(u) — 2Rg), we may write these inverted modes as

i —iwF1(v) —1wF 1 (F(u))
e —e . 3.34
4Tt ( ) ( )
By definition, F~1(F(u)) = u. Also, from Eq. (3.32)) we see that u = F1(v). Thus, we must have
that ) 4
u=F1w) :—In( _"). (3.35)
K c

Additionally, since all modes leaving J~ for v > vy end up inside the black hole, these will not give
any contribution to the modes that propagate to J*. Hence, up to a phase factor, we may write the

modes Eq. ((3.33) on I~ as

1 (eiwln((vo—v)/c)/K _ efiwu) . V<. (3.36)
4w

At this point it is important to note that we have made use of a very specific assumption in the
calculations above. The fact that we can relate the modes on J* to the modes on J~ by tracing
the null rays backwards in time, is actually due to geometrical optics. Implicitly, we have assumed
that the null rays in question are propagating along geodesics, so that the affine parameter distance
between different null rays on J* is proportional to the affine parameter distance between the same
modes on J~. See Appendix |B| for details.

We can use the assumption that the null rays follow geodesics as long as the rays oscillate rapidly.
The rays leaving I~ just before the horizon formation, will suffer a large redshift when propagating
from the star to J*. Physical rays on J* that escape the star just before the collapse to a black
hole, must have had a lot larger frequencies on J~. We may therefore safely use the geometric optics
approximation for these rays.

In the following we will denote the modes incoming from J— that are standard plane waves on
past null infinity, _

fo = ' e*iw", (337)
4w

and the modes that are standard plane waves on J* but which become complicated on I~ as
i

p = —

¢ Vanw

To find the form of the spectrum of radiation we need to calculate the Bogolubov coefficients relating
these modes.

There are different ways in which we may proceed to find the Bogolubov coefficients. One possibility
is to compute the scalar products

etwn((vo—v)/c)/x (3.38)

Kww!' = (fw/va)

Bww =— (fwup’&))
on a suitable spacelike hypersurface. This method is straight-forward, but may in some cases be a bit
cumbersome — especially if there exist no symmetries of the spacetime from which a specific surface
of integration can be chosen that simplifies the calculations considerably. A different approach, which
is the method presented by Hawking in his first paper on the matter |15], is to instead make use of
Fourier transformations. This is the method we will use in the following.

In analogy with Egq. , we can write the modes p, in terms of the modes f,, and their

complex conjugates. Equating Eq. with this expansion, we get that

(3.39)

i iwlIn((vo—v)/c)/x J'OO " ( 1 —iw’v i iw”v)
—¢€ = dw — X ”e Ealy—— ”e . 3.40
4w —o0 N Vanrw” Pu (3.40)
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Figure 3.4: Contour of integration for the « /-integral in the complex s-plane. The contour is
marked with a pink line. Since the integral vanishes on the boundary at infinity and there are no
poles of the integrand inside the contour, the integral along the real axis from oo to 0 is the same as
the integral from 0 to —ioco along the imaginary axis. Similarly, the contour for the ., /-integral is
chosen to be in the lower left quadrant of the complex s-plane.

Fourier transforming both sides of this equation, as well as performing an integration over the arising
delta functions further yields

1 (Ve w’ o
K’ = %J dv Gelw Ve‘Lwh‘l((VQfV)/C)/K’ (341)
—00

for the integral over all positive values of w”, and

1 Vo w’ 2o :
wa/ — 77J dvi/ — e tw Velw|n((V07V]/C)/K’ (342)
27 ) o w

for the negative values of w”. Also, we have cut the upper integration boundary on v = vy, since all
values of v larger than this gives zero contribution to the integrals. Instead of computing these integrals
directly, we will continue by arguing that we can relate the coefficients &, to the coefficients 3, -
by a constant factor.

First we observe that by defining a new parameter s = vy — v in Eq. and s = v —vg in
Eq. , we may rewrite these integrals as

1 0 w’ —iw’s j;iw’ve jiwIn(s/c)/k
Xww! = _ﬂ ds ae e %e ,
00
1 0 w’ —iw’s ;—iw’'ve jiwIn(—s/c)/k
Bow = 9 ds e e °e .
—00

The contour of the integral oy, in Eq. over values of s ranging from 0 to oo can be joined
at infinity by a quarter of a circle in the complex s-plane with the contour of the complex integral
ranging from —ioo to 0. These three segments together make a closed contour in the lower, right
quadrant of the complex s-plane. Figure shows the contour of integration. Inside this contour, the
integrand of the same integral has no poles. Thus the contour can be analytically compressed into
one single point. Since the integrand does not have any poles in this quadrant, the integral along
the whole contour in the complex s-plane must vanish. Additionally, since the integrand vanishes on

(3.43)
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the boundary at infinity, i.e. along the quarter of a circle connecting the imaginary and real axes, the
integral along the real axis must equal the integral along the imaginary s-axis. A similar argument can
be used for the integral B,w/. We can thus define s = is’. Moreover, since the integrals Eq.
are confined to the lower complex plane, we know s’ < 0. Hence we may write Eq. as

i iw’ve ,Tw /2K w’ 0 row’s’ iwlin(|s’|/c)/k
Apw’ = —€ °e — ds’e e ,
27 w J)_o

(3.44)
i. s (,Ul 0 s’ iwl ’
wa, — e tw voefﬂw/2|< 7‘[ ds/ew s’ plw n(ls’|/c)/x
27 Vwl o
where we have used that
In(£is’/K) = F(irt/2) + In(|s’|/K). (3.45)
Thus we may write
|0wa’|2 = e27rw/K|wa/|2_ (346)

From Eq. (2.27]) we see that an observer using the modes p, measures a flux of particles from
the vacuum state of an observer using the modes f,, given by

(01lp!, pelor) = de’uswww?. (3.47)

Evaluating this integral straight forwardly-yields an infinite amount of particles in the vacuum state,

which can be seen by making use of the first relation in Eq. for w” = w. This infinity should

not come as a surprise, as the expectation value Eq. is defined for all times. Because there is a

steady flux of particles out from this state, we expect an accumulation of these for late times, at J*.
To get around this infinity, we may insert the Fourier transform of the delta function,

1 (/2 . "
S(w—w”) = lim —J dt etlw—@t (3.48)

into Eq. (2.20)), so that we can write

lim —— — de' (1% = 1Bever?)

= (e2nw/K - 1) de/”-))ww/‘z,
for w” = w. In the last equality we have used Eq. (3.46)).
Further inserting Eq. (3.49) into Eq. (3.47) yields the vacuum expectation value
. T 1
O¢lpl pel0f) = lim ———F——. (3.50)

T—o0 27T €277 /K _ 1

Thus, the number of particles per unit time and frequency that pass through the surface of the star is

1
o/eT 1 (3.51)
where we have defined the temperature
K
T= ) 3.52
27TkB ( )

Hence, the two-dimensional model of a star collapsing to a black hole radiates thermally with a
temperature given by Eq. (3.52). This is the exact same thermal spectrum of radiation as the ones
found in the case of an eternal Schwarzschild black hole and for an accelerated observer in Minkowski
spacetime.

The same result can be found in four dimensions. Essentially, the arguments of that calculation
follows the same steps as for the two-dimensional model given here. This is demonstrated in Appendix

[Al
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3.3 Where and When are the Hawking Particles Created?

In the previous derivations of Hawking radiation, being either in a flat spacetime with an accelerated
observer, in the spacetime of an eternal black hole or in the spacetime of a collapsing star, one specific
aspect has been crucial in order to obtain the predicted thermal spectrum of particles — the existence
of a horizon. When calculating the spectrum of particles from a star collapsing to a Schwarzschild
black hole, the event horizon is essential in the argument for a pile-up of null rays on J—, leading to
Eq. . Also, the redshift in the modes propagating from past to future null infinity in Eq.
scales exponentially with the inverse of the surface gravity, k, of the black hole horizon. Thus, as
one can readily see from Eq. , the Hawking temperature observed on J* is proportional to
this surface gravity. An equal relation for the temperature and the redshift can also be found in the
spacetime of an eternal Schwarzschild black hole, which is reflected in the temperature of the radiation
given in Eq. (3.8)). Similarly, the uniformly accelerated Rindler observer accelerates to the speed of
light at the Rindler horizons. Hence, the constant acceleration, «, of the Rindler observer serves the
same role as the surface gravity in the previous examples, being proportional to the temperature of
the Unruh radiation given in Eq. (2.53).

Moreover, both in the spacetime of an eternal Schwarzschild black hole and in Rindler spacetime
the horizon — which coincides with the Killing horizon for a timelike Killing vector — gives rise to an
additional natural set of positive frequency mode solutions to the wave equation. These sets differ
from the positive frequency modes defined with respect to the timelike Killing vectors in the metrics
of the Schwarzschild observer and the inertial Minkowski observer, given respectively in Eq. and
Eq. (2.34). In the black hole spacetime the past horizon serves as a Killing horizon for the Kruskal
time coordinate, whereas the future horizon in the Rindler spacetime is a Killing horizon for the Rindler
time coordinate. For both sets of observers the concept of particles is well-defined. Hence, the fact
that we can find two natural sets of observers in these two spacetimes yields the possibility to state
that particles are being produced.

We are also able to find two such natural sets of observers in the spacetime of a star collapsing to
a black hole — one set of observers on J~, and one set on J*. By comparing the Penrose diagram
of a stellar collapse which forms a black hole with that of a static star, we see that the modes that
propagate from past null infinity in the former case, either end up on future null infinity or on the
future event horizon. In the latter case, all modes starting on past null infinity eventually end up
on future null infinity. Thus it seems plausible to draw the conclusion that in the former case, the
two sets of inertial observers on J= and J* are different in the collapsing spacetime because of the
existence of a horizon: Some of the modes which originate on past null infinity propagate through
the event horizon of the black hole, instead of ending up on future null infinity. Thus, J* is not a
Cauchy horizon such as J—, but constitutes a complete set of mode solutions to the wave equation
only in union with the future event horizon. From this it seems like the existence of a horizon may be
a sufficient condition for particle creation to occur.

The existence of a thermal radiation from horizons is also compelling in connection with black
hole thermodynamics. In fact, one of the main reasons why Hawking originally studied the matter was
to find a more consistent thermodynamic interpretation of the Bekenstein entropy |15} [18]. Black
holes are like the vacuum cleaners of spacetime: If an object crosses the black hole event horizon,
it will never be able to get out. This feature of black holes, seemingly removing entropy from the
spacetime by translating highly entropic objects into three degrees of freedom: mass, electric charge
and angular momentum, violates the second law of thermodynamics stating that the entropy of the
universe increases. Hawking radiation, being almost exactly thermal, solves this problem: The thermal
radiation emitted from the black hole does not contain any information about the objects that have
fallen into it, and does therefore cause a higher entropy in the universe [15} 29].

Following Hawking's original derivation of particle creation from collapsing stars, however, there is
no explicit use of the existence of an event horizon. Rather, his arguments seem to lean on the fact
that the gravitational field from a soon-to-be black hole is so strong that, by geometrical optics, the
null rays close to the event horizon travel on null geodesics [15]. From this approximation one can
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(a) Static star. (b) Collapsing star.

Figure 3.5: Penrose diagrams of @ a static star and (IE]) a star collapsing to a Schwarzschild black
hole. The regions exterior to the stars are described by the Schwarzschild metric. The orange lines
mark null geodesic propagating from J~ to J*, through the center of the respective stars. The blue
line in @ denotes a null ray propagating from J~ and t hrough the event horizon of the black hole.

thereby relate the affine parameter distance between two null rays on past null infinity to their affine
parameter distance on future null infinity, leading to a redshift factor of the same form as the one we
found in Eq. (see Appendix [B] for further details). It is this exponential relation between the
internal and external outgoing null coordinates of the star that typically is connected to the existence
of Hawking radiation [18]. On these grounds, one may suspect that for a star collapsing to a compact
object with radius very close to the black hole event horizon, this relation still holds.

A different answer to the above-mentioned question can therefore be that particles are created in
the spacetime of a star collapsing to a black hole because of the greatly changing gravitational field
— not because of the loss of information into a horizon. In a series of articles, the authors Barceld,
Liberati, Sonego and Visser have tried to show that stars collapsing to objects with radii larger than
the event horizon are indeed accompanied with the production of particles |5, [24} 30]. Specifically,
they show that for a star collapsing adiabatically to form a compact, horizonless object, there will be
an approximately exponential relation between the outgoing null coordinates on the inside and outside
of the star, and thus a Planck-distributed, Hawking-like flux of particles will occur — even though the
object never collapses to form a horizon. Also other authors claim that no horizon is needed in order
for particle production to take place, and show that spherically symmetric shells of matter collapsing
to extremely compact objects, with radii very close to — but slightly larger than — the event horizon
of the would-be black hole, still possess particle creation (see e.g. [6], [7] or [8]). This Hawking-like
radiation, which sometimes is referred to as pre-Hawking radiation, has further led some authors to
suggest that the event horizon never forms [3| 4] — and hence question the very existence of black
holes.

If Hawking radiation does not emerge from the event horizon itself, but rather somewhere in its
vicinity, one should expect radiation to occur also from static objects with a radius slightly larger than
the event horizon of the spacetime. Opening up for this possibility yields, however, a set of follow-up
questions that need to be answered in order to get a complete picture of the situation. Firstly, if
particles are created when stars collapse to objects without horizon — how large can these objects be
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before the geometrical optics approximation is no longer valid? Secondly, when looking at Penrose
diagrams of collapse-models such as the one in figure[3.3] we see that also null rays leaving I~ at very
early times, for v < vq, propagate through the collapsing body and end up on J*. However, we are
only considering null rays observed at late times on J* in the proposed spectrum. Thus, how close to
vo must the null rays on J~ be in order to be a part of this spectrum?

The literature on the topic is vast. In order to derive Hawking radiation from spacetimes of stars
collapsing to form black holes, we need to know the entire history of the spacetime in question. This is
connected to the global nature of event horizons, but also to the fact that we define Hawking radiation
with respect to asymptotic observers. Nevertheless, it seems that the essential part of the discussion
can be boiled down to the following question: Where and when, exactly, are the Hawking particles
created? Because of the global properties of Hawking radiation, these questions are intrinsically
difficult to answer. We thus do not hope to come to a final answer to these questions in this thesis.
Instead, by addressing these questions in the following, we aim to narrow down the discussion of where
and when Hawking radiation occurs to more fundamental properties.
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Chapter 4

Hawking Radiation From Exotic Compact
Objects (ECOs)

Event horizons are generally not observable, as such observations require a knowledge of the entire
spacetime of the black hole — including the infinite future [26]. This is in contrast to apparent horizons
and trapped surfaces, which can — in theory — be detected by quasi-local measurements. Since an
asymptotic observer never actually sees the formation of an event horizon from a collapsing star,
this observer cannot distinguish such an astrophysical black hole from a very compact object — at
least not through measurements of light rays [3| |4, |14]. Such objects, which look like black holes
to distant observers but lack event horizons, are called Exotic Compact Objects (ECOs). Depending
on how close the object’s surface is to the would-be horizon, and the interior of the object, different
ECOs can be defined. Examples of ECOs are gravastars and wormholes [14]. The "exoticness" of this
classification is related to the dubious nature of the objects in question. This far, ECOs are merely
theoretical curiosities — they have not yet been observed, though some scientists claim to have found
suggestions of their existence [28]. Furthermore, there are no known physical processes as of today
which are able to inhibit a collapsing star from falling past the event horizon when it is this close to
the event of horizon-formation: The gravitational pull in this region seems to overcome all known
pressure effects inside the collapsing matter. Though there exist multiple suggestions to what these
objects are and how they are formed, their physical significance thus remains unclear and their stability
is disputed [31]. For the sake of the discussion of where and when the Hawking radiation takes place,
however, they may provide useful insight. We will therefore look into the details regarding Hawking
radiation from a subclass of ECOs in the following.

Before delving into these scenarios, we will try to give a more quantitative motivation for the
calculations to come. As pointed out in the previous chapter most of the derivation of Hawking
radiation in the scenario of a collapsing star does not explicitly make use of the existence of an event
horizon for the creation of particles. Rather, the discussion is typically restricted to the vicinity of the
horizons. It may therefore seem strange that there should be a qualitative difference between two
objects with the same mass, but slightly different radii. Except for the obvious dissimilarity at the
event horizon, we would not expect any physical difference between the region just outside the event
horizon of a Schwarzschild black hole and the immediate vicinity of a static ECO. More specifically, we
expect the geometric optics approximation — which enables us to treat null rays with high frequencies
as null geodesics — to be valid also outside an ECO, given that the radius of the ECO is small enough.
If this is indeed the case, then many of the arguments leading to Hawking radiation from black holes
can be transferred directly to ECOs. It would therefore be helpful for the discussion to see whether
the motivation can be envisioned by quantitative arguments as well. Put simply; we would like to
know exactly how close to the event horizon this approximation holds.
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4.1 Range of Validity for the Geometric Optics Approximation

Consider a given domain of space of length L and suppose that high-frequency null rays with wavelengths
A propagate through this domain. If the wavelengths A are a lot smaller than the size L of the domain,
we may treat the background on top of which the null rays propagate as approximately flat. This
allows us to use the geometric optics approximation, which is valid as long as the distance over which
the geometry varies is a lot larger than the wavelengths of the studied light rays [32]. Since we are
interested in quantifying how far from the Schwarzschild radius this approximation can be used, we
seek to quantify the distance L — Rg where L satisfies

L> A, (4.1)

for small A. We thus first need to find expressions for the characteristic length, L, and the characteristic
wavelength, A, which satisfy Eq. in Schwarzschild spacetime.

Since the Riemann curvature tensor contains information about the curvature of the spacetime
around a given object of mass M, we can relate the characteristic distance L to this tensor through
Rapys ~ L2 [32]. In an orthonormal basis, we thus have [33]

[ 1 3
L(r) - Rt‘rtr - \/R>s (42)

To define the characteristic wavelength A, we may use the wavelength that corresponds to the
peak of the energy distribution observed in the spectrum on J*. We denote this wavelength by Apeak.
Close to the Schwarzschild radius, Apeak will be highly blueshifted as a consequence of the strong
gravitational field in this area. As a function of the radial Schwarzschild coordinate, we may therefore
write the characteristic wavelength as

R
Ar)=14/1— TS Apeak- (4.3)

Assuming that the spectrum on J* is completely thermal, we can describe it as a Planck spectrum

with a spectral energy density
3
w 1
B(w,T) = 28 e T T (4.4)

where the constant kg is the Boltzmann constant, T is the temperature of the radiating body and w is
an angular frequency. For a given temperature of radiation, we can find the specific angular frequency
that corresponds to the maximum of Eq. . The rays with this angular frequency contribute to
the maximal energy in the thermal spectrum observed on J*. Hence, for a thermally radiating body
we define Apeak to be the wavelength on J* that corresponds to this angular frequency. To find the
wavelength Ao we must solve the equation dB(w, T)/dw = 0 for a given temperature T, and use
that Wpeak = 271/Apeak. For a body of temperature T = k/27kg, this yields

8m%R
Apeak = ” s (4.5)

where we have defined X = Wpeak/kp T = 2.82144 and used that the surface gravity of a Schwarzschild
black hole can be written as k = 1/2R;.

Having found suitable expressions for the characteristic length of the domain and the characteristic
wavelength of the radiation, we are ready to quantify the range of validity for the relation in Eq.
in Schwarzschild spacetime. Instead of dealing explicitly with this inequality, we will rather write the
relation as L(r) = sA(r), where s is a real, positive number. The inequality is reattained by demanding
s > 1. Inserting Eq. and Eq. into this relation, we obtain the following polynomial
equation,

#* = PR P $PA L =0, (4.6)
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Figure 4.1: Intersections between the curves L(r) and sA(r) for s = 10, given relatively to the
Schwarzschild radius Rs. The intersection points are found to be at 1 = 1.0000128Rs and r =
42.445125R;. The subplot shows a close-up of the intersection near r = Rs.

where we have defined # = r/Rg and f\peak = Apeak/Rs. Solving this equation without specifying the
value of s gives a rather unpleasant expression. Therefore, we choose to specify what we mean by
s > 1 instead. As we are working in natural units, setting s = 10 should suffice. In this case we
find that for r < 1.0000128Rs and r > 42.445125R the distances over which the geometry changes
is a lot larger than the wavelengths of the null rays propagating in the respective areas. Figure
shows the points of intersection between the curves L(r)/Rs and sA(r)/Rs, for s = 10. The solution
at 1 &~ 42R; should not come as a surprise: Schwarzschild spacetime is asymptotically flat. Thus, far
from the Schwarzschild black hole, we do indeed expect null rays of very high frequencies to propagate
by geometrical optics.

From the zoom-in of the smallest root in Fig[d.1} we clearly see that the relation L > A also holds
in a small region, extremely close to the Schwarzschild radius. Hence, within some finite distance
from the event horizon the geometrical optics approximation is valid. The maximal relative distance
from the Schwarzschild black hole where this approximation holds, is given by

Lmax —R _
—max B ~3.84-1075, (4.7)
Rs

where we have defined Lmax = 1/73/Rs and 11 = 1.0000128R; is the intersection point closest to
the event horizon. As a consequence, all ECOs of relative radii smaller than the quantity given in
Eq. can possibly serve the same role as a Schwarzschild black hole. Therefore, Eq. yields a
clear boundary on the size of the ECOs that can replace the black hole in the calculations of Hawking
radiation presented in chapter 3]
Equivalently, close to the Schwarzschild radius the light rays that give rise to the thermal spectrum
on J* can maximally have a wavelength of size
A

Zmax o 0.00358, (4.8)
)\peak
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relative to the wavelength Apeax measured on I, in order for the geometrical optics approximation to
hold. Here we have defined Amax = /1 — Rs/T1Apeak-

Together with the unobservable nature of event horizons, these explicit calculations showing that
the geometric optics approximation is valid also in the vicinity of the event horizon of a Schwarzschild
black hole, definitely stimulates the search for Hawking radiation from ECOs. We will study the
implications of this in the following.

4.2 Hawking Radiation from Static ECOs

From the discussion in the beginning of the previous chapter we saw that eternal black holes radiate
Hawking particles. On conceptual grounds, one may therefore ponder over whether static ECOs
radiate too, and if not; what separates the former from the latter? In the following we will thus try to
calculate the tentative spectrum of particles on J* created by a static, spherically symmetric star of
radius 7 = R,., where R, is constant.

By Birkhoff’s theorem we know that the exterior region will be described by Schwarzschild spacetime.
We will not make any assumption for the interior region other than spherical symmetry. For simplicity
and for comparison with the case of a collapsing star, we will work in two dimensions. Let therefore
the exterior metric be that of two-dimensional Schwarzschild spacetime presented in Eq. (3.9)), and
the interior metric take the form presented in Eq. (3.11).

For a static star of radius r = R, the collapse velocity of the surface, R is zero. Going back to
the transformation equations between the interior and exterior coordinates on the surface of the star
described in Eq. (3.20), we thus see that they become

d du C

a“(u) =R, - du lr=r, - K r:R*' (4 9)
doyy| @ _ /A |
dv =R, dVlr=r, C T:R*.

On the surface r = R,, C = C, is constant. The function A(U(T, R,), V(t,R,)) on the other hand,
is not necessarily constant since U(t,R,) = V(1,R,) = T. As opposed to the scenario of a star
collapsing to a black hole, there is no boundary on the time null rays must leave J~ in order to reach
J* in the spacetime of a static star. This becomes evident when looking at figure where the null
rays in the spacetime of the collapsing body in figure |3.5a] are separated into two regions: one region
consisting of null rays that end up on J*, and one with null rays entering the black hole horizon,
eventually facing the singularity of the spacetime.

Because there is no boundary on J= for which null rays propagate to J*, there is no pile-up of
null coordinates on past null infinity. Thus we cannot simply adopt the argument from the collapsing
spacetime stating that A(U, V) must be constant in the null coordinate V, and the integral in
Eq. is not trivial. However, since we are looking at a compact object with radius very close to
the event horizon, and because the star is static, we may suspect that the function A(U, V) can be
approximated with a constant value at the surface of the star also in this scenario.

With the assumption that A(U, V) is constant at the star’s surface, both C and A in Eq.
are constant. Solving these equations thus yields the relation

u=TF"1(v) =v— constant, (4.10)

between the null coordinates u and v (see Eq. ([3.35)) for comparison). Since outgoing null rays are
defined by a constant null coordinate u, the mode solutions to the wave equation on J* therefore

become .
i

— (efiw(vfconstant) o e*iwu) , (411)

in this scenario. From the general discussion of chapter 2] we know that adding a constant phase to the
plane wave modes of an inertial Minkowski observer is equivalent to performing a translation on the
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modes. Hence, since the modes used by an inertial observer on J* is just a translation of the modes
used by an inertial observer on J—, they must share the same vacuum state. In other words, particles
will not be created in this case. To see this explicitly, we can make use of the following arguments:
First, we name the outgoing modes in Eq. Pw, such that on I~ they are expressed by

i —iw(v—c)
Pw = e , 4.12
¢ Vanw ( )
where c is a constant. Then we continue by naming the set of mode solutions to the wave equation
that are planar waves on J—
i )
fop = ————e 1OV, (4.13)
4w
Together with their complex conjugates, these modes constitute a complete set of solutions to the
wave equation. Thus we may express all other solutions to the same equation as linear combinations
of these modes. In other words, we may write

Pw :de’(cxww/fw/ -I—walfz)/). (4.14)

Equating Eq. (4.12)) and Eq. (4.14) in addition to taking the Fourier transform of both sides of the
equation, we find that

A’ = iei‘”C W’ JOO dv etlw/'—@v
2m @ e | (4.15)
B , = 7ieiwc g * dv e*i(wurw)v
ww o . .

Since we demand all angular frequencies to be positive so that positive- and negative-frequency modes
are defined by Eq. (2.29)), we must have §(w’ + w) =0 V(w, w’). Hence, computing the square of
the absolute value of these Bogolubov coefficients, we get that

2 (’U/ / /
Aww'|“=— 6w —w)d(w’ — w),
L ‘w‘ (@'~ w)s(w’ — w) w.16)

‘wa’|2 =0.

Going back to Eq. we see that if |Bwew > =0, the vacuum expectation value of the number
operator for the modes p, is zero in the vacuum of the modes f,,. In other words, a stationary,
asymptotic observer using the modes p, observes no particle production in the vacuum of a stationary,
asymptotic observer using the modes f,, in the case of a static star with a constant interior metric.

Thus, static ECOs do not seem to emit Hawking radiation, in spite of this being the case for
eternal black holes. One crucial difference between a static ECO and an eternal black hole is that
in the spacetime of the latter, there exist two different sets of natural, inertial observers; one set is
defined with respect to the timelike Killing vector of a Schwarzschild observer on future null infinity,
and another set is defined with respect to the timelike Killing vector of a Kruskal observer on the past
event horizon [16]. These observers do not have coinciding vacuum states. Looking at the Penrose
diagram of the spacetime of an eternal Schwarzschild black hole in figure 3.1} we see that the null
rays emerging from the past event horizon must propagate to future null infinity, whereas the null
rays emerging from past null infinity are confined to propagation through the future event horizon.
Hence, the modes originating on J~ are causally disconnected from the modes originating on the past
event horizon. This is not the case for the spacetime of a static ECO, which can readily be seen
by examining figure [3.5a] Here all null rays must emerge from past null infinity, and consequently
end up on future null infinity. The modes on J~ thus necessarily need to be related to the modes
on J*, somehow. Since the spacetime of the ECO is static, only the gravitational field of the ECO
can change the form of the propagating modes. However, because the modes propagate through the
body from J~ to J*, the blueshift experienced by the modes falling in towards the static ECO from

32



J~ must exactly compensate the redshift of the same modes when they propagate from the center of
the ECO and out to J* [21]. Thus the modes on I~ must be directly related to the modes on J7,
motivating the non-existence of Hawking radiation in this scenario.

4.3 Hawking Radiation from Dynamical ECOs

As we saw in the previous section, a static object with radius larger than the event horizon does
not seem to radiate Hawking particles. In a collapsing spacetime, on the other hand, the modes
propagating from the collapsing star to J© will be more redshifted than they are blueshifted on their
way from J~ to the star, due to the increase in the surface gravity of the star as the star’s size decreases.
If objects without horizons are to emit radiation, we may therefore suspect that this radiation is related
to the dynamics of the actual collapse.

Hence, in the following we will study a star collapsing to a finite object of radius somewhat larger
than the event horizon of the would-be black hole, if the star had collapsed to a Schwarzschild black
hole. We must therefore go back to the derivatives of the transformation equations o(u) and (V)
between the interior and exterior coordinates in a collapsing star, presented in Eq. . As before,
the exterior metric is described by Eq. and the interior metric is given by Eq. (3.1I)). More
specifically, we will look at two collapse scenarios in the following: a fast collapse and a slow collapse.

4.3.1 Fast Collapse

For an interior metric that is finite and regular everywhere, the condition x = AC(1 — R?)/R?2 < 1
leading to the simplified equations of motion given in Eq. can be satisfied in two ways: Either
the surface of the star approaches the singularity of the exterior metric, yielding C — 0, or the collapse
velocity of the surface of the star approaches the speed of light, so that R — — As demonstrated
in the previous chapter, the former scenario leads to the creation of Hawking particles. Can something
similar be found for the latter case?

We will assume that the star collapses to a radial coordinate distance R, = Rs(1 + €) from the
singularity of the spacetime, where € < 1. Then C = O(e). Further, we will presume that the collapse
velocity is given by R = —1 4 6 for § < 1 close to this surface. To make sure that we are indeed
investigating the limit where R — —1 and not where C — 0, we must also assume that §/e < 1.
Then the relation x = AC(1 — R?)/R? < 1 is satisfied because the term (1 — R2) is very small. Thus,

we may simplify Eq. (3.20) as before, to obtain the same relations as in Eq. (3.21).
Expanding the surface of the collapsing star around R, = Rs(1 + €) for € > 0, we find that

R(T) =Ry +Vi(Te — 1)+ 0O ((T* — T)Z) . (4.17)
where T, = T — Te and R, = R(1,). The parameter vy, is defined as vy, = —R(T*). Similarly, the
parameter C(R) can be expanded as

C(R) = C, + 2k (R—R,) + O((R—R,)?), (4.18)

where C, = C(R,) and 2k, = 0C/0r|;—g,. To O(t. — T) we thus want to solve the following

equations: '
R—1

r=R(7) 2R

1—-R

au
du
dv
- ~ A*i
dv r=R(T) 2R
Using that dU = dt(1 — R) = —dR(R — 1)/R and observing from Eq. (3.12) and Eq. (#.17) that to
O(ty — 1) we have

(4.19)

u-u, = _(1 —H/*)(T* _T)v

(4.20)
V-V, =—(1-v.)(t.—1),

1Remember that we are looking at a collapsing star, so the velocity of the surface must be negative.
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Figure 4.2: Fast collapse of a star to an ECO of radius R,.

the first equation in Eq. (4.19) integrates to give

(e~ ** —C,) + constant, (4.21)

where we have used Eq. (4.17)) and Eq. (4.20)) to write Eq. (4.21)) in terms of the interior null coordinate

U instead qf the coordinate R. To solve the second equation we must first use that to O(6), we can
write (1 —R)/R = —2— & for R=—1+ 8. Then we may integrate the second equation in Eq. (4.19)
to get

d
v=— (1 + 2) A.V + constant. (4.22)

Combining Eq. (4.22)) with Eq. (4.21)) through the transformation equation, Eq. (3.32)), further

yields the relation
u:—:|n<acv). (4.23)

Here we have defined the constants ¢ = A,(1 + 8)/k, and a = constant — C,c, and used that
v. = —R(t,) =1 —25. This relation takes the same form as the inverse function in Eq. which
led to the mode solutions in Eq. (3.36). As we saw in the subsequent discussion, such a relation
between the null coordinates u and v led to the creation of Hawking particles. We want to investigate
whether Hawking particles may be created also in the present scenario. Adopting the reasoning in the
previous chapter we therefore want to relate the following integrals,

(.U/ *© 1 3 ’ : ’
Kww’ =D 7J ds etwin(s/c)/k. g—iw’sgiw’a
w J_
/ oooo (4.24)
wa, -D 2J ds eiwIn(fs/c)/K*efiw’sefiw’a’
w —00

where we have defined s = a — v in the o« /-integral and s =v — a in the B, -integral. These
integrands have no poles in the lower complex s-plane, and we can therefore choose the contour of
integration to lie in this domain, connecting the real axis with a boundary at infinity. Additionally, by
computing the following limit for s = ze ™1,
lim e 10’ = |im e tWEeOsdewzsiNG _ 0 0§ € (—m,0), (4.25)
Z—00 Z—00
we see that both integrals in Eq. (4.24) vanish on the boundary at infinity. Thus, the integrals are
zero on the real axis, so both Bogolubov coefficients are zero. This can also be seen by examining
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Figure 4.3: Contours of integration in the complex s-plane. These two segments are equivalent to
equating the whole contour along the real axis with a contour at infinity in the lower complex plane.
Because the integrals in Eq. vanish on the whole boundary at infinity, the integrals over the
whole real axis becomes zero.

the resulting complex contours of integration given in figure [4.3] Dividing the integrals in Eq.
into two parts, respectively, the integrals ranging from —oo to zero along the real axis is equal to
the integral from zero to —ioco along the negative complex axis. The other part of the real integral,
ranging from zero to 0o, can be exchanged with the integral from —ico to zero: The integrals cancel
each other out on the negative imaginary axis. From this we clearly see that o,/ and B’ must
be zero. This result is in itself problematic, as it means that the modes redshifted with Eq. on
J~ cannot be written as linear combinations of the modes that are plane waves on J~. What may be
even more disturbing, is that this yields the relation |otw,w[? = [Bwew’|?, Which is simply not allowed
by the normalization condition for the Bogolubov coefficients in Eq. (2.20).

The only difference between the integrals in Eq. and the integrals found to produce Hawking
radiation in Eq. seems to be the boundary v < vg on the null rays on I~ that propagate through
the body to reach J*. As described in section this boundary is directly related to the existence
of an event horizon, which causally separates the modes in the late time spectrum on J~ from the
modes entering the horizon.

Acknowledging that the collapse scenario described above is rather unphysical as the star collapses
at a speed close to the speed of light at the event that it settles to an ECO, we will in the following
instead assume that the star has zero velocity at this event. Then we see from Eq. that the
term R — R, = 0 in the first equation in Eq. (4.19). Performing the integration with R=—1+5 thus
yields the relation

U= (1 + g) u + constant. (4.26)

Still looking at the scenario with a constant interior and extracting a minus sign from the order of
magnitude estimate in the second equation in Eq. (4.19)), the null coordinates u and v can be related

through
= v; d (4.27)

for constants ¢ and d. As we saw in the case of a static star, the null coordinate w is here just a
scaled translation of the null coordinate v and inertial observers on J© and J— will therefore share the
same vacuum state. Hence, in this scenario there will be no particle production.
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4.3.2 Slow Collapse

If a star collapses to a finite radius r = R, without the advent of new physics, it may be more realistic
to assume that it approaches this radius with a very slow velocity. We will therefore investigate the
limit of slow collapse velocities in the following.

Again, going back to Eq. (3.20), a very slow collapse is envisaged by letting R — 0. Assuming
that the star collapses to a finite radius R, = Rs(1 + €), where € < 1 and positive, we may use
that C(R,) = O(e) is lager than the collapse velocity R, which becomes zero on the surface R = R,.
Defining the parameter x = AC(1 — R2)/R2, as before, we will therefore perform an expansion around
1/x in this limit. Since R? < 1, we may neglect this term inside the parenthesis, and expand around
X = R2/AC < 1 instead. To leading order, this yields the following equations,

r=R(T) - % (1 B R) '

_ A1
r=R(t)  V C14R’

From the definitions of U and V given in Eq. (3.12)), we see that we can write dU = dt(1 — R)
and dV = dt(1 + R). Inserting these expressions into Eq. (4.28]), we are therefore left to integrate

du= \/ %d’r,
dv:w%dT.

Close to T = R,, we may use the expansions in Eq. and Eq. for the parameters R(7)
and C(R), respectively. To O((t, — 1)), we can thus write R — R, = v. (T« — 7). Furthermore, we
assume that the interior metric is constant. Hence, in terms of the proper time, T, of an observer on
the surface of the collapsing star, we must solve the integrals

A
. 4.
J \/C* + 2K*Y* (T* - T) dT ( 30)

If the star's collapse velocity is exactly zero at the time T, that the surface reaches the radial
coordinate T = R,, we must have y, = —R(t,) = 0. Then the integrals in Eq. are the exact
same integrals as for the static star of radius v = R, discussed at the beginning of this chapter, leading
to the Bogolubov coefficients presented in Eq. . Thus, if the star has zero velocity at the time
it reaches the surface R,, there will be no Hawking radiation.

We therefore want to investigate the situation where -y, is very small, but non-zero at the event of
ECO-formation. For a non-zero v, the integrals in Eq. are solved to obtain

VAL
V/Ci — 2Y.K. (T, — T) + constant. (4.31)

VK

Substituting T, — T in Eq. (4.31]) with the expressions for U — U, and V —V, given in Eq. (4.20)),
respectively, further yields

du
du
dv
av

(4.28)

(4.29)

147, Ve 2
u=u, + Ty _&Y (wu—constant) | —C,|,
2K*Y* V A*
(4.32)
-V A* *
= C, + 2k, 4 (V —V,) + constant.
K*’Y* ]- *’Y*

Using the transformation equation v = (V) = B(U — 2Rg) from Eq. (3.14), and inverting the
relation so that we get an expression for u as a function of v instead, we finally obtain the following
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Figure 4.4: Minkowksi diagram of a star collapsing slowly to form an ECO of radius R,.

outgoing mode solutions on J~ in the limit v, — 0,

4i7m) exp{—iw <, [(v—c)?+ % + d) } (4.33)

where b = 2A,(C, — 2R,k,)/k2 and c, d are constants.
Defining a parameter s such that s = c—v in the &, -integral and s = v—c in the B, -integral,
we get that

! [0 . —
w J ds e—lw(\/ (—5)2+Y*1b+d)e—iw’s iw’c

Xww! = - e )
w —00
4.34
w’ [* 7iw(\/sz+yflb+d) iw’ i’ ( )
Bww =1/ — ds e * e tws—iw’c
w —00

These integrals are identical, yielding the relation |Xwew/|> = IBww-|? Which violates the normalization
condition for the Bogolubov coefficients.

In all illustrated scenarios above we have assumed that the internal metric has been constant on
the surface of the object in question. For a static ECO or a very slowly collapsing star we may be
able to argue in favor of such an assumption. For the scenario of a fast collapse, on the other hand,
the physicality of making such an assumption becomes less obvious. However, seeing that this latter
scenario is rather unrealistic anyways, we have not made too big of a deal out of this assumption
here. Nevertheless, a non-constant interior metric on the surface of the object in question can be
implemented in the calculations above, for example by expanding the parameter A(U, V) to first order
around the null coordinates U, = U(t,, Ry), Vi = V(T,4, Ry) as

0A 0A
=A.+— u-—u, — —V.), 4,
A * oulu,,v, ( )+ ovViu.,v. V=¥ (4.35)
where A, = A(U,, V.). Using (4.20) we may further simplify the expansion in Eq. (4.35]) by
A=A, —Xl(te — 1), (4.36)
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where we have defined

0A 0A

Xx = (1+V*)m WV, + (1_V*)W v,

(4.37)

Implementing these relations in the scenarios above seems to yield the same relation between the
Bogolubov coefficients as in the studied scenarios of fast collapse, namely that |tww' > = [Bwew 2. As
already pointed out, such a relation violates the normalization condition for the Bogolubov coefficients
given in Eq. . At this stage it is not entirely clear what we are to make out of such a result.
As we will discuss in chapter B} it may imply that a clear boundary on the null coordinates on past
null infinity — such as from an event horizon — is not only a sufficient condition, but may in fact be a
necessary condition in order for Hawking radiation to occur.
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Chapter 5
Discussion

Based on the original derivation of Hawking radiation from stellar collapse, as well as on more recent
research on the topic, we have displayed both qualitative and quantitative arguments supporting the
possibility of Hawking radiation from compact, horizonless objects. Most importantly, we showed in
section [4.1] that the geometric optics approximation is valid also in the vicinity of the event horizon
of a Schwarzschild black hole. This approximation allows us to treat the null rays travelling through
the collapsing body at late times as null geodesics, thus enabling us to relate the affine parameter
distance between two null coordinates on past null infinity to the affine parameter distance between
the same two null coordinates on future null infinity. In Appendix [B] this procedure is shown in detail
for a four dimensional Schwarzschild spacetime. Because the geometric optics approximation only
requires the null rays in question to be extremely close to, but not exactly on the event horizon, it is
also valid for highly compact objects such as a bounded class of ECOs — which may suggest that they
radiate in a similar manner to black holes.

In spite of this, the results from chapter [4] seem to point in a less optimistic direction regarding
ECOs' ability to radiate. We study three main scenarios in this thesis: a static ECO, a rapidly collapsing
star settling to a static ECO and a slowly collapsing star settling to a static ECO. The examination of
the first scenario is motivated by the similarities between a Schwarzschild black hole and a static ECO,
whereas the latter two bear similarities with the collapse model presented in chapter[3] In the static
as well as the slowly collapsing scenarios we find little evidence for Hawking radiation. Similarly, for a
rapidly collapsing star with zero collapse velocity at the ECO formation-event, Hawking radiation does
not seem to occur. In all these scenarios we obtain the same results as the ones given in Eq. ,
which show that the Bogolubov coefficients 3+ and &, are found to be respectively zero and
infinite. By Eq. and Eq. a zero B-coefficient leads to no admixture of annihilation and
creation operators, and hence no disagreement between different inertial observers on the definition of
vacuum and particles.

That this is indeed the case can be seen explicitly from Eq. (2.27)), where a B-coefficient that is
zero leads to no particle production in the vacuum state of an inertial observer on J—, as seen by an
inertial observer on J. The fact that the a-coefficient is infinite in these scenarios only means that
during the whole history of the given spacetime an infinite amount of particles propagate from J—,
through the static body and all the way to J*. This is reasonable: we do expect null rays to emerge
from J— and propagate to J* during the whole history of the spacetime in question, and because the
vacuum state of inertial observers in the asymptotic past and future coincide, no new particles should
be created from the propagation through the collapsing body.

Based on what we find in section we have therefore no reason to believe that slowly collapsing
stars forming compact, horizonless objects emit Hawking radiation. This result may be surprising, at
least in regard of the recent discussion on Hawking radiation from collapsing stars. For example, as
mentioned earlier, Barcel6 et al. argue that a star collapsing to a static, horizonless object will emit
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Hawking-like radiation, as long as the collapse satisfies a certain adiabatic conditiorﬂ [5) [24].

For a star collapsing at nearly the speed of light at the event of ECO-formation, on the other hand,
we find a relation between the null coordinates on past and future null infinity that resembles the
relation in Eq. which, as described in chapter leads to the existence of Hawking radiation.
Nevertheless, in the former scenario we find that the resulting Bogolubov coefficients are equal up
to a phase factor, thus violating the normalization conditions for the Bogolubov coefficients given in
Eq. (2.20). As mentioned at the end of chapter [4] we get similar relations between the Bogolubov
coefficients in all the above-mentioned scenarios if we include a slightly changing interior metric at the
surface of the respective bodies. The invalid nature of these results is problematic, and may suggest
that some of our fundamental assumptions are wrong.

However, a comparison between the integrals in Eq. and the Bogolubov coefficients in
Eq. from which we find Hawking radiation, reveals that up to a phase factor the only difference
between the respective integrals are the integration boundaries. In Eq. we have no physical
reason to expect the null coordinates on J~ to be bounded, so the integrals are defined on the whole
real axis. For the coefficients in Eq. , the event horizon creates a clear boundary on which null
coordinates are included in the integral. In fact, allowing the integrals in Eq. to be integrated
over the whole real axis yields the same relation between the Bogolubov coefficients as in the case of
a fast collapse to an ECO, and therefore violate the normalization conditions in Eq. . Likewise,
restricting the integrals in Eq. to be valid only for half of the real axis yields the same relation
between the Bogolubov coefficients as in Eq. ([3.46]), which leads to Hawking radiation.

This discontinuity in the validity of the integrals can be traced back to the fact that the null
coordinates we are considering are restricted to real valued functions. Forcing the null coordinate
u to be real in Eq. indeed makes sure that the integrals in Eq. make sense only for a
restricted part of the real axis. Also in the scenario of a star collapsing to a Schwarzschild black hole,
such a restriction must be implemented for the exterior outgoing null coordinate given in Eq. .
In this latter scenario, the problem sorts itself out rather easily as the event horizon defines a clear,
physical bound on the null coordinates on J~. From this we see that the argument in the logarithm,
which enters into the complicated phase factor in Eq. , always stays positive.

Since the spacetimes of ECOs do not comprise event horizons, the integrals in Eq. do
not generally make sense. Nevertheless, we may ask ourselves whether there exist different physical
arguments enabling us to bound the null coordinates on past null infinity, also in these spacetimes.
Assume, for example, that some null ray v, is the last null ray to leave J—, pass through the collapsing
body and end up on J* before the collapsing star settles to a static ECO. All rays leaving I~ after this,
i.e. for v > v,, will effectively propagate thorough a static ECO which, as we saw in section does
not give rise to any Hawking radiation — at least not if the interior metric is constant. Then we would
actually find that the Bogolubov coefficients related to the modes leaving past null infinity for null
coordinates smaller than v, are related thorough a factor of e2™®/*~ which yields a Planck spectrum
of the form given in Eq. , at a temperature T = k,/27tkg. Thus, under the above-mentioned
assumptions, a star collapsing rapidly to form an ECO will emit Hawking radiation. However, it
is not clear whether this argumentation actually holds. In the spacetime of a star collapsing to a
black hole the modes that leave J= for null coordinates v > vq enter the event horizon. Thus, these
modes propagate to a part of spacetime that is causally disconnected from the spacetime at J*. The
Bogolubov coefficients related to the spectrum observed on J* are therefore solely made up of the
null rays leaving 3= for v < vg. This is not the case in the spacetime of an ECO where all null rays
emerging from J~ must, eventually, end up on J*, and therefore enter into the expressions for the
Bogolubov coefficients.

What we have found suggests that in most horizonless scenarios, Hawking radiation does not
occur. In the case of a static ECO, it nonetheless seems strange that there should be a qualitative
difference between two objects with the same mass, but slightly different radii: A static ECO of radius

1They define this adiabatic condition as |dk (1w« )/duly, < k(us)?, where k(u) = —(d?2U/du?)/(dU/du),
and k(u,) can be interpreted by the regular notion of surface gravity only in an asymptotically settled black hole
spacetime.
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Rs(1+ €) with € <« 1, and a Schwarzschild black hole with radius Rs have very similar gravitational
potentials. However, one conceptually distinct feature of black holes that separate them from static,
compact objects is the event horizon — a surface beyond which no information escapes to future null
infinity. Thus, even though the gravitational potential in the region just outside the event horizon
of a Schwarzschild black hole and the immediate vicinity of a static ECO are essentially the same,
the former has an infinitely deep gravitational well whereas the latter extends only to a large, but
finite negative value. Looking at the Penrose diagrams of a static star and a star collapsing to a
Schwarzschild black hole presented in figure 3.5] this distinction becomes more transparent. Without a
horizon, there is nothing that can possibly separate the modes on J~ from the modes on J* in terms
of linear combinations of operators, and their vacuum states coincide.

As already stressed, our result yielding no radiation from slowly collapsing stars is in disagreement
with many of the newer papers on Hawking radiation [6} |7, 24} [30]. This controversy may be connected
to flaws in our argumentation or defining assumptions. Firstly, the model used in section [4.3.2 for a
slow collapse does not take into account that the second derivative may change. In fact, we have
restricted our calculations to O(t, — T) when defining the worldline, R(t), of the surface of the
collapsing star. For a realistic collapse scenario we would expect that the velocity of the surface slows
down as it approaches the final radius of the evolving ECO. Adding a non-zero second derivative into
the description of the collapse may therefore give some further insight into what happens close to the
formation of the ECO. Secondly, we needed to make some assumptions about the interior metric of
the star to get to the results showing no Hawking radiation. Investigating what happens when the
interior metric changes more drastically — which may be a reasonable assumption in the case of a fast
collapse — would therefore also be interesting, and may lead to different results from the ones found in
section [£.3.2]

However, in much of the literature leading to Hawking radiation from collapsing objects without
horizons, the collapse models used have been that of a spherical shell of dust (see e.g. [0, [7]).
Hence, in these scenarios the interior metric has been assumed to be that of Minkowski spacetime.
A Minkowski interior metric is not a good approximation of the interior of a realistic, astronomical
star. One may therefore ponder on whether the use of a Minkowski interior can be problematic in its
own right, and that the inclusion of a more advanced interior metric yields different results. This has
been investigated by Barcel6 et al. in a rather recent paper, but the conclusion of the final state of a
more general collapse of this kind seems to depend highly on the properties of the interior metric [8].
Despite having had many supporters over the past twenty years, there have also been strong evidence
in the opposite direction, claiming that Hawking radiation cannot occur unless horizons are formed
[10H13].

As far as we know, there exists no realistic collapse scenario that leads to a static, horizonless
object if the collapse velocity is close to the speed of light when the final object forms. The model we
use to probe the physics connected to a fast collapse in section is therefore highly unrealistic.
Including a very large second derivative at the event that the ECO forms may be a step in the more
realistic direction, but will still not suffice as a realistic model of a collapse without having to include
new physics. Nevertheless, despite not being too realistic in its own nature, we may be able to point
out some important differences between a spacetime with and without a horizon from this result.
Because the existence of a horizon in a collapse scenario does not yield any constraints on the collapse
velocity of the object at the event of horizon formation (besides the natural constraint of the speed
never passing the speed of light), the existence of Hawking radiation in such a scenario, as opposed
to the scenarios of slowly collapsing objects without event horizons, may be traced back to the fact
that the velocity of the collapse can be close to the speed of light in the former scenario but not in
the latter — unless we allow for the advent of new physics. That Hawking radiation occurs for stars
collapsing at the speed of light is also something that can be found both in the literature [25].

Finally, it is worth stressing that the discussion in this thesis has been restricted to 1+ 1 dimensions.
However, as detailed in Appendix [A] none of the qualitative conclusions presented here are expected
to change when considering black holes and ECOs in full 3+ 1 dimensional spacetimes instead.
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Chapter 6

Outlook

Motivated by the question of whether the existence of a horizon is necessary in order for Hawking
radiation to occur, we started this thesis by showing how the ambiguity of the concept of particles
in quantum field theory in curved spacetimes leads to particle production. More specifically, we saw
that in spacetimes where there exists a timelike Killing vector, a natural set of observers can be found
from which the notion of vacuum is well-defined. From this we showed that an accelerated observer in
Minkowski spacetime measures a thermal flux of particles in the vacuum state of an inertial Minkowski
observer. Through the equivalence principle we further argued that such a thermal flux also arise in the
spacetime of an eternal Schwarzschild black hole, where a freely falling observer detects particles in the
vacuum of a static observer. We demonstrated subsequently that eternal black holes radiate particles
thermally, and showed that the temperature of radiation scales with the gravitational acceleration of
the freely falling observer as seen by a distant Schwarzschild observer.

Because black holes are thought to be created from stellar collapse, we continued our discussion in
the spacetime of a star collapsing to form a Schwarzschild black hole. With the ambiguity of particles
in mind, we argued that each asymptotic region in this spacetime constitute a natural set of observers
with corresponding vacuum states. These vacuum states will in general not coincide, and an observer
in the future asymptotic region will therefore generally register particles in the vacuum state of an
observer in the asymptotic region in the past. We used this to show that a black hole forming from
stellar collapse emits Hawking radiation. The purpose of showing this calculation was to pinpoint
exactly where in this argumentation the existence of an event horizon is needed. We found that the
event horizon is essential in order to use the geometrical optics approximation and to define a clear
boundary on which null coordinates on past null infinity will propagate to J* through the collapsing
star.

Arguing both qualitatively and quantitatively that the geometric optic approximation is valid also
in the vicinity of the event horizon, we further investigated the possibility of Hawking radiation from
a chosen class of exotic compact objects (ECOs). The motivation for doing this was to understand
whether the arguments connected to the horizon could be transferred to horizonless spacetimes. We
studied three main scenarios: a static ECO followed by a fast and slowly collapsing star forming a
static ECO, respectively. In all scenarios we found little evidence of Hawking radiation. As discussed
in chapter [B] the result of no Hawking-like radiation from slowly collapsing stars forming horizonless
objects seems to contravene with recent literature on the topic [6} |7, 24} [30]. However, we also find
support for our result [10413].

For the scenario of a star collapsing close to the speed of light at the event of ECO-formation,
we found that the relation between the resulting Bogolubov coefficients violated the normalization
condition of these coefficients. This was also the result in all above-mentioned scenarios if we let the
interior metric change slightly on the surface of the given object. We acknowledge that the ill-defined
nature of these results may be a consequence of badly chosen assumptions. Nonetheless, our results
seem to be more reasonable once we bound the values of the null coordinate on past null infinity. In
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fact, in the scenario of the fast collapse such a boundary leads to the same integrals for the Bogolubov
coefficients from which we found Hawking radiation in the scenario of a star collapsing to a black
hole. This may suggests that a clear boundary on the modes that propagate through the star and end
up on future null infinity is needed in order to obtain Hawking radiation.

Our results and discussion seem to point in the direction favouring the necessity of horizons in the
calculations of Hawking radiation. From classical general relativity we know that the event horizon is
a rather unique astronomical concept. As opposed to other kinds of horizons, it marks a boundary of
no return: Inside the event horizon everything travels towards the black hole singularity. Since the
event horizon is manifestly different from the surface of a star or an ECO, we may find the qualitative
difference between the spacetimes, in that Hawking radiation exists in the former but not in the latter,
less puzzling. Nonetheless, we have not made any attempt to explicitly distinguish between event
horizons and apparent horizon, trapped surfaces and the like in this thesis. A natural follow-up on the
discussion in question would therefore be to investigate whether the same argumentation leading to
Hawking radiation in spacetimes with event horizons can be employed also for other types of horizons.
Specifically, since much of the literature on the topic investigates the possibility of Hawking radiation
from collapsing shells a more thorough examination of a collapse with a non-trivial metric should be
carried out properly. Also, investigating more realistic collapse scenarios numerically, preferably in
spacetimes with less degrees of symmetries, may give further insight into the current discussion.

In conclusion, the discussion of whether or not horizons are needed for the existence of Hawking
radiation is yet to be finished.
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Appendix A

Dimensional Differences and Limitations of

the 2D-Model

Throughout this paper we have kept our discussion to two dimensions. From our two-dimensional models
we have then drawn conclusions regarding the nature of objects that in reality are four-dimensional.
Without further explanation, we have stated that the conclusions found in two dimensions easily
translate to four dimensions. We therefore seek to concretize what we mean by this frequently used
statement. To do this, we must go all the way back to the Schwarzschild metric and the massless
Klein-Gordon equation. In 3 4 1-dimensions the Schwarzschild metric takes the form

2M
ds? = (1 - T) dudv —r?dQ?, (A1)

where the quantity dQ? = d62 + sin?0d$? denotes a two dimensional sphere of radius r, and the
null coordinates (u, v) are defined as

r 2aM\
u:t—J (1— ,) dr' =t—1"4+R;
Ro T

1 (A2)
T 2M\
v:t—i—J (1—,) dr' =t+1" =R,
Ro T
where )
dr*  dR§ 2M N\
= =(1—— : A.
dr dRo < T ) (A3)

Comparing with Eq. , we see that the two-dimensional spacetime is a foliation of the four-
dimensional spacetime where each point in the former corresponds to a two-sphere in the latter.
Due to spherical symmetry in four-dimensional Schwarzschild spacetime, the solutions to the
Klein-Gordon equation defined in Eq. with the metric given in Eq. can for a massless scalar
field be separated into a radial, angular and time component. The solutions are thus of the form [21]

Vim0, $)Rar(r)e ", (A4)

where Y1, is a spherical harmonic and the radial function R, satisfies the equation

dR2,, , [+1)  2M oM
driUQJr{w_{ 2 T | ) pRet =0 (A-5)

In 3+ 1 dimensions we cannot write the solutions to this radial function in terms of known functions
[21]. Observing that Eq. (3.3)) has the form of a one-dimensional wave equation with a potential term,
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we may get around this by artificially setting the term in the square brackets to zero. This corresponds
to neglecting backscattering of the field modes on the spacetime curvature [21]. Then we can solve
the radial equation straight-forwardly, to obtain the normalized mode solutions

Ylm
V8mwr

Far from the black hole event horizon these modes reduce to flat spacetime modes, which can be
seen by sending 1 — oo in Eq. . By the same reasoning that lead to the redshifted modes in
Eq. , we may write the modes that become complicated on J~ but which are standard plane
waves on J* as

(e—iwv 4 e—iwu) ) (A6)

Yim _iwin((ve—v)/c)/x

V8mwr '

where c is a constant and k = 1/4M is the surface gravity of the Schwarzschild black hole event

horizon. As before, all null rays leaving 3~ for v > vg enter the event horizon of the black hole, and
can thus not be observed in the spectrum on J*.

Writing these modes as linear combinations of the modes proportional to exp(—iwv) on J—

and taking the Fourier transform of both sides yields the following Bogolubov coefficients for the

four-dimensional Schwarzschild spacetime,

Vo (U/ ., .

Aww! = CJ dvy/ —etwvetwinlvo—v)/e)/x
—00 w
Vo w' ..

wa, _ CJ' dvy/ —et@w'Vveiw In((vo—Vv)/c)/k
o w

for a constant C. These coefficients look very much like the Bogolubov coefficients in the two-
dimensional case, given in Eq. (3.41)) and Eq. (3.42)). Indeed, also in this case we can use the method
presented in chapter [3] by writing the integrals in the complex plane to find that ot and Bewew: are
related by

v < Vg, (A.7)

(A-8)

|(wa’|2 = e27tw/|<|[5ww,|2. (Ag)

From the normalization condition of the Bogolubov coefficients given in Eq. , this relation
yields a thermal spectrum of the same form as in Eq. (3.50). However, Eq. is only valid if
all of the modes observed as standard plane waves for late times on J* have propagated through
the collapsing star on their way from J—. This is typically not the case in more than two dimensions.
Remembering that we neglected the backscattering of field modes from the gravitational potential in
Eq. (A.5), we must subtract these scattered modes from the spectrum on J* for a complete description
of the radiation from the collapsing object. This can be done by assuming that only a fraction T'(w)
of the particles that reach J* has propagated through the collapsing body from J~. The rest of
the particles observed in a given wavepacket on J© come from modes that have scattered off the
effective gravitational potential on their way from J~. Since these modes do not propagate through
the collapsing body, their angular frequencies will stay approximately the same over their whole paths
of propagation. More importantly, they will not give rise to the thermal radiation of Hawking particles
and and should thus be omitted from the expression above. Naming these modes p,, an observed
wavepacket of planar waves on J* can thus be written as

Po =Pw _A'_f)w. (A.].O)

Because the modes p, and p, come from disjoint regions on J—, their inner product must vanish
all over the spacetime. Hence,

(Pw,Pw) = (Pw,Pwr) + (Pw, Pwr) = 8(w — w”). (A.11)
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Defining I'(w) as the fraction of an outgoing wavepacket on J* that when propagated backwards in
time pass through the collapsing body and emerge to J—, we must have that

(Pw Pawr) =T(w)d(w —w"),

rort , (A.12)
(Pw:Pwr) = (1 =T(w))d(w —w").

The normalization condition Eq. ([2.20) for the Bogolubov coefficients oty and Bwew therefore
becomes

Mw)d(w—w") = de' (Xwew’ Xy — Bww Biorew:) - (A.13)
Inserting Eq. (A.13)) for w” = w into Eq. (3.49) and using Eq. (A.9), we thus get that
T T(w)
/ 2 o
de Bl _T|I—r>noo271e2m“/K—1' (A-14)
which by Eq. (3.47) yields a spectrum of the form
T MNw
(0¢lpl, pwlOf) = lim (w) (A.15)

T—oo 27T 277w/ 17

That this spectrum is thermal is revealed by regarding the eventual black hole as an object in thermal
equilibrium with its surroundings. Then the same fraction (I'(w) — 1) of the incoming modes that
back-scatters off the gravitational field to reach J* is identical to the fraction of outgoing from the
black hole that scatters back into the forming black hole. Hence, the resulting black hole emits and
absorbs radiation like a grey-body of absorptivity I'(w), at a temperature
T e (A.16)
K
In two dimensions the null rays can only propagate radially, and will therefore not be able to scatter
off the effective potential to reach J*. Thus, the radial equation in the two-dimensional scenario is
exactly the one in Eq. without the gravitational potential term in the square-brackets, and the
introduction of a grey-body factor is therefore not relevant in this scenario.
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Appendix B

Relating Null Coordinates Through the
Geometric Optics Approximation

In the following we will see how the relation between the null coordinates u and v can be related by
explicitly making use of the geometric optics approximation. This method is similar to the one used
by Hawking in his original derivation of Hawking radiation [15|, and the following presentation follows
Parker and Toms rather closely [22].

We want to study the null rays which originate on J~, enter the collapsing body and escape
from the body just before the collapse, terminating on J. Because the concept of particles adapted
from quantum field theory in general becomes ill-defined when the theory is transferred to curved
spacetimes, we would like to go to a limit where the spacetime is approximately flat. Instead of
propagating the null rays forward in time from J—, we thus only consider the asymptotic configurations
of the null rays. Therefore we need a way to relate the null rays ending on future null infinity to the
null rays originating on past null infinity. In the following we will show how this procedure is done for
a Schwarzschild black hole. The approach is similar for other types of black holes.

Geodesics of Schwarzschild Spacetime

For simplicity we will in the following assume that the star collapses to a black hole in a nearly
spherically symmetric spacetime, and that the spacetime outside the collapsing body is vacuum. By
Birkhoff's theorem we thus know that the spacetime in question is the Schwarzschild spacetime. The
Schwarzschild line element is given by

-1
ds® = (1—2]:4> dt? — (1—2]:4> dr? — dQ?, (B.1)

where dQ? = d0? + sin? 0d¢? is the volume element of a two dimensional sphere.

At r = 2M the line element Eq. becomes singular. However, observing that the contraction
of the Riemann tensor with itself yields a scalar that is non-singular for r = 2M reveals that this
singularity is an artifact of the coordinate system, and not a true singularity. Instead one can show that
for < 2M all future directed paths are forced to move in the direction of decreasing r. Therefore,
T = 2M is interpreted as the event horizon of the black hole.

Our mission is to relate the radial incoming null geodesics at J* to the outgoing radial null
geodesics at J~. Thus a reasonable place to start is to describe the radial null rays of Schwarzschild
spacetime. This is exactly what we will do in the following.

A geodesic is defined as the extremal path between two points, and is the path followed by a freely
falling observer; an observer that feels no acceleration. Finding the geodesic between two points a
and b in a given spacetime is equivalent to requiring that the variation of the action between the
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points is zero. For null geodesics this can be stated mathematically as

b
0§ =% (J Ld?\) =0,

1 dxH dxY
29T v
The quantity £ can be regarded as the Lagrangian of a classical particle with coordinates x* and
velocity dx*/dA.

Looking at the Euler-Lagrange equations

d 0L 0L
dA <a(dxH/d7\)> oxM (B.3)
that one obtains by following this variation procedure, it becomes clear that if the metric g, is

independent of a given coordinate x*, then from Eq. (B.2)) £ is independent of this coordinate too,
and the corresponding conjugate momentum

where

L (B.2)

oL dxY

= = guv 4
P =3(axk/an ~ 9% aa (B.4)

is thus constant along the geodesic. Given the Schwarzschild line element Eq. , we see that
the metric of this spacetime is independent of the time coordinate, t, and the angular coordinate, ¢.
Thus the conjugate momenta to these coordinates are constant along the geodesic. That the metric
is independent of the angular coordinate further implies that the geodesics all lie in the same plane.
From spherical symmetry we may thus choose this plane to be 6 = 71/2, as it is always possible to
rotate the coordinate system so that the geodesics lie in this exact plane.

Having chosen the plane of geodesics to coincide with the plane 8 = 71/2, we may continue to
find the constants of motion from the conjugate momenta p¢ and py. Using Eq. we find that
the conserved quantities are

2M\ dt
and a6
27 —
LTy L. (B.6)

It is natural to interpret the constant parameters E and L as the energy and angular momentum along
the given geodesic.

Radial Null Geodesics

Null geodesics are defined as the geodesics that have a vanishing line element. The null geodesics of
Schwarzschild spacetime are therefore the paths that satisfy

2 2 -1 2 2
s\ (MY Ay oMY rany? o aayt o
dA T dA T dA dA
Now, since we are free to choose the geodesics to lie in the plane 6 = 71/2, we know that d6/dA =0
and that sin® = 1. Expressing Eq. (B.7)) in terms of the conserved quantities E and L, we obtain the

following equation
ar\>  /L\? 2M
hadll = 122 ) =2 B.

Since we are only interested in radial null rays, we must have L =0, and Eq. (B.8) further simplifies to

dr

— ==*E. B.
™ (B-9)
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Figure B.1: Penrose diagram of a star collapsing to a black hole. The pink line at v = v marks the
last null ray that leaves J—, propagates through the collapsing body and reaches infinity. All rays
leaving J~ for v < vg end up on J*, and the rays leaving I~ close to the null ray v = vg (marked with
a red line) make up the late time spectrum observed on J*. The blue line marks a null curve € which
leaves I~ for v > vyq, thus propagating past the event horizon of the black hole towards the singularity
of the spacetime.

The upper sign corresponds to outgoing geodesics with respect to the black hole horizon (for r > 2M),
and the lower sign corresponds to incoming geodesics. Inserting Eq. into Eq. (B.5]) we get that

d .
P (t¥7") =0,
where the tortoise coordinate r* is defined as
ar* oM\ !
=(1—— . B.1
dr ( T ) (8.10)

As 1 approaches 2M from above, r* moves towards —oo, and as r approaches oo, ™ and r are
approximately equal. Defining a set of null coordinates (u,v) as

u=t—r* (B.11)
and
v=t+1" (B.12)

we see that u remains constant along any outgoing, radial null geodesic, and that v remains constant
along any incoming, radial null geodesic.

Relating Null Coordinates w and v

Having obtained a mathematical description of the radial null geodesics of Schwarzschild spacetime,
we want to find a way to express the null coordinates u and v in terms of an affine parameter A. Let
the curve C, shown as a blue line in figure be an incoming null geodesic defined by the null
coordinate v =v; on J~. This null geodesic enters the horizon of the Schwarzschild black hole. Let A
be an affine parameter along this geodesic.
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From figure [B.1] we see that the null coordinate u can be expressed along C as a function of A.

Thus from Eq. (B.11)) we have that
du dt dr"

dr  dh dA
along this curve. Applying energy conservation along a geodesic, given in Eq. (B.5]), together with the
relation
dr* _drdr (. 2M *1E
dA  dr dA T
from Eq. (B.10) and Egq. for incoming null geodesics, we may continue to write

du oM\t
——2(1-=") E B.1
dA ( T ) (B.13)

Additionally, integrating Eq. over all values of A outside the black hole, we get that
Ar =1 —Ry =1—2M = —EA, (B.14)

where Rg is the Schwarzschild radius and A is defined to be zero on the event horizon. This interval is
always positive since we are restricted to the region v > 2M. Thus A must be negative in the region
outside the black hole event horizon.

Dividing by T on both sides of the last equality in Eq. (B.14), inverting the equation and using
that 1 = 2M — EA, one obtains the relation

—1
UMy M
EA

Inserting this into Eq. (B.13) and integrating over all A along the incoming null geodesic € leads to
the following expression for the null coordinate u,

U(A) = 2EA —4MIn (A) . (B.15)
K1
where K; is a negative constant (since A < 0 for r > 2M).

Far from the event horizon, i.e. for r > 2M, we see from Eq. that A — —oo. Thus
Eq. shows that w(A) &~ 2EA at such large distances from the black hole event horizon, since
the logarithm of a quantity approaches infinity more slowly than the quantity itself.

Close to the event horizon, A = 0, so

A
u(A) =—4MiIn —. (B.16)
K1
Our remaining task is to relate the affine parameter A to the incoming null coordinate v in order to
find an expression for w in terms of v.

First of all we observe from figure that null geodesics which originate on J~ for values v > vq
will enter the black hole through its event horizon, and run into the singularity. These rays will never
reach J*, and can not be a part of the spectrum observed there. Furthermore, the null geodesic
parameterized by v = vy generates the event horizon, and reaches J* in an infinite amount of time.
Hence the null geodesics of interest for the late time spectrum on J* are the rays with constant
incoming null coordinate v < vyg.

Moreover, the affine parameter A along all incoming radial null geodesics that pass through the
event horizon, such as the geodesic G, can be chosen so that it satisfies relation Eq. near the
event horizon. Since the relation holds for all such incoming radial null curves, this means that the
affine parameter distance between any two outgoing radial null geodesics, e.g. u(vg) and u(v), will
remain constant along their entire lengths, as measured by the change in A along any such incoming
null ray intersecting the two outgoing rays.
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Following these outgoing null geodesics backwards in time, through the collapsing body, one ends
up on the incoming null geodesics that originate on past null infinity. For the rays u(vg) and u(v),
these incoming null geodesics are parameterized by vg and v. The affine separation along the null
direction between the incoming null geodesics vo and v on I~ can be chosen so that it remains the
same as for the rays' outgoing counterparts. In other words the affine separation between v and vg at
J~ can be chosen so that it is the same as the affine separation between u(v) and u(vg) at I+ [22].

Now, since past null infinity is far from the event horizon in both time and space, the coordinate
v is itself an affine parameter along J~. There must therefore be a linear relation between the null
coordinate distance v —vp in the null direction and the affine separation A between u(v) and u(vg).
We write this relation as

Vg —V = Kz)\,

where K; is a negative constant (since vo > v and A < 0). Inserting this relation into Eq. (B.16]), we
obtain the expression

u(v) = —4MIn (V"K_V) (B.17)

close to the event horizon, with K = K;K,. This is the exact same relation as in Eq. (3.36]), with
kK =1/4M.
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