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ABSTRACT
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor
for the nonlinear correction of the matter power spectrum. 2 per cent level accurate emulation is now supported in the eight-
dimensional parameter space of w0waCDM+∑

mν models between redshift z = 0 and z = 3 for spatial scales within the
range 0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1. In order to achieve this level of accuracy, we have had to improve the quality of the
underlying N-body simulations used as training data: (i) we use self-consistent linear evolution of non-dark matter species
such as massive neutrinos, photons, dark energy, and the metric field, (ii) we perform the simulations in the so-called N-body
gauge, which allows one to interpret the results in the framework of general relativity, (iii) we run over 250 high-resolution
simulations with 30003 particles in boxes of 1(h−1 Gpc)3 volumes based on paired-and-fixed initial conditions, and (iv) we
provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce
systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical
dark energy parameter wa significantly increases the complexity and expense of creating the emulator. The high fidelity
of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors
such as HALOFIT, HMCode, and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0
simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1 per cent or better for
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0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1 and z ≤ 3 compared to high-resolution dark-matter-only simulations. EuclidEmulator2
is publicly available at https://github.com/miknab/EuclidEmulator2.

Key words: methods: numerical – methods: statistical – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Ongoing and forthcoming cosmological surveys such as DESI1

(DESI Collaboration 2016), the Vera C. Rubin observatory (formerly
LSST)2 (LSST Science Collaboration 2009), Euclid3 (Laureijs et al.
2011), and the Roman Space Telescope (formerly WFIRST)4 (Ake-
son et al. 2019) have the potential to shed light on dark energy (DE),
dark matter (DM), and the neutrino masses. It has been confirmed
by Solar and atmospheric neutrino experiments that neutrinos have
finite mass (e.g. Valle 2005; Schwetz et al. 2008), yet, attempts to
pin down the total mass and the mass hierarchy of the neutrino
flavour states have so far not been successful. The ongoing neutrino
experiment KATRIN (Weinheimer 2002; Fraenkle 2008; Wolf 2010)
has been launched in order to tighten the neutrino mass bounds with
particle physics. The equation of state (EoS) parameter w describing
DE is also poorly constrained. While the current � cold dark matter
(�CDM) concordance cosmological model with a value of w = −1
is favoured, the error bars coming from Planck data alone are of
order 50 per cent. They shrink to ∼10 per cent if more DE-sensitive
probes such as cluster counts, weak lensing, and supernovae Type Ia
are additionally considered (Planck Collaboration XIII 2015). Past
and current surveys have a hard time constraining the DE parameter
more accurately: Surveys like Planck (Planck Collaboration 2006)
probe the cosmic microwave background (CMB) only, which is not
very sensitive to DE. On the other hand, several current surveys
analysed either only spectroscopic probes (e.g. eBOSS, Dawson et al.
2016) or only photometric probes (e.g. KiDS-1000, Kuijken et al.
2019). In contrast, future experiments such as e.g. DESI and the Vera
C. Rubin observatory as well as large-scale hybrid photometric and
spectroscopic experiments such as e.g. Euclid or the Roman Space
Telescope will be able to reduce the error bars on the DE parameters,
as the combination of weak lensing with galaxy clustering provides
a promising handle on DE phenomena.

A common approach for the inference of cosmological parameters
is to use Bayesian techniques. One specific possibility is to sample
the likelihood function in a Markov chain Monte Carlo (MCMC)
approach, compare the predicted observable (e.g. the power spec-
trum) to the one actually measured in an observation, and extract
the maximum likelihood estimator values for the cosmological
parameters. However, this requires a large number of accurate
theoretical predictions. For studying the nonlinear regime of cosmic
structure formation, N-body simulations, still the most accurate tool
available today, are numerically too expensive to be used for Bayesian
inference and hence there is a high demand for more efficient
methods. While halo models for massive neutrinos are investigated
by several research groups (see e.g. Massara, Villaescusa-Navarro &
Viel 2014 or Hannestad, Upadhye & Wong 2020), surrogate models
for N-body simulations, so-called emulators, have been shown to be
very promising candidates. Several emulators are available already.
Examples are FrankenEmu (Heitmann et al. 2014), CosmicEmu
(Heitmann et al. 2009, 2010; Lawrence et al. 2010; Heitmann

1www.desi.lbl.gov/category/announcements/
2https://www.vro.org, www.lsst.org/lsst
3sci.esa.int/euclid
4http://roman.gsfc.nasa.gov

et al. 2016; Lawrence et al. 2017), the emulators of the Aemulus
project (DeRose et al. 2019; McClintock et al. 2019; Zhai et al.
2019), NGenHalofit (Smith & Angulo 2019), EuclidEmu-
lator1 (Euclid Collaboration 2019), the Dark quest emulator
(Nishimichi et al. 2019), and BE-HaPPY(Valcin et al. 2019).

In this paper, we will introduce an update of EuclidEmula-
tor1. While EuclidEmulator1 was able to efficiently estimate
the nonlinear correction (NLC) to the matter power spectrum for
w0CDM cosmologies (with the time-variable DE EoS parameter
wa set to 0), EuclidEmulator2 can handle cosmologies with
dynamical DE and massive neutrinos. In addition to a bigger
parameter space, EuclidEmulator2 also pushes the upper limit
of the k-range to kmax ∼ 10 h Mpc−1. The motivation for this is the
same as described in Euclid Collaboration (2019): While clearly the
dominant source of uncertainties on such small spatial scales is due
to hydrodynamics, galaxy formation, and feedback processes, it is
important to have best possible control over the gravity-only physics
(in both the dark sector and baryons) in this regime in order to
avoid additional (and unnecessary) uncertainties. As we describe in
Euclid Collaboration (2019), under certain assumptions it is possible
to add baryonic and other corrections due to e.g. gas physics and
feedback effects as a subsequent step in the pipeline, necessitating
that theoretical precision is maintained in the high-k regime of DM
clustering. In Schneider et al. (2020a, b) the authors follow this
strategy and emulate the effect due to baryons on weak lensing
observables on top of the underlying nonlinear DM physics.

This paper is structured as follows. In Section 2, theoretical
aspects regarding massive neutrinos, dynamical DE, and the N-body
gauge are discussed. In Section 3, we introduce our approach to
include massive neutrinos in N-body simulations using PKDGRAV3.
In Section 4, we report on an extensive convergence series that
we have performed in order to estimate the uncertainties in the
input simulations used for the construction ofEuclidEmulator2,
considering volume and resolution effects. We find systematics in
this section whose treatment will then be discussed subsequently in
Section 5. In Section 6, we investigate a prototype emulator based
on HALOFIT data (as we have already done in Euclid Collaboration
2019). In Section 7, insights taken from this prototype emulator are
used to construct the fully simulation-based EuclidEmulator2,
whose performance is ultimately assessed in Section 8. We then
gain some insight into parameter degeneracies at the level of the
matter power spectrum within the w0wa CDM + ∑

mν models. Our
conclusions are presented in Section 10.

2 TH E O R E T I C A L BAC K G RO U N D

2.1 Massive neutrinos

In oscillation experiments studying solar and terrestrial neutrinos,
compelling evidence has been found that the three flavour eigenstates
of neutrinos (e, μ, and τ ) can be mixed (Becker-Szendy et al. 1992;
Fukuda et al. 1998a,b; Ahmed et al. 2004; DUNE Collaboration
2015). This implies that neutrinos must have finite mass eigenstates,
a fact lying outside of the current standard model of particle physics.
While those experiments were able to measure the differences
between the squared neutrinos masses, they cannot measure the
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absolute mass scale. Currently, we only have bounds on the sum
of the neutrino masses, see e.g. Particle Data Group: Patrignani et al.
(2016). On cosmological scales, light neutrinos are very abundant
and hence are expected to have a significant effect on large-scale
structure. As we are considering neutrinos of masses smaller than
1 eV, they have become non-relativistic only after the electron–
nucleon recombination and hence they have imprinted only a small
signal into the CMB. However, neutrinos constitute a fraction of the
DM in our Universe and hence the DM power spectrum is the key
quantity to look at when trying to constrain light neutrino masses.

For the rest of this paper we are restricting ourselves to three
light mass eigenstates, i.e. we neglect the possibility of heavy sterile
neutrinos. Additionally, we consider only the case of three degenerate
neutrino masses, i.e. we neglect that the measured squared differences
for their masses is given by (Particle Data Group: Tanabashi et al.
2018)

δm2
21 = m2

2 − m2
1 = (

7.37+0.197
−0.146

) × 10−5eV2, (1)

δm2
31 = ∣∣m2

3 − m2
1

∣∣ = (
2.56+0.043

−0.037

) × 10−3eV2, (2)

or alternatively

δm2
23 = ∣∣m2

2 − m2
3

∣∣ = (2.54 ± 0.04) × 10−3eV2, (3)

depending on the considered neutrino hierarchy. This simplification
is justified as the difference in the resulting power spectra between
a degenerate and a realistic (normal or inverted) mass hierarchy is
expected to be well sub-per cent. Neutrinos have a non-vanishing
mass while at the same time they have a high velocity dispersion,
hence they do not belong to the category of CDM. In this paper, we
focus on cosmologies where there are non-zero contributions from
both cold and non-cold DM particles. Such a CDM plus massive
neutrino (CDM+∑

mν)5 cosmology also serves as the new Euclid
reference cosmology (see Table 2), in contrast to a more standard
pure CDM cosmology.

While neutrinos are still relativistic, their free-streaming length is
of the size of the Hubble scale. Only after the transition to the non-
relativistic phase, the comoving free-streaming scale of neutrinos
starts to shrink. As a result, neutrino perturbations get washed
out on scales below the free-streaming scale. Due to gravitational
interaction, this also suppresses the clustering of CDM on small
enough scales. The strength of the effect for a specific k-mode
depends on both redshift and mass of the neutrinos. But even for small
(but finite) neutrino masses we expect a several percent suppression
signal in the DM power spectrum due to these effects. The main effect
is on the background expansion of the Universe: If only massless
neutrinos are considered, �DM is identical to �CDM. However, in
order to maintain spatial flatness, even when a non-vanishing �ν is
present, �DM remains unaltered and thus this requires �CDM to be
decreased accordingly:

� = �DE + �DM + �b + �rad = �DE + (�CDM + �ν) + �b

+�rad. (4)

The CDM density is thus decreased by �ν (while the DM density
parameter does not change). As CDM and neutrinos evolve differ-
ently over the history of the Universe, this leads to a suppression of
the CDM+baryon power spectrum. This power suppression can help
us constrain the sum of the neutrino masses (see e.g. Ichiki, Takada

5In this paper, we use the notation CDM+∑
mν in order to avoid confusion

with mixed DM (MDM) models with significant contributions from more
exotic warm or even hot DM species.

& Takahashi 2009; Coulton et al. 2019; Copeland, Taylor & Hall
2020).

Neutrinos at very high redshifts (z � 1000) are still a relativistic
species, and hence would primarily contribute to �rad. However, our
simulations focus on the nonlinear growth of structure at z � 10, at
which time the contribution of massive neutrinos shifts to �DM. It
is for this reason that we consider �ν as a contribution to �DM in
the above. None the less, in our N-body simulations the transition
between fully relativistic and non-relativistic neutrinos, including
the full distribution function at any given redshift, is accounted
for by the CLASS Boltzmann solver. All neutrino effects are self-
consistently included in our simulations at the linear level, such
that this assignment of �ν to �DM is purely a convenient choice
of parametrization. For a more detailed discussion of the neutrino
treatment in our N-body simulations please see Section 3.4.

2.2 Dynamical dark energy

In the standard �CDM cosmology, DE is assumed to be a cosmo-
logical constant with a time-independent EoS parameter given by w

≡ −1. This implies that ρ�(t) = const which can be seen from the
following conservation equation:

T ν
0;ν = ρ̇� + 3H (ρ� + p) = 0 , (5)

ρ̇� + 3Hρ�(1 + w) = 0 , (6)

ρ̇� = 0 , (7)

where Tμν is the energy momentum tensor, p the pressure, ρ the
density, and the over-dot denotes a derivative w.r.t. cosmic time.
Although this value is close to the best-fitting value from supernova
surveys (Betoule et al. 2014), DE with a slightly time-dependent
EoS parameter is not ruled out by the data currently available. The
effects of DE perturbations become relevant only on the largest scales
(usually at k � 0.1 h Mpc−1) as has recently been studied carefully
in Dakin et al. (2019b). Nevertheless, the effects of DE on the matter
power spectrum can become quite significant, primarily because
changes in the DE component have an impact on the scale factor
a(t) which in turn affects the power spectrum on all scales.

Here, we shall just briefly recap the key aspects of the theory of
time-dependent DE relevant in the context of EuclidEmulator2.
We shall follow closely the explanations given in Dakin et al. (2019b)
where this topic has been reviewed in greater detail. There are two
popular ways of describing DE in the setting of an effective theory:
the fluid description and the so-called parametrized post-Friedmann
(PPF) description (Hu & Sawicki 2007). In the fluid description, DE
is considered a fluid with an equation-of-state parameter w(a) (a
being the cosmic scale factor) and a constant rest-frame sound speed
cs. We will adopt the widely used parametrization w(a) = w0 + wa(1
− a). As can be seen in equation (2.9) in Dakin et al. (2019b), the
Euler equation for a DE fluid features a factor (1 + w)−1, leading to
divergences for cosmologies with a DE EoS parameter that evolves
across 1 + w = 0 over time. This is a manifestation of the fact that
such a DE is gravitationally unstable for the lack of additional internal
degrees of freedom (Fang, Hu & Lewis 2008). The case w = −1.0 is
sometimes referred to as the ‘phantom divide’ or ‘phantom barrier’
and models crossing it are called ‘phantom-crossing’ cosmologies.
It follows, unfortunately, that the fluid description of DE is not well
suited to describe phantom-crossing cosmologies and yet there is no
reason why these models should not be taken into account in our
analysis.
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As described in Fang et al. (2008), common approaches to deal
with this problem are either to ignore the DE perturbations in
an ad hoc manner or to simply turn them off which violates the
energy-momentum conservation for non-� models and leads to
inconsistencies among the Einstein equations. For dynamical DE
models it is hence crucial to thoroughly address the issue of phantom-
crossing.

The parametrization of minimally coupled DE is not a complete
system of equations but rather it requires two closure conditions.
The relation between density and pressure fluctuations of DE, giving
rise to its EoS parameter and sound speed, serves as one of these
closure relations in the fluid description. The PPF formalism on the
other hand takes a direct relation between the momentum density of
DE and that of DM on large scales to close the system of equations
(Fang et al. 2008), thus circumventing the divergence of sound speed
at phantom-crossing. This describes the DE momentum perturbations
on large scales. To describe them on small scales, an effective sound
speed c	 is introduced which is related to the scale below which the
DE field becomes sufficiently homogeneous compared to the matter
field. From an interpolation between these two limits one can obtain
an evolution equation for the potential of DE in its rest frame:

∂τ	 = ∂τ a

a

[
S

(
1 + c2

	k2

H2

)−1

− 	

(
1 + c2

	k2

H2

)]
, (8)

with H the conformal Hubble parameter and ∂τ denoting the
derivative w.r.t. conformal time τ . 	 is related to the rest-frame
DE density field δρrest

DE via the Poisson equation

k2	 = −4πGa2δρrest
DE , (9)

c	 being the effective sound speed and S being defined as

S ≡ 4πGa2

H (ρDE + pDE)
θN

t

k2
. (10)

In the last equation, in turn, θN
t denotes the velocity divergence field

of all other species than DE in the conformal Newtonian gauge. For a
more complete discussion we refer the reader to Dakin et al. (2019b),
section 2.1.2.

2.3 General relativity in N-body simulations: the N-body gauge

Traditionally, the formation of large-scale structure is simulated with
Newtonian N-body codes. There are two ways to bring the general
theory of relativity (GR) into these simulations, in order to study
its effects on structure formation. The first option is to replace
the Newtonian equations of motion of structure formation by their
general relativistic counterpart. However, this is not an easy task,
in particular because scientists have optimized N-body codes for
Newtonian physics over the last decades. The second option is hence
to still use these optimized Newtonian N-body simulation codes
which is allowed under certain circumstances. As has been shown
in Chisari & Zaldarriaga (2011), Newtonian simulations predict the
clustering properties of DM and galaxies with negligible errors even
on very large scales if non-relativistic components or relativistic
but non-clustering components are modelled and if a proper set of
coordinates (i.e. gauge) is chosen. According to Fidler et al. (2015)
and Brandbyge et al. (2016) it suffices to add a relativistic correction
to the Newtonian potential φ in the Euler and the Poisson equation
(for more practical detail see Section 3.4):

(∂τ + H)vNb
CDM+b = −∇φ + ∇γ Nb , (11)

∇2φ = 4πGa2δρNb
tot , (12)

Figure 1. Ratio between the CDM+baryon transfer functions in the N-
body gauge (as used for the N-body simulations in this work) and the
synchronous gauge at three different redshifts. At redshift z = 99 where
the initial conditions are realized, the two gauges lead to transfer functions
differing by almost 4 per cent at very large scales. At the k ∼ 0.006 h Mpc−1

corresponding to the fundamental k-mode of the simulations that will be used
to construct EuclidEmulator2 (see Section 4), the effect is just about at
the 1 per cent level.

where τ is the conformal time and δρNb
tot is the total density

perturbation from all species,

δρtot = δρCDM + δρb + δρphoton + δρν + δρDE , (13)

where we note that δρDE �= 0 for w �= −1. The GR correction
potential γ Nb is built from any other gravitating quantity not already
accounted for by δρNb

tot , i.e. the momentum density, pressure and shear
of photons, neutrinos, and DE. We further parametrize this as

∇2γ Nb = −4πGa2δρmetric , (14)

where δρmetric is a fictitious density perturbation, the Newtonian
gravity of which implements all general relativistic effects of ∇2γ Nb.

Finally, the full effective potential is split into φ − γ Nb ≡ φsim

+ φlin, with ∇2φsim formally equal to 4πGa2(δρNb
CDM + δρNb

b ) but in
the simulation computed through usual N-body (particle) techniques,
while

∇2φlin ≡ 4πGa2
(
δρNb

photon + δρNb
ν + δρNb

DE + δρmetric

)
(15)

is solved on a grid using Fourier techniques and then applied to the
particles as a correction force to the main particle gravity. Notice
that φlin is the object called φGR in other publications such as e.g.
Tram et al. (2019), Dakin, Hannestad & Tram (2019a), or Dakin et al.
(2019b).

Note that the continuity equation is formally not affected by this
additional GR potential γ Nb. This then can be considered writing the
full general relativistic evolution equations of the N-body simulations
in a very special gauge, the so-called N-body gauge (indicated by
the superscript ‘Nb’). Doing so, it is possible to apply a gauge
transformation of the output in a post-processing step in order to
reobtain general relativistic results in any observationally relevant
gauge up to first order. As is well known and can also be seen from
Fig. 1 these general relativistic corrections become important at very
large scales and high redshifts. Given that for this work we use
simulation boxes of edge length of 1 h−1 Gpc, the simulation box
volume is too small for those corrections to have a strong effect. Yet,
we include those minor corrections into our pipeline as they can be
taken into account with moderate effort in a pre-processing step (one
merely has to choose a gauge).
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3 C O S M O L O G I C A L S I M U L AT I O N S

Cosmic emulators are based on training data (also known as the
experimental design) generated by N-body simulations. Unsurpris-
ingly, the quality of any emulator hence crucially depends on the
quality of the training data. We invested great efforts into optimizing
the quality of the training set simulations. The construction of
EuclidEmulator2 training data relies mainly on three codes:
PKDGRAV36 (Potter & Stadel 2016; Potter, Stadel & Teyssier
2017), which is the main simulation code, and CONCEPT7 (Dakin
2015) which in turn depends on the Einstein–Boltzmann solver
CLASS8 (Blas, Lesgourgues & Tram 2011; Lesgourgues 2011).
At this point it shall be emphasized that CONCEPT is a full-
fledged N-body code in its own right with the added trait of very
tight integration with CLASS. However, for this work we merely
use it to compute the transfer functions in the N-body gauge
seeding the subsequent N-body simulations which are performed
with PKDGRAV3. All three codes had to be optimized in order to be
able to fully self-consistently (at the linear level) treat cosmologies
with massive neutrinos and dynamical DE. In this section, we shall
describe how these codes were optimized to generate a suite of
simulations used as the experimental design for EuclidEmula-
tor2 and thereby put emphasis on the differences with respect
to the generation of the experimental design of EuclidEmula-
tor1.

3.1 Pipeline overview

We shall give a quick overview over the implemented pipeline
in order to facilitate the understanding of the steps involved in
generating the training data for the emulator. More detail is given
for each step in dedicated sections below.

3.1.1 Pre-computation of cosmological quantities

We have designed a pipeline in which all cosmological background
and linear quantities, such as the time dependence of the Hubble
parameter H(z), are computed before running any simulation. This
is done through CONCEPT with CLASS in order to take all relevant
physics into account (e.g. this approach allows for a fully relativistic
treatment). In this step, transfer functions are computed to linear level
at many different redshifts for all species contributing to φlin, which
are later used to provide the small corrective force contributions
in the N-body simulations. In the case of EuclidEmulator1,
however, we only computed the transfer function at z = 0, which
we later used for initial condition (IC) generation via the usual back-
scaling approach, and used an analytical form for H(z) to compute
the background evolution.

3.1.2 Gauge transformation

This step was entirely missing in EuclidEmulator1 where we
used the transfer function computed in synchronous gauge to set
up the ICs. CLASS, as well as CAMB, compute quantities either in the
synchronous or in the conformal Newtonian gauge. However, in order
to make Newtonian N-body codes consistent with GR, their input
transfer functions have to be mapped to the N-body gauge described

6http://pkdgrav.org
7https://github.com/jmd-dk/concept/
8http://class-code.net

in Section 2.3. This transformation is performed by the CONCEPT
code. The results are then stored into look-up tables inside HDF5 files
that can be queried by the N-body code. Notice thatCONCEPT allows
to combine this step with the pre-computation of the cosmological
quantities described in the previous paragraph.

3.1.3 N-body simulation

Both the initial condition generation and the actual N-body sim-
ulations are performed with PKDGRAV3. Paired-and-fixed (P+F)
(Angulo & Pontzen 2016) first-order Lagrangian perturbation theory
(1LPT) initial conditions are set up at redshift z = 99 (see also
Section 4 for a more in-depth discussion). The nonlinear evolution
of DM particles is computed with a binary tree-based fast multipole
method (FMM). To these tree forces we add a particle-mesh (PM)
field for the fluctuations due to massive neutrinos, photons, DE,
and the metric field in order to study their effect on cosmological
structure growth at linear level (for simulations treating neutrinos
fully nonlinearly see e.g. Banerjee et al. 2018; Bird et al. 2018). This
aspect is one of the key differences between EuclidEmulator1
and EuclidEmulator2.

3.1.4 Post-processing

From the simulations we obtain the power spectra for each realization
of the fixed-IC simulation pair. In order to get the final P+F power
spectrum we compute the average of those individual realizations.9

As ultimately we are primarily interested in the NLC, we compute
it w.r.t. the linear theory power spectrum (in our case computed
by CLASS) at each redshift. Explicitly, the NLC B(k, z) is the
dimensionless quantity defined through the relation

Pnl(k, z) = PLinTh(k, z)B(k, z) , (16)

where the subscript nl stands for ‘nonlinear’ and the subscript LinTh
for ‘linear theory’. Notice that the defining equation for the NLC,
equation (16), looks slightly differently compared to its counterpart,
equation (4), in Euclid Collaboration (2019).10 This is a consequence
of our new time-stepping procedure (explained in Section 3.4), which
guarantees that B(k, z) = Pnl(k, z)/PLinTh(k, z) approaches 1 for small
k at all redshifts.

We also compute an additional factor that corrects for power
suppression at small scales caused by resolution effects in the
simulations. This factor we shall refer to as the resolution correction
factor (RCF) and it will be discussed in Section 5.

3.1.5 Emulator construction

The obtained data matrix is then principal component analysed. The
emulator then predicts the vector of principal component weights.

9The P+F approach (Angulo & Pontzen 2016) and its application in
the context of cosmic emulation have already been described in Euclid
Collaboration (2019).
10A major shortcoming of the IC generation and time-stepping methods
employed in Euclid Collaboration (2019) is that the ratio Pnl(k, z)/PLinTh(k,
z) would not approach unity at large scales (except for the one single redshift
at which the transfer functions were computed, usually z = 0). To deal with
this challenge, for EuclidEmulator1 we computed the NLC via division
by the IC power spectrum of the simulation.
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3.2 Pre-processing with CONCEPT: transfer functions

For generation of particle initial conditions inside PKDGRAV3,
matter density and velocity transfer functions δCDM+b(aini, k) and
θCDM+b(aini, k) are required, where aini is the scale factor at the start
of the simulation. As we seek to carry out the simulation in N-body
gauge, this is also the gauge of these transfer functions. Note that,
due to the contributions from species other than CDM, we cannot
obtain accurate particle velocities from only δCDM+b.

To keep the simulation in N-body gauge, we need to repeatedly
apply the linear GR correction force −∇φlin. From (15) we see
that we are thus in need of δρphoton(a, k), δρν(a, k), δρDE(a, k),
and δρmetric(a, k). Obtaining these N-body gauge transfer functions,
the CONCEPT code has been run in advance. Internally, CONCEPT
takes the synchronous gauge output from CLASS, converts it to N-
body gauge and uses it for both particle initial conditions and GR
corrections. The relevant gauge transformations are

δρNb
α = δρs

α + 3H(1 + wα)ρ̄α

θ s
tot

k2
, (17)

θNb
α = θ s

α + ∂τ

(
hmp

2
− 3H θ s

tot

k2

)
, (18)

where superscripts ‘Nb’ and ‘s’ indicate the N-body and synchronous
gauge, respectively, α labels the species, hmp is the trace of the
metric perturbation in synchronous gauge, and θ tot is the total velocity
divergence of all species.

Though more complicated, the δρmetric(a, k) transfer function is
similarly constructed from various CLASS outputs, some of which
are only available in the CLASS version that ships with CONCEPT
(see Dakin et al. 2019a for more details). We also note that the
computation of the DE pressure perturbation within CLASS, needed
for δρmetric, is wrong in the standard version of CLASS, but fixed in the
version shipping with CONCEPT (see Dakin et al. 2019b for details).

For use with PKDGRAV3, the so-called CLASS-utility was added
to CONCEPT, which saves the N-body gauge transfer functions to an
external HDF5 file, which is then read in byPKDGRAV3. In the HDF5
all requested transfer functions (i.e. on top of the CDM+baryon
transfer function also that of the photons, the massive neutrinos,
the DE, and the metric perturbations) are stored on a global (a,
k) grid, where special attention must be given to the interpolations
performed within this grid in order to achieve the required precision.
Various background quantities, for example H(a), that are computed
by CLASS are also stored in the HDF5 and used by PKDGRAV3, as
these generally are non-trivial to compute in the presence of massive
neutrinos.

3.3 Initial condition generation

In order to get the initial conditions for the particle positions, we
generate a regular grid of particles which we displace from their grid
points using first-order Lagrangian perturbation theory. We imprint
an initial power spectrum Pini with the pairing-and-fixing technique
(Angulo & Pontzen 2016), i.e.

P (|δi,lin|, θi) = 1

2π
δD(|δi,lin| −

√
Pini) , (19)

with δD being the Dirac delta function and the index i labelling
the Fourier modes (for more info about how we use the pairing-
and-fixing technique to generate initial conditions, please refer to
Euclid Collaboration 2019). The initial power spectrum is computed
based on the CDM+baryon overdensity field δm pre-computed by
CLASS+CONCEPT at zini = 99. While PKDGRAV3 has no further

use for δm(z < zini) we still tabulate these, as they are used when
computing the NLC factors. We then use

Pm, ini(k, zini) = ζ 2(k)δ2
m(k, zini) , (20)

where the ζ -function is defined as

ζ (k) = π
√

2Ask
−3/2

(
k

k∗

) ns−1
2

exp

[
αs

4
ln

(
k

k∗

)2
]

. (21)

Here, As is the spectral amplitude, ns is the spectral index, and the
running αs = 0 in all cases. The pivot scale is set to its standard
Planck value, k∗ = 0.05 Mpc−1. The resulting initial power spectrum
is used to displace the particles from their regular grid points.

3.4 Linear and nonlinear evolution

Once the initial condition is generated, the DM particles are evolved
by the tree code PKDGRAV3 using FMM and a multi-time-stepping
approach. For further technical details about the gravity evolution of
DM in PKDGRAV3, we refer to Potter et al. (2017).

What is newly introduced in the version of PKDGRAV3 that is
used for this work (which is also new compared to the version used
to construct EuclidEmulator1) is the interaction with massive
neutrinos as well as other linearly evolved species, namely photons,
DE, and the metric field. For this, PKDGRAV3 fetches the linearly
evolved perturbations of these species from the pre-computed CLASS

transfer functions (stored into lookup tables), then computes and
applies the corresponding gravitational kick from these linear species
to the nonlinear matter particles. This is done at every base time-step
(and not on the adaptive sub time-steps) by solving the Poisson
equation (equation 15) in Fourier space for the linear potential,

φlin(a, k) = −4πGa2

k2
δρNb

lin (a, k) , (22)

with δρNb
lin ≡ δρNb

photon + δρNb
ν + δρNb

DE + δρmetric. This linear potential
is averaged over the time-step i and realized on a grid, as

〈
φk

lin

〉
i
= −4πG

k2

1

ti+1 − ti

∫ ti+1

ti

dt a2δρNb
lin (a, k) , (23)

where t is cosmic time. Cubic interpolation in log k and log a is
used to interpolate the tabulated values on to the grid and to evaluate
the above integral. The forces from the realized potential 〈φk

lin〉i are
then applied to the particles using standard particle-mesh methods,
specifically through differentiation in Fourier space along all three
dimensions (requiring two further scalar grids) and separate inverse
Fourier transforms, followed by PCS interpolation from the grid
points to the particle locations. This added particle-mesh interaction
then provides an additional gravity source term for the particles,
complementing the standard particle–particle interaction, such that
the DM field is evolved taking the linear species into account.

During the early Universe, it is important to capture the effects
of the high-frequency oscillations in the linear fields, particularly in
the metric field, otherwise we would see a slight offset of the power
spectrum at linear scales. The linear evolution may only be done
when the simulation is ‘time synchronized’ which happens at the
start of a base time-step. One approach would be to take sufficient
base time-steps to capture this effect at high redshift, but it would be
computationally wasteful at lower redshifts. Instead we adopted the
following scheme. Each N-body simulation was started at redshift zini

= 99 and evolved in 60 base time-steps to zintrm = 10. From zintrm we
continued each simulation down to zfin = 0 in another 100 base time-
steps. Note that particles drop to much smaller sub time-steps when
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calculating the particle–particle forces; this being done adaptively
based on the acceleration of the particle (�ti < η

√
ε/|ai |, with η =

0.2 and softening ε = 0.02 �).11 For a more detailed description of
the adaptive time-stepping algorithm see Potter et al. (2017).

By employing this approach we achieve agreement between the
linear evolution of all particle species and CLASS over the entire
simulation starting from zini all the way to z = 0. A comparison of
the neutrino implementation inPKDGRAV3 toCONCEPT is presented
in Tram et al. (2019). Further, activities to compare a larger num-
ber of cosmological simulation codes with implemented neutrinos
(including gevolution Adamek et al. 2016; Adamek, Durrer &
Kunz 2017, Gadget Springel et al. 2020, RAMSES Teyssier 2002,
and PKDGRAV3 Potter et al. 2017 as well as approximate methods
such as PINOCCHIO Rizzo et al. 2017) are currently ongoing in
Euclid.

4 C O N V E R G E N C E T E S T S

We have performed extensive convergence tests for the power
spectrum and the NLC in different dimensions. These convergence
test results serve to update those presented in Euclid Collaboration
(2019).

4.1 Volume

We start by determining the minimal volume required to achieve
convergence at the 1 per cent level. We compare a series of box size
of edge lengths L ∈ {512, 1024, 2048, 4096} h−1 Mpc to a reference
volume V = L3 = (8192 h−1 Mpc)3. In this process we fix the
resolution parameter to �−1 ≡ N/L = 1/3 h Mpc−1, where in this
paper we use N for the number of particles per dimension.

As our new pipeline (described in Section 3) allows us to recover
the linear scales very accurately at all redshifts, we could try to actu-
ally perform the convergence comparison directly against linear the-
ory itself. However, as for simulation box sizes L < 2048 h−1 Mpc
even the smallest k modes are already slightly nonlinear, the finite
volume effects overlap with the pre-virialization dip such that
particularly at low redshifts no clear conclusion can be drawn.

For this reason, we performed additionally the volume conver-
gence test based on the NLC factor (i.e. we compare to the NLC
factor of the simulation in the L = 8192 h−1 Mpc box). The result
is shown in Fig. 2. In this test the pre-virialization dip is cancelled
out such that we are only left with the finite volume effects. We find
that a simulation box of L = 1024 h−1 Mpc is converged at the level
of ∼1 per cent (the cosmic variance of only a few individual mildly
nonlinear k modes exceeds the 1 per cent limit). Notice that this result
is unchanged if one would perform the comparison to the largest box
at the power spectrum level. As the NLC is computed with respect to
linear theory, dividing two NLCs by each other leads to cancellation
of the linear theory out of the expression such that one is left with a
ratio of power spectra only:

BL

BL=8192
= PL

PLinTh

PLinTh

PL=8192
= PL

PL=8192
. (24)

11This is the default adaptive time-stepping algorithm with default simulation
accuracy parameter values. In Schneider et al. (2016), Garrison, Eisenstein &
Pinto (2019), and Springel et al. (2020) (mainly in subsection 8.3) it is shown
that with these parameters very good agreement with other cosmological
simulation codes such asGadget-4,ABACUS (Garrison et al. 2016; Garrison
et al. 2018) and RAMSES (Teyssier 2002) is achieved.

Based on this result we choose the simulation box side length for our
simulations to be L = 1 h−1 Gpc. This finding agrees exactly with
Heitmann et al. (2010) and also broadly with the Euclid Collaboration
(2019). A similar study was also conducted in Schneider et al. (2016)
but with a reference simulation computed in a much smaller volume
of only V = (1024 h−1 Mpc)3.

4.2 Resolution

For the investigation of the mass resolution required to get conver-
gence of the power spectrum at a desired level, we are interested
in the minimal value of the resolution parameter �−1 of N-body
simulations (for a similar analysis see e.g. Heitmann et al. 2010).
In Euclid Collaboration (2019) we claimed that the power spectra
are converged at the level of 1 per cent up to k ∼ 5 h Mpc−1 for
�−1 ≥ 1.6 h Mpc−1. We state clearly that this statement was overly
optimistic. We underestimated the minimal �−1 because we compared
to a simulation with �−1 = 4 h Mpc−1 which at that time was the best
we could do. For this work we were able to double the resolution
parameter of our reference simulation to �−1 = 8 h Mpc−1. In turn,
this increases our current estimate of the minimal �−1 value required
to achieve convergence at the 1 per cent level.

From Fig. 3 one clearly observes that simulations with �−1 ≥
4 h Mpc−1 are required to be converged at the 1 per cent level at
k = 10 h Mpc−1 with respect to the �−1 = 8 h Mpc−1 simulation at
z = 0 and the resolution needs to be even higher if 1 per cent-
convergence at higher redshifts is required. Given the minimal
volume found in Section 4.1, such high �−1 values imply prohibitively
large particle numbers for our simulations. Taking our computational
budget into account, we decided to run simulations with �−1 =
3 h Mpc−1 thereby doubling the resolution parameter compared to
EuclidEmulator1. This means that our simulations, according
to the currently best estimate available, are converged at redshift z

= 0 up to k2 per cent = 9.42 h Mpc−1 at the level of 2 per cent and
up to k1 per cent ∼ 5 h Mpc−1 at the level of 1 per cent. Further results
showing how the values for k1 per cent and k2 per cent evolve with redshift
are shown in Table 1.

Notice that the suppression of power due to low mass resolutions
is very systematic. We investigate this further in Section 5.

Further we summarize that a compromise between the require-
ments estimated from the convergence tests and our computational
budget leads to the following specifications for our N-body sim-
ulations. We evolve 30003 particles in boxes with a volume of
1 h−3 Gpc3.

4.3 Paired-and-fixed versus Gaussian random field initial
conditions

We also re-evaluate the comparison between P+F simulations and
simulations based on Gaussian random field (GRF) initial conditions.
For this comparison we ran one pair of fixed amplitude simulations
and an ensemble of 50 different GRF simulations. Over all redshifts
of interest (z ≤ 3), P+F simulations approximate the GRF ensemble
average very well on all but the largest scales. However, on all scales
the deviation of the P+F power spectrum w.r.t. the GRF ensemble
average lies well within the bound set by max(σGRF, 1 per cent). This
confirms the finding of Angulo & Pontzen (2016). It needs to be taken
into account, though, that in that publication an ensemble of 300 GRF
simulations (i.e. six times larger than our ensemble) has been used for
comparison. Based on this exploration and the results found already
in Euclid Collaboration (2019) we again use the pairing-and-fixing
approach to efficiently reduce cosmic variance.
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Figure 2. Convergence test results for volume of the NLC factor B(k,z) of simulations with L ∈ {512, 1024, 2048, 4096, 8192}h−1 Mpc. We show results for
two different redshifts. Apart from individual k modes on mildly nonlinear scales, simulation boxes with L = 1024 h−1 Mpc are converged at the 1 per cent
level.

4.4 Quantities not investigated in this convergence series

Quantities we have not tested in this convergence series are the
starting redshift, the main time-stepping parameter, and the resolution
of the PM-grid for the linear species. As we describe below, the
softening is related to the mass resolution but its convergence was
not tested independently either. We set the softening parameter to
default values of PKDGRAV3: ε = 1/(50N) and the time-stepping
parameter η = 0.20. The number of PM-grid cells for the linear
species has been conservatively chosen to be a quarter of the CDM+b
particle number N per dimension, i.e. we use Nlin = 750 PM-grid
cells per dimension. The ratio N/Nlin = 4 has already been used
in the generation of the Euclid Flagship v2.0 Simulation (EFS2)
simulation, where it has been proved to be a more than adequate
choice. We also follow the EFS2 simulation for the choice of the
initial redshift, zini = 99. Convergence of these quantities has been
studied in Schneider et al. (2016). Further, we have not investigated
2LPT second-order Lagrangian perturbation theory (2LPT) ICs for
this work but use 1LPT ICs to set up our simulations. While 2LPT
is expected to improve the resolution convergence results presented
above, PKDGRAV3 does not yet support 2LPT for multiple fluids.

4.5 Results of this convergence analysis

We have identified that one requires simulations with 30003 particles
and a resolution parameter of �−1 = 3 h Mpc−1 (corresponding to
a minimally resolved mass of ∼3.3 × 109 M�/h and a Nyquist
frequency of kmax ∼ 9.4 h Mpc−1) in order to achieve satisfactory
accuracy on both large and small scales. A simulation of this size

and resolution takes a bit more than 2000 node hours (on GPU
accelerated nodes12).

5 R E S O L U T I O N C O R R E C T I O N

In Fig. 3 in Section 4.2 we show that a too low mass resolution leads
to a suppression of power on small scales where the amplitude of this
suppression grows both with a growing ratio �−1

lowRes/�
−1
highRes and as

the redshift z increases. However, as this effect is very systematic it
is possible to correct for it in a post-processing step by compensating
the suppression with an RCF.

5.1 Cosmology dependence of the resolution-induced power
suppression

In general it has to be assumed that the precise shape of the
resolution-induced power suppression (and equivalently that of the
RCF) depends on cosmology. To test this statement we compute
a series of simulations for 20 different cosmologies. We choose
these cosmologies to be a subset of the experimental design (ED) of
EuclidEmulator2. Of course, running multiple high-resolution
reference runs in large boxes is too expensive, so we perform our
test in a smaller box. We run these simulations in boxes of L =
128 h−1 Mpc side length with N3 = 3843 and N3 = 10243 particles,
corresponding to resolution parameters of �−1 = 3 h Mpc−1 and

12The simulations were run on the Piz Daint supercomputer at the Swiss
National Scientific Supercomputing Centre (CSCS).
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Figure 3. Convergence test results for mass resolution of full nonlinear power spectra showing results for simulations with �−1 ∈ {1, 2, 3, 4, 8}h Mpc−1. We
show results for two different redshifts. The faint, dark green vertical lines correspond to the k values for which the dark green, solid curves (corresponding to
the N1536L512-case) deviates more than 1 per cent (dashed lines) and 2 per cent (dotted lines), respectively, from the reference N4096L512 (�−1 = 8 h Mpc−1)
simulation. At z = 2.76, we find that the �−1 = 3 h Mpc−1 simulation is converged within 1 per cent up to k ∼ 2 h Mpc−1 and within 2 per cent up to
k ∼ 3.5 h Mpc−1. At z = 0, however, the same simulation is converged within 2 per cent all the way up to k = kmax ∼ 10 h Mpc−1 and even stays within
1 per cent from the reference up to k ∼ 5 h Mpc−1.

Table 1. Dependency on the redshift of the k modes at which the �−1 =
3 h Mpc−1 simulation are converged at 1 and 2 per cent, respectively. For
redshifts 0, 0.5, and 1 the k2 per cent values correspond to the highest k mode
obtained from the simulations and hence should be understood as lower
bounds.

k1 per cent [ h Mpc−1] k2 per cent [ h Mpc−1]

z = 0 4.87 ≥9.42
z = 0.5 4.36 ≥9.42
z = 1 3.99 ≥9.42
z = 2.76 1.97 3.57
z = 10 1.34 1.99

�−1 = 8 h Mpc−1, respectively. The RCF is then simply defined as:

f 3→8
res (k, z; c) = P �−1=3 h Mpc−1

(k, z; c)

P �−1=8 h Mpc−1 (k, z; c)
, (25)

where c denotes a specific cosmology. We thus compare the same
resolutions as we do in the case of the dark green and yellow curves
in Fig. 3. We show the results of this analysis in Fig. 4. In this
figure, the two upper panels correspond to the lower panels in Fig. 3.
The variability in the ratio of power spectra due to variability in the
cosmology is then shown in the lower panels of Fig. 4. As is clearly
visible, the cosmology dependence of this ratio is weak, particularly
at very low redshifts. Also at high redshifts, the 1σ -standard deviation
is considerably smaller than the biases at the same k modes for all

20 tested cosmologies. Accordingly, we may simplify

f 3→8
res (k, z; c) ≈ f 3→8

res (c∗; k, z) := f 3→8
res (k, z) , (26)

where c∗ denotes any reasonable cosmology not too different from
the cosmologies for which low resolution simulations are run. In our
case the Euclid Reference Cosmology, the Planck 2015 best-fitting
cosmology, or the central cosmology of the parameter box defined
below in Table 2 would all be viable choices for c∗.

From this we conclude that a cosmology-independent correction
factor, although introducing a new source of uncertainty, improves
the power spectrum measurement of the N-body simulation by a few
per cent at high k. Of course, in future work this should be improved
even further by emulating the cosmology dependence of the RCF.
This would greatly reduce the newly introduced uncertainty while
still mostly removing the bias.

We do compute f 3→8
res (k, z) at the Euclid Reference Cosmology

as defined in Table 2. The RCF curve is shown in Fig. 4 for
different redshifts covering the entire redshift range of interest.
Notice that values f 3→8

res for k < 2π/(128 h−1 Mpc) are set to unity
(see discussion below in Section 5.2).

5.2 Dependence on simulation box size

For this approach to be a practical strategy, the RCF must not
depend strongly on simulation box sizes. Otherwise, the RCF would
itself rely on high-resolution runs in large boxes which are exactly

MNRAS 505, 2840–2869 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2840/6275725 by U
niversity of O

slo Library. Library of M
edicine and H

ealth Sciences user on 29 Septem
ber 2021



The EuclidEmulator2 2849

Figure 4. The resolution-induced power suppression is systematic and can be corrected for. In this plot we show the resolution corrections f 3→8
res (k, z; c)

computed from a sample of 20 cosmologies represented by the yellow curves. The newly introduced uncertainty due to variance in cosmology, which we neglect,
is merely 0.5 per cent (standard deviation, green shaded region) or lower at z = 0 and at the level of 1 per cent at z ∼ 2. Given the fact that the bias itself is at
the 5 per cent level at higher redshifts, correcting for the resolution has a positive net effect. The curves corresponding to the Euclid Reference Cosmology are
overplotted. We shall use this cosmology to compute the RCF which we apply to all other cosmologies.

Table 2. Parameter box forEuclidEmulator2 defined through its lower
bounds (‘min’) and its upper bounds (‘max’). The central cosmology
of the parameter box (‘EE2centre’), which is almost identical to the
Euclid Reference Cosmology, is also given here. �rad is the same for all
cosmologies, corresponding to TCMB = 2.7255 K. Notice that the maximum
value for wa mentioned reflects the actual upper bound allowed by the
emulator, while values 0.5 < wa ≤ 0.7 were considered as well during the
construction of the HALOFIT-based mock emulator. See Section 6.4 for a
discussion.

min max EE2centre Euclid Reference

�b 0.04 0.06 0.05 0.049
�m 0.24 0.40 0.32 0.319
∑

mν 0.0 eV 0.15 eV 0.075 eV 0.058 eV
ns 0.92 1.00 0.96 0.96
h 0.61 0.73 0.67 0.67
w0 − 1.3 − 0.7 − 1.0 − 1.0
wa − 0.7 0.5 0.0 0.0
As 1.7 × 10−9 2.5 × 10−9 2.1 × 10−9 2.1 × 10−9

the simulations that are not affordable. Whether this is the case
was tested by comparing the RCF from a L = 128 h−1 Mpc box
to the corresponding RCF computed from a simulation run in a
L = 512 h−1 Mpc box. As the latter curve (requiring a simulation
with N3 = 40963 particles) is already very expensive to produce,
we did this test for only one single cosmology. Further, we tested if
the RCF f 3→8

res (z, k) depends on the box size and we found that it
does not in any other way than the fact that kmin = 2π /L is of course
changed. There is a limit to the minimally allowed box size, though.
While computing an RCF one must make sure that a box size is
chosen such that f 3→8

res (z, kmin) = 1 for all z of interest such that the

resulting RCF can be safely extrapolated to larger scales by setting
f 3→8

res (z, k) ≡ 1 for all k < kmin.

5.3 Correction strategy

Our suggested strategy to fight this resolution effect is hence as
follows. Starting from a power spectrum with a resolution parameter
of �−1 = 3 h Mpc−1, we can resolution-correct it by multiplying it
with a k- and redshift-dependent (but cosmology-independent) RCF
f 3→8

res (k, z), i.e.

P �−1=8 h Mpc−1
(k, z; c) ≈ f 3→8

res (k, z)P �−1=3 h Mpc−1
(k, z; c) . (27)

This corresponds to lowering the minimally resolved mass by roughly
an order of magnitude from ∼3.3 × 109 to ∼1.7 × 108 M�/h
(corresponding to a Nyquist frequency of kmax ∼ 25 h Mpc−1).

As we define the NLC for EuclidEmulator2 with respect to
linear theory which is not affected by this resolution effect, the very
same correction can be applied to those quantities:

B�−1=8 h Mpc−1
(k, z; c) ≈ f 3→8

res (k, z)B�−1=3 h Mpc−1
(k, z; c) . (28)

6 PRO JECTI ON STUDI ES USI NG
CLASS-BA SED MOCK EMULATO RS

N-body simulations of the matter field in w0waCDM+∑
mν cos-

mologies are expensive, even when the mass resolution is low. It is
hence not affordable to run thousands of simulations that would allow
for an in-depth analysis of a given emulator that involves (potentially
several) training, test, and validation sets. In order to develop an
understanding of the final emulation error and its dependence on
the dimensionality of the parameter space as well as on the size
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of the experimental design, we construct mock emulators based on
HALOFIT (Bird, Viel & Haehnelt 2012) data. We have followed
this strategy already in Euclid Collaboration (2019) where it has
proved to yield a reliable estimate for the performance of the real,
simulation-based emulator.

In this section we first define the parameter space inside which
the emulator is constructed. This parameter space is the same for
the HALOFIT-based emulator as for the actual simulation-based
EuclidEmulator2. In a next step we (approximately) optimize
the hyperparameters of the model in order to use the resulting
‘architecture’ for the computation of learning curves, etc. We shall
then apply the findings to the training of the actual, simulation-based
EuclidEmulator2.

6.1 Definition of the parameter space

For EuclidEmulator2 we consider CDM models with dy-
namical DE and including massive neutrinos, often abbreviated
as w0waCDM+∑

mν models. More precisely, this means that we
parametrize the considered cosmologies via the following eight
parameters:

(i) �b, the total baryon density parameter in the Universe ,
(ii) �m, the total matter density parameter in the Universe ,
(iii) �mν , the sum of masses of all neutrino families ,
(iv) h, the dimensionless Hubble parameter ,
(v) ns, the spectral index ,
(vi) w0, the time-independent part of the DE EoS parameter ,
(vii) wa, the linearly scale factor-dependent part of the DE EoS

parameter ,
(viii) As, the spectral amplitude .

The radiation density �rad is given by the CMB temperature which
we fix at 2.7255 K. The DE density �DE is then inferred from the
flatness condition given by equation (4) with � = 1 on the left-hand
side.

We do not want to include any prior knowledge about a most
likely cosmology into the construction of the emulator other than
the assumption that a flat w0waCDM+∑

mν model is sufficiently
accurate in order to describe our Universe. In the context of
EuclidEmulator2, we explicitly ignore alternative gravity and
other more exotic cosmological models. Emulators for such models
have been published by other research groups as e.g. Winther et al.
(2019) and Giblin et al. (2019). We thus apply flat (uniform) priors
to each of the eight input parameters. In order to have a well-defined,
normalized prior probability distribution function we thus need to
define compact intervals along each dimension over which the final
emulator will be defined. Mathematically this means that we have to
define intervals [a1, b1], . . . , [a8, b8] such that the final parameter
box � is the Cartesian product of all intervals:

� :=
8�

i=1

[ai, bi] (29)

The choice of the interval boundaries is mostly arbitrary and depends
mainly on the tasks that will be tackled by the emulator. Without
imposing any restrictions, we assume that EuclidEmulator2
will be mostly applied to MCMC searches of the cosmological
parameter space to solve the inverse problem of finding the parameter
values best describing our Universe. It is reasonable to assume
that these values are not too far away from the current best-fitting
values as published by modern cosmological experiments. We centre
the parameter box for EuclidEmulator2 around the cosmology

Figure 5. Evolution of the first-order principal component weight wPC1 as a
function of w0 and wa. The exponentially increasing value is evident for w0

+ wa → 0. The white, dashed line indicates where the cut of the parameter
space is made along the wa axis in order to avoid the problematic region.
We have investigated also less aggressive cuts all of which lead to worse
performance of the emulator, suggesting that the problematic region is even
more extended in higher dimensions.

‘EE2centre’ which is defined in Table 2. Notice that this central
cosmology is identical to the Euclid Reference Cosmology (up to two
decimal places) for all dimensions but the sum of the neutrino masses.
We are thus left with the definition of the width of the intervals
along each dimension in such a way that the resulting parameter box
remains small enough that a sample of size ∼200 (corresponding to
our computational budget) contains enough information to achieve
a generalization error of �1 per cent. To determine these in a
systematic way we run a number of full N-body simulations along
each parameter axis, both below and above the central value. This
allows us to determine by how much each individual parameter has
to be varied in order to cause roughly a ±10 per cent variation
in the output NLC factor (the emulation target). Following this
prescription, the output variation is an order of magnitude larger
than the uncertainty in the output ensuring significant discrimination
power while keeping the parameter box, Table 2, reasonably small.
Yet, for certain tasks (particularly in the field of weak gravitational
lensing), the resulting parameter box may be too small. However,
further away from the central cosmology, 1 per cent accuracy is no
longer necessary and EuclidEmulator2 could be extended via a
multifidelity procedure. In addition, it is expected that cosmologies
outside this parameter box can be ruled out by the linear theory power
spectrum alone.

The range for neutrino masses allows for less than 10 per cent of
output variability. We accept this compromise in order to improve
emulation accuracy (due to a reduced volume of the parameter box).
At the same time we do not expect this cut to have a large impact
because the neutrino signal is expected to mostly affect the linear
scales. Notice further that, for reasons discussed in Section 6.4,
we trained EuclidEmulator2 only on cosmologies with wa

< 0.5. While this does in principle not change the parameter box
over which the emulator is defined, in the actual implementation of
EuclidEmulator2 the range is restricted to wa ∈ [ − 0.7; 0.5] in
order to not allow the emulator to extrapolate. The cut at wa = 0.5 is
illustrated in Fig. 5.

6.2 Halofit mock data sets

For the HALOFIT-based analyses we create multiple data sets
for training and validation. The training data sets were sampled
using Latin hypercube sampling (LHS) first published in McKay,
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Beckmann & Conover (1979), just in the same way as reported on in
Euclid Collaboration (2019). We create a series of Latin hypercube
(LH) samples with different sizes, nED ∈ {25, 50, 100, 200, 300,
400}. For each size we generate 5nED sets and choose the realization
that maximizes the minimum distance between all sampling points.

For validation of the HALOFIT-based emulator we create much
larger sets than for training. Notice that sampling large sets with
LHS is computationally demanding as it scales polynomially with the
number of points to sample. Additionally, we are primarily interested
in the performance of the emulator inside an axis-aligned ellipsoid
inscribed in the parameter box (Table 2). LHS, however, is designed
to be space-filling and thus the high computational cost comes with
a low efficiency as due to the high dimensionality of the parameter
space most sample points lie outside that ellipsoid. We hence decided
to sample the validation sets purely randomly and filter the sample
with an ellipsoidal mask. Following this procedure we generate in
total 30 validation sets with roughly 1500 sampling points each
(resulting in 45 000 validation points).

In addition to these data sets, we have also created data sets for
cosmologies organized in a grid of 50 × 50 points in each parameter
plane, resulting in another 70 000 HALOFIT evaluations. These sets
are on the one hand used for analysis of the principal component
analysis (PCA) eigenvectors (see Section 6.4) and, on the other hand,
also for validation purposes (see Sections 6.7 and 6.9).

For each sampled cosmology in all of the sets mentioned above,
we run HALOFIT and evaluate the matter power spectrum at redshift
z = 0. This result is then divided by the linear matter power spectrum
in order to get the NLC factors which ultimately form the data sets
of interest.

6.3 Emulation strategy: PCE

We use a supervised regression technique called polynomial chaos
expansion (PCE) to emulate the NLC factor. We use the imple-
mentation of this method in the MATLAB package UQLab13 (Marelli
& Sudret 2014, 2017; Marelli, Lamas & Sudret 2017). PCE in its
generality is well documented in several publications such as Xiu
& Karniadakis (2002), Blatman (2009), Blatman & Sudret (2009),
Blatman & Sudret (2010), Blatman & Sudret (2011), Marelli &
Sudret (2017), Marelli & Sudret (2018), Torre et al. (2019), and
its application to cosmological emulation is discussed in Euclid
Collaboration (2019). As a reminder we repeat that we express NLC
factors using PCA and PCE with the following emulation equation

B(k, z; c) ≈ μPCA(k, z) +
nPCA∑
j=1

∑
α∈Ap,q,r

j

η̂j ,α�α
j [f (c)]PCj (k, z) , (30)

where c stands for a vector of the eight cosmological parameters
discussed here which is transformed through f into the standard unit
hypercube [− 1, 1]8. The PCA quantities are the mean μPCA(k, z)
and the eigenvectors PCj(k, z). The actual PCE is given by the inner
sum, with �α

j being the PCE basis functions η̂j ,α the coefficients and
α being an element from a multi-index set Ap,q,r

j .
We shall also stress again that this procedure of combining PCE

and PCA is the standard approach for emulating vector-valued
quantities with PCE (Blatman & Sudret 2013). This implies, however,
thatEuclidEmulator2, having a target space of nPCA dimensions,
is actually a conglomerate of nPCA single, scalar-valued emulators.

13www.uqlab.com

The actual learning algorithm we use is a regularized (i.e. LASSO-
type) version of a least-squares minimization called Least angle
regression (LAR), discussed in detail in Efron et al. (2004) and
Blatman & Sudret (2011). This regression algorithm minimizes the
loss function

η̂j ,α = argmin
ηj ∈R|Aj |

E

⎡
⎣(η�

j · �j (c) − wj,true(c)
)2 + λ

∑
α∈Aj

|ηj,α|
⎤
⎦ . (31)

Here, wj, true denotes the true value of the j-th principal component
weight and we use Aj as a shorthand notation for Ap,q,r

j for the sake
of readability.

The regularization term enforces low-rank (i.e. sparse) solutions.
This is motivated by the so-called sparsity-of-effects principle
according to which most of the variance of the underlying model
is encoded in interaction terms among only a small number of
parameters. Further, enforcing sparse basis representations serves
the purpose of reducing the memory requirements of the emulator
code.

6.4 Principal component analysis

Vanilla PCE can only predict scalars. In order to create a PCE
emulator for a non-scalar quantity like NLC, it is thus mandatory
to decompose the full signal into a series such that only scalar
coefficients have to be emulated. This is done in the standard way
using PCA (also used in other emulators based on different tech-
niques than PCE, such as e.g. Heitmann et al. 2010; Nishimichi et al.
2019 and others). The coefficients of the principal components (also
called weights or eigenvalues) are thus the quantities that are actually
emulated. To our knowledge, the dependence of those coefficients
on the cosmological parameters has not been investigated in any of
the papers about cosmic emulators employing PCA published over
the last decade.

As we use a polynomial regression method of finite order for
emulation, we implicitly assume that the dependence of the PC
weights on the cosmological parameters is sufficiently polynomial.
To investigate if this assumption is justified we perform a PCE on
each set of the above-mentioned 2500 data points sampled in the
coordinate planes and plot the resulting first-order coefficients wPC1

as heatmaps. The (w0, wa) plane stands out as for w0 + wa →
0 the corresponding first-order coefficient grows exponentially (see
Fig. 5). From a physical point of view this does not come as a surprise
as a cosmology with such a DE EoS is highly exotic as it implies
a DE with an almost matter-like nature shortly after the big bang.
Such a cosmology is not of interest to us as it is highly unrealistic.
We have thus identified a clear non-polynomial dependence in the
functions we try to emulate. We mitigate this problem by masking
out the critical region. In practice, we train our emulator based
on all cosmologies within our training set but exclude the very 19
cosmologies that do not meet the condition:

wa < 0.5 . (32)

As we will show in Section 6.7, this modification of the training data
set is crucial for the performance of the emulator (although its size
is decreased from 127 to only 108 training cosmologies!). This does,
however, not restrict the allowed input parameters of the resulting
emulator in any way. Clearly, the generalization performance of
the emulator is considerably worse in the masked region than for
cosmologies with wa < 0.5. We have tried other, less aggressive
cuts, too (e.g. cutting along w0 + wa < 0.5) but have found that
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only the cut along wa < 0.5 leads to a satisfactory generalization
performance.

6.5 About error measurements

As in all machine learning (ML) and uncertainty quantification (UQ)
tasks, error quantifications play a central role in this work. Ultimately,
we are primarily interested in creating an emulator that generalizes
well in an L1 sense in the cosmological parameter space. To be more
precise, we try to minimize the generalization error of the emulator
given by the maximum of the relative mean absolute error:

εmaxrMAE = max
k,z

〈∣∣∣∣Bemu(k, z; c) − Btrue(k, z; c)

Btrue(k, z; c)

∣∣∣∣
〉

c∈C

. (33)

Notice that the mean indicated by the angle brackets is taken over the
cosmologies c defined in the parameter space C given in Table 2. The
maximization, on the other hand, is performed over the non-regressed
parameters k and z. This generalization error will be approximated
by a validation error of the form

ε̂maxrMAE = max
k,z

1

Nval

∑
c∈Cval

∣∣∣∣Bemu(k, z; c) − Btrue(k, z; c)

Btrue(k, z; c)

∣∣∣∣ (34)

where Cval designates the set of validation cosmologies.
However, since an estimate of the above error requires a validation

set which we do not have readily available in all situations, we also
often use a cross-validation error metric as an alternative. This is
given by the leave-one-out (LOO) error defined as

εLOO,j =
∑nED

i=1

[
wtrue,j

(
c(i)

) − w
PCE\i
emu,j

(
c(i)

)]2

∑nED
i=1

[
wtrue,j

(
c(i)

) − μ̂wj

]2 . (35)

Here, w stands for the eigenvalues of the PCA which are the quantities
that are actually emulated in this work (for more details on this refer
to Euclid Collaboration 2019). Each wj corresponds to the inner sum
in equation (30) running over the multi-index α. To compute this
error one trains a PCE emulator on all training example but the i-
th one (indicated by the superscript PCE\i). In this very example
the emulator is then evaluated (second term in the numerator). The
quantity is finally rescaled by the overall variance of the quantity wj.
More details on this quantity and how to compute it efficiently can
be found in Marelli & Sudret (2017). It shall be emphasized that the
subscript i runs over cosmologies in the training set and no reference
to any validation examples is made. Further, this metric measures the
emulator performance not in the NLC space but rather in the more
abstract, associated principal component space (hence the subscript
j which refers to the order of the principal component).

6.6 Hyperparameter optimization using the Halofit mock
data

The hyperparameters of PCE for emulation of non-scalar quantities
are given by

(i) the minimum percentage aPCA of explained variance retained
in the PCA (strongly related to the number nPCA of principal
components taken into account),

(ii) the polynomial order p at which the PCE is truncated,
(iii) the maximum interaction r (number of factors per monomial

in PCE),
(iv) the q-norm.

Remember that actually there is a separate PCE for each principal
component (as described in Section 6.3). As a result, the hyperpa-

rameters p, q, and r can be chosen differently for each i = 1, . . . ,
nPCA and the accuracy parameter a is the only hyperparameter that
has to be chosen globally for obvious reasons. As training a PCE
is relatively cheap, there is no need for a sophisticated optimization
algorithm. Rather, we perform a (partially greedy) grid search over
the grid given by

aPCA ∈ {0.9, 0.99, . . . , 0.99999999},
r ∈ {1, 2, . . . , 5},
p ∈ {2, 3, . . . , 20},
q ∈ {0.3, 0.35, 0.4, . . . , 0.9}. (36)

The small set of low numbers looked at for r are motivated by
the ‘sparsity-of-effects’ principle (Marelli & Sudret 2017). Strictly
speaking, there are two steps here. In the first step a vector of aPCA-
values is created and, in the second step, for each value of aPCA

a multitude of (p, q, r)-grids is searched (one for each principal
component). This is important because the optimal point in the (p, q,
r)-grid is chosen based on a different criterion than the optimal aPCA

value. The former is chosen based on a minimization of the LOO
cross-validation error without ever seeing a validation point. This
happens entirely on the level of principal component weights (i.e.
eigenvalues of the covariance matrix) and thus this step is performed
independently for each principal component. For identification of
the (near-)optimal aPCA value, in contrast, an emulator is trained for
each value of aPCA and evaluated on a validation set. We then aim
to minimize ε̂maxrMAE as defined in equation (34). Notice that, while
the latter error is the correct quantity to look at when judging the
overall performance of the emulator, this can only be investigated
once a separate emulator is trained (and, as well, a separate set
of hyperparameters is optimized) for each principal component. It
is of paramount importance to understand that we go through this
procedure really only to fix the values for aPCA. As p, q, and r can
be optimized without the need of a separate validation set, they can
be optimized once the final emulator is being trained based on actual
simulations without the risk of overfitting to a validation set. After
evaluating the ε̂maxrMAE for all candidate values of aPCA, we conclude
that

aPCA = 0.99999 (37)

is the optimal (i.e. loss minimizing) value for this global hyperparam-
eter. If we continue to increase aPCA, we find that we are attempting to
capture the numerical noise in the simulations, leading to an increase
again of ε̂maxrMAE.

6.7 Learning curves

Now that we have defined the bounds for all parameters, have created
the necessary data sets, and optimized the global hyperparameter
aPCA, it is natural to ask the following two questions:

(i) How does the validation error of the emulator decrease as the
number of training examples increases?

(ii) Given a fixed number of training examples, how does the val-
idation error increase as a consequence of adding the two additional
dimensions compared to version 1 of EuclidEmulator?

To answer these questions we train emulators for different cosmo-
logical models with different dimensionalities, namely �CDM (5D),
w0CDM (6D, corresponding to EuclidEmulator1), w0waCDM
(7D), and w0waCDM+∑

mν (8D, corresponding to EuclidEm-
ulator2). Each model is trained on the series of training sets
mentioned in Section 6.2. The emulators are then validated on the 30
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Figure 6. Learning curve for HALOFIT-based emulators for four different
cosmological models. On the y-axis the estimated mean of the validation error
distribution over the 30 different validation sets is plotted. The error bars show
the standard error of this estimated mean. Notice that we explicitly plot the
point at nED = 127 for the w0waCDM+∑

mν model as this point corresponds
to our actual training set. The learning curves have been computed (i) taking
all training examples into account (dashed lines, labelled ‘uncut’) and (ii)
ignoring those training examples with wa > 0.5 (solid lines, labelled ‘cut’).
For the �CDM and w0CDM models this distinction makes no difference
because for those models wa was fixed to 0.

Validation examples were sampled randomly inside axis-aligned hyperellip-
soid inscribed in the parameter box (see Section 6.2 for a description of the
data sets).

ellipsoidal validation sets. In this context it becomes evident why we
have produced so many validation sets: It allows one to get statistics
on the validation error (namely the standard error of the estimated
mean error). Notice that such a representative test is by far beyond
what is achievable with simulation data as several tens of thousands
of simulations with at least moderate mass resolution would have to
be run. The resulting learning curves are plotted in Fig. 6.

While it is easy to achieve validation errors < 1 per cent for the
5D and 6D models with only 50 training examples, the complexity of
the 7D and 8D models is considerably higher, particularly if we train
based on examples in the entire original parameter space without
masking out the problematic region in the (w0, wa) plane (see the
discussion in Section 6.4). In this scenario, we would require �400
training examples to reach accuracies of 1 per cent or better. Masking
out the region where w0 + wa ∼ 0 in the training set reduces the
training set size to only 100 to 200 examples.

Notice that in Fig. 6 we show the error estimate for nED = 127 for
the case of w0waCDM+∑

mν cosmologies. This measurement was
added in hindsight because it turned out that the actual simulation-
based emulator would achieve the target accuracy already with a
training set of only 127 simulations selected from an LHS of size
200 (see Section 7.2 for a short discussion).

6.8 Application to the training of EuclidEmulator2

We shall now anticipate some training aspects of the actual,
simulation-based EuclidEmulator2. We use the same surrogate
model in order to train the emulator as for the HALOFIT-based mock
emulator discussed above and for EuclidEmulator1, i.e. sparse
PCE combined with PCA. The number of principal components
is defined through the threshold value for the minimally explained
variance in the data set (which is independent of the size of the
training set). As this was investigated in Section 6.2 and found that
aPCA = 0.99999 is the optimal value, we can now use the same value

Table 3. Table with optimal hyperparameter values for all 14 scalar-valued
PCEs of EuclidEmulator2. The resulting PCE contains 574 non-trivial
terms.

PC order p r q

1 3 2 0.45
2 3 2 0.45
3 4 2 0.5
4 4 2 0.45
5 3 2 0.45
6 4 2 0.4
7 4 2 0.5
8 4 2 0.45
9 4 2 0.5
10 16 3 0.4
11 4 2 0.5
12 12 4 0.5
13 4 3 0.5
14 15 2 0.4

for the training of the actual emulator. Having found in the learning
curves analysis that a training set of 127 cosmologies is enough to
achieve the targeted accuracy, this value for aPCA corresponds to
retaining nPCE = 14 principal components (i.e. the target space of the
full vector-valued emulator is 14-dimensional).

Also, we found for the HALOFIT-based mock emulator that
setting the maximal interaction rmax = 4, the maximal polynomial
order pmax = 20, and varying the q-norm between qmin = 0.3 and qmax

= 0.9 leads to convergence in the selection of terms in the expansion
series. So we recycle this here, too. The parameters p and q, as well
as the actual interaction number r, are optimized individually for
each principal component and listed in Table 3. The full training
process (i.e. optimizing the values for p, r, and q for each principal
component and fitting the coefficients) takes only 9 s on a usual
MacBook pro with a 2.8 GHz Intel Core i7 CPU. As a result we
get a PCE with a total of 574 terms (all other coefficients vanish).
Notice that this corresponds to a very small number of terms, i.e.
an extremely sparse PCE, as in our case there were 3108 105 terms
without sparsification.

6.9 Performance estimation of the mock emulator

From the learning curves presented above we can expect Eu-
clidEmulator2 to be sub-1 per cent accurate at z = 0 over
the entire k range of interest for the available training set of 108
simulations (being a subset of the originally planned set of 200
training examples). While this is the final goal, it is yet interesting
to see how the error evolves as a function of cosmology. For this
we evaluated the HALOFIT-based mock emulator on all 70 000
validation cosmologies sampled in the 28 parameter planes of the
feature space. The results are 28 error maps that we show in
Appendix B. It is clearly visible that the validation error is below
2 per cent (and hence at the same level as the mass resolution-
related uncertainty in the simulations at small scales) for the vast
majority of cosmologies lying inside the axis-aligned hyperellipsoid
inscribed in the parameter box (indicated by a grey ellipse in the error
maps). Only for cosmologies with a large value of w0 + wa the error
grows to ∼5 per cent. We reiterate, however, that on average over the
entire 8D-hyperellipsoid the error drops below 1 per cent. Outside
that ellipsoidal region, the errors sometimes exceed the 2 per cent
limit. We also designate the wa = 0.5 boundary by a grey dashed
line.
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Figure 7. Distribution of LH-sampled cosmologies represented in the coordinate planes of the parameter space. The blue circles and histograms show the
full ED of 200 data points, while the green dots indicate the subset of 127 training examples actually used to create EuclidEmulator2. The grey ellipses
correspond to the slices of the hyperellipse within which the performance of EuclidEmulator2 is optimized and the dashed, grey lines correspond to the
cut at wa = 0.5 explained in Section 6.4. The ranges of each subplot (mentioned along the x-axis for convenience) exactly match those specified in Table 2.

7 TH E T R A I N I N G S E T O F EU C L I D E M U L ATO R 2

7.1 Experimental design: sampling

We sample the points in the parameter space defined in Table 2 using
LHS, as we have done already in Euclid Collaboration (2019). LHS
is a very straightforward sampling technique that is widely used and
accepted in the cosmological emulator community (Heitmann et al.
2009, 2010, 2014; DeRose et al. 2019; Gration & Wilkinson 2019;
Nishimichi et al. 2019; Rogers et al. 2019) and extensively presented
in the statistical sampling literature (McKay et al. 1979; Tang
1993; Liefvendahl & Stocki 2006; Swiler, Slepoy & Giunta 2006;
Crombecq, Laermans & Dhaene 2011; Damblin, Couplet & Iooss
2013; Garg & Stogner 2017; Sheikholeslami & Razavi 2017; Yang,
Liu & Li 2017). Endowed with an additional optimization step (we
use a distance-based criterion), its main advantage is that it combines
good space-filling properties with a high degree of randomness. For
an in-depth explanation of the exact steps we go through to generate
the sample we refer to Euclid Collaboration (2019).

We chose to generate a sample with 200 points based on the
argument that in Fig. 6 we show that a training set of this size should
be large enough to achieve a validation error below 1 per cent, while
a set of only 100 examples is expected to just miss this requirement
in the 8D parameter box. In fact, we use exactly the same LHS of
size nED = 200 to run the simulations as we used in the investigation
of the mock emulators in Section 6.

The resulting sample of cosmologies is shown in blue in Fig. 7.

7.2 Experimental design: simulations

The generation of each training example (i.e. each pair of simulations
per cosmology) corresponds to an investment of about 4000 node

hours of computation. Unfortunately, when we sampled the ED of
200 cosmologies, we underestimated the required computational
resources. As a result, we ran out of computing time after having
completed merely 127 pairs of simulations. Luckily, we noticed that
the emulator achieved the targeted sub-percent accuracy when trained
on only 127 examples. In this case the sample of course is no longer
an LHS but rather resembles a random sampling. Fortunately, we
realized that there was no need to invest more time and effort in
running the remaining 73 pairs of simulations. The completed set of
127 simulation pairs used for the training of EuclidEmulator2
is plotted in Fig. 7. Notice that it was for this very reason why we also
looked at the sample of size 127 when investigating the HALOFIT-
based mock emulator in Section 6.7.

From this fact we can learn two important conclusions for future
projects:

(i) At least as long as the marginal distributions of sample points
along all parameter dimensions do not have regions where there are
no sampling points at all, LHS is not a necessity for good performance
of PCE as random sampling works fine too.

(ii) When generating an ED is related to large computational
costs (and hence to a non-negligible risk of failing to generate a
large sample in one go), it is advisable to choose an enrichable
sampling technique such as e.g. the LHS-based adaptive response
surface method (LHS-ARSM, Wang 2003) or active learning (as e.g.
done in Rogers et al. 2019).

We thus use an experimental design of 127 (respectively 108 after
applying the cut in wa) P+F simulations randomly sampling the
parameter box. Each simulation samples the power spectrum at 613
k-modes and 100 time-steps between zintrm = 10 and zfin = 0. While
all this data are used to compute the emulator, we only allow the
user to emulate up to zmax = 3.0 because the overall accuracy
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Figure 8. Sobol’ analysis plots for the first three principal components.
Clearly, �m is by far the most impactful cosmological parameter of all as
its Sobol’ index S1 is large for the first two principal components. While the
neutrino mass, the spectral index, and both DE EoS parameters have only
a weak influence on the first-order principal component, the spectral index
is the most important parameter for PC2 and w0 and wa are dominant at
third PC level. Neutrino mass becomes only relevant in the seventh principal
component (not shown) highlighting the fact that its impact is very small
(see discussion in Section 8.2.2, right-hand panel of Fig. 11 in particular, and
Section 9).

decreases considerably for higher redshifts (primarily because the
underlying simulations have not converged for higher redshifts as
can be extrapolated from Fig. 3).

7.3 Post processing: computation of the NLC

We compute the NLC for each power spectrum by dividing the
nonlinear power spectrum resulting from the simulation by the linear
theory power spectrum computed by CLASS. Notice that this is
different from what is done for EuclidEmulator1 where the
NLC was computed via a division by the re-scaled power spectrum
measured from the simulation particle realization at the initial
condition. For training the emulator, the NLC is converted into log
space because we have shown in Euclid Collaboration (2019) that this
improves the generalization of the emulator. We stress that the RCF
introduced in Section 5 is not applied to the training data set such
that users of EuclidEmulator2 can decide individually whether

they want to apply this correction or not to the emulated result.
We compile the NLC data into a data matrix DCDM+b ∈ RnED×nznk .
This data matrix is then decomposed into its principal component
basis {PCi|i ≤ nPCA} where nPCA denotes the number of principal
components taken into account. As a result, the m-th row in D can
be represented as follows:

Dm =
nPCA∑
i=1

wi(cm)PCi(k, z) , (38)

where the argument cm of the PC weight stands for the vector of
parameters defining the m-th cosmology and the arguments of the
principal components are the k mode and the redshift. We hence build
nPCA individual training sets defined by

Ti = {wi(cm) | m ≤ nED} , ∀ i ∈ {i, . . . , nPCA} (39)

that are used to train the nPCA individual, scalar-valued emulators.

8 EM U L ATO R PE R F O R M A N C E , E R RO R S A N D
SENSI TI VI TY TO PARAMETERS

8.1 Sensitivity analysis

As for EuclidEmulator1, we have again performed a Sobol’
analysis to investigate the relative importance of each cosmological
parameter on the final NLC. Notice that since the parametrization
of the emulator changed significantly from EuclidEmulator1,
it cannot be expected that the Sobol’ indices remain unaltered.
Clearly, for EuclidEmulator2, the matter density parameter �m

dominates the behaviour of the resulting NLC. At the same time,
to first principal component order,

∑
mν and ns are almost entirely

negligible (therefore, post-processing approaches to add a neutrino-
contribution as suggested e.g. in Agarwal & Feldman 2011 work
fine as long as only the power spectrum is considered). While in
the case of neutrino masses this does not come as a surprise (the
effect of massive neutrinos is mostly captured by the linear signal
already), one might not have guessed that for the spectral index. This
is resolved when looking at the Sobol’ indices of the second principal
component where the neutrino mass still has almost no impact at all,
while the spectral impact becomes actually the dominant parameter.

The fact that the sum of the neutrino masses is almost entirely neg-
ligible when computing the NLC supports our suggestion mentioned
in Euclid Collaboration (2019) that to good approximation one can
emulate nonlinear power spectra with massive neutrino cosmology
by simply computing the corresponding linear power spectrum and
multiplying that by an NLC as produced by EuclidEmulator1,
i.e. an NLC that does not know anything about massive neutrinos.
The test of this hypothesis is deferred to Section 8.2.2 (see Fig. 11
in particular).

8.2 Generalization performance of EuclidEmulator

In this section we shall compare EuclidEmulator2 to other fast
prediction techniques such as HALOFIT (Bird et al. 2012), HMCode
(Mead et al. 2016), CosmicEmu (Lawrence et al. 2010, 2017),
the very recent emulator based on the BACCO simulation project
(Angulo et al. 2020), hereafter referred to as the ‘BACCO-emulator’,
and the predecessor EuclidEmulator1 (Euclid Collaboration
2019) as well as with PKDGRAV3 (Stadel 2001; Potter & Stadel
2016; Potter et al. 2017) simulations. While the comparisons of
EuclidEmulator2with EuclidEmulator1 and PKDGRAV3,
respectively, can be conducted at the NLC-level, all comparisons

MNRAS 505, 2840–2869 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2840/6275725 by U
niversity of O

slo Library. Library of M
edicine and H

ealth Sciences user on 29 Septem
ber 2021



2856 Euclid Collaboration

with HALOFIT, HMCode, and CosmicEmu are performed at the
level of the fully nonlinear power spectrum. To this end we multiply
the NLC computed by EuclidEmulator2 with a linear power
spectrum computed by CLASS for the same cosmological parameters.

We compare each pair of predictors in two ways. On the one hand,
we compare them for a set of different cosmologies at redshift z =
0, while on the other hand we chose a single cosmology equal to the
Euclid Reference Cosmology but with a higher total neutrino mass
for comparison at different redshifts z ≤ 2.

For the comparison between EuclidEmulator2 and PKD-
GRAV3 we have used a small validation data set containing three
validation cosmologies.

In order to compare EuclidEmulator2 to EuclidEmu-
lator1, we primarily focus on two extreme cases: the Euclid
Reference Cosmology as defined in Euclid Collaboration (2019),
once with massless and once with massive neutrinos.

For all comparisons with HALOFIT, HMCode, and CosmicEmu
in this section, we choose the cosmologies from a set of 291
cosmologies, put together by an LHS of size 200, cosmologies along
the coordinate axis and along one of the diagonals. From this set,
we filter out all cosmologies that are not accepted by any of the
emulators. This results in a set of 84 comparison cosmologies (47
in the case of the comparison to the BACCO-emulator), which are
listed and plotted in appendix C. We emphasize that some of these
validation cosmologies lie outside the hyperellipsoid inside which
the hyperparameters were optimized (see discussion in Section 6.6).
Some validation cosmologies even have wa values larger than 0.5
and thus lie outside the training region of the emulator, indicating
thatEuclidEmulator2may to some degree be able to extrapolate
relatively accurately.

8.2.1 Comparison of EuclidEmulator2 and PKDGRAV3
simulations

We start our series of comparisons by checking how well Eu-
clidEmulator2 is able to approximate simulation data. To this
end, we generate a validation set of P+F simulations with the same
resolution as the training data. The validation set contains only
three cosmologies (all unseen by the training process) because the
generation of a significantly bigger training set is too expensive.
These three cosmologies are all sampled from the ellipsoid inscribed
the parameter box with axes given by the limits of each parameter
range.

We observe in Fig. 9 that the validation error (given by the relative
mean absolute error, rMAE) between emulated and simulated NLC
factors is well below 1 per cent for k-modes and redshifts of interest
to the Euclid mission, i.e. k ≤ 10 h Mpc−1 and z ≤ 3. Of course,
as the validation set is very small, there is a substantial uncertainty
on this estimate and the rMAE is likely to exceed the 1 per cent
limit as one exits the hyperellipsoid inscribed by the parameter box.
Yet, the overall error is expected to be dominated by uncertainties
in the underlying simulations, especially at very small scales, k �
5 h Mpc−1.

In the context of comparingEuclidEmulator2 toPKDGRAV3,
it is natural to compare our emulator to the EFS2 simulation. To
this end, we evaluate both EuclidEmulator2 and CLASS at the
Euclid Reference Cosmology defined in Table 2. We then produce a
nonlinear power spectrum by multiplying the linear power spectrum,
the NLC, and the RCF. This product is then compared to the EFS2
power spectrum in Fig. 10. Because EFS2 is not a P+F simulation,
the cosmic variance is clearly visible as oscillations at the level of

Figure 9. Comparison of NLC factors predicted by EuclidEmulator2
and ones computed directly from PKDGRAV3 simulations (averaged over
three different cosmologies). The agreement is at the sub-percent level and
thus respects the target accuracy.

Figure 10. Comparison of full nonlinear power spectra between EFS2 and
resolution-corrected product of a CLASS linear power spectrum times an
EuclidEmulator2-emulated NLC at the Euclid Reference Cosmology
as defined in Table 2. The agreement is generally very good and even at the
1 per cent level or better at small scales. The oscillations at linear scales are
expected as EFS2 is not a P+F simulation. We also show the comparison to
EuclidEmulator2 when we do not apply the RCF, which shows a clear
2 per cent bias at nonlinear scales.

a few per cent at linear scales. Generally, the agreement between
EuclidEmulator2 and EFS2 is at the 1 per cent level or better
for nonlinear k modes.

8.2.2 Comparison of EuclidEmulator1 and EuclidEmulator2

It is natural to compare the performance of EuclidEmulator2
with its predecessor EuclidEmulator1 (cf. Fig. 11). As both
emulators predict the NLC, we can perform the comparison on this
level. In a first step we perform this comparison using the version of
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The EuclidEmulator2 2857

Figure 11. In this figure we compare the NLC prediction of EuclidEmulator2 to that of EuclidEmulator1 for two cosmologies: one for which
∑

mν =
0.0 eV (left-hand panel) and

∑
mν = 0.15 eV for the other (right-hand panel). As is the same in both cosmologies, however the value of σ 8 differs due to the mass

difference in the neutrino sector. It is not surprising that the agreement on the largest scales is nearly perfect for both cosmologies as both emulators return values
close to unity irrespective of the cosmology by construction. The oscillations around BAO scales are due to cosmic variance. The vertical, black, dashed lines
indicate the two k-modes where the curves for EuclidEmulator1 and EuclidEmulator2 deviate the most from each other in Fig. 12. The time-dependent
mismatch on small scales is due to the different mass resolutions of the training of the two emulators. A key point is that this plot shows that the agreement
between EuclidEmulator1 and EuclidEmulator2 is not only very good for massless neutrino cosmologies where EuclidEmulator1 is supposed
to work well by construction, but also for w0CDM+∑

mν models which EuclidEmulator1 was not designed for. This suggests that EuclidEmulator1
is able to predict the nonlinear power spectrum within 1 per cent of accuracy for z < 0.5 even if the cosmology contains massive neutrinos (of course, the linear
power spectrum must be computed taking the neutrino masses into account).

the Euclid Reference Cosmology as defined in Euclid Collaboration
(2019), i.e. a cosmology without massive neutrinos.

We observe very good agreement on large scales which is achieved
by construction as the variability of the NLC is negligible at these
scales. The sub-percent differences at these scales are due to the fact
that the simulations volumes of the training simulations underlying
both emulators are different.

On intermediate scales around the baryon acoustic oscillations
(BAO) one observes a peaky pattern at the level of �2.5 per cent.
We show in Fig. 12 that this can be explained by cosmic variance.
We reiterate a point already reported in Euclid Collaboration (2019):
For EuclidEmulator1, cosmic variance is strongest not on
large but on intermediate scales. This is because on large scales
the cosmic variance is not significantly amplified by nonlinear
structure formation. As a consequence the residual (after pairing
and fixing) cosmic variance drops out because we compute the NLC
for EuclidEmulator1 by dividing the nonlinear power spectrum
at z by the properly rescaled initial condition. On the other hand, we
show in Fig. 2 that for EuclidEmulator2 we choose the volume
large enough to render cosmic variance irrelevant. However, on inter-
mediate scales, the residual cosmic variance did not get cancelled out
even for EuclidEmulator1 as on these scales it is already non-
negligibly amplified by nonlinear evolution. As a result, when com-

Figure 12. Comparison of EuclidEmulator1 and EuclidEmula-
tor2 to the NLC computed from an ensemble average of 50 Gaussian random
field simulations. It can be seen that the cosmic variance is responsible for
the oscillatory peaky pattern in Fig. 11, as the vertical, black, dashed lines
correspond to the two highlighted peaks in that figure.

paring EuclidEmulator1 to EuclidEmulator2, one actually
divides two signals with oscillatory behaviour on intermediate scales,
manifesting itself as oscillations on intermediate scales observed in
Fig. 11.
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Table 4. Mutually corresponding cosmologies in order to approximate
the EuclidEmulator2-based NLC with an EuclidEmulator1-based
NLC neglecting massive neutrinos. The relative difference of the NLC factors
produced with the respective version of EuclidEmulator are shown in
Fig. 11, right-hand panel. Notice that �rad is the same for both cosmologies
corresponding to TCMB = 2.7255 K.

EE1 EE2

�b 0.049 0.049
�m 0.3154 0.319
∑

mν 0.0 eV 0.15 eV
ns 0.96 0.96
h 0.67 0.67
w0 − 1.0 − 1.0
wa 0.0 0.0
σ 8 0.799 –
As – 2.1 × 10−9

Unsurprisingly, EuclidEmulator1 underestimates power at
small scales compared to EuclidEmulator2. This is simply
due to a too low mass resolution of the training simulations of
EuclidEmulator1. Here, we can confidently report that the
baseline in Fig. 11 given by EuclidEmulator2 is the (more)
correct answer.

Now, as we claimed above that massive neutrinos do not have a
significant impact on the NLC we should test this hypothesis. To ac-
tually do so, we compared predictions of EuclidEmulator1 and
EuclidEmulator2 to each other in Fig. 11: We evaluated each
emulator at the respective cosmology in Table 4. The ratio between
the two NLC factors is clearly dominated by cosmic sample variance
and resolution effects. This suggests that EuclidEmulator1 can
indeed be used to estimate the NLC to good approximation for z

< 0.5 for w0CDM+∑
mν models. The key point to get the correct

answer is to account for the difference in �m. Given a particular
�EE2

m = �b + �CDM + �ν for EuclidEmulator2, one needs to
choose �EE1

m = �b + �CDM for EuclidEmulator1, such that
�EE2

m = �EE1
m + �ν . As a result, the value for σ 8 has to be adjusted

accordingly. The value σ 8 = 0.799, corresponding to As = 2.1 × 10−9

at the ‘EE1’ cosmology listed in Table 4, was computed by CLASS.

8.2.3 Comparison to HALOFIT

EuclidEmulator2 is compared to the extension of HALOFIT
by Bird et al. (2012) in Fig. 13. The comparison across multiple
cosmologies shows almost perfect agreement for all cosmologies
on large scales. This is expected as HALOFIT builds on linear
theory as doesEuclidEmulator2. On intermediate scales around
BAOs we find systematic oscillations which are in agreement with
what we have found in the corresponding comparison between
HALOFIT by Takahashi et al. (2012) and EuclidEmulator1
(Euclid Collaboration 2019). While there we attributed those oscilla-
tions to HALOFIT’s inability to capture the BAOs correctly, this may
play a less relevant role for this version of HALOFIT. Rather, the
oscillations may be mostly explained by the higher mass resolutions
and smaller simulation box sizes used in Bird et al. (2012) compared
to the those used in this work. The fact that on average less power
is found by EuclidEmulator2 compared to HALOFIT (at the
level of roughly 3 per cent) is consistent with the findings presented
in Fig. 2 of Bird et al. (2012) where it is reported that PM-based
neutrino simulations tend to find less power on intermediate to small
scales compared to simulations treating neutrinos as particles. This is
also why on small scales we then find an overestimation of power in

Figure 13. The comparison between HALOFIT (Bird et al. 2012) and Eu-
clidEmulator2 is consistent with what is found in Euclid Collaboration
(2019). While there are disagreements on intermediate and nonlinear scales,
the measured errors stay within the bounds of 5 to 10 per cent as reported in
Bird et al. (2012).

HALOFIT relative toEuclidEmulator2. The mean including the
1σ -region stays within the 5 to 10 per cent error margin, respecting
the bounds published in Takahashi et al. (2012) and Bird et al. (2012).
The error evolution with redshift looks again very similar to what
we have already found for EuclidEmulator1. The systematic
oscillations on intermediate scales grow with time while on small
scales the disagreement is largest for higher redshifts.

8.2.4 Comparison to HMcode

The comparison of EuclidEmulator2 and HMCode is shown
in Fig. 14. In Mead et al. (2016) it is reported that HMCode
achieves an accuracy of a few per cent for cosmologies with massive
neutrinos and dynamical DE. We find an agreement at the few
per cent level both over all tested cosmologies as well as over all
redshifts (see Fig. 14). Independent of redshift and cosmology the
agreement on large scales is virtually perfect. Around BAO scales
we find a systematic overprediction of power in HMCode relative
to EuclidEmulator2 (degrading as z increases) which relaxes
again at k ∼ 0.6 h Mpc−1. On small scales, however, the variance
in the relative difference is quite large (though always within the
few per cent limit) both as the cosmology varies as well as over the
probed redshift range.

8.2.5 Comparison to CosmicEmu

The comparison of EuclidEmulator2 and CosmicEmu is
shown in Fig. 15. In Lawrence et al. (2017), they report that for
predictions of the eight-parameter model they find an approxima-
tion accuracy of 5 per cent or better. On average over all probed
cosmologies, the comparison error is far below that and it is even

MNRAS 505, 2840–2869 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2840/6275725 by U
niversity of O

slo Library. Library of M
edicine and H

ealth Sciences user on 29 Septem
ber 2021
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Figure 14. Comparison between EuclidEmulator2 and HMCode over
a set of 84 cosmologies at z = 0. The agreement on large scales is nearly
perfect while the errors stay within the few per cent level over all k as reported
in Mead et al. (2016).

Figure 15. Comparison between EuclidEmulator2 and CosmicEmu
over a set of 84 comparison cosmologies at z = 0. The mean is clearly and the
±1 standard deviation range is broadly within the 5 per cent level reported in
Lawrence et al. (2017).

Figure 16. Comparison between EuclidEmulator2 and the BACCO
emulator over several redshifts. The relative error is mostly smaller than
3 per cent corresponding to the expected accuracy of the BACCO emulator
reported in Angulo et al. (2020).

relatively constant over the entire k-range of interest. Even the
standard deviation of the entire set of comparisons is only at the
level of 5 per cent over all k (for z = 0). There are, however, a
few cosmologies for which the comparison is significantly poorer.
The fact that there is no k-region where the comparison is nearly
perfect is explained by the fact that CosmicEmu emulates the
full nonlinear power spectrum directly while EuclidEmulator2
emulates the NLC only. It is thus not surprising that there is some
generalization error also on large scales for CosmicEmu, while
EuclidEmulator2 is accurate in this regime by construction.

8.2.6 Comparison to the BACCO-emulator

The quantity emulated by the BACCO-emulator (Angulo et al. 2020)
is also the NLC. For this very reason the comparison between
EuclidEmulator2 and the BACCO-emulator (version 1.1.1) is
conducted at the level of the NLC rather than at the fully nonlinear
power spectrum level. The result of this comparison is shown in
Fig. 16. Clearly, the agreement between these two state-of-the-art
emulators is extremely good over wide ranges of spatial scales and
redshifts. First, we discuss the comparison between the two emulators
at the Euclid Redshift Cosmology for different redshifts. Notice that
the BACCO-emulator allows prediction of the NLC only up to z =
1.5. For this reason, the comparison at z = 2 included in the previous
comparisons to HALOFIT, HMCode, and CosmicEmu is omitted
here. It is found that the agreement at the tested redshifts is mostly at
the per cent level, where a suppression of power in the BACCO-
emulator is observed relative to EuclidEmulator2 at small
scales. This is explained by the fact that the BACCO-emulator is
based on simulation with a resolution parameter of �−1 = 3 h Mpc−1

while the EuclidEmulator2 NLC were resolution corrected as
explained in Section 5.
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Figure 17. Linear and nonlinear power spectra variation due to varying the cosmological parameters (neutrino mass in the left-hand panel, wa in the right-hand
panel). The power spectra are normalized to the Euclid Reference Cosmology power spectrum. The NLCs for the nonlinear power spectra have been predicted
with EuclidEmulator2 in all cases. These plots show clearly that the power spectra differ the most at scales around k ∼ 1 h Mpc−1.

The two emulators were also compared at 47 different cosmologies
at redshift z= 0. The overall agreement is also mostly at the 3 per cent
level over the entire k-range, where it is reported in Angulo et al.
(2020) that the BACCO-emulator is expected to predict the NLC with
an accuracy of 3 per cent. The high-frequency oscillatory pattern at
intermediate k-scales may be explained by a somewhat poor sampling
of the BAOs in the BACCO simulations.

9 EX P L O R AT I O N O F D E G E N E R AC I E S I N T H E
NONLINEA R MATTER POWER SPECTRU M

EuclidEmulator2 is expected to be applied to parameter fore-
casts because it is able to very efficiently produce highly accurate
predictions of the NLC and hence of the fully nonlinear power
spectrum. The Euclid mission aims at measuring the absolute
neutrino mass scale (Laureijs et al. 2011) by analysing the effects of
neutrinos on cosmic structure formation. Massive neutrinos suppress
power particularly at small scales (see e.g. Viel, Haehnelt & Springel
2010; Bird et al. 2012; Hannestad, Haugbølle & C. 2012 and others).
While this is true also for the linear power spectrum, the effect is
largest in the nonlinear power at scales around k ∼ 1 h Mpc−1. The
reaction of the linear and nonlinear power spectra to varying the total
neutrino mass is shown in Fig. 17. In this figure, the base line is given
by the Euclid Reference Cosmology with

∑
mν = 0.058 eV.

While of course a proper Bayesian inference is required to
forecast the neutrino mass (as is done e.g. in Audren et al. 2013),
we shall use EuclidEmulator2 in order to investigate the
uniqueness of the neutrino signal in the nonlinear matter power
spectrum. To this end, we use a reference cosmology which has
all parameters set identically to the Euclid Reference Cosmology
except the sum of neutrino masses, which is set to 0.15 eV. We
then try to fit the corresponding nonlinear power spectrum with
a w0waCDM cosmology that has only massless neutrinos. Our
goal is to fit the reference with an accuracy ≤ 1 per cent on all
scales 0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1. We emphasize that we do

not perform a proper forecasting by any means; we simply manually
adjust all other cosmological parameters but

∑
mν until we find

a fit. It is worthwhile to note that such a procedure would not
be practical without an emulator. The result of this procedure is
shown in Fig. 18. We find that the nonlinear power spectra of the
two cosmologies defined in Table 5 agree at a level of better than
1 per cent over the entire k range of interest at z= 0. We thus managed
to find a cosmology (we call it ‘fit’) which is highly degenerate with
the reference. The relative difference between the resulting power
spectra is below the expected measurement accuracy of the Euclid
mission and hence, based on this information alone, Euclid would
not be able to tell these two cosmologies apart. However, taking the
information from higher redshifts into account, the degeneracies are
broken. This emphasizes the importance of weak lensing tomography
for the Euclid survey in particular and of tomographic surveys in
general.

We have further found yet another two different cosmologies
(not shown) whose nonlinear power spectra fit that of the reference
cosmology very well only at linear and only at nonlinear wave modes,
respectively. This fact makes it very clear once again why modern
cosmological surveys need to exploit as much information as possible
from both regimes, linear and nonlinear.

1 0 C O N C L U S I O N S

For this work we have modified PKDGRAV3 in such a way that DM
is not only evolved fully nonlinearly due to self-interaction but also
is subject to an additional gravity source due to massive neutrinos,
radiation, DE, and the metric field perturbations. The latter four
species themselves are, however, only evolved linearly. To this end,
PKDGRAV3 has been interfaced with CONCEPT and CLASS. While in
older simulations, as those used in Euclid Collaboration (2019), the
traditional back-scaling approach has been used for the construction
of initial conditions of the N-body simulations, now we employ a
novel approach taking advantage of the fully correct linear evolution
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Figure 18. Fit of a nonlinear power spectrum of w0waCDM+∑
mν cos-

mology with a cosmology with only massless neutrinos. The purple line in
the upper panel is a fit of the reference data to better than 1 per cent at all
scales of interest. The different colours correspond to different redshifts. It
is evident that even though the ‘fit’ cosmology approximates the reference
very well at z = 0, the degeneracies between the neutrino mass and the other
parameters are broken at different redshifts, highlighting the importance of
tomographic surveys.

Table 5. Two cosmologies with nonlinear power spectra that agree to better
than 1 per cent over all scales 0.01 h Mpc−1 ≤ k ≤ 10 h Mpc−1 at z = 0.

reference fit

�b 0.049 0.049
�m 0.3194 0.309
∑

mν 0.15 eV 0.00 eV
ns 0.96 0.97
h 0.67 0.67
w0 − 1.0 − 1.0
wa 0.0 0.0
As 2.1 × 10−9 2.01 × 10−9

of particles carried out in Einstein–Boltzmann codes (here CLASS). As
a result, PKDGRAV3 recovers linear theory accurately at all redshifts
even in the presence of massive neutrinos.

Moreover, we work with transfer functions in the N-body gauge
instead of the more standard synchronous gauge. In this way, results
computed with a purely Newtonian N-body code such as PKDGRAV3
can be interpreted within the framework of general relativity without
the need of including general relativistic corrections at the N-body
code level.

In a next step we have performed an extensive convergence study
with the goal to pin down the smallest volume and the lowest mass
resolution necessary in order simulate CDM+baryon NLC factors
that have converged at the 1 per cent level all the way up to k =
10 h Mpc−1. As references, we have used a simulation box of L =

8192 h−1 Mpc for the volume convergence series and a simulation of
resolution �−1 = N/L = 8 h Mpc−1 for the resolution convergence
series. We identify L = 1 h−1 Gpc to be just barely enough for the
side length of a simulation box necessary to achieve the 1 per cent
target accuracy, although this is only true if pairing-and-fixing is used
for the construction of the initial conditions. We find that resolution
convergence at the targeted level of accuracy is increasingly difficult
for higher redshifts. Even at z = 0 one only achieves the 1 per cent
accuracy at k = 10 h Mpc−1 with simulations of �−1 > 4 h Mpc−1,
which is beyond our capabilities given the minimal box size. From the
convergence series one can further extrapolate that a mass resolution
of roughly �−1 ∼ 6 h Mpc−1 is required to achieve convergence at the
1 per cent level at k = 10 h Mpc−1 at z ∼ 3. To put this in context we
remind the reader that the Euclid Flagship v2.0 simulation (EFS2),
using 4 trillion N-body particles, has resolution parameter of �−1 =
4.4 h Mpc−1.

In order to correct for the power suppression at small scales
resulting from the low mass resolution, we present a way to
correct the power spectrum (and equivalently the NLC) curves
using a cosmology-independent RCF, which can be applied in
a post-processing step. The result of applying this correction to
a power spectrum measured in a �−1 = 3 h Mpc−1-simulation is
a power spectrum that approximates very closely that obtained
from an equivalent simulation with �−1 = 8 h Mpc−1 up to k ∼
10 h Mpc−1.

We have then produced a set of 127 P+F simulations of
1Gpc3/h3 with 30003 particles, corresponding to a resolution of
�−1 = 3 h Mpc−1. This corresponds to a computational cost of
roughly 650 000 node hours which we have invested using the Piz
Daint supercomputer located at the Swiss National Scientific Super-
computing Centre (CSCS). At redshift z = 0 this implies that the
simulations are converged at the 2 per cent level at k = 10 h Mpc−1

(and at 1 per cent up to k ∼ 5 h Mpc−1). At redshift z = 2.76 we
achieve 1 per cent convergence up to k ∼ 2 h Mpc−1 and 2 per cent
up to k ∼ 3.5 h Mpc−1. By applying the RCF, the convergence is
subsequently improved to ∼0.5 per cent at k ∼ 10 h Mpc−1 and z

= 0 and to ∼1 per cent at k ∼ 10 h Mpc−1 and z = 2 at the cost of
introducing an additional source of uncertainty (see Fig. 4). We leave
the decision about whether or not the resolution correction should be
applied to the user of EuclidEmulator2 by not including it in
the training data.

The key goal of this publication was to construct an emulator
which is able to quickly and accurately predict the NLC for
w0waCDM+∑

mν cosmologies up to scales of k ∼ 10 h Mpc−1.
The emulator takes inputs from within the parameter box defined
in Table 2. In order to investigate the behaviour of such an emulator
and its dependencies on various quantities such as training set
size or number of principal components taken into account, we
created a mock emulator based on HALOFIT data. We project that
we can achieve a generalization error of sub-1 per cent inside the
axis-aligned hyperellipsoid inscribed in the parameter box if we
exclude a problematic region in the (w0, wa)-plane in which the
first-order principal component weight shows exponential behaviour.
We exclude this region from the training set by ignoring all cos-
mologies with wa > 0.5, reducing the training set to 108 training
examples.

Finally, we construct the actual emulator EuclidEmulator2
based on the PKDGRAV3 simulation data containing 108 training
cosmologies. We train the emulator using the MATLAB package
UQLab within only 9 s. The projected error of below 1 per cent
up to scales of k ∼ 10 h Mpc−1 is confirmed with a small validation
set. We stress that for smaller scales EuclidEmulator2 does
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not allow the computation of the NLC. At these scales one has to
fall back on suitable alternative methods as e.g. HALOFIT. Further,
EuclidEmulator2 is compared to multiple other fast predictors
such as its predecessor EuclidEmulator1 (Fig. 11), HALOFIT
(Fig. 13), HMCode (Fig. 14), and CosmicEmu (Fig. 15). In all
comparisons the error bounds as reported on in the corresponding
publications have been respected. We have also performed a Sobol’
sensitivity analysis (Fig. 8) which clearly revealed that wa is a
parameter that adds considerable complexity to the underlying model
while

∑
mν is quasi negligible, at least for the relatively narrow range

in
∑

mν we have considered.
In first benchmark tests using UQLab we have measured that Eu-

clidEmulator2 can be evaluated in ∼0.3 s on a usual laptop. This
compares well to the ∼0.4 s per evaluation of EuclidEmulator1
using the python wrapper e2py. We reiterate here that this implies
that the computation of the linear power spectrum by CAMB or CLASS
is now the bottleneck in the computation of the fully nonlinear power
spectrum.

We have applied EuclidEmulator2 to investigate degenera-
cies of the nonlinear matter power spectrum between the total
neutrino mass and the other seven cosmological parameters. We have
shown that tomographic surveys exploiting both linear and nonlinear
scales are critical as it is possible to find different cosmologies with
nonlinear matter power spectra agreeing better than 1 per cent at z

= 0 (in our case we have tested a massive neutrino and a massless
neutrino cosmology).

Further efforts should be taken in multiple directions. While the
power spectrum (and thus the NLC) clearly belong to the most
used summary statistics of cosmic large-scale structure, higher order
statistics are becoming more and more used and thus emulators for
their prediction are desirable. An example for such a predictor was
recently published (Takahashi et al. 2019). A different, more holistic
approach is taken in He et al. (2019) where the displacement field
is emulated directly, such that any statistic can be derived from
the predicted density field. For simulations of resolution as high
as the ones used in this work, it is however questionable to what
extent such an approach is practical. Further, in order to assess
more deeply the accuracy of the NLC predictions at small scales,
it is not only necessary to estimate the generalization error and the
convergence of the underlying simulations depending on box size
and resolution but also to investigate how well different codes agree
with each other at the scales under consideration. While such a
study has been performed in Schneider et al. (2016) (and augmented
by another code in Garrison et al. 2019) we advocate for new
efforts in this direction, as with the new updates to PKDGRAV3
and developments in other codes the situation may have changed
significantly.

Disregarding such uncertainties in the underlying N-body code, at
this point we shall summarize the error contributions toEuclidEm-
ulator2 and their dependence on spatial scales and redshift. At low
redshifts, the emulation-only generalization error is virtually zero by
construction on large scales (k < 0.01 h Mpc−1) such that in this
regime the dominant error contribution in the emulator comes from
cosmic variance. Based on the results of Angulo & Pontzen (2016),
the cosmic variance is expected to be sub-percent. At small scales
(k � 1 h Mpc−1), cosmic variance is expected to be irrelevant. In
this regime, the dominant error contribution (neglecting additional
physics such as baryons) is due to emulation itself. The level of the
dominant error at high k is estimated to be at the ∼0.7 per cent level
according to Fig. 9. This error is estimated from only a very small
sample of validation simulations, however, the error level is also
consistent with the estimate in Fig. 6 and hence we regard this error

estimate to be representative at small scales. Estimating the overall
error level in the intermediate k range is tricky because several effects
contribute errors at a similar level: on the one hand it is evident in
Fig. 9 that an accurate prediction of the NLC around the BAOs is chal-
lenging (the observed accuracy is also at the level of ∼0.6 per cent).
At the same time, residual cosmic variance (after pairing-and-fixing)
is nonlinearly amplified at these scales. We estimate the error in
the intermediate range (0.01 h Mpc−1 < k < 1 h Mpc−1) to be at the
level of 1 per cent. The comparison as shown in Fig. 11 suggests
an error at the 2 per cent level. This may, however, be overly
conservative because the cosmic variance in EuclidEmulator1
is phase-shifted with respect to EuclidEmulator2, leading to an
enhancement of errors within this comparison.

The redshift evolution does not greatly change the error contri-
butions discussed above. However, the overall error at intermediate
scales is reduced at higher redshifts compared to the low-redshift
case. At small scales the resolution effects become the dominant
source of error as is visible in Fig. 4. As resolution is currently not
corrected in a cosmology-dependent manner, the error is expected
to be at the level of 1 per cent at small scales (k � 1 h Mpc−1) and
higher redshift (z ∼ 3).

Last but not least we have seen how the large number of dimensions
of the parameter space is really starting to become a major challenge
regarding the number of simulations required to arrive at the targeted
generalization error. As more and more dimensions can be expected
to be added in the next couple of years, it may be of interest to
also compare different emulation strategies to each other in order to
potentially identify the strategy that generalizes best based on only
very few examples per dimension.
EuclidEmulator2 is the successor of EuclidEmulator1

and will again be published on https://github.com/miknab/EuclidEm
ulator2.

GLOSSARY

Codes:

CAMB Code for anisotropies in the microwave background 5, 23
CLASS Cosmological linear anisotropy solving system 3, 5-7,

15-18, 21, 23
CONCEPT Cosmological N-body code in Python 5-7, 21
CosmicEmu Cosmic emulator based on the Mira-Titan cosmological

simulation suite (successor of FrankenEmu based on the
Coyote simulation suite). 2, 16, 19, 20, 22, 29

EuclidEmulator1 Version 1 of EuclidEmulator. This is a code to predict the
nonlinear corrections to DM power spectra for w0CDM
cosmologies. 2, 5-7, 14-19, 22, 23

EuclidEmulator2 Version 2 of EuclidEmulator. This is a code to predict the
nonlinear corrections to DM power spectra for w0,
waCDM+∑

mν . 2-5, 9-12, 14-23, 26, 29, 32
HALOFIT Analytical code to produce nonlinear power spectra 2, 3,

10-12, 14-16, 18, 20, 22, 26, 29
HMCode Fast predictor for the nonlinear power spectrum based on

the halomodel approach. 2, 16, 18-20, 22, 29
NGenHalofit Code to produce nonlinear power spectra using a

semi-analytical approach for large and a
smoothing-spline-fit model for small scales 2
PKDGRAV3 parallel k-D tree gravity code (version 3);
Cosmological N-body tree code 3, 5-8, 16, 17, 21-23

UQLab MATLAB-based uncertainty quantification framework 12,
22, 23

e2py Python wrapper for EuclidEmulator 23
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Acronyms:

1LPT first-order Lagrangian perturbation theory 5, 8
2LPT second-order Lagrangian perturbation theory 8
BAO baryon accoustic oscillations 17-19, 21, 23
CDM cold dark matter 3, 5, 6, 10, 19, 21, 23
CMB cosmic microwave background 2, 10
DE dark energy 2-6, 10, 12, 17, 18, 21
DM dark matter 2-6, 21
ED experimental design 9, 15, 16
EFS2 Euclid Flagship v2.0 Simulation 8, 17, 18, 22, 27
EoS equation of state 4, 10, 12, 17
FMM fast multipole method 5, 6
GR general theory of relativity 4, 5
GRF Gaussian random field 8, 27
IC initial condition 5, 6, 8
LAR Least angle regression 12
LH Latin hypercube 12, 16
LHS Latin hypercube sampling 12, 14, 15
LOO leave-one-out 13
MCMC Markov chain Monte Carlo 2, 11
ML machine learning 13
NLC nonlinear correction 2, 5-8, 10-13, 15-23
P+F paired-and-fixed 5, 8, 15, 17, 18, 22, 26
PCA principal component analysis 12-14
PCE polynomial chaos expansion 12-15
PM particle-mesh 5, 18
PPF parametrized post-Friedmann 4
RCF resolution correction factor 6, 9-11, 17, 27
UQ uncertainty quantification 13
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APPENDI X A : SI MULATI ON TABLE

Here, we summarize all simulations that we have produced specifi-
cally for this paper (see Table A1). For each simulation, its unique ID
as well as its specifications are listed. The specifications consist of the
box size (L), the number of particles per side length (N), whether it is a
P+F run (PF yes/no), what order of Lagrangian perturbation theory
(LPT) was used to construct the initial conditions, the number of
runs, the run time in node hours and on what machine the simulation
was executed. Simulations T001 to T127 are the runs that form
the actual training set of EuclidEmulator2, while HRV001–
HRV003 were used for the end-to-end test reported in Section 8.2.1.
The runs VCT1-VT5 were used for the volume convergence test
and RCT1-RCT5 for the resolution convergence test (see Fig. 2 and
Fig. 3). We used the RES3 and RES8 simulations in order to estimate
the variance of the cosmology dependence in the RCF (see Fig. 4).
The PF simulation was used in the comparison to the simulations
GRF1–GRF50 in order to investigate the cosmic sampling variance
in P+F simulations (see Fig. 12). The PV runs were used to estimate
the output variance on both boost factor and power spectrum level
when one of the parameters As, wa, or

∑
mν is varied based on which

the parameter box of EuclidEmulator2 was chosen. The total
run time for all simulations sums up to over 700 000 node hours.
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Table A1. Simulations used for this publication. The table is organized as follows: The training simulations are in the first row
followed by the validation simulations in the second and third row. In rows 4 to 13 we list all simulations used in the volume
convergence tests (VCT) and the resolution convergence tests (RCT), respectively. Then, in rows 14 and 15 we list the simulations
used to investigate the RCF dependence on cosmology. In rows 16 and 17 the simulations used to compare the P+F approach to the
traditional ensemble averaging of GRF simulations are listed. Ultimately, we mention the simulations used to estimate the parameter
ranges in the rows 18–21.

Simulation identifier L [ h−1 Mpc] N PF LPT Number of Total runtime Machine
runs [node hours]

T001–T127 1000 3000 yes 1LPT 254 ∼500 000 Piz Daint (�)

EFS2 3600 16000 no 1LPT 1 ∼1000 000 Piz Daint (�)
HRV001–HRV003 1000 3000 yes 1LPT 6 ∼37 000 zBox4+
VCT1 512 170 yes 1LPT 2 10 zBox4+
VCT2 1024 342 yes 1LPT 2 24 zBox4+
VCT3 2048 682 yes 1LPT 2 118 zBox4+
VCT4 4096 1356 yes 1LPT 2 435 zBox4+
VCT5 8192 2730 yes 1LPT 2 2780 zBox4+
RCT1 512 512 no 1LPT 1 37 zBox4+
RCT2 512 1024 no 1LPT 1 212 zBox4+
RCT3 512 1536 no 1LPT 1 919 zBox4+
RCT4 512 2048 no 1LPT 1 1987 zBox4+
RCT5 512 4046 no 1LPT 1 10 353 zBox4+
RES3 1-RES3 20 128 384 yes 1LPT 40 ∼320 zBox4+
RES8 1-RES8 20 128 1024 yes 1LPT 40 ∼4800 zBox4+
PF 1024 980 yes 1LPT 2 69 zBox4+
GRF1-GRF50 1024 980 no 1LPT 50 ∼3400 zBox4+
PVAs 640 1024 no 2LPT 6 ∼1100 zBox4+
PVwa 640 1024 no 2LPT 6 ∼1100 zBox4+
PV∑

mν
640 1024 no 2LPT 6 ∼670 zBox4+

PVcenter 640 1024 no 2LPT 1 77 zBox4+
Note. �with GPUs

A P P E N D I X B: ER RO R M A P S O F T H E
HALOFIT- BASED MOCK EMULATOR

In this appendix we plot error maps for a two exemplary coordinate
planes of the 8D parameter box: the (

∑
mν , h)- and the (w0, wa)-plane

(see Fig. B1). The errors are defined as follows:

ε =
∣∣∣∣ max
k∈[0.01,10.0] h Mpc−1

(
Bemu(k, z = 0) − Bsim(k, z = 0)

Bsim(k, z = 0)

)∣∣∣∣ (B1)

The emulator for this investigation was trained with HALOFIT based
on exactly the same 108 cosmologies that were used for the actual,
simulation-based EuclidEmulator2. We stress that the errors all

are measured at z = 0. The colour bars are ranging from 0 per cent
to 8 per cent for both plot panels. The hyperellipsoid inscribed in the
parameter box is shown. Notice that the vast majority of cosmologies
inside this region features errors at the 2 per cent level (or even
lower). There are, however, also regions with larger errors. This does
not contradict the result reported on in Fig. 6 as the error metric in
that figure was averaged over all cosmologies. It is not surprising
that particularly validation cosmologies with wa > 0.5 feature fairly
large errors as in this region there are no training cosmologies. This
cut is indicated by a grey, dashed line in all plots with wa as one of
the two dimensions. All parameter planes that have wa as one of the
two dimensions exhibit larger errors for larger values of wa.
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Figure B1. Error map of the (�mν , h)-plane (top) and the (w0, wa)-plane
(bottom). These two error maps represent also those of the remaining 26
parameter planes. Most error maps feature only very low errors like the top
panel (all errors in the top panel are �1 per cent) in this figure.

APPENDI X C : LI ST O F VALI DATI ON
C O S M O L O G I E S

In this appendix we list the validation cosmologies in Table C1 and
visualize their locations inside the parameter space in Fig. C1.

Figure C1. Distribution of 84 validation cosmologies listed in Table C1. Notice that some of the validation cosmologies are located outside the hyperellipse
(grey). In fact, some of the validation cosmologies even have a wa value above 0.5, indicating thatEuclidEmulator2 is even able to extrapolate into this region.
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Table C1. List of validation cosmologies used in Sections 8.2.3, 8.2.4, and 8.2.5 to compare EuclidEmulator2 with HALOFIT,
HMCode, and CosmicEmu.

�b �m
∑

mν [eV] ns h w0 wa As

5.23 × 10−2 2.82 × 10−1 6.70 × 10−2 9.95 × 10−1 6.67 × 10−1 −8.16 × 10−1 2.66 × 10−1 2.44 × 10−9

5.64 × 10−2 3.40 × 10−1 1.50 × 10−1 9.43 × 10−1 6.30 × 10−1 −1.19 × 10−2 −5.44 × 10−1 1.74 × 10−9

5.73 × 10−2 3.38 × 10−1 4.27 × 10−2 9.29 × 10−1 6.32 × 10−1 −7.46 × 10−1 −1.08 × 10−1 2.23 × 10−9

4.73 × 10−2 3.14 × 10−1 2.66 × 10−2 9.29 × 10−1 6.93 × 10−1 −9.88 × 10−1 5.95 × 10−1 1.91 × 10−9

5.51 × 10−2 3.54 × 10−1 1.57 × 10−3 9.49 × 10−1 6.45 × 10−1 −8.96 × 10−1 6.70 × 10−1 2.15 × 10−9

5.41 × 10−2 3.16 × 10−1 7.48 × 10−2 9.82 × 10−1 6.39 × 10−1 −8.59 × 10−1 −1.33 × 10−1 2.36 × 10−9

5.22 × 10−2 3.46 × 10−1 5.33 × 10−2 9.56 × 10−1 6.65 × 10−1 −1.01 × 10−2 −3.17 × 10−1 1.91 × 10−9

5.21 × 10−2 3.30 × 10−1 7.66 × 10−2 9.84 × 10−1 6.70 × 10−1 −1.12 × 10−2 −3.68 × 10−1 1.95 × 10−9

4.40 × 10−2 2.97 × 10−1 1.11 × 10−1 9.75 × 10−1 7.12 × 10−1 −8.76 × 10−1 8.45 × 10−2 2.22 × 10−9

4.58 × 10−2 2.72 × 10−1 8.09 × 10−2 9.78 × 10−1 7.10 × 10−1 −7.26 × 10−1 −6.27 × 10−1 1.85 × 10−9

5.25 × 10−2 3.44 × 10−1 3.44 × 10−2 9.37 × 10−1 6.53 × 10−1 −1.06 × 10−2 6.64 × 10−1 2.24 × 10−9

4.37 × 10−2 2.96 × 10−1 7.36 × 10−2 9.25 × 10−1 7.19 × 10−1 −1.04 × 10−2 4.92 × 10−1 2.19 × 10−9

4.59 × 10−2 3.24 × 10−1 8.37 × 10−2 9.20 × 10−1 6.90 × 10−1 −9.16 × 10−1 3.53 × 10−1 2.35 × 10−9

5.32 × 10−2 3.22 × 10−1 9.43 × 10−2 9.53 × 10−1 6.57 × 10−1 −1.26 × 10−2 −2.22 × 10−1 1.92 × 10−9

5.47 × 10−2 3.81 × 10−1 7.08 × 10−2 9.56 × 10−1 6.35 × 10−1 −7.70 × 10−1 2.96 × 10−1 2.10 × 10−9

4.88 × 10−2 2.78 × 10−1 1.46 × 10−1 9.99 × 10−1 6.75 × 10−1 −1.26 × 10−2 −2.12 × 10−1 2.01 × 10−9

5.17 × 10−2 3.06 × 10−1 1.35 × 10−1 9.41 × 10−1 6.48 × 10−1 −7.20 × 10−1 −4.10 × 10−1 2.26 × 10−9

4.84 × 10−2 3.29 × 10−1 2.41 × 10−2 9.92 × 10−1 6.81 × 10−1 −7.91 × 10−1 −1.57 × 10−1 1.92 × 10−9

4.80 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.20 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 2.72 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 2.88 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.04 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.36 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 0.00 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 3.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 4.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 6.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 9.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.05 × 10−1 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.20 × 10−1 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.35 × 10−1 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.50 × 10−1 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.20 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.28 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.36 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.44 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.52 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.68 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.76 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.84 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.92 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 1.00 × 10−2 6.70 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.58 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.82 × 10−1 −1.00 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.30 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.24 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.18 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.12 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.06 × 10−2 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −9.40 × 10−1 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −8.80 × 10−1 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −8.20 × 10−1 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −7.60 × 10−1 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −7.00 × 10−1 0.00 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 −7.00 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 −5.60 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 −4.20 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 −2.80 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 −1.40 × 10−1 2.10 × 10−9
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Table C1 – continued

�b �m
∑

mν [eV] ns h w0 wa As

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 1.40 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 2.80 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 4.20 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 5.60 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 7.00 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 1.70 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 1.78 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 1.86 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 1.94 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.02 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.18 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.26 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.34 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.42 × 10−9

5.00 × 10−2 3.20 × 10−1 7.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.00 × 10−2 0.00 2.50 × 10−9

5.00 × 10−2 3.20 × 10−1 0.00 9.60 × 10−1 6.70 × 10−1 −1.30 × 10−2 −7.00 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.24 × 10−2 −5.60 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 3.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.18 × 10−2 −4.20 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 4.50 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.12 × 10−2 −2.80 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 6.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −1.06 × 10−2 −1.40 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 9.00 × 10−2 9.60 × 10−1 6.70 × 10−1 −9.40 × 10−1 1.40 × 10−1 2.10 × 10−9

5.00 × 10−2 3.20 × 10−1 1.05 × 10−1 9.60 × 10−1 6.70 × 10−1 −8.80 × 10−1 2.80 × 10−1 2.10 × 10−9
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Spain
12Instituto de Astrofı́sica de Canarias, Calle Vı́a Làctea s/n, E-38204 San
Cristóbal de la Laguna, Tenerife, Spain
13Istituto Nazionale di Astrofisica (INAF) - Osservatorio di Astrofisica e
Scienza dello Spazio (OAS), Via Gobetti 93/3, I-40127 Bologna, Italy
14Dipartimento di Fisica e Astronomia, Universitá di Bologna, Via Gobetti
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