Fast Multi-GPU communication
over PCI Express

Sivert Andresen Cubedo

Thesis submitted for the degree of
Master in Distributed systems and networks
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Fast Multi-GPU communication
over PCI Express

Sivert Andresen Cubedo

© 2021 Sivert Andresen Cubedo
Fast Multi-GPU communication over PCI Express
http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Today the demand for large-scale Machine Learning (ML) models is
increasing. Training such models require more and more hardware
resources. Distributing ML training is a way to reduce training time.
However, this depends on the ability of machines to work together.

In this thesis, we have developed a proof of concept plugin for
the NVIDIA Collective Communication Library (NCCL), enabling inter-
machine PCle communication. NCCL is a state-of-the-art Collective
Operations library for Nvidia GPUs. Our plugin is implemented using
Dolphin NTB adapters, allowing for inter-machine PCle communication.

We are able to show that network interconnects do affect distributed
ML training time. Our plugin is able to make the Collective Operation time
insignificant compared to the computation time when training ML models.

ii

Contents

(1__Introduction|
1.1 Background
[[.22~Problem Definitionl
i3 ManC hutions
1.4 [imitations|.
15 R rch h
(1.6 Chapter Summary|. . . .

2 Technologies|

2.2.1 SISCIAPIT

[3.2 Terminology]|
[3.3 Bootstrap|

3.3.2 ‘Topology|.

.5 Async Interface

B.6 Chapter Summary]. . . .

4 SISCI-NCCL Implementation|
4.1 Other NCCL plugins|
@4.1.2 Mellanox Plugins|

4.2 Creating the Plugin|

iii

4.2.1 Error Management

4.2.2 Plugin Interface|
423 Device Properties|

424 Allocating Segments|
425 Channelsl.o Lo oL
426 Mailboxl oo

4.2.7 Establishing Connections|
428 TRegisterMemory|

4210 Cleanup|

.4 Benchmark Technique|
B5 Hardwarel

[7__Conclusion|

[/1 Summary|.o oo
[Z2_Main Contributions|

[7.3.1 Compare to Other High Performance Interconnects| .
[7.3.2 TLarger Benchmarks|.

[A_Source Codel

iv

List of Figures

[3.1 Example of how identifiers are assigned to hardware| 12
p.1 Algorithm Bandwidth formulal 40
b.2 All Reduce algorithm bandwidth SISCT vs socket] 42
5.3 _AllReduce bus bandwidth SISCT vs socket] 43

4 AllR ime SISCI v l oo 43

0.5 All Reduce average algorithm bandwidth for all collective |

44

45

6.1 Average Batch Time SISCI vssocket| 50
0.2 Average Device Collective Communication Time SISCI vs |
socket] 51

Vi

List of Tables

[6.1 Average system usage recorded during model execution.| . .

Vii

51

viii

Chapter 1

Introduction

1.1 Background

During the past decade, the general interest in Machine Learning (ML) and
Deep Learning has been rising. ML, a field that used only to be developed
and researched by narrow academic science communities, is now becoming
mainstream. Both academic and commercial actors are pushing the field
forward in both development and application.

In the context of computing, Artificial Intelligence (AI) is a collective
term for systems that perform tasks that are usually dependent on human
intelligence. ML is a subfield of AI, where the model learns based on
input data. The input data usually represents observations. The classic
example of a problem where ML is required is image classification, where
we want to assign a set of known labels to a set of unknown images. Now,
if the decision borders for the labels are mathematically well defined - for
example, if our image is represented as a 2-dimensional matrix of pixels.
We have two labels. An image is assigned label 1 if the sum of the pixels is
less than N. If not, the image is assigned label 2. Then the problem is trivial
to solve. However, if the decision borders are not well defined, which
is usually the case for image classification, then we need our machine to
perform some "human-like" evaluation.

Usually, the labels represent some human idea/construct. A simplified
example of this is if we want to classify if there is a cat present in the image
or not. In this case, there is no trivial way to define a pattern solving the
problem. The definition of what is a cat or not becomes a philosophical
question as there is an infinite number images possibly containing a cat.
However, humans can still, at a quick glance, determine if a picture
contains a cat or not. While there is a possibility, some people will disagree
on some edge cases. The vast majority of human-made classifications will
reach a consensus. As humans, we acquire the knowledge of what a cat is
and what is not based on experience. Our human senses provide input that
we can learn from in our environment, allowing us to perform such abstract
classification based on experience. We want to perform such a classification
on a computer.

In ML, we emulate the human learning process to then predict based

on experience. Instead of solving the problem by applying an algorithm
directly to draw a decision border, ML uses a set of known observations
to derive a border. In this example, the training set would contain
pairs of images and labels. These labels are usually manually labeled by
humans, and then the goal is to make the system imitate human labeling
on unknown images. This process is called training and is a key mechanic
of most AI methods.

Non-computer science research fields like biology, physics, medicine
and mathematics are exploring the use of ML as a tool in their research
arsenal. In the general case, ML can be used to automatically explore search
spaces, relieving resources that otherwise would have been used on time-
consuming pattern matching. An example of this is in cancer research,
where researchers are training ML algorithms to detect tumors based on
images, and medical data [14].

ML has also been adopted by various commercial actors both inside
and outside the technology industry. Companies are able to automate tasks
that used to be manually performed by humans using Al and ML. Video
streaming services are employing ML algorithms to decide what users are
shown when browsing content. Advertising companies are using ML to
map out demographics to improve advertisement accuracy. Car companies
are using ML to develop driver assistance tools to improve car safety [7].

The size and number of data sets have been increasing over the past
decade [5], and it will most likely continue to increase. A consequence
of this is that there is a demand for more efficient and faster ML training
capabilities. To improve performance in ML algorithms, the scale, and
complexity of the system increase. Deep Learning is used to describe an
ML system that is using many layers of ML techniques to perform an
evaluation. The goal of having many networks is for the system to extract
features from the data set that are not accessible directly. While a Deep
Learning system may increase the algorithm’s performance, it comes at the
cost of being more computationally expensive.

The computational cost of training and using a machine learning
algorithm depends on the problem. Variables such as the number of
features and observations in a data set, and the complexity of the algorithm
dictates the computational cost. However, some of the developed
ML algorithms can be distributed across multiple computing instances,
allowing for horizontal scaling.

Graphics Processing Units (GPUs) were first developed for the video
game industry. The original motivation behind GPUs was to hardware
accelerate resource expensive video rendering. In general terms, a GPU
performs homogeneous instructions in large-scale parallelism. A modern
CPU will usually support parallelism having more than one physical
core, where each core can execute OS threads in parallel. In addition, a
modern CPU will also support parallelism per physical core using Single
Instruction Multiple Data (SIMD). A GPU uses a combination of many
physical cores and SIMD to achieve high bandwidth computation. This
performance advantage does, however, assume the data is accessible in
a vectorized form. GPU performance heavily relies on input data being

2

discrete. A CPU comes with features such as branch prediction to optimize
branches in code. This makes CPUs ideal for computing code that heavily
relies on branches. On GPUs, branches potentially come at a high cost
because this means that the GPU can not handle data homogeneously. If
the data can be handled with homogeneous instructions, then a GPU will
probably yield a speedup compared to a CPU.

Modern ML models are usually implemented on GPUs. Most compu-
tation executed in an ML model is versions of matrix multiplication. As the
order of operation is not strict when performing a matrix multiplication, it
is ideal to be performed on a GPU. Usually, all samples are treated the same
way in the model as well, making the computation symmetric. The size of
matrices is determined by the number of tunable parameters (weights) and
the number of input parameters in a layer. A weight is usually represented
with a floating-point number, usually 32 bit. State-of-the-art ML models
use a lot of tunable parameters, as this has shown to give better accuracy
for models. EfficientNet [27] is a image classification model, the smallest
version (EfficientNetB0) uses around 11 million trainable parameters. The
trainable parameters will then use 0.33 GB of memory, but the structures
to train the parameters uses significantly more space.

There is a demand for applying ML on larger and larger datasets.
Therefore it is necessary to increase training speed. This can be done by
acquiring a more capable GPU. However, this is limited by what GPU
vendors are able to offer. Another way is to distribute training across
many GPUs. The most common intra-machine communication method
is Peripheral Component Interconnect Express (PCle). Most GPUs are
installed in a machine using PCle, allowing CPU, GPUs, and other PCle
devices to communicate. An ML model can be distributed across multiple
GPUs on a machine, allowing for higher capacity model training. It is
also possible to distribute the training across multiple machines, using
inter-machine communication. Both Ethernet and InfiniBand are common
interconnects for inter-machine communication. This allows for GPUs
located on many machines to work together.

Distributing training allows for higher bandwidth training [4]. How-
ever, the distribution comes at a cost. All execution units need to be syn-
chronized, so they are able to work together. It is not trivial to invent a com-
munication protocol that is able to utilize the available hardware at peak
performance. So a common way to implement communication is to use an
existing solution. Collective Operations are a set of communication pat-
terns that can be used to build such an efficient protocol easily. Collective
Operations are usually provided with a library such as Message Passing
Interface (MPI) [9] or NVIDIA Collective Communication Library (NCCL)
[21]. In this thesis, we want to look at how distributed ML training may
benefit from using a PCle interconnect for inter-machine communication.

1.2 Problem Definition

The current implementation of multi-machine multi GPU computation
(NCCL) in the Nvidia ecosystem either uses RDMA (Remote Direct
Memory Access) over InfiniBand or TCP over Ethernet to communicate
between machines. The existing solutions can theoretically achieve as high
bandwidth as a PCle network, but these solutions heavily depend on CPU
IO to communicate between machines, possibly bottlenecking the system.

In the thesis, we want to implement a proof of concept of using
PCle for inter-machine communication in NCCL. To realize this, Dolphin
Interconnect Solutions (Dolphin) provides hardware that exposes PCle
capabilities for multi-machine communication. The PCle hardware will
allow for direct RDMA between CPU/GPUs (and other PCle devices)
via the PCle hardware. NCCL supports a plugin system for third-party
interconnects. We want to use this plugin system to implement support for
Dolphin hardware in NCCL.

Then we want to compare the PCle interconnect to the existing
NCCL solutions. We want to benchmark how NCCL is performing in
a vacuum, where only NCCL operations are benchmarked alone. As
well as benchmarking NCCL in a larger context, comparing how different
interconnects affect performance in a real-world ML environment.

1.3 Main Contributions

High-Performance Computing (HPC) usually relies on fast interconnects,
such as InfiniBand or high-performance Ethernet solutions. Most systems
today use PCle for intra-system communication between CPU and 1/0
devices. There needs to be a protocol translation between the internal PCle
interconnect and exterior interconnect to transfer data between machines.

Dolphin provides hardware and software that is able to use PCle for
inter-machine communication. This allows data to be transferred only
using PCle as a protocol. Any PCle device on one system can potentially
transfer data to another PCle device on another machine.

Our proof of concept implementation provides such functionality,
allowing for direct PCle transfers between GPUs between machines in
NCCL. As long as machines are connected to the same PCle network,
NCCL is able to perform collective operations over PCle. We provide
support for both RDMA and GPU Direct RDMA in NCCL, enabling
potentially more efficient hardware usage.

1.4 Limitations

Due to resource constraints, our benchmarks do not reflect a state-of-the-
art HPC environment. NCCL supports InfiniBand and TCP over Ethernet
by default, and these depend on the capability of hardware located on the
system. We were not able to benchmark with InfiniBand due to a lack
of hardware availability. As for Ethernet, our machines only support a 1

4

Gigabit Ethernet interface, while 40/100 Gigabit Ethernet interfaces exist.
Our PCle interconnect only supports PCle 3.0 speeds at 8x width, giving us
a theoretical bandwidth of 63 Gb/s. While PCle 4.0 16x is capable of 252
Gb/s bandwidth.

Because we are benchmarking interconnects, the available bandwidth
in both transfer and compute resources heavily affects the results. Ideally,
we want a hardware configuration that outperforms the interconnect, such
that the interconnect is the weakest link. Then we can measure the
performance difference between interconnects. However, we were not able
to acquire hardware that was able to outperform all interconnects tested.

While we implemented support for GPU Direct RDMA, the benchmark
machines had faulty Input Output Memory Management Units (IOMMU).
This made it impossible to enable GPU Direct RDMA for our benchmarks,
so we had to fall back to using RDMA between system RAM instead. This
caused at least two extra intermediate stops when transferring between 2
GPUs on remote machines.

1.5 Research Method

To implement and benchmark our implementation, we used the paradigm
defined by Association for Computing Machinery [6]. The main goal of
implementation was to develop a proof of concept. Then to test and
validate the system. In our investigation to benchmark the implementation,
we used the experimental scientific method defined in the paper. Coming
up with a hypothesis. Construct a model to make predictions about our
hypothesis. Then designing an experiment to test the hypothesis and
collect data. And analyze the collected data.

1.6 Chapter Summary

The demand for high-performance ML and Deep Learning applications is
increasing. Scientific and commercial actors are developing more complex
and large ML models. Larger datasets are becoming available due to
modern sensor usage and data collection methods. Training is the most
resource-expensive part of developing an ML model. Researchers are
usually bound by the capabilities of their hardware. Distributed training
is one way to increase training capacity for an ML model. The Nvidia
ecosystem provides a library created for distributed communication. We
want to extend this library to use PCle for inter-machine communication,
then benchmark its performance. In the next chapter, we introduce more
detailed the technology used in this thesis.

Chapter 2

Technologies

In this chapter, we introduce and discuss the technologies we use in the
project.

2.1 PCle

Peripheral Component Interconnect Express (PCle) [24] is a serial data
transfer protocol and hardware specification created in 2003. The main
purpose of PCle was to replace and improve preceding specifications such
as PCI, PCI-X, and AGP. As the name implies, PCle is a direct descendant of
PCI, and the two standards are software compatible. This makes it possible
to use a PCI driver on a PCle system as long as the hardware is compatible.

The main difference between PCI and PCle is the physical data transfer
mechanism used. PCI (and PCI-X) use parallel communication to transfer
data between devices. For each clock cycle, the transferring device can send
32 bits in PCI. Usually, a single 32-bit parallel bus is used to connect PCI
devices together, meaning all data sent over the bus is broadcasted to all
devices, only allowing for one sender at the time on the bus. Having more
parallel lanes sending bits at the same time gives more bandwidth per clock
cycle. However, the maximum clock speed of the transfer is decreased as
more parallel lanes are added. When lanes are transferring at the same
time, the interference between lanes is increasing with the number of lanes
due to capacitance, making transfers unreliable. The cross-lane interference
can be reduced by changing the length of different lanes on the bus or by
slightly alter the send time for each lane, but this comes as a performance
cost in a parallel system. Transfer time for each lane on the bus can differ,
meaning the transfer always has to wait for the slowest lane in a clock cycle.

PCle achieves a higher bandwidth than PCI (and PCI-X) even though
the hardware transfers bits in a serial manner due to significantly higher
clock speed. While PCle is a serial protocol, it supports more than 1 lane
going to each device. Each lane is a full-duplex connection, meaning two
endpoints can transfer to and from each other at the same time. When there
is more than one lane going to a device, each lane will transfer data serially
in its own context.

As mentioned earlier, PCI connects all devices to a single parallel

7

PCle Version | Release Year | Transfer Rate | Throughput/Lane | x16 Throughput
1.0 2003 2.5 GT/sec 250 MB/sec 4.0 GB/sec
2.0 2007 5.0 GT/sec 500 MB/sec 8.0 GB/sec
3.0 2010 8.0 GT/sec 1.0 GB/sec 16.0 GB/sec
4.0 2017 16.0 GT/sec 2.0 GB/sec 32.0 GB/sec
5.0 2019 32.0 GT/sec 4.0 GB/sec 64.0 GB/sec

Table 2.1: Transfer performance for PCle version 1.0 to 5.0 [24]]

bus. On the hardware level, PCle is rather a point-to-point network,
where all PCle lanes are connected to a controller located at the system’s
root complex. The controller acts as a switch in the network, routing
PCle packets between PCle lanes. Because every PCle lane is connected
individually to the controller, a higher throughput on the network is
possible compared to PCIL. More than one device can, for example,
read/write to RAM at the same time on the network, whereas only one
device can communicate at any moment on a PCI bus. However, the
PCle network topology limits the number of possible PCle lanes in a given
system to the number of supported lanes in the controller architecture.

As of writing this, the PCI Special Interest Group (PCI-SIG) is actively
developing the PCle standard, releasing new revisions of the standard.
Table 2.1/ shows the performance spec of different PCle revisions.

2.2 Non-Transparent Bridging

As mentioned in the PCle section, all PCle lanes are connected to a switch
located at the root complex of the system. The standard assumes there
is only one root complex in a PCle network. However, it is possible to
connect more than one root complex together using a Non-Transparent
Bride (NTP) [10]. An NTB acts as a PCle device in each system, creating a
communication channel between the root complexes. As the name implies,
applications need to be aware of the NTB and its interface to communicate
with other root complexes.

Dolphin Interconnect Solutions [25] is a hardware vendor specializing
in high performance PCle interconnect solutions. They provide PCle NTB
cards that allow for easy multi-computer PCle networks.

2.2.1 SISCI API

To use the Dolphin NTB hardware capabilities in an application, Dolphin
provides the SISCI API [26]. The goal of the API is to be an easy-to-use
and safe environment for developers to use Dolphin PCle hardware. SISCI
is designed to be both architecture-independent and operating system-
independent, allowing for flexible solutions. The API exposes PCle
transfer mechanisms to the user, such as Direct Memory Access (DMA),
Programmed Input Output (PIO), and PCle interrupts. In addition, the API
comes with utilities for managing memory mapping and error checking.

A key abstraction in the SISCI API is what is called segments. Segments
represent memory in a process that has been mapped in such a way that
it can be transmitted using the SISCI API over an NTB. There are two
main types of segments, local segments, and remote segments. Local
segments represent memory that is mapped locally to a machine, while
remote segments represent memory that can be accessed via the NTB from
a remote machine. The API provides functions that can be applied to
segments to initiate/handle data transfers. In particular, for this project, the
SISCI API supports mapping PCle device memory to segments, allowing
direct transfer to/from devices.

SISCI also provides multiple data transport mechanisms. Interrupts
allow a program to wait for a remote node to signal an event. Data
interrupts do the same as regular interrupts, but the signal can carry a small
extra payload when notifying the listener.

Process Input Output (PIO) allows the CPU to read/write directly to
a remote segment. PIO is ideal for writing small messages to remote
segments, as there is no cost in starting the transfer. However, when
reading with PIO, the CPU has to make a round trip request to retrieve
the data. It may be costly to use PIO for large messages, as it requires CPU
resources, and the CPU write speed may bottleneck the transfer.

For larger messages, the Dolphin hardware provides a more efficient
mechanism to transfer data. The NTB cards come with a DMA engine
that can transfer data directly from any registered SISCI segment. While
there is some cost in engaging the DMA engine, it is more efficient for large
messages. As with PIO, DMA supports both read and write transfers, and
the same property for reading apply. In general, it is always faster to write,
given that both ends of the transfer got the same hardware capabilities.
If the receiving end got hardware that supports a higher read bandwidth
than the sender’s write bandwidth, then a read transfer might be more
performant.

2.3 NCCL

NVIDIA Collective Communication Library (NCCL) [18, 19] is a library
for multi GPU processing. The goal of the library is to provide collective
primitives that can be distributed across multiple machines with multiple
devices(GPUs). NCCL is similar to the open Message Passing Interface
(MPI) [8] 9] standard. The main difference between NCCL and MPI is
that NCCL is only targeting the Nvidia HPC ecosystem, while MPI is
independent of specific hardware vendors. Although NCCL only targets
Nvidia hardware, it is still possible to use in conjunction with an MPI
application. In this thesis, we will only focus on NCCL and the Nvidia
ecosystem.

As mentioned, NCCL provides primitive building blocks that can be
distributed across a GPU cluster. NCCL calls these primitives Collective
Operations. Currently, the library implements five operations; AllReduce,
Broadcast, Reduce, AllGather and ReduceScatter. Section provide a

9

detailed description of each supported collective call.

NCCL maintains communication between individual devices on a
single machine, in addition to communication between many machines.
Between devices on a single machine, NCCL currently supports PCle and
NVLINK. While between machines, it supports InfiniBand and TCP/IP
sockets by default. In addition, NCCL implements a plugin system for
custom interconnect solutions. The plugin system allows third-party
developers to implement and load different interconnect solutions easily.
Section[4.T|explores some existing 3rd party plugins.

2.4 TensorFlow

TensorFlow (TF) [15, 29, 32] is an AI platform originally developed
internally by Google. The platform was later open-sourced in 2015 under
the Apache License 2.0 [1], granting the public access to the platform.
TensorFlow provides a wide selection of algorithms and utilities to create
Al models, such as Neural Networks and Deep Neural Networks.

In particular interest for this thesis, TensorFlow supports hardware-
accelerated processing using Nvidia CUDA [17]. More specifically, the
platform support distributed computing using NCCL. These features allow
us to use TensorFlow as a drop-in benchmarking tool for our project.

2.5 Chapter Summary

There are many types of HPC hardware/systems/libraries. In this
chapter, we explored some technologies we want to use to improve ML
training. PCle is a hardware and protocol specification that is almost
ubiquitous for intra-machine communication. However, PCle is not
commonly used for inter-machine communication. NTB is a technique
for connecting multiple PCle networks together, like connecting multiple
nodes together. Dolphin provides NTB adapters that allow us to perform
inter-node communication over PCle. SISCI is an API provided by Dolphin
that simplifies implementing PCle communication for an application.
NCCL is a Collective Operations library made for GPUs in the Nvidia
ecosystem. It supports Collective Operations for both inter and intra-node
communication. Tensorflow is an ML framework provided by Google. It
can be used to implement distributed training for ML models. Tensorflow
implements distributed training using NCCL. In the next chapter, we
discuss how some parts of NCCL are implemented.

10

Chapter 3

NCCL Implementation

In this chapter, we discuss how NCCL is implemented. Before we
implement PCle support for inter-node communication in NCCL, we
explore how NCCL is implemented in general and examine how some
specific features in NCCL are implemented.

3.1 NCCL

NCCL is open source, and the code is hosted on Github. This allows us to
read and analyze the code and make changes if needed. For this project,
NCCL supports a plugin feature that allows us to implement a custom
interconnect without changing the original NCCL code. The plugin feature
is further discussed in the SISCI-NCCL section.

NCCL is a bleeding-edge library and is continually being developed,
publishing new releases with new features and improvements. For our
analysis and implementation, we use NCCL v2.8.4-1. While the user API
has stayed mostly the same over the previous releases, internal structures
have changed. For example, the plugin API we use in this project has
changed.

3.2 Terminology

NCCL is only focusing on using GPUs to do computation. The CPU is only
used to manage memory and connections. Here is a list of words that are
used to explain the system.

* Node/Host refers to a system in a network.

¢ Device in PCle terns refers to hardware that is accessible to a host via
PCle. In the context of CUDA, a device refers to a GPU and resources
accessible to a GPU. Devices are enumerated from 0 to n for each
node. For example, if a host has 2 devices, they are accessed by index
0 and 1, respectively. NCCL does also refer to other PCle devices to
model the topology of a network, such as NICs (Network Interface
Cards).

11

Network

Node/Host 0 Node/Hast 1

Device 0 Device 0
Rank 0 gpu Rank 2 gpu

\\ /
/ \

Device 1
Rank 1 gpu

Device 1
Rank 3 gpu

Figure 3.1: Example of how identifiers are assigned to hardware.

* Rank in NCCL refers to a device. Each device in an NCCL instance is
assigned a unique rank. Ranks are enumerated from 0 to n.

* Communicator/Comm is an abstraction NCCL uses to map devices and
ranks in a program.

* Host Memory/RAM refers to a memory that is directly accessible by a
CPU. It is possible to have many CPUs in a system and Non-Uniform
Memory Access (NUMA), however for simplicity, a host refers to all
CPUs in a system as the same actor.

* Device Memory/VRAM refers to memory that is located on a GPU, and
each device has its own memory. If we were to copy memory from
RAM to device memory, we call it "host to device" copy. The location
of memory plays a big part in the performance of an algorithm.

Figure 3.2|shows how NCCL identifies and represents hardware.

3.3 Bootstrap

In order for NCCL to perform collective operations, it needs to establish
connections to all nodes first. In the simple case where we only have
one node, this is trivial as CUDA has access to all devices on a system.
However, NCCL needs to make the systems work together under one
instance if we have more than one node. The Bootstrap phase is responsible
for doing this.

NCCL treats all ranks as discrete units. While we can have more than
one rank on a node, each rank has to negotiate and know about every other
rank in the instance. Briefly summarized, the bootstrap process relies on
using TCP/IP connections to distribute initial connection, topology, and
hardware data. When the initial data has been distributed, each rank uses
the data to select parameters for the real connections.

12

3.3.1 Initial Communication

NCCL assigns rank 0 as root rank. If there is more than one node, a user will
call ncclGetUniqueld to get a ncclUniqueld object. The user is responsible
for distributing the unique id object to all other ranks. This is trivial if
there is only one node. If not, the data has to be copied with an external
tool. As of NCCL v2.8.4-1, the ncclUniqueld only contains an IPv4/IPv6
address union, so NCCL can only bootstrap using an IP network. The
unique id is pointing to the root rank. Then every other rank will connect
to the root rank. The root rank will wait until nranks — 1 ranks have
connected. Now the root rank knows the location (address) of every rank,
and it can create an "all gather" ring of the ranks. The bootstrap process
uses this ring to configure the system, as mentioned earlier. The ring is
created by ordering the ranks, having each rank listen for a connection from
rank rank + 1 % nranks and connect to rank rank + 1 % nranks. Then to
perform an all-gather operation, each node iterates ranks — 1 times, storing
and sending the received slice via its connection. Code listing [3.1| shows
how the ring is created, and listing 3.2| shows how the ring performs an
all-gather call.

While the bootstrap ring can be used to perform some collective
operations, it is not ideal for High-Performance Applications. The ring
created in the bootstrap phase does not take the network topology into
account. The Topology phase will enable NCCL to set up a more efficient
structure for collective operations.

Listing 3.1: Bootstrap create ring pseudo code

// This runs on all ranks

nranks = number of ranks
rank = rank this thread is executing, in range 0 to nranks — 1
root_address = address of root rank read from ncclUniqueld

next_rank
prev_rank

NULL // connection to next rank in the ring
NULL // connection to previous rank in the ring

if rank == { // rank 0 is root
// gather all ranks
conn_list = array[nranks]
for i = 1; i < nranks; ++i {

listen and accept connection from rank i
place connection data in conn_list[i]
}
// create all gather ring
for i = 1; i < nranks; ++i {
data = conn_list[i + 1 % nranks] // get next connection for rank i
send data to rank i

}

next_rank = conn_list[rank + 1 % nranks] // store rank 0 next_rank

13

else {
connect to root
receive next connection data from root and store it in next_rank
}
// listen and connect must not block each other
listen for (rank — 1 % nranks) while connecting to (rank + 1 % nranks)
store connections in prev_rank and next_rank

Listing 3.2: Bootstrap all gather pseudo code

nranks = number of ranks

rank = rank this thread is executing, in range 0 to nranks — 1
next_rank = connection to next rank in the ring
slice = data to send
slices = array[nranks] // array to store data for all ranks
slices[rank] = slice
for i = 0; i < nranks — 1; ++i {

// send and receive must not block each other

send slices|[rank — i % nranks] to next_rank

receive data from prev_rank store in slices[rank — i — 1 % nranks]

}

// now slices in all ranks contains data from all ranks in the same ord

When the all-gather ring is set up, the instance will share all rank
addresses. This enables each rank to create an individual connection
between any other rank and is used later when setting up the proper
connections.

3.3.2 Topology

The next step is to detect the topology for each rank in the system to decide
the best configuration for collective calls. One way this can be done is
with a user-defined configuration file. NCCL does, in addition, support
automatic topology detection and configuration. This is done by having
each rank detect hardware and links. The links are used to build a graph
of the system based on what a rank can detect. The topology maps out the
intra-node location of hardware on a machine, where devices are placed,
and interconnects” speed. The topology does only model intra-machine.
Inter-node routes (network topology) are not considered, only the speed of
the interfaces connecting to the external network.
NCCLs network topology graph has 6 node types:

e GPU (Device/rank)
¢ PCI (PCle bus) Usually the way hardware is connected

e NVS (NVLink) Can connect CPU and GPUs without an PCle
connection

14

¢ CPU (NUMA domain) A machine can have multiple CPUs, where the
ram has different access times

e NIC (Network Interface Card)

* NET (Network Connection) The network topology itself is not
modeled, just the endpoints

Listing [3.3|shows a XML dump of a topology.

| <system version="1">

"

<cpu numaid="-1" arch="x86_64" vendor="Genuinelntel" familyid="6
" modelid="60">
<pci busid="0000:04:00.0" class="0x030000" link_speed="5 GI/s"
link_width="4">
<gpu dev="0" sm="50" rank="0" gdr="0"/>
</pci>
<pci busid="0000:05:00.0" class="0x030000" link_speed="5 GI/s"
link_width="4">
<gpu dev="1" sm="50" rank="1" gdr="0"/>
</pci>
<pci busid="0000:09:00.0" class="0x020000" link_speed="2.5 GT/
s" link_width="1">
<nic>
<net name="enp9s0" dev="0" speed="1000" port="0" guid="0x0
' maxconn="65536" gdr="0"/>
</nic>
</pci>
</cpu>
</system>

Listing 3.3: NCCL topology XML dump

While each GPU is its own rank in the whole NCCL instance, each
machine selects intra-machine ranks. The intra-node rank is responsible
for selecting how data is moved internally in the machine.

During the topology phase, NCCL will also determine how it can best
utilize the detected hardware. This is done by testing and tuning the graph.

3.3.3 Communication

When the topology is analyzed and communication patterns have been
built, the nodes will set up the actual connections between ranks.

Each rank will set up a send to manage communication and a
receive proxy abstraction for each connection. Send/Receive proxies are
responsible for dispatching transfers. A connection supports multiple
overlapping transfers, so the proxies implement a slot system to manage
multiple messages. Depending on the available bandwidth and topology,
NCCL may also create multiple connections between each pair of ranks.
The proxy is also responsible for scheduling on what connection a message
is transmitted on.

In order for ranks to keep track of data transfers, NCCL defines some
simple protocols. The system requires efficient hardware usage, but it also
needs low transfer latency. To achieve this, NCCL uses protocols that are

15

optimized for different message sizes. As of NCCL v2.8.4-1, there are three
supported protocols: Simple, LL (Low Latency) and LL128.

The Simple protocol is optimized for large message sizes. It is a trivial
FIFO queue where the sender sends messages in order, and the receiver
receives messages in order. The implementation still allows for out-of-
order completion of transfers, but the point is that each message is ordered
in the FIFO queue. Each message is treated as an atomic object, so a full
message must have been transferred before it is completed. This means
that the receiving end must create a memory barrier and wait until the
underlying transfer layer signals a complete message transfer. The receive
proxy is executed at the CPU, so for a GPU to clear the memory barrier, it
has to be notified by the CPU when using the Simple protocol.

LL is optimized for small messages. It works by encoding the data such
that it is divided into 8-byte atomic chunks. A chunk consists of 4-byte
data, and a 4-byte flag. The encoding is done to remove the memory barrier
from the Simple protocol. It relies on the GPU being able to read 8 bytes
atomically, so when the flag section is set, it knows the data received for that
chunk is complete. Instead of waiting for the complete message to arrive,
the GPU can wait for individual chunks of a message. This also means that
a GPU can receive a message directly without waiting for a completion
signal from the CPU. In the Simple protocol, direct DMA is possible
because the memory does not change. However, LL requires encoding and
decoding of messages. This adds extra cost when sending messages using
this protocol. In addition, the message size becomes twice as big because
half of each chunk is used for the flag. However, it also has some speed
advantages because it divides the data into discrete atomic chunks. These
chunks can be pipelined on the GPU, starting processing before all chunks
have arrived. This protocol is only beneficial if the encoding/decoding
process cost is low and potential speed gain is sufficient.

LL128 is also made for small messages like LL. It is similar to LL, except
the encoding is different. 128-byte chunks are used instead, where the first
120 bytes are data, and the last 8 bytes are the flag. However, LL128 also
requires data to be received in order. This is because the GPU can not read
128 bytes atomically, so there needs to be a guarantee that the payload has
arrived before the flag is set. LL128 has potentially better bandwidth usage
than LL because the flag encoding only uses 8 of 128 bytes of each chunk.
However, it can not always be used given the order constraint.

The exact threshold for deciding what protocol to use, given the
message size, is calculated/tuned during the topology phase and can
differ for communicators. According to the pre-computed thresholds, the
Send /Receive proxies are also responsible for dispatching a transfer with a
given protocol.

3.4 Collective Calls

Collective calls are the core functionality of NCCL. The code implementing
the collective calls is highly optimized for execution speed and efficient

16

hardware utilization. A collective operation is executed both on the CPU
and on the GPU, like in a normal CUDA program. Special parts of the
device code are implemented in Nvidia Parallel Thread Execution [22]
(PTX). The device code is generic to support parameters that are set in the
bootstrap phase, in addition to environment variables. C++/CUDA meta
template programming is used to make the code generic, but it also makes
it hard to read. The host code uses send/receive proxies that are set up
during the bootstrap phase to send data. However, the device code needs
to be able to encode/decode communication protocols used.
The collective calls NCCL offers are:

e Broadcast

All Gather

Reduce

All Reduce

Reduce Scatter

3.4.1 Broadcast

Broadcast distributes data from one rank (called the root rank) to all other
ranks. All ranks will end up with the array send from the root rank.

3.4.2 Reduce

Reduce gathers data from all ranks to a single rank, and perform a specified
reduction operation on the data. All ranks must send data of equal size. In
addition, the data must be aligned in such a way that the reduce-operation
can be performed. The data type specifies the alignment. NCCL supports
four operations: Sum, Product, Max, Min. The root rank will end up in an
array composed of reduced data from all ranks. Reduction is performed
across ranks, so in the output array, the element at index i will be the
reduction of index i at all ranks.

3.4.3 All Gather

All Gather gathers different data from all ranks to all ranks. Ranks must
send data of equal size. All ranks will end up with equal arrays composed
of data from each rank. The data is sorted by rank index and separated by
send size.

3.4.4 All Reduce

All Reduce does the same as Reduce, but for all ranks. Ranks must send
data of equal size, and the data must be aligned. All ranks will end up with
equal output arrays with reduced elements. The reduction is performed
the same way as in Reduce.

17

3.4.5 Reduce Scatter

Reduce Scatter does the same as All Reduce. However, the output array
is scattered for each rank. Each rank receives an equally sized part of the
complete reduced output array.

3.5 Async Interface

By default, NCCL supports non-blocking asynchronous library calls. This
enables a user to dispatch more than one collective operation, much like a
CUDA stream. ncclGroupStart and ncclGroupEnd are used to control the
dispatch. ncclGroupStart allocates a queue for NCCL calls, then every
NCCL call from the calling thread will be stored in the queue. Then to
dispatch the operations, ncclGroupEnd is called. NCCL will dispatch calls
to their designated CUDA stream like in a normal asynchronous CUDA
program.

3.6 Chapter Summary

In this chapter, we explored how some features of NCCL are implemented.

The bootstrap phase initiates all nodes and then all ranks in a collective.
It makes sure all ranks know about all other ranks, so any rank is able to
communicate with any other rank.

When all ranks are initialized, the topology phase starts. Here each
node detects and maps out what hardware is located on the machine.
Hardware includes CPUs, GPUs, NICs and interconnect types. Each
node then creates an intra-machine graph, connects hardware with PCle
or NVLink interconnect, and evaluates the graph. When the intra-node
topology is decided, the system will decide what pattern to use for the
whole system. The two main patterns are a tree or a ring. While the
topology is evaluated, NCCL is also tuning it by performing tests. This
allows each rank to pre-compute thresholds for message sizes.

When the topology is evaluated and tuned, the collective can be used.
A user can dispatch many collective operations using the same topology.

In the next chapter, we discuss our plugin design and show the
implementation of our PCle plugin.

18

Chapter 4

SISCI-NCCL Implementation

In this chapter, we discuss and explain how we implemented support for
Dolphin PCle support in NCCL. First, an acknowledgment to the original
author of SISCI-NCCL, Eivind Alexander Bergem at Dolphin Interconnect
Solutions. His work laid the groundwork for this project, designing and
implementing the first version of SISCI-NCCL. Eivinds code implemented
a fully functional SISCI plugin for NCCL version v2.4.*, and it served as a
great starting point for this project. The plugin implemented in this project
makes changes to the original version to be compatible with NCCL version
v2.8.4-1. However, it uses the same abstractions, and the general program
flow is the same. The main reason for using a more recent version of NCCL
was to access some newer features of Tensorflow. This is discussed more in
chapter|6]

As of NCCL version v2.8.4-1, two plugin interfaces for network
interconnects are provided. The plugins are dynamically loaded on
application startup, and therefore do not require NCCL to be recompiled
in order to use a plugin.

We call the first interface NCCL-NET (Network), it is a simple interface
connecting two nodes with a one-directional connection. It provides a
mechanism to register/deregister memory for RDMA transfer, and it has
optional support for CUDA pointers. This makes it simple to implement
new interconnects because it is only necessary to implement a sender and
receiver abstraction. However, the one-directional connection abstraction
does not allow for more complex network features such as multicast.

We call the second interface NCCL-COLL-NET (Collective Network).
This is not a complete replacement for the NET plugin but an optimization
for collective calls. Instead of NCCL composing communicators with many
one-directional connections, the plugin can create its own multi-connection
communicator. It is more complex and assumes the plugin is able to
perform data reduction en route. The Dolphin hardware does not support
such reduction capability, so it is not possible to use the NCCL-COLL-NET
interface directly. A way to make this interface work would be to call the
reduction kernels from the plugin itself. However, this would require the
plugin to dispatch CUDA kernels which would add major complexity to
the code. NCCL plugins are dynamically loaded, so the reduction kernels

19

located in the NCCL source code would have to be linked separately to the
plugin.

4.1 Other NCCL plugins

As mentioned, NCCL features a plugin system for implementing custom
transports. NCCL calls this plugin interface NET and is also used to
implement NCCLs internal interconnect support. By default, NCCL
supports TCP and InfiniBand via Linux. These implementations are
located in the NCCL source code and provide a reference for how to
implement the plugin. In addition, there are open source third-party plugin
implementations.

4.1.1 AWS OFI NCCL

AWS OFI NCCL is an NCCL plugin developed by Amazon Web Services.
It allows NCCL applications to use libfabric [23] as a proxy instead of
implementing the interconnect directly. Libfabric is a project that tries to
create a generic middle layer for fabric communication. The goal is that
applications only need to know about Libfabric, and hardware APIs only
need to interface with libfabric to be used by an application. This plugin is
implemented with the NCCL-NET interface.

4.1.2 Mellanox Plugins

Mellanox also supports NCCL plugins for their RDMA and Switch
technology. Mellanox Scalable Hierarchical Aggregation and Reduction
Protocol (SHARP) [16] is a protocol that allows for hardware located
in a network, such as switches, to perform collective operations. The
SHARP plugin is implemented using the more complex NCCL-COLL-NET
interface. Mellanox also provides a plugin for their InfiniBand hardware,
and this is implemented using NCCL-NET.

4.2 Creating the Plugin

As mentioned earlier, for this project, we use the NCCL-NET plugin to
provide support for Dolphin PCle hardware in NCCL.

The code listed in this section is from the NCCL repository version
v2.8.4-1 and from the SISCI-NCCL repository.

4.2.1 Error Management

When creating a plugin, it is good practice to report or handle all errors
when working with an API. Because the plugin is called from inside NCCL
instead of by a library user, NCCL needs to reason about potential errors.
Both NCCL and SISCI provide their own error managing patterns.

20

1
2

19
20

21

nn

23

24

NCCL uses a custom return (ncclResult_t) type to signal if a function
was successful or not. All functions in the plugin interface return this
type. To make the code more ergonomic to read and write, we use a macro
to unwrap errors. Functions called inside NCCLCHECK is automatically
unwrapped as long as the function returns a ncclResult_t type.

In the SISCI-NCCL code, all SISCI functions are prefixed with nccl. To
simplify the error unwrapping code when using SISCI, a macro is created
to wrap around each SISCI API function. The macro automates the error
unwrapping and converts the error into an NCCL error. By doing this, it is
possible to call SISCI functions with the NCCLCHECK macro.

By converting errors, all errors should be reported to NCCL, causing it
to abort if we encounter a problem.

4.2.2 Plugin Interface

To implement a plugin, NCCL provides a declaration of a set of functions
that the plugin needs to implement. Listing defines a struct with
function pointers. The struct is used to locate where in the plugin each
function is located. This is necessary to load the plugin dynamically.

typedef struct {
// Name of the network (mainly for logs)
const char* name;
// Initialize the network.
ncclResult_t (*init)(ncclDebugLogger_t logFunction);
// Return the number of adapters.
ncclResult_t (+devices)(int+ ndev);
// Get various device properties.
ncclResult_t (+getProperties)(int dev, ncclNetProperties_v4_t=

props);

// Create a receiving object and provide a handle to connect to
it. The

// handle can be up to NCCL_NET HANDLE MAXSIZE bytes and will be
exchanged

// between ranks to create a connection.

ncclResult_t (+listen)(int dev, void+ handle, void=sx listenComm)

// Connect to a handle and return a sending comm object for that
peer.

ncclResult_t (*connect)(int dev, voids handle, void=#* sendComm) ;

// Finalize connection establishment after remote peer has
called connectHandle

ncclResult_t (xaccept)(voidx listenComm, void#* recvComm);

// Register/Deregister memory. Comm can be either a sendComm or
a recvComm.

// Type is either NCCL PTR_HOST or NCCL_PTR CUDA.

ncclResult_t (*regMr) (void+ comm, void+ data, int size, int type
, void =+ mhandle) ;

ncclResult_t (*deregMr) (void* comm, void* mhandle);

// Asynchronous send to a peer.

// May return request == NULL if the call cannot be performed (
or would block)

ncclResult_t (*xisend)(void* sendComm, void* data, int size, void
+ mhandle, void=s+* request);

// Asynchronous recv from a peer.

21

26 // May return request == NULL if the call cannot be performed (
or would block)

7 ncclResult_t (xirecv)(void* recvComm, void* data, int size, void
+ mhandle, void=+* request);

28 // Perform a flush/fence to make sure all data received with
NCCL_PIR_CUDA is

29 // visible to the GPU

30 ncclResult_t (xiflush)(void* recvComm, void+ data, int size,
void+ mhandle, void#* request);

31 // Test whether a request is complete. If size is not NULL, it
returns the

32 // number of bytes sent/received.

33 ncclResult_t (+test)(void+ request, int: done, int+ size);

3¢ // Close and free send/recv comm objects

3 ncclResult_t (*closeSend) (void* sendComm) ;

36 ncclResult_t (*closeRecv) (void* recvComm) ;

37 ncclResult_t (*closeListen) (void* listenComm) ;

38 } ncclNet_v4_t;

39 typedef ncclNet_v4_t ncclNet_t;

10 #define NCCL_PLUGIN_SYMBOL ncclNetPlugin_v4

Listing 4.1: NET plugin interface from nccl:src/include/nccl_net.h

When the plugin is started, NCCL calls the init function. As the name
suggests, it is meant to initialize the plugin and network structures. For
SISCI, this allows us to initialize the SISCI library with ncclSClInitialize,
which is necessary to use the SISCI API Because the plugin is loaded as
a Linux shared object, it is important to keep track of where and how
memory is allocated. Memory can be owned by the shared object or by
the application using the shared object. If a global variable is declared
with extern, it can cause a situation where the shared object memory can
be accessed by all applications using the shared library. Therefore it is
important to make sure the memory access is handled correctly when
implementing a shared object. If not, the code might produce non-obvious
race conditions because two or more separate processes are writing to
shared object memory at the same time. Even though this project does not
need to have more than one NCCL application running on each machine,
it is still useful to be strict when accessing shared memory:.

1 // Initialize the network.

2 ncclResult_t ncclSiscilnit (ncclDebuglogger_t logFunction) {
ncclDebuglog = logFunction;

4 pthread_mutex_lock(&ncclSisciLock);

5 if (ncclSisciNDevs == —1) {

6 INFO (NCCL_NETINCCL_INIT, "Trying to load SISCI");
7 NCCLCHECK(ncclSCIInitialize (NO_FLAGS)) ;

8 ncclSisciNDevs = 0;

9 for (int i = 0; i < MAX_SCILDEVS; i++) {
0 struct ncclSisciDev *dev = &ncclSisciDevs[i];
1 dev—adapter_no = i;

12 if (ncclSCIGetLocalNodeld (dev—>adapter_no, &dev—>
node_id , NO_FLAGS) ==

13 ncclSuccess) |

14 INFO(NCCL_INIT INCCL_NET, "NET/SISCI : adapter %u,

node id %u",
15 dev—adapter_no, dev—>node_id);
16 dev—>node_offset = (dev—>node_id >> 2) — 1;

22

ncclSisciNDevs ++;

}
else {
break;
}
}
}

pthread_mutex_unlock(&ncclSisciLock);
if (ncclSisciNDevs == 0) {

INFO (NCCL_INIT INCCL_NET, "NET/SISCI : No devices found.");
}

return ncclSuccess;

Listing 4.2: SISCI-NCCL init function from sisci-nccl:src/sisci_nccl.c

Listing {4.2| shows the implemented init function for SISCI-NCCL. The
logFunction parameter is a function pointer to NCCLs log function. It allows
the plugin to forward log messages to the NCCL log system. Log messages
are reported with the WARN and INFO macros defined in sisci-nccl:
src/sisci_nccl.h. The log system provides an interface for filtering
messages for testing and development. To ensure the network structures
are only initialized once, the initialization is wrapped in a mutex.

The NET abstraction is modeled after a system using NICs (Network
Interface Cards), and it calls each NIC a device. As mentioned in section
each NIC is treated as a node in the topology. This enables NCCL to
select the best NIC or even send via more than one NIC to achieve higher
bandwidth. The Dolphin hardware is similar to a NIC, so it can operate
under the same abstraction. It is a PCle device, just like most NICs, and
there are no fundamental differences between the two domains.

To initialize the network structures, the init function tries to detect all
SISCI capable devices available. When the Dolphin driver is installed and
configured properly, it knows about connected devices. The SISCI API
provides functions to detect and query Dolphin devices. Dolphin devices
are numbered by an adapter number. We assume that devices always are
numbered from 0 upwards and that there is no gap between adapters.
Listing 4.3| shows the ncclSisciDev struct. adapter_no member is necessary
to specify what adapter we use when calling other SISCI functions. node_id
will be distributed later to other nodes to create connections. node_offset is
used to assign unique memory segment ids (this is not used).
struct ncclSisciDev {

unsigned int adapter_no;

unsigned int node_id;

unsigned int node_offset;
)i
Listing 4.3: SISCI-NCCL device structure from sisci-nccl:src/sisci_
nccl.c

The plugin interface assumes each device is enumerated from 0 to N.
NCCL can indirectly reference a plugin device without knowing about the
structure itself using the index. The ncclSisciDevs array is used to map
device indexes to device structs, as it is trivial with array indexing. Listing

23

G ok W N =

N

1

implements the devices call. It returns the number of devices the plugin
found after initializing, so NCCL knows the range it can query devices.

// Return the number of adapters.

ncclResult_t ncclSisciDevices(int* ndev) {

sndev = ncclSisciNDevs;
return ncclSuccess;

}
Listing 4.4: NET plugin ncclSisciDevices from nccl:src/include/nccl_
net.h

4.2.3 Device Properties

In order for NCCL to reason about plugin devices without knowing about
the actual implementation, it has a standardized properties field. Listing
shows the ncclNetProperties_t struct. The getProperties function allows
NCCL to query each device for properties, so the plugin needs to produce
the necessary data.
name is only used for logging and debugging, so the name does not

matter for the functionality of the plugin, so we only assign a unique name
based on the device/adapter index.
typedef struct {

charx name; // Used mostly for logging.

charx pciPath; // Path to the PCI device in /sys.

uint64_t guid; // Unique identifier for the NIC chip. Important

for
// cards with multiple PCI functions (Physical

or virtual).
int ptrSupport; // NCCL_PTR_HOST or NCCL_PTR _HOST|NCCL_PTR CUDA

int speed; // Port speed in Mbps.
int port; // Port number.
int maxComms; // Maximum number of comms we can create

}ncclNetProperties_v4_t;

typedef ncclNetProperties_v4_t ncclNetProperties_t;

Listing 4.5: NET plugin properties struct from nccl:src/include/nccl_
net.h

pciPath is a regular path string to a location in the file system (sysfs).
Sysfs is standardized in the Linux kernel, giving NCCL the ability to locate
all types of PCle devices on a Linux system. The path describes where
the device is located in the system’s PCle topology. NCCL uses this in
the topology phase to model and evaluates the hardware topology, so it is
important that this path is correct. To get this path, the SISCI API provides
functionality to query the location of a device with a Bus:Device.Function
(BDF) format. The SCIQuery function fills a 16-bit field with the BDF of the
requested device. In the sysfs hierarchy, PCle devices are projected under
/sys/class/pcie_bus according to their BDF. So it is trivial to construct
the complete path to the device when the values are extracted from the bit
field. Listing[4.6]shows how the path is created.

// Return the device path in /sys. NCCL will call free on this
path.

24

5

ncclResult_t ncclSisciPciPath (int dev, chars+ path) {
struct ncclSisciDev xdevp = &ncclSisciDevs[dev];
char devicepath [PATH MAX];
sci_query_adapter_t query;
uintlé_t bdf;
uint8_t bus;
uint8_t device;

query .subcommand = SCI_Q ADAPTER_BDF;

query .localAdapterNo = devp—>adapter_no;

query.data = &bdf;

NCCLCHECK (ncclSCIQuery (SCIL_Q _ADAPTER, &query,
NO_FLAGS)) ;

bus = bdf >> §;

device = bdf & 0x00ff;

snprintf (devicepath , PATH MAX,
"/sys/class/pci_bus/0000:%02x/device /0000:%02x:%02x
.0/",

bus, bus, device);
+path = realpath(devicepath, NULL);

return ncclSuccess;

Listing 4.6: SISCI PCle path function from sisci-nccl:src/sisci_nccl.c

The guid field is not used by NCCL directly, so it does not affect the
functionality of the plugin.

ptrSupport describes the supported transport features of the device.
As discussed earlier, NCCL supports RDMA, where memory can be
directly read/written to a remote host. This is usually referred to
in the context of RAM, but NCCL also supports GPUDirect RDMA
(GDRDMA). GDRDMA allows a remote host to access device memory
directly, bypassing intermediate write and read steps. By default, NCCL is
configured to always store data in RAM before sending it to another node.
However, with GDRDMA, it is possible to remove the intermediate step,
sending data located on a GPU directly to a GPU or RAM on a remote
host. In order to enable GDRDMA, we need an interconnect that is able to
perform RDMA directly on GPUs. The Dolphin hardware and SISCI API
does have this capability, so we can set ptrSupport to support both host and
CUDA pointers. Section [4.2.§ discusses how this is implemented.

The speed parameter should be set to the bandwidth capability of the
device. NCCL uses this parameter in the topology and tuning steps to
compute the most efficient paths and topology patterns. In addition, it is
used to guide how much resources should be allocated, such as the number
of communicators and buffers sizes. The interface expects a speed for the
device. However, the Dolphin hardware allows for multiple links for each
device. NCCL does not model the inter-host network topology, so the
plugin device is treated as a node with a speed attribute in the topology. To
get a reliable speed, we query all links of the device then select the lowest
speed.

port is only for logging as the interface was originally intended for NICs.

25

It is not relevant for SISCI and does not affect the behavior of NCCL.

maxComms is the maximum number of communicators NCCL is
allowed to create for each plugin device. Communicators require resources
on the device, so to provide reliable operation, this should be set so the
device will not run out of resources. Each communicator only connects
two ranks in one direction. NCCL will also create more than one
communicators between the same ranks to enable overlapping transfers if
the bandwidth allows it. The distribution strategy /pattern selected dictates
how many communicators NCCL will use. The number of GPUs on each
host and interconnect bandwidth determine the pattern. For this version,
the maxComms parameter is hardcoded to 256.

Listing[4.7jshows an NCCL topology dump of a system with our plugin
installed. NCCL is able to detect and reason about the Dolphin adapter.

<system version="1">
<cpu numaid="—-1" arch="x86_64" vendor="Genuinelntel" familyid="6
" modelid="60">
<pci busid="0000:04:00.0" class="0x030000" link_speed="5 GI/s"
link_width="4">
<gpu dev="0" sm="50" rank="0" gdr="1"/>
</pci>
<pci busid="0000:05:00.0" class="0x030000" link_speed="5 GI/s"
link_width="4">
<gpu dev="1" sm="50" rank="1" gdr="1"/>
</pci>
<pci busid="0000:01:00.0" class="0x060400" link_speed="8 GI/s"
link_width="8">
<pci busid="0000:03:00.0" class="0x068000" link_speed="8 GI/
s" link_width="8">
<nic>
<net name="sisci_adapter_0_node_4" dev="0" speed="63040"
port="0" guid="0x0" maxconn="256" gdr="1"/>
</nic>
</pci>
</pci>
</cpu>
7 </system>

Listing 4.7: NCCL topology XML dump detecting a Dolphin NTB adapter

4.2.4 Allocating Segments

In order for ranks to send data to remote ranks, they need to know where
to send it. SISCI abstracts memory to segments. Segments have their own
machine unique id and memory to be referenced with the id instead of a
system global address.

Because it can be more than one connection located on a machine, we
need to make sure all connections have unique segment ids. Listing
shows how the segment id allocator is implemented. It is just a simple
ticker at its core. However, it does allocate a range of ids. This is
because some connections may need more than one segment depending
on the configuration (RDMA vs. GDRDMA). It is possible that this

26

implementation can run out of segment ids. However, it is sufficient for
the scope of this thesis.
// make room for 256 memory segments for each comm
static unsigned int alloc_segment_id () {
pthread_mutex_lock(&ncclSisciLock);
unsigned int id = (SEGMENT_PREFIX | (ncclSisciSegmentIldCount
<< 8));
ncclSisciSegmentIdCount++;
pthread_mutex_unlock(&ncclSisciLock);
return id;
}
Listing 4.8: Segment allocator function from sisci-nccl:src/sisci_nccl.
C

4.2.5 Channels

The plugin interface is designed as an asynchronous interface. This allows
for overlapping send operations on a single connection. To support this, we
created a channel abstraction for the connection, where each connection has
multiple channels. Each send call is scheduled on a channel, allowing for
multiple transfers at the same time.

Data transfers are implemented using the DMA engine provided by
the SISCI API. To implement overlapping transfers in SISCI, we created
a DMA queue for each channel. This allowed us to start DMA transfers
independently. To schedule messages, round-robin is used, assigning
messages to channels in order.

4.2.6 Mailbox

In order to synchronize communication between the send and receive
peers, it is necessary to implement a protocol. We created a mailbox
abstraction to maintain this protocol. A send peer needs to know when the
corresponding receive peer is ready to receive, and the receive peer need to
know when the corresponding send peer is done sending.

The protocol is as follows:

1. Receive peer is ready to receive, it sends RECV_REQUESTED
command to send peer, and waits.

2. Send peer receives RECV_REQUESTED from receiver, it starts a
DMA transfer to receiver segment.

3. Send peer completes DMA transfer, then sends SEND_NOTIFIED
command to receive peer, send operation is complete.

4. Receive peer receives SEND_NOTIFIED command, receive operation
is complete.

The mailbox is a bidirectional communication channel. Both peers have
a local segment and connect to the remote peers’ segment. Local segments

27

N

are initialized to NULL. To send, a peer writes to the remote segment.
To receive, a peer reads its local segment. If the local segment is not
NULL, a message has arrived. Importantly the receiving peer must read
the message, then reset the local segment. Protocol messages are not big,
so it makes sense to use PIO to send messages.

Listing 4.9 shows the implementation of the read and write functions.
The functions take a channel parameter instead of a mailbox. This is so
we can use the same mailbox for multiple channels, as one connection
may have more than one channel. Each channel has its own space on the
segments, so they don’t overwrite each other. The mailbox also supports
attaching a 64-bit payload to each message. This is used by the receive end
to notify data offsets, and the send peer to notify how much data was sendt
in a message.
static void mailbox_write(struct ncclSisciChannel =channel,

uint64_t command, uint64_t value) {
uint64_t sremote_command = (uint64_t=)channel—>mailbox—

remote_addr + channel—>id+MAILBOX_SEGMENT SIZE;
uint64_t xremote_value = remote_command + 1;

sremote_value = value;
*remote_command = command;

}

static int mailbox_read (struct ncclSisciChannel xchannel, uint64_t
command, uint64_t =xvalue) ({
uint64_t xlocal_command = (uint64_t=)channel—>mailbox—>
local_addr + channel—>id*MAILBOX_SEGMENT SIZE;
uint64_t =xlocal_value = local_command + 1;

if (*local_command == command) {
if (value != NULL) ({
*value = xlocal_value;

}
xlocal_command = NO CMD;

return 1;

}

return 0;

Listing 4.9: Mailbox read /write from sisci-nccl:src/sisci_nccl.c

4.2.7 Establishing Connections

When the plugin is initialized, and NCCL has evaluated the device
parameters, it can start creating connections. The plugin interface provides
a simple handshake protocol to implement this, listen, connect and accept
functions are intended for this.

A simplified workflow is as follows: We want to establish a connection
from rank 1 to 2. Rank 2 will call listen. Rank 1 has to know the address of
rank 2 and call connect with rank 2s address as a parameter. Rank 2 will call
accept and the function will block until the connect message from rank 1
arrives. After the accept function is done, both ranks should have enough

28

information about each other to maintain a connection. Rank 1 will be a
send communicator, and rank 2 will be a receiver communicator.

Listing[4.10]shows how the connect call is implemented. The call creates
a comm object and stores it in the listenComm parameter. To establish
a connection between the two ranks, we opted to use data interrupts
provided by the SISCI API. Data interrupts allow us to listen for triggers
on a specific id. The listen call will create a data interrupt, then send the
interrupt id to the connect rank. To send to interrupt id, NCCL provides the
opaqueHandle parameter. This is a pointer to a data block that can be used
by the plugin to exchange information. We store the interrupt id together
with some other parameters from the listen rank. When the ncclSisciListen
function returns, NCCL will send the data stored at the opaqueHandle to
the connect rank.

1 // Create a receiving object and provide a handle to connect to it
. The

2 // handle can be up to NCCL NET HANDLE MAXSIZE bytes and will be
exchanged

3 // between ranks to create a connection.

i ncclResult_t ncclSisciListen(int dev, void* opaqueHandle, voidx*

listenComm) {

struct ncclSisciListenComm xcomm;

7 NCCLCHECK(ncclCalloc(&comm, 1)) ;

8 comm—>dev = &ncclSisciDevs[dev];

10 comm—>local_mailbox_segment_id = alloc_segment_id () ;
11 comm—>local_memory_segment_id = alloc_segment_id () ;

13 NCCLCHECK (ncclSCIOpen (&comm—>sd , NO_FLAGS)) ;
14 +listenComm = comm;
15 NCCLCHECK(cuda_get_device (&comm—>gpu)) ;

17 struct ncclSisciHandlex handle = (struct ncclSisciHandle %)
opaqueHandle;
18 static_assert(sizeof(struct ncclSisciHandle) <

NCCL_NET_HANDLE MAXSIZE,
19 "ncclSisciHandle size too large");

20 handle—>node_id = comm—>dev—>node_id;

21 handle—>gpu = comm—>gpu;

2 handle—>mailbox_segment_id = comm—>local_mailbox_segment_id ;

23 handle—>memory_segment_id = comm—>local_memory_segment_id;

24

25 NCCLCHECK(ncclSCICreateDatalnterrupt (comm—>sd, &omm—>ir , comm
—>dev—>adapter_no, &handle—>irno,

26 NO_CALLBACK, NO_ARG, NO _FLAGS))

27 INFO(NCCL_INIT INCCL_NET, "Listening on %u", handle—>irno);

28

29 return ncclSuccess;

Listing 4.10: Listen function from sisci-nccl:src/sisci_nccl.c
Listing shows the connect implementation. The connect rank will

then call connect when it receives data pointed to by opaqueHandle. A
sendComm object is then created by the call and given back to NCCL. Unlike

29

the listen command, NCCL does not provide a bootstrap mechanism in
the reverse direction (connect to accept). This is why we initialized the
interrupt on the listen side, opening a communication channel. Local peer
data is added to a data block, and then the data interrupt is triggered
together with the data block. After the data interrupt is triggered, the
send peer has received enough information to initialize. The interrupt is
disconnected and freed as we do not use the interrupt for operation. Then
the mailbox and channel abstractions are initialized, and the sendComm
parameter is pointed to the communicator object.

1 // Connect to a handle and return a sending comm object for that
peer.

> ncclResult_t ncclSisciConnect(int dev, void* opaqueHandle, voidx=
sendComm) {
struct ncclSisciSendComm *comm;

4 struct ncclSisciHandle* handle = (struct ncclSisciHandle)
opaqueHandle;

6 NCCLCHECK(ncclCalloc(&comm, 1));

7 comm—>dev = &ncclSisciDevs[dev];

8 comm—>remote_node_id = handle—>node_id;

9 comm—>type = SEND COMM;

10 NCCLCHECK(cuda_get_device(&comm—>local_gpu)) ;

11 comm—>remote_gpu = handle—>gpu;

12 comm—>local_memory_segment_id = alloc_segment_id () ;

13 comm—>remote_memory_segment_id = handle—>memory_segment_id;

15 INFO(NCCL_INIT INCCL_NET, "Connecting to node %d on %d", handle
—>node_id , handle—>irno);

17 unsigned int local_mailbox_segment_id = alloc_segment_id () ;

19 sci_desc_t sd;

20 sci_remote_data_interrupt_t ir;

21 uint32_t data[IR_DATA_SIZE];

2 data[0] = htonl(comm—>dev—>node_id);

23 data[1] = htonl(comm—>local_gpu);

24 data[2] = htonl(local_mailbox_segment_id);

25 data[3] = htonl(comm—>local_memory_segment_id);
26

28 NCCLCHECK(ncclSCIOpen(&sd, NO_FLAGS)) ;

30 while (ncclSCIConnectDatalnterrupt(sd, &ir, handle—>node_id,
comm—>dev—>adapter_no, handle—>irno, 0, NO_FLAGS) !=
ncclSuccess) |

sleep (1) ;
}

34 NCCLCHECK(ncclSCITriggerDatalnterrupt (ir , &data, sizeof (+data)
+IR_DATA_SIZE, NO_FLAGS)) ;

w
DR

36 NCCLCHECK(ncclSCIDisconnectDatalnterrupt (ir , NO_FLAGS)) ;
37 NCCLCHECK (ncclSCIClose (sd, NO_FLAGS)) ;

39 NCCLCHECK(ncclSisciCreateMailbox (comm, &eomm—>mailbox,
local_mailbox_segment_id , handle—>mailbox_segment_id));

30

40
41
42

43
44

46

W N

26

27

28

29

NCCLCHECK(ncclSiscilnitChannels (comm—>channels, comm—>mailbox,
comm—>type)) ;

+sendComm = comm;

return ncclSuccess;

Listing 4.11: Connect function from sisci-nccl:src/sisci_nccl.c

Listing shows the accept function. The accept function is called by
the receive peer of a connection. Parameters are the listenComm that was
initilized in the listen function, and a recvComm pointer that the function
is responsible for initilizing. The function will block until the send peer is
triggering the data interrupt. When the interrupt arrives, the receive peer
knows that the send peer is initialized, so the handshake is complete. The
recvComm structure and its mailbox and channel structures are initialized.
Now the listenComm object is no longer needed. However, it got its
own cleanup function that NCCL is calling seperatly to free its resources.
Given all the handshake functions executed successfully, both the send and
receive peer should be initialized.

// Finalize connection establishment after remote peer has called
connectHandel
ncclResult_t ncclSisciAccept(void* listenComm, void#x recvComm) {

struct ncclSiscilListenComm xlcomm = (struct
ncclSisciListenComm *) listenComm ;

struct ncclSisciRecvComm *rcomm

uint32_t data[IR_DATA_SIZE];
unsigned int size = IR_DATA_SIZExsizeof (+data);

NCCLCHECK(ncclCalloc(&rcomm, 1));
rcomm—>dev = lcomm—>dev;
rcomm—>type = RECV.COMM;
rcomm—>local_gpu = lcomm—>gpu;

NCCLCHECK(ncclSCIWaitForDatalnterrupt (lcomm—>ir , &data, &size,
SCI_INFINITE_TIMEOUT,
NO_FLAGS)) ;

rcomm—>remote_node_id = ntohl(data[0]);

rcomm—>remote_gpu = ntohl(data[1]);

const unsigned int remote_mailbox_segment_id = ntohl(data[2]);
rcomm—>local_memory_segment_id = lcomm—>
local_memory_segment_id;

rcomm—>remote_memory_segment_id = ntohl(data[3]);

NCCLCHECK(ncclSisciCreateMailbox (rcomm, &rcomm—>mailbox, lcomm
—>local_mailbox_segment_id, remote_mailbox_segment_id));
NCCLCHECK(ncclSiscilnitChannels (rcomm—>channels , rcomm—>
mailbox,

rcomm—>type));

INFO(NCCL_NET, "Accepted connection from node %d", rcomm—>
remote_node_id) ;

31

*recvComm = rcomm;

return ncclSuccess;

Listing 4.12: Accept function from sisci-nccl:src/sisci_nccl.c

4.2.8 Register Memory

Now that the send and receive peer has performed a handshake and is
initialized, one step is necessary before transmission can start. Most DMA
APIs require memory to be registered before it is possible to perform DMA
transfers. NCCL is aware of this and provides an API call to register
memory (regMr). For our plugin, this allows us to register memory as SISCI
segments.

NCCL will always register memory in a symmetrical fashion, where
any memory registered on the send peer, must have a corresponding
area on the receive peer. When memory is registered, NCCL expects
the plugin to create a memory handle. The memory handle acts as
a connection between the two corresponding memory areas that are
registered. NCCL assumes it is possible to register multiple memory areas
for each communicator object. This is why the segment allocator function
allocates a range of segment ids for each communicator (section [.2.4).

As a user, NCCL only accepts CUDA pointers of memory that are
located on a device, but in the context of our plugin, memory can be located
in the host or device memory. Listing shows the function signature of
the register function. The comm parameter is a pointer to the communcator
object that was either created in the connect or accept functions. Parameters
data, size and type defines the memory area and if it is located on host or
device.

SISCI makes it relatively easy to register memory, but it has some
constraints that must be considered. SISCI requires memory to be page-
aligned in order to register it. The data pointer passed by the data parameter
is not always page-aligned, so it is necessary to adjust the pointer, so we
always pass a page-aligned pointer to SISCI. To register host memory in
SISCI, we first need to create an empty SISCI segment, then attach memory
to it using SCIRegisterSegmentMemory. CUDA pointers (device memory)
are registered in a similar way as host memory, except setting some CUDA
attributes and calling SCIAttachPhysicalMemory. While this is usually a
simple process, we had some problems with the IOMMU on our machines,
resulting in us having to implement a workaround (more in section 4.3).

ncclResult_t ncclSisciRegMr (void* comm, voids data, int size, int
type, void=*+ mhandle);

Listing 4.13: Register memory function signature from sisci-nccl:src/
sisci_nccl.c

32

4.2.9 Transfer Data

When memory has been registered, data can be transmitted from sender
peers to corresponding receiver peers. Listing shows the function
signatures of the transfer functions. NCCL will call these to perform a
transfer. The interface is designed in an asynchronous way, so NCCL
expects none of the functions to block but rather to signal if a call can be
performed or not. NCCL will poll these functions periodically to perform
transfers. ncclSiscilsend and ncclSiscilrecv is called from peers respectively.
If a function is able to be performed, it will return a request. Then NCCL
will poll ncclSisciTest on the request. The function will signal if a request
is completed. Meaning the send peer will know if a send operation is
complete, and the receive peer will know if a full message has arrived.

Inter-node transfers are performed as a FIFO queue. On the send side,
NCCL will divide send data into chunks, then call ncclSiscilsend on each
chunk. The receive side does not know the size of each chunk, but the total
size of a transmission sent over a connection, so our plugin must forward
the size of each message. NCCL will call ncclSiscilrecv until the sum of bytes
received is equal to the expected transfer size. This is where the mailbox
abstraction comes in (section [4.2.6).

The number of channels created for each connection (section [4.2.5)
determines the number of concurrent transfers possible. Each chunk is
designated to a channel using a round-robin scheduling scheme.

NCCL provide a flush function (ncclSiscilflush). This function is
intended to block until a requested message has arrived. Flush is required
for systems that do not have cache coherence, where caches are not
automatically updated. For our implementation, we did not find an issue
with not implementing this function, as our program was still able to
perform correctly. However, due to our IOMMU issue, this may not be the
case if GDRDMA was working , as GPU memory does not necessarily
provide the same memory guarantees as x86 chips.

// Asynchronous send to a peer.
// May return request == NULL if the call cannot be performed (or
would block)

3 ncclResult_t ncclSiscilsend (void* sendComm, voids data, int size,

void* mhandle, voidx** request);

5 // Asynchronous recv from a peer.

// May return request == NULL if the call cannot be performed (or
would block)

ncclResult_t ncclSiscilrecv (void* recvComm, voidx data, int size,
void* mhandle, void** request);

ncclResult_t ncclSiscilflush (void* recvComm, voids data, int size,
void* mhandle, voidx* request);

ncclResult_t ncclSisciTest(void+* request, int+ done, intx size);

Listing 4.14: Transfer function signatures from sisci-nccl:src/sisci_
nccl.c

33

4210 Cleanup

All types of objects created by the plugin (listenComm, sendComm, recoComm
and memhandle), has its own destructor function. NCCL will call these
in such an order that all "sub" objects are freed before any super objects
are freed. For example, all memhandle objects are deregistered before a
comm object can be freed. In addition, the interrupt, mailbox, and channel
structures are freed when their corresponding comm objects are freed.

4.3 IOMMU and GPUDirect Problems

While the original version of SISCI-NCCL created for version v2.4.* was
tested and fully working on a certain system. When we started working on
this thesis, we wanted to test NCCL using a newer version of Tensorflow.
This required us to update our plugin to a newer version of NCCL. Now
this transition was not as smooth as we would have liked. Focusing on
upgrading the plugin, we did not do our due diligence verifying that the
hardware was working correctly.

The SISCI API was not able to detect if the IOMMU was operational
or not. To register memory, we were able to create SISCI segments
using SCIRegisterSegmentMemory and SCIAttachPhysicalMemory without
any errors reported. This made us assume transmission was possible
because we were able to map remote segments into user memory without
any errors as well. And our mailbox abstraction was working. We
were able to perform PIO transfers over the segments allocated for the
mailboxes.

When we were trying to perform DMA transfers between segments, no
data was transferred. For segments registered with SCIAttachPhysical Mem-
ory (device memory), this manifested in a SISCI error when trying to dis-
patch a DMA transfer. This problem was not apparent until very late in the
implementation phase, as we were testing without GDRDMA enabled. For
segments registered with SCIRegisterSegmentMemory, we were able to dis-
patch DMA transfers, and there were no reported errors from SISCI. How-
ever, there was no data transmitted, so the receive chunks were not equal
to send chunks. As it turned out, the mailbox segments were working be-
cause they were allocated by the SISCI driver itself, which does not require
a working IOMMU. The CUDA runtime allocates registered memory, so
to register the memory in SISCI, we needed a working IOMMU. A large
amount of time was spent trying to figure this out, and our development
environment did not help to determine this was an issue.

As all ranks in a collective operation are aware of the input parameters
used, no extra data is added to payloads by NCCL. By default, NCCL
does not take the transferred payload into account when performing
collective operations. This means that NCCL does not detect if a transfer
is correct or not, and it does not matter for executing the operation. The
collective operation algorithm will not halt in this configuration because
our plugin will report that messages were transmitted (because SISCI did

34

not report errors when dispatching DMA transfers). This causes the output
of collective operations to not be correct, something that we would be able
to detect. However, it was not trivial to detect due to the complexity of
NCCL.

One particular feature of NCCL made it very hard to detect that
no data was actually transmitted between registered memory. The low
latency protocols described in section 3.3.3|made it very hard to determine
where the fault was originating from. Our naive thought was that the
Low Latency issue would only manifest if we used small data sizes in a
collective operation. However, NCCL has to initialize before it can perform
operations, and during the topology phase (section [3.3.2), it will test and
tune connections. To do this, NCCL will have to use our plugin, registering
and transferring data. It will test many transfer sizes, and crucially all
transfer protocols.

Using the Simple protocol, a receiver peer will not process a data chunk
until our plugin reports that a chunk has arrived. If an error would occur
during a transfer, and it was reported, NCCL will throw an error during
the initializing phase. In our case, when the Simple protocol was tested,
no error was thrown as our plugin was not able to detect it. The mailbox
mechanism was working, so the receiver was told that a message had
arrived, even though the data was incorrect. This is not correct, but it
did not halt the execution. If this was the only way the IOMMU problem
manifested, we would have been able to detect that our collective operation
output was incorrect, but there was an additional way.

The LL protocols are implemented using busy waiting, where a CUDA
kernel will be dispatched before a chunk has arrived. The kernel does not
wait for our plugin to signal when a chunk has arrived. Instead, it will
continually look at its memory, checking if flags have been set. NCCL
assumes the chunk will arrive in the device at some point, so it does not
implement a way to cancel the busy waiting mechanism when our plugin
signals completion. The kernels would enter an infinite loop as a result
of flags never arriving. This caused our test programs to halt, waiting
for CUDA kernels to complete until NCCL would terminate, reporting a
timeout.

It became very difficult to debug this problem. Our application is a
distributed system. It is executing on two machines, each machine contains
2 GPUs each, and we are controlling Dolphin adapters as well. Using
regular debugging tools like GDB and Valgrind was not sufficient, as we
had to deal with CUDA kernels. Nvidia provides its own debugger tool
called CUDA-GDB. However, it was hard to make it debug our plugin.
NCCL is also able to report a stack trace if it encounters an error. However,
because our plugin did not detect the issue itself, this was not of much use.
The way this LL issue was manifesting, these tools did not give us a good
picture of what was happening.

After a lot of time and struggle, we did determine that the IOMMU on
both test machines was broken. The obvious solution was to replace the
broken hardware, but due to external factors, it became very hard to source
new hardware. We determined that we had to find a solution that worked

35

on this hardware. DMA and PIO transfers were still possible using the
Dolphin adapters. It was just not working on segments that SISCI did not
allocate.

4.4 Emergency Solution

The Dolphin adapters do support systems without an IOMMU, so it is still
possible to perform transfers using SISCI. Because the mailbox abstraction
was working, we investigated if it was still possible to perform DMA
transfers via segments allocated by SISCI. This was working, so it seemed
like our solution would be to not use SISCI calls that register memory not
allocated by SISCI.

In our plugin, the register memory function either use SCIRegisterSeg-
mentMemory or SCIAttachPhysicalMemory to attach memory to our seg-
ments. The SISCI documentation does state that these functions require
an enabled IOMMU, so it makes sense they are not working. To replace
these, we had to register memory the same way we registered memory in
the mailbox abstraction by having SISCI do the allocation. One downside
to this is that the plugin interface does not support a way for our plugin to
return memory back to NCCL. The register memory function will always
receive a buffer from NCCL.

The SISCI driver is responsible for allocating segment memory. Seg-
ments allocated without an IOMMU also has some constraints. They re-
quire the memory pages making up the area to be contiguous. As memory
becomes more fractured, there will be less space to allocate large contigu-
ous areas. This increases the possibility that allocation will fail, in effect
reducing the maximum collective operation size.

Our first solution was to create intermediate buffers in both the send
and receive peer. The intermediate buffers would have the same size as the
requested registered memory. To send, the send peer must copy from its
registered memory to its intermediate buffer. Then it can dispatch a DMA
transfer to the receiver peer intermediate buffer. When the DMA transfer is
done, the receiver peer must copy the message from its intermediate buffer
to its registered memory area. This solution does work. However, it comes
at the cost of increasing the memory consumption by two times. Due to
the contiguous page restriction, the effective possible buffer size would
be reduced by more than two times, so it would be beneficial to reduce
memory consumption.

A more advanced second solution would be to only allocate enough
memory for the number of concurrent chunks (number of channels)
supported by our plugin. However, the plugin interface does not signal the
maximum chunk size necessary. The chunk size is determined during the
tuning phase, so the plugin must be dynamic in that sense. This solution
would not be possible given the plugin interface, but it would save a lot of
memory, not allocating a full-size contiguous buffer.

Our third solution was to look at the SISCI API. There is an additional
DMA call SCIStartDmaTransferMem. The SISCI documentation states that it

36

is possible to transfer directly from user memory, and there is no IOMMU
requirement. After testing this call, we did confirm that this API call
was working without an IOMMU. This allowed us to transfer from user
memory, i.e., directly from the requested registered memory on the send
peer, to a SISCI segment on the receive peer. By doing this, we do
not have to allocate an intermediate buffer on the send peer, in effect
reducing the required contiguous memory by half compared to the first
solution. This solution did give use good and reliable performance given
the circumstances.

Our solution is not the most efficient in terms of hardware capabilities.
It does incur extra costs in terms of memory usage and CPU resources.
GDRDMA does not work without a working IOMMU, so all transfers are
intermediately stored in RAM before RDMA operations. However, we still
have a working system, and it is working reliably for collective operations
with buffer sizes under 1 Gigabyte (buffer per rank).

4.5 Future work

This implementation adapted an already existing plugin interface to enable
NCCL applications to use Dolphin hardware. However, the NCCL-NET
plugin is designed for a simple 1-directional connection between 2 nodes.
PCle, Dolphin hardware, and SISCI support more complex connection
configurations. Such as Reflective Memory / PCle Multicast, but the
plugin interface does not allow for such features to be used. A solution
to this would be to implement an additional plugin interface in NCCL to
support this. The SHARP [16] plugin from Mellanox uses a different plugin
interface from the standard NCCL-NET plugin.

4.6 Chapter Summary

In this chapter, we showed how we implemented the SISCI-NCCL plugin.
The segment abstraction provided by the SISCI API makes it simple
to perform RDMA operations, regardless of where memory is located.
Having broken IOMMUs, made it hard to verify that our implementation
was working correctly. The SISCI API did not report that there was
something wrong with transmissions in certain configurations, making
it hard to determine where the fault was located. However, we were
able to find a workaround that allowed us to run benchmarks without
using GDRDMA. In the next chapter, we benchmark our SISCI plugin and
compare it to the default socket implementation.

37

38

Chapter 5

NCCL Benchmark

In this chapter, we present and discuss methods we use to measure
the performance of NCCL. We use two different machine-to-machine
interconnects (TCP/IP and PCle). Here we are specifically profiling the
performance of NCCL itself by only executing collective operations in a
vacuum.

5.1 NCCL tests

NVIDIA provides a separate test repository for NCCL called nccl-tests [20].
This repository provides test programs that can validate the correctness
of a build. There is one program for each NCCL collective operation. In
addition, the test programs come with profiling functionality. The profiling
features can be used to test different hardware configurations. This can
be useful to verify if a configuration is working optimally, identifying
bottlenecks. Profile data can, for example, be used to configure Tensorflow
to work optimally together with NCCL [33].

Specifically for this thesis, we can use the profiling programs to
compare different interconnects (TCP/IP against PCle). These benchmarks
will give concrete benchmarks for each collective operation. However, for
this thesis, we want to measure the performance of an ML application using
the library. In section| we discuss how to benchmark using Tensorflow.

5.2 Variables

To make a comprehensive benchmark, we need to determine the scale. The
number of variables and resolution we select determines the number of
benchmark runs we need to perform.

Hardware configuration plays a major role in the behavior of NCCL.
GPUs, CPUs, network interconnect, memory, ranks, and nodes all play
a role in performing the benchmark. Benchmarking on many hardware
configurations is expensive, both monetary and in terms of time. While
we considered it is interesting to explore how all hardware is affecting the
performance, it is not strictly necessary for our benchmark. We wanted to

39

Ssize
Balgorithm bandwidth — (5 . 1)
ttime

Figure 5.1: Algorithm Bandwidth formula

look at how the network interconnects are performing, so we only changed
that type of hardware.

Data input size was also of interest to see how the performance
developed. As the input size increases, execution time should increase.
By running the benchmark at multiple sizes, it may be possible map out
where a configuration is running optimally. As well as comparing how
well configurations are running for certain sizes.

5.3 Metrics

In order to compare different benchmark runs, it is necessary to define
metrics, so we are able to compare performance. We are trying to measure
how hardware is able to perform algorithms and not how algorithms are
able to solve a task. So we want to gather metrics that are able to give
insight into how the hardware is performing.

The simplest metric to reason about is the (time (t)) it takes an algorithm
to perform an operation. If one benchmark configuration is spending less
time completing an operation than another, it is performing better. Time is
ideal for measuring the latency of a system in small-scale tests. However,
when the data size is increasing, time will usually map with the complexity
of the algorithm. Only measuring time does not give us insight into how
hardware is performing for a configuration.

Algorithm Bandwidth (equation measures how much data an
algorithm is able process over time. This is simple to measure and compute,
as there is only 2 parameters to collect. By measuring the bandwidth of
an algorithm, it gives insight into the capacity of the hardware. If the
bandwidth is measured for a hardware configuration, then it is possible to
estimate how long an operation takes by dividing the operation size by the
bandwidth. However, this metric does not take the number of ranks into
account. The complexity of collective operations increases as the number
of ranks increase. For example, in All Reduce, the number of elements to
reduce for each row increase by the number of ranks. While the algorithm
bandwidth is good for a certain number of ranks, it does not give insight
into how a system would perform with a different number of ranks.

NCCL Tests [20] implements Bus Bandwidth as an alternative to general
algorithm bandwidth. This metric is designed to be independent of
the number of ranks that are used in the measured operation. Each
collective operation has its own Bus Bandwidth Formula as the complexity
is different between the algorithms. It also takes the topology into account
when correcting for ranks (ring or tree).

General system resource metrics are also of interest to measure. The
socket plugin implementation relies on the CPU performing the inter-node

40

Name Description
CPU Intel i5-4590 CPU 4 core 3.30GHz
RAM 8 GB
GPU 2x Nvidia Quadro K2200 4GB VRAM
NIC 1Gb/s
Dolphin PXH810 Dolphin PCle 3.0 NTB adapter

Table 5.1: Table of hardware installed in each node.

communication, while SISCI-NCCL is using the DMA engine located on
the Dolphin adapter. It is interesting to see if this can contribute to the
worse performance of the system. CPU and memory usage is reported
by the Linux kernel and can be recorded during the execution of the
benchmark. The Nvidia driver also exposes GPU metrics that can be
recorded. We were not able to measure system usage for the strict NCCL
benchmarks.

5.4 Benchmark Technique

To perform a benchmark, we needed to make sure our measurements
were recorded reliably and without interference. Because we were running
our benchmarks on an OS (Linux), we needed to make sure there were
no background processes affecting measurements. As long as we made
sure all benchmarks were run with the same background state, the
measurements should not be affected.

Running each benchmark configuration more than once is also impor-
tant. Even if we are running on a system only dedicated to benchmarking,
it is still expected to have minor differences in measurements. There might
be certain subsystems that are not initialized before the benchmark is exe-
cuted. Dynamic objects, for example, are loaded on demand by processes.
SISCI NCCL is a dynamic object and is loaded on demand by NCCL. If we
were to install a new version of the plugin, the kernel would have to do
a first-time load of the plugin. However, the second time the kernel has
cached the dynamic object, reducing the startup time. So to protect against
statistical outliers in our data, we made sure to run each configuration more
than once and run "warm-up" runs before collecting data.

5.5 Hardware

To perform these benchmarks, we had two machines. They contained iden-
tical hardware (listed in table[5.1)). Both machines ran Ubuntu 20.04.1 LTS.
Unfortunately, these were the same machines that we used in the imple-
mentation phase. So the hardware suffered from the IOMMU problems
described in section [4.3] While we wanted to perform benchmarks on dif-
ferent hardware, due to time and resource constraints, we were not able to
do so.

41

All Reduce Algorithm Bandwidth

== SisCi == socket

1.00
& 075
2
=
h=]
£ o0s0
=
m
o
E
=
£ 025
[=]
o
=
0.00

100 10000 1000000 100000000

Elements (float 4 byte) {log)

Figure 5.2: All Reduce algorithm bandwidth SISCI vs socket.

5.6 Benchmark Results

These benchmarks compare the performance of the SISCI and socket
implementation.

Figure 5.6/compares the algorithm bandwidth. The chart is constructed
of multiple benchmark runs of different operation sizes. Samples are
collected in power of 2s, starting at 8 and ending at 1GB. This benchmark
is reducing floats, so each element is 4 bytes large. Between 2 machines, we
have 4 GPUs, so the reduction has 4 ranks.

Figure shows the computed bus bandwidth. The shape is almost
identical to figure However, the values are corrected to give insight
into the link bandwidth in the system.

Figure [5.6/and 5.6/ show that for operation sizes under 8000 elements,
the performance is similar. For larger sizes, the SISCI version is able to
achieve higher bandwidth and peeks at sizes above 1100000 elements.
The socket version also peeks around the size of the SISCI version but at a
much lower bandwidth. Also, the SISCI version was able to handle a larger
capacity than the socket version. We were able to run the SISCI version on
a 1GB large all reduce operation, while the socket was only able to reach
0.5 GB.

Figure |5.6| compares the time used for each version. The SISCI version
is generally faster except for small sizes under 10000 elements. This may
be caused by the cost of starting a DMA transfer.

Figure 5.6/ and [5.6/shows the average algorithm and bus bandwidth of
all supported operations. These benchmarks are sampled the same way as
in the previous charts by profiling for many-sized operations. The charts
show that every collective operation benefits from a faster interconnect. It

42

All Reduce Bus Bandwidth

Bus Bandwidth (GB/s)

== 5iSCi == socket

125

1.00

075

0.50

0.25

0.00

100 10000 1000000 100000000

Elements (float 4 byte) (log)

Figure 5.3: All Reduce bus bandwidth SISCI vs socket.

All Reduce Time

time (us) (log)

== 5iSCi == socket

1000000
100000
10000
1000

100
100 10000 1000000 100000000

Elements (float 4 byte) {(log)

Figure 5.4: All Reduce time SISCI vs socket.

43

Average Algorithm Bandwidth

Average of multiple runs of different operation size

B sisci | socket

0.8
Z 06
U]
£
=
Z 04
[=}
3]
[un]
=
£
= 02
=
=
0.0

all-reduce all-gather broadcast reduce reduce-scatter

Figure 5.5: All Reduce average algorithm bandwidth for all collective calls.

also shows that a 1 Gigabit Ethernet interconnect is not sufficient to reach
optimal performance for this hardware configuration.

5.7 Chapter Summary

In this chapter, we benchmarked NCCL alone, only performing collective
operations. Our benchmarks show that our plugin is able to utilize
hardware resources provided by the Dolphin adapters. The benchmarks
show that small-size operations do not benefit from our plugin. This may
be due to the cost of dispatching DMA transfers. While large operations
do benefit, compared to the socket version. However, in the scope of this
benchmark, the available bandwidth for each interconnect is very different,
so this is not a fair comparison.

In the next chapter, we look at how our SISCI-NCCL plugin is
performing when used in a Tensorflow application.

44

Average Bus Bandwidth

Average of multiple runs of different operation size

Bus Bandwidth (GB/s)

B sisci [socket
08

06

04

02

00
all-reduce all-gather broadcast reduce reduce-scatter

Figure 5.6: All Reduce bus bandwidth for all collective calls.

45

46

Chapter 6

Tensorflow Benchmark

NCCL is a library, so its main purpose is to provide the functionality to
other applications. While we are observing speedup when benchmarking
NCCL by itself, we also want to investigate if this speedup is also observed
when using Tensorflow.

6.1 Installation

We decided to use a fairly new version of Tensorflow (version 2.4.1) for
this project. This was to access some experimental features of Tensorflow.
While NCCL is usually installed as a dynamic library on a system,
Tensorflow uses NCCL as a static library. This required us to implement
our plugin for NCCL v2.7.* or later, which we did.

6.2 Metrics

Like in chapter [5, we need to select metrics to measure our benchmarks
with.

There are many ways to measure the performance of an ML application.
A common way to evaluate an ML application is to measure how fast
it converges to a given accuracy. Many variables affect the speed of
convergence, such as dataset and batch size. In our case, we want to
measure how the machine interconnects is performing when computing
an ML model and not how a particular model is performing. Given the
assumption that the model is deterministic, i.e., the output will always be
the same for a given configuration, the interconnect should not matter for
the model performance. However, it does matter for the execution speed
in a multi-node training configuration.

One way to measure execution speed is to measure the time to complete
a full training job. This is usually constructed of many multiple epochs that
are again constructed of multiple batches. Batch time only measures the
time it takes to complete a batch.

47

6.3 Model Configuration

At the core of any Tensorflow application, there is a model. We are trying
to measure how Tensorflow applications are performing with our SISCI
NCCL plugin, so we have to create some models that are able to run on
our system. ML models vary in configuration. The number of features and
model size dictate the memory footprint of the model. We need to select
models that are able to run on our hardware configuration. In addition,
we need to configure our Tensorflow applications to be distributed over
multiple nodes.

Luckily Tensorflow features many state-of-the-art implementations of
image classification models [3} |30, 31]. This made it easy to create a
Tensorflow application to test NCCL with. We wanted to use models
that are commonly used in the ML community to provide a realistic ML
scenario. We selected three models for our benchmark, they are:

¢ EfficientNet [27]
e MobileNet [13]
e ResNet [12]

While these three models are able to take any images as input, they were
originally created to be trained on the imagenet dataset [5]. Imagenet is
commonly used as an image classification benchmark. The models are
optimized to be executed with GPU acceleration, which is what we want
for our benchmark.

When configuring our models, we had to make sure they were able to fit
on our hardware. In our case, the main limiting factor was available VRAM
on our GPUs. Simplified, the way Tensorflow distributes training across
multiple GPUs is to create a copy of the model on all ranks. Each ranks
processes an independent part of the dataset and applies it to the model.
Then using collective operations (all reduce), all ranks reach a consensus
on how to update the model. Because every rank has to store the complete
model, we are limited to the amount VRAM available on each rank.

6.4 Tensorflow Profiler

TensorFlow provides a large selection of tools to create ML applications.
TensorBoard [28] is a data visualization tool distributed together with
Tensorflow. It allows a user to easily visualize and analyze logs generated
by Tensorflow. While the most common usage of TensorBoard is to analyze
the performance of ML models. It is possible to use TensorBoard to analyze
how models are performing on hardware.

Tensorflow Profiler is a tool that measures how a TensorFlow computa-
tion is executed on a system. The profiler is able to log what computation is
done, where the computation is done in a system, and how many resources
a computation is using. Specifically useful for this thesis, the profiler is able

48

tolog when and where data is moved in the system. This can give very spe-
cific and accurate insight into how the underlying NCCL implementation
is performing. As with the NCCL profiler, the TensorFlow profiler can be
used to tune a system for optimal throughput. The profiler does use a sig-
nificant amount of resources, and it does affect the performance compared
to not enabling the profiler. Tensorflow Profiler will account for this in its
own measurements. However, this makes external measurements inaccu-
rate.

For the version we were using, Tensorflow Profiler does not implement
a full feature set for distributed training. This meant it was hard for us to
get a complete profile of our system using the built-in profiler. While the
profiler is intended to be able to profile a distributed system, we found it
unreliable in its current state to do so. We were able to use the profiler to
collect aggregate metrics such as average batch time and average collective
call time per batch. However, we were not able to gather trace data for the
whole system using the profiler.

6.5 Messuring System Usage

Because we were not able to collect a performance trace using TF Profiler,
we decided to create our own tracer. The Linux kernel does expose
a mechanism to record system performance. Certain files in the sysfs
structure are continually printing hardware metrics, such as CPU time,
memory usage, and process time. For the GPUs, we are also able to record
metrics via the Nvidia driver. We can record these metrics over time while
executing a benchmark and get a trace of how hardware is performing over
time.

We wrote a script to poll these metrics at time intervals continually. This
script had a small resource footprint, as we did not do any computation,
only virtual file IO. We also set the sample interval to 200 milliseconds to
minimize interference. This provided some extra system data we were not
able to record with TF Profiler. One downside to this program was that we
had to run every benchmark twice, one with TF profiler enabled and one
without. Because TF Profiler does affect performance significantly, we did
not want that to poison our hardware trace.

6.6 Execution Enviroment

Tensorflow does not provide a system for bootstrapping distributed
training. While there are existing generic third-party solutions for this,
but these are usually intended for a normal Tensorflow workflow. As we
intended to record benchmarks, we decided to create our own system to
bootstrap our benchmark. By creating our own system, we were able to
tailor it to our needs easily.

We build a generic bash [11] script to execute and record statistics about
our benchmarks. The script is using Secure Shell Protocol (SSH) [2] to
control multiple nodes. Simplified the system works like this for each node:

49

Average Batch Time
Data captured with Tensarflow Profiler
B sisci M socket

2500
2000
& 18500
E
a
E 1000
E
500

EfficientNetB0 ResMetal MobileMetv3Large

Maodel

Figure 6.1: Average Batch Time SISCI vs socket.

1. Copy benchmark program to node

2. Set up enviroment variables, and start background recording pro-
grams (hardware trace)

3. Execute benchmark program
4. Stop background recording programs
5. Copy recorded logs and output back to source machine

After we made this system work, it was simple to record benchmarks.

6.7 Benchmark Results

Figure compares the average time used to execute a batch. A batch
is constructed of multiple collective operations depending on the number
and type of layers in the model. The size of collective operations also varies
depending on the number of weights used in each layer of the model.
Figure shows that the SISCI version is faster, but it does not give a
speedup equal to the difference in available bandwidth.

The most time during a batch execution is spent performing non-
collective operations on GPUs. To get a more accurate view of how the
collective calls are performing, figure |6.7| extracts the time spent executing
NCCL kernels. Here the SISCI version is performing much better, giving
us a 12x speedup for the collective operations for the EfficientNetBO model.

Table |6.1|shows the average of recorded system usage when executing
an epoch for a given model.

50

Average Device Collective Communication Time
Data captured with Tensorflow Profiler
B sisci [socket

1000

750
w

E 500
[k}
E
=

250

0

EfficientietB0 ResMetal MohileMetv3Large
Model

Figure 6.2: Average Device Collective Communication Time SISCI vs
socket.

Model Interconnect | average cpu usage (%) | average memory usage (%) | average gpu usage (%) | average gpu memory usage (%)
EfficientNetBO sisci 0.6392495741 0.9546551428 0.9897945942 04483567118
ResNet50 sisci 0.6438623702 0.9673391203 0.9913877798 0.546127255
MobileNetV3Large sisci 0.677733989 0.9713289193 0.9798745917 0.3826588625
EfficientNetB0 socket 0.6264324063 0.8496968488 0.9890931916 03701553092
ResNet50 socket 0.3974370299 0.9684871325 0.9927373446 0.3371228901
MobileNetV3Large socket 0.6365228468 0.9390030276 0.9803619229 0.2783296208

Table 6.1: Average system usage recorded during model execution.

51

6.8 Chapter Summary

In this chapter, we benchmarked our SISCI-NCCL plugin in a "real-world
scenario". While distributed training depends on collective operations to
work, the benchmark machines spent the majority of execution time on
compute, and not performing the collective operation. For the collective
operation time, our plugin was able to outperform the default socket
version. As for system resources, it seems like there is not a significant
difference in aggregate resource consumption between the plugins. This
might be due to the broken IOMMU, forcing us to perform extra copy
operations on the CPU when transferring data.

52

Chapter 7

Conclusion

71 Summary

The goal of this thesis was to investigate if a PCle interconnect may benefit
distributed ML training. Our hypothesis was that using PCle for both intra-
and inter-communication may be beneficial in a distributed ML training
application.

We started out by exploring relevant technologies used for extending
PCle for inter-machine communication by creating an NTB. Then we
introduced NCCL, a Collective Operation library created to provide state-
of-the-art collective communication for Nvidia GPUs. Tensorflow is an ML
framework that can use NCCL to perform distributed ML training.

To enable inter-machine PCle support, we had to implement a plugin
for NCCL. During the implementation phase, we discovered our plugin
was not operating as expected. Due to the complexity of NCCL, we had
a hard time determining the cause of this disruption. After analyzing the
NCCL implementation, we did narrow it down to a faulty IOMMU. Due to
resource restrictions, we were not able to get new hardware, so we devised
an emergency solution. With our solution, we were able to produce a
working plugin.

With our working plugin, we performed some benchmarks. First,
we tested NCCL in a vacuum, profiling Collective Operations at many
configurations. We compared the performance of our plugin to the
performance of the default NCCL socket plugin.

Then we wanted to test NCCL with our plugin in a real-world scenario.
We set up a Tensorflow installation that was able to use our SISCI-NCCL
plugin. We were able to test 3 common image classification models using
SISCI-NCCL and socket NCCL. Our results showed that our NCCL plugin
was able to reduce the time used in collective operations to an insignificant
amount. While our plugin did not utilize the available hardware resources
perfectly, we were able to yield a significant speedup in terms of collective
operations in an ML training application.

53

7.2 Main Contributions

A large part of this thesis was used debugging systems. While NCCL
supports a plugin interface, they provide no explicit documentation on
how to implement a plugin. We did a deep investigation into how NCCL is
implemented, exploring the implementation of key features in the library.

We were able to implement a proof of concept plugin, enabling NCCL to
use Dolphin NTB adapters. Our benchmarks demonstrate that our plugin
is able to utilize Dolphin adapters. While we were not able to demonstrate
all intended features (due to the IOMMU issue), we were still able to
demonstrate a working and reliable system.

Benchmarking Tensorflow, we were able to show how network inter-
connects affect model training performance. We were able to show that
our plugin reduced the time spent performing collective operations to an
insignificant amount compared to the default socket plugin.

7.3 Future Work

In this thesis, we implemented and benchmarked a proof of concept. While
our implementation is working, it is not working optimally, and there
is much room for improvement. In addition, our benchmarks are not
complete due to limited hardware resources.

7.3.1 Compare to Other High Performance Interconnects

It would be interesting to see how our plugin is performing compared to
the other supported NCCL plugins. In this thesis, we were only able to test
the socket default version with a 1 Gigabit Ethernet interface. Comparing
our plugin to InfiniBand, 40/100 Gigabit Ethernet or Mellanox SHARP
capable networks would be of interest.

7.3.2 Larger Benchmarks

Our benchmarks only used 2 nodes with 2 GPUs each, giving us 4 ranks.
However, the Dolphin PCle interconnect supports larger systems. Due
to GPU capacity, the models used when benchmarking with Tensorflow
were also of reduced size. Given a larger benchmark, we would probably
observe a greater speedup than what we were able to in this thesis.

54

Appendix A

Source Code

The source code produced in this thesis can be accessed at https://github.
uio.no/sivertac/sisci-nccl-tf-benchmark.

The plugin code is located under the sisci-nccl folder. It is a fork from
the original SISCI NCCL repository created by Eivind Alexander Bergem
(https://github.com/Dolphinics/sisci- nccl).

The tf-benchmark folder contains code scripts that were used to bench-
mark Tensorflow applications.

55

https://github.uio.no/sivertac/sisci-nccl-tf-benchmark
https://github.uio.no/sivertac/sisci-nccl-tf-benchmark
https://github.com/Dolphinics/sisci-nccl

56

Listings

B.1 Bootstrap create ring pseudocode| 13
B2 Bootstrap all gather pseudocode] 14
B.3 NCCL topology XML dump| 15

4.1 NETEIugin interface from nccl:src/include/nccl_net.hf . 21
42 SISCI-NCCL init function from sisci-nccl:src/sisci_ |

ncel.cl ... 22

4.3 SISCI-NCCL device structure from sisci-nccl:src/sisci_ |
ncel.cl ..o 23

4.4 NET plugin ncclSisciDevices from nccl:src/include/nccl_ |
[met bl 24
4.5 NET plugin properties struct fromnccl:src/include/nccl_ |
[met. bl 24
.6 SISCI PCle path function from sisci-nccl:src/sisci_ |
ncel.cl ..o 24

4.7 NCCL topology XML dump detecting a Dolphin NTB adapter| 26
4.8 Segment allocator function from sisci-nccl:src/sisci_ |

ncel.cl ... 27
4.9 Mailbox read /write from sisci-nccl:src/sisci_nccl.c|. . 28
14.10 Listen function from sisci-nccl:src/sisci_nccl.c| 29
4.11 Connect function from sisci-nccl:src/sisci_nccl.cl . .. 30
4.12 Accept function from sisci-nccl:src/sisci_nccl.cf. ... 31
4.13 Register memory function signature from sisci-nccl:src/ |
sisci_nccl.cl 32
.14 Transter function signatures from sisci-nccl:src/sisci_ |
nccl.cl ..o 33

57

58

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

Apache License, Version 2.0. URL: https: / /www.apache.org / licenses /
LICENSE-2.0.

Daniel J. Barrett, Richard E. Silverman and Robert G. Byrnes. SSH,
the Secure Shell: The Definitive Guide. O’Reilly Media, Inc., 2005. ISBN:
0596008953.

Francois Chollet et al. Keras. https://keras.io. 2015.

Jeffrey Dean et al. ‘Large Scale Distributed Deep Networks’. In: NIPS.
2012.

Jia Deng et al. ‘ImageNet: A large-scale hierarchical image database’.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
2009, pp. 248-255. DOI:'10.1109/CVPR.2009.5206848.

PJ. Denning et al. ‘Computing as a discipline’. In: Computer 22.2
(1989), pp. 63-70. DOI: 10.1109/2.19833.

Mica R. Endsley. ‘Autonomous Driving Systems: A Preliminary
Naturalistic Study of the Tesla Model S'. In: Journal of Cognitive
Engineering and Decision Making 11.3 (2017), pp. 225-238. DOI: 10.
1177 / 1555343417695197. eprint: https : / / doi . org / 10 . 1177 /
1555343417695197. URL: https://doi.org/10.1177/1555343417695197.

MPI Forum. A Message-Passing Interface Standard Version 3.1. 2015.
URL: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.
MPI Forum. MPI Forum. URL: https://www.mpi-forum.org/.

Linux Foundation. NTB Drivers. URL: https:/ /www.kernel.org /doc/
Documentation/ntb.txt.

P GNU. Free Software Foundation. Bash (3.2. 48)[Unix shell program].
2007.

Kaiming He et al. ‘Deep Residual Learning for Image Recognition’.
In: (2015). URL: https://arxiv.org/abs/1512.03385.

Andrew G. Howard et al. ‘MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications’. In: (2017). URL:
https://arxiv.org/abs/1704.04861.

Esther Landhuis. ‘Deep learning takes on tumours’. In: (). DOI: 10.
1038/d41586-020-01128-8. URL: https://doi.org/10.1038/d41586-020-
01128-8.

59

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://keras.io
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/2.19833
https://doi.org/10.1177/1555343417695197
https://doi.org/10.1177/1555343417695197
https://doi.org/10.1177/1555343417695197
https://doi.org/10.1177/1555343417695197
https://doi.org/10.1177/1555343417695197
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/
https://www.kernel.org/doc/Documentation/ntb.txt
https://www.kernel.org/doc/Documentation/ntb.txt
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://doi.org/10.1038/d41586-020-01128-8
https://doi.org/10.1038/d41586-020-01128-8
https://doi.org/10.1038/d41586-020-01128-8
https://doi.org/10.1038/d41586-020-01128-8

[23]
[24]
[25]

[26]

[27]

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/.

Mellanox. Mellanox SHARP website. URL: https://www.mellanox.com/
products/sharp.

NVIDIA. CUDA Toolkit Documentation. URL: https: / /docs.nvidia.com/
cuda/.

NVIDIA. NCCL documentation. URL: https : / / docs . nvidia . com /
deeplearning/nccl/user-guide/docs/index.html.

NVIDIA. NCCL git repository. URL: https://github.com/NVIDIA /nccl.

NVIDIA. NCCL tests git repository. URL: https://github.com/NVIDIA/
nccl-tests.

NVIDIA. NCCL website. URL: https:/ /developer.nvidia.com/nccl.

NVIDIA. Parallel Thread Execution ISA. URL: https://docs.nvidia.com/
cuda/parallel-thread-execution /.

OpenFabrics. Libfabric website. URL: https://ofiwg.github.io/libfabric/.
PCI-SIG. PCI Special Interest Group. URL: https://pcisig.com/.

Dolphin Interconnect Solutions. Dolphin Interconnect Solutions website.
URL: https://www.dolphinics.com/.

Dolphin Interconnect Solutions. Dolphon SISCI API Users Guide. URL:
https: / /www.dolphinics.com /download /SISCI/OPEN DOC/SISCI
APl 2 users guide.pdf.

Mingxing Tan and Quoc V. Le. ‘EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks’. In: (2019). URL: https:
/[arxiv.org/abs/1905.11946.

tensorflow. TensorBoard website. URL: https: / / www . tensorflow . org /
tensorboard.

tensorflow. tensorflow git repository. URL: https : / / github . com /
tensorflow/tensorflow.

tensorflow. TensorFlow Models Datasets. URL: https://www.tensorflow.
org/resources/models-datasets.

tensorflow. TensorFlow Models Github. URL: https: / / github . com /
tensorflow/models.

tensorflow. tensorflow website. URL: https://www.tensorflow.org/.

Zongwei Zhou. Scaling TensorFlow 2 models to multi-worker GPUs
(TF Dev Summit '20). URL: https:/ / www . youtube.com /watch ?v=
6ovfZW8pepol

60

https://www.tensorflow.org/
https://www.mellanox.com/products/sharp
https://www.mellanox.com/products/sharp
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://developer.nvidia.com/nccl
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://ofiwg.github.io/libfabric/
https://pcisig.com/
https://www.dolphinics.com/
https://www.dolphinics.com/download/SISCI/OPEN_DOC/SISCI_API_2_users_guide.pdf
https://www.dolphinics.com/download/SISCI/OPEN_DOC/SISCI_API_2_users_guide.pdf
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/resources/models-datasets
https://www.tensorflow.org/resources/models-datasets
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://www.tensorflow.org/
https://www.youtube.com/watch?v=6ovfZW8pepo
https://www.youtube.com/watch?v=6ovfZW8pepo

	Introduction
	Background
	Problem Definition
	Main Contributions
	Limitations
	Research Method
	Chapter Summary

	Technologies
	PCIe
	Non-Transparent Bridging
	SISCI API

	NCCL
	TensorFlow
	Chapter Summary

	NCCL Implementation
	NCCL
	Terminology
	Bootstrap
	Initial Communication
	Topology
	Communication

	Collective Calls
	Broadcast
	Reduce
	All Gather
	All Reduce
	Reduce Scatter

	Async Interface
	Chapter Summary

	SISCI-NCCL Implementation
	Other NCCL plugins
	AWS OFI NCCL
	Mellanox Plugins

	Creating the Plugin
	Error Management
	Plugin Interface
	Device Properties
	Allocating Segments
	Channels
	Mailbox
	Establishing Connections
	Register Memory
	Transfer Data
	Cleanup

	IOMMU and GPUDirect Problems
	Emergency Solution
	Future work
	Chapter Summary

	NCCL Benchmark
	NCCL tests
	Variables
	Metrics
	Benchmark Technique
	Hardware
	Benchmark Results
	Chapter Summary

	Tensorflow Benchmark
	Installation
	Metrics
	Model Configuration
	Tensorflow Profiler
	Messuring System Usage
	Execution Enviroment
	Benchmark Results
	Chapter Summary

	Conclusion
	Summary
	Main Contributions
	Future Work
	Compare to Other High Performance Interconnects
	Larger Benchmarks

	Source Code

