
UNIVERSITY OF OSLO
Department of Informatics
6th of May 2001

Henrik Tobias Brodtkorb

A Safety Layer for
Foundation Fieldbus

Cand. scient. thesis

Summary
The focus of the work of this Cand. scient. thesis has been placed upon understanding
and developing a concept for using digital communication in safety-critical applications.
It is increasingly common to use programmable technology in a safety-critical control
system. These new software-based components are in many cases replacing existing
hard-wired and analogue components that have safety-critical functions. Implementing
these software-based safety-critical systems require more in-depth methods and concepts
than what traditionally has been used in software engineering.

I have concentrated my studies around problems concerned with using fieldbus
technology between the subsystems in a software-based safety-critical system. During the
work on this thesis I have had to acquire a substantial amount of knowledge about
subjects not previously covered in my studies. I have gained knowledge about industrial
process control systems, safety-critical systems, international IEC standards for safety
systems, various fieldbus technologies, coding theory and hardware related programming.
The basic knowledge required to appreciate the contents of this thesis is presented as
background information in the introductory chapters. One of the main goals of this thesis
has been to analyse and find out if it is possible to implement a safe communications
protocol for Foundation Fieldbus fulfilling the stringent requirements of a SIL 3
application. My studies are based on a concept of a general communication protocol
called a “Safety Layer.” A safety layer defines methods for increasing the probability of
detecting errors that may occur between two communicating fieldbus devices. The safety
layer’s objective is to make the transmission “safer” between two nodes in a fieldbus
network. This involves enabling the communication parties to determine that messages
have the right value, they are sent in the correct sequence and to the right time and have
correct origin/destination. In my thesis I have further developed the basic idea behind the
safety layer in a general sense so that it can in principle be used on top of any
communication protocol to provide safe communication.

This study has furthermore been extended with an implementation of a safety layer
prototype for Foundation Fieldbus. The purpose of this implementation is to demonstrate
how Foundation Fieldbus can be made safer and that the concept and ideas of the general
safety layer are feasible. The protocol incorporates a method for enabling two-way
communication between two function blocks and new CRCs for improved error
detection. The choice of generator polynomials for these CRCs has been based on
probabilistic considerations. The safety layer also specifies a communication mode that
sanctions transmissions of amounts of data larger that the maximum allowed transmission
unit. The implementation of the safety layer is unique in its kind. Similar work has never
before been done for Foundation Fieldbus.

I do not assume any liability for any accidents, loss or damage caused as a result of any
errors or omission in this thesis.

5

Acknowledgements
I would like to thank my supervisor at the University of Oslo, Department of Informatics,
Associate Professor Tor Skeie for his support and guidance throughout the whole process
of writing this thesis. I would also like to thank Scientist Lars Lidström at ABB
Corporate Research AS in Norway for giving me a flying start on my project and for his
assistance during the work. Additionally I would like to thank Jan Endresen at ABB
Corporate Research AS for his help on problems related to the CRCs. I must also thank
my other friends and colleagues at ABB for many rich and helpful discussions and the
encouraging words along the way. I am grateful to the support group at National
Instruments and Tom Boyd at Fieldbus Inc. for their patience and for the help they
offered me on technical problems with the development tools.

7

Contents
Summary ... 3
Acknowledgements ... 5
Contents... 7
List of Tables... 11
List of Figures ... 13
Chapter 1 Introduction ... 15

1.1 Problem domain .. 15
1.1.1 Safety Systems .. 16
1.1.2 Technological Trends of Safety Systems .. 19
1.1.3 Commercial Dimensions of Safety Systems ... 20
1.1.4 The Evolution of Process Control Systems... 21

1.1.4.1 The eight parts of IEC 61158 .. 22
1.1.5 The Benefits of Adopting Fieldbus ... 25
1.1.6 ProfiSafe.. 27

1.2 Problem specification.. 29
1.3 The structure of this thesis .. 32

Chapter 2 Foundation Fieldbus.. 33
2.1 FF - Fieldbus Foundation or FOUNDATION Fieldbus? 33
2.2 Foundation Fieldbus vs. the OSI Reference Model .. 33
2.3 Foundation Fieldbus System Architecture .. 35

2.3.1 FF Communication Stack.. 36
2.3.1.1 Physical Layer ... 36
2.3.1.2 Data Link Layer (DLL) ... 38
2.3.1.3 Application Layer.. 39

2.3.2 User Layer ... 41
2.3.2.1 Function Blocks... 42

2.3.3 Function Block Shell ... 44
2.4 Development of a FF Device .. 45

Chapter 3 IEC 61508 ... 49
3.1 Risks in Industrial Processes ... 49
3.2 What is the IEC 61508 standard?.. 50
3.3 Safety Integrity Levels .. 50
3.4 Other standards and regulations .. 53

Chapter 4 Safety Critical Communication... 55
4.1 Risk Considerations For Safety Critical Communication 57
4.2 Communication failure modes outlined in IEC 61508.. 58

4.2.1 The IEC 61508 communication failure modes related to the standard FF
communication protocol.. 59

4.2.1.1 Data corruption.. 59
4.2.1.2 Corruption of sender and/or receiver addresses .. 59
4.2.1.3 Inaccurate timing of transmission of data packages.................................. 60
4.2.1.4 Wrong sequence of packages .. 60

4.3 Principle Solution For Safety Critical Communication .. 60
4.3.1 The Safety Layer ... 61

8

Chapter 5 The “Safety Layer” for Fieldbus Foundation.. 63
5.1 The Safe Function Block Concept .. 64
5.2 Safe Function Block Specification.. 67

5.2.1 Safety Frame ... 68
5.2.2 Fields ... 69
5.2.3 Acknowledgements of Safety Frames... 70

5.3 How the IEC 61508 failure modes are handled in detail in the Safety Layer....... 71
5.3.1 Data Corruption... 72

5.3.1.1 CRC Performance ... 73
5.3.1.2 Probabilistic Considerations.. 74
5.3.1.3 16-bit CRC .. 75
5.3.1.4 24-bit CRC .. 78

5.3.2 Corruption of Sender and Receiver Addresses ... 78
5.3.3 Inaccurate Timing of Transmission... 79
5.3.4 Wrong sequence of data packages .. 81

5.4 Safe Function Block Design.. 81
5.4.1 struct safetyParams_t... 82
5.4.2 Safety related variables not in safetyParams... 84
5.4.3 The Watchdog function... 86
5.4.4 CRC-Implementation .. 86
5.4.5 Demo Implementation of the Safety Layer ... 87

Chapter 6 Discussion Of The Solution .. 91
6.1 Why The Proposed Safety Layer Is Not Optimal – Weaknesses and Uncertainties

91
6.1.1 Weaknesses Related To The Addressing .. 91
6.1.2 Uncertain Issues Related To The frameCounter ... 92
6.1.3 General Weaknesses.. 92

6.2 Discussion Of Different Solution Proposals ... 93
6.2.1 Safety Frame Without Fields... 93
6.2.2 Multiple I/O Parameters .. 94

6.3 Practical Problems Encountered During The Work Process................................. 94
6.3.1 Inconsistent User Manuals .. 94
6.3.2 Compiler Problems.. 95
6.3.3 Debugging And Testing Of The Safety Layer .. 96

Chapter 7 Conclusion... 99
7.1 Further Work ... 100

References ... 103
Chapter 8 Appendix ... 107

8.1 CRC... 107
8.1.1 CRC-Code and tables .. 107
8.1.2 Test of CRC implementations ... 109

8.1.2.1 24-bit CRC test.. 109
8.1.2.2 16-bit CRC test.. 111

8.2 Safe function blocks .. 112
8.2.1 SAI-1 block ... 112
8.2.2 SAO-1 block.. 121

9

8.3 Device Descriptions .. 128
8.4 Device Template & Device Configuration.. 132

8.4.1 Device Configuration .. 132
8.4.1.1 Safe AI... 132
8.4.1.2 Safe AO... 132

8.4.2 Device Template ... 132

11

List of Tables
Table 3-1, This class of systems operates in a demand mode. The demanded function is

performed less than once per year. The Safety Integrity Levels expresses the average
probability of a system’s failure to perform its design function on demand............. 52

Table 3-2, Safety Integrity Levels for systems with high demand or continuous mode of
operation. Shows SIL related the probability of a dangerous failure per hour. 52

Table 3-3, List of some of the most common standards used to supplement IEC 61508 []
... 53

Table 5-1, The FF specification defines that a function block’s I/O parameters can be one
of these data structures. ... 68

Table 5-2, Measures for mastering errors and failure modes [1, 15]. 71
Table 8-1, The test strings for the 24-bit CRC polynomial... 110
Table 8-2, The checksums generated for the test string with the 24-bit CRC polynomial.

... 110
Table 8-3, The test strings for the 16-bit CRC polynomial... 111

13

List of Figures
Figure 1-1, The best way to minimise risks in plant operation is to design inherently safe

processes, and in that way reduce the entailed risk to an tolerable level. Often this
approach alone does not fulfil the necessary risk reduction. A safety system must be
introduced to reduce the risk down to an acceptable level. If the safety system fails,
the application returns to a level of unacceptable risk []... 17

Figure 1-2, The control system regulates the process by collecting information from
sensors and sending commands to actuators. The safety system monitors selected
variables and its own integrity and is activated if an abnormal situation arises. 18

Figure 1-3, A fieldbus system needs only 1 I.S. barrier and 1 cable, compared to the
traditional 4-20mA systems that needs 1 cable and 1 I.S. barrier per instrument..... 26

Figure 1-4, ProfiSafe layer architecture [] .. 28
Figure 1-5, ProfiSafe frame structure. A maximum of 128 bytes can be used to hold

safety data.. 29
Figure 2-1, The layered OSI communication model compared to the Foundation Fieldbus

model... 34
Figure 2-2, Distribution of the process control Application Processes among the field

devices. Applications A, B and C control process P. Applications A and B are
distributed over respectively devices 1, 2, 3 and 3, 4. Application C resides in device
2... 35

Figure 2-3, The key components of the Foundation System Architecture. The application
layer is divided into two sublayers, Fieldbus Access Sublayer (FAS) and Fieldbus
Message Specification (FMS) (ref. section 2.3.1.3 Application Layer). 36

Figure 2-4, Manchester encoding. The signal is self-clocking, the clock is combined with
the data stream to create the signal.. 37

Figure 2-5, The FF system architecture specifies a User Layer. The User Layer defines
function blocks that model the user configurable part of a fieldbus system. 41

Figure 2-6, Schematic illustration of a control loop. A FF network is made up of devices
connected together by a serial bus. The set of functions a device can perform is
represented by the function blocks within the device. The function blocks are
configured and linked together to control a process. .. 43

Figure 2-7, The picture shows the Fieldbus “Power hub,” two development round cards
in the foreground and the serial programming daughter card is up in the left corner.
... 46

Figure 3-1, Risk considerations according to IEC 61508. .. 51
Figure 4-1, In a traditional safety system the sensors and actuators were directly

connected to a logic solver by cables. Each peripheral device had at least one pair of
wires coupled to the centralized computer. Redundancy have been used on all levels
in a safety system, from software redundancy with n-version programming to
redundancy of hardware (wires, sensors & actuators and logic solving units). 55

Figure 4-2, In fieldbus based systems is there a two-way communication between the
devices and/or the logic solving unit. All communication is done on through the
same cable and this introduces more possible sources of errors. 56

14

Figure 4-3, The whole system should be considered for safety. The entire path from
input, through logic solving to output is relevant for the safety, but the
communication subsystem is allocated 1% of the total probability of failure. 57

Figure 5-1, Two standard function blocks liked together. Data cyclically flows only in
one direction, from FB1 to FB2. ... 65

Figure 5-2, Schematic illustration of the concept of the “safety layer.” The grey shaded
area symbolises the overhead added to ensure a safer communication between the
function blocks. The safety layer has both safe input- and output-parameters that
makes two-way communication possible between the function blocks.................... 67

Figure 5-3, One safety frame contain all the safety relevant data necessary to validate a
transmission. The frame is too big to be sent in one bulk and therefore must be split
into fields that are individually transmitted. A safety frame consist of 6 fields,
numbered from 0 to 5. ... 68

Figure 5-4, The structure of a safety frame. The status byte is used to hold a bit that
indicates which field that are sent or received. ... 69

Figure 5-5, The safe bi-directional channel between to safe function blocks is constructed
from two linkages based on the Publisher/Subscriber VCR. 70

Figure 5-6, The acknowledgement frame is similar in size as a field. It is five bytes and
contains four bytes of data. The status byte contains an acknowledgement identifier.
The four bytes of data is used to hold two bytes of CRC and the two LSB of the
frameCounter to identify the safety frame the function block is acknowledging. 71

Figure 5-7, X-axis: FF bit error rate, Y-axis: Residual error rate. This graph was
generated with Mathematica and the units on the axes are powers of 10. 76

Figure 5-8, Signal to noise ratio per bit (dB). ... 77
Figure 5-9, X-axis: FF bit error rate, Y-axis: Residual error rate. The units on the axes are

powers of 10. ... 78
Figure 5-10, The communication between two safe function blocks consists of two events

(marked as red arrows): 1. The commands from System Management (SM) in each
device telling the safety layer to update its safety variables related to
communication. 2. The arrival of “Compel Data” messages from the LAS forcing
the blocks to publish the safety variables.. 80

Figure 5-11, In the left panel of the Configurator we can see two fieldbus devices
symbolized as yellow boxes. We can see that each device contains two blocks, one
resource block and one function block. The right panel displays the how the blocks
are connected with two linkages. .. 89

Figure 6-1, The block window. This window displays a function block’s parameters as
they appear in the block or you can choose which of the parameters you want to
display. In this figure only the safetyParams-struct in the SAI-1 is block shown. The
SAI-1 is here sending the first field of the tenth frame... 97

15

Chapter 1 Introduction
In process control industry there is a movement towards an increased use of fieldbuses to
interconnect “intelligent” manufacturing equipment. There are several reasons why to use
fieldbus, some of the benefits include lower cost of purchase and ownership (reduced
cabling, less equipment) and access to more information available for operations and
diagnosis. A fieldbus can most easily be described as a Local Area Network (LAN)
specialised for use in industrial environments. A wide variety of networks are available in
the industrial automation environment. Each bus is designed for a specific area within the
fieldbus market. The most widespread bus technologies are based on international
standards. Foundation Fieldbus and Profibus are examples of such buses designed for
process industry. It is a coming trend in safety-critical systems, or just safety systems
(systems that can be hazardous to man, environment or equipment in the presence of
faults), to use fieldbuses with the same benefits as non-safety-critical applications.
Traditional safety systems have been based on relatively simple sensors and actuators
hardwired to the input/output port of the system controller. The transition from these
traditional hardwired systems to the use of microprocessor based systems, represents a
paradigm change within the technology of the safety industry. Several new challenges are
introduced to the safety systems manufacturers related to the safe communication
between the field devices and the system controller. Although software based systems
provides high flexibility, their primary disadvantage is the complexity they involve.

1.1 Problem domain
In this thesis I will propose a way of modifying an implementation of Foundation
Fieldbus H1 (FF) to make it usable for safety-critical communication. The work on this
thesis is based on a technical report called “Using Foundation Fieldbus in Safety
Applications,” [1] written by Lars Lidström at ABB Corporate Research Centre in
Norway. The report is a pre-study identifying possible weaknesses in the Foundation
Fieldbus protocol stack. The outcome of this study was intended as foundation of a
planned project aiming at using a Foundation Fieldbus H1 network in safety-critical
surroundings. The investigation concluded that the standard Foundation Fieldbus H1
protocol stack was not well suited in high-risk applications. In the report the author
pointed out weak elements within the FF communication stack related to communication.
My assignment has been to further analyse the issues outlined in [1], propose concrete
solutions to the problems concerning safety-related communication and investigate the
possibilities of implementing them in a “safety layer.” I have studied issues related to
how to make the communication between fieldbus devices more “safe,” or actually more
reliable. The safety layer shall allow communicating applications in fieldbus devices to
know, with a given certainty, that transmitted data has arrived correctly at its destination.

[1] Lars Lidström, “Using Foundation Fieldbus in Safety Applications.” ABB NOCRC,
June 1999

16

This thesis starts by having a closer look at safety systems and the evolution of process
control technology. In the next two chapters I give an overview of the Foundation
Fieldbus system architecture and IEC 61508, an international accepted framework for the
use of programmable electronic devices in safety-related systems. Succeeding these
introductions I address the design and implementation of “my safety layer,” which is the
main focus in the remaining chapters.

1.1.1 Safety Systems
Process control is a general term used to describe the many methods of regulating
industrial processes. It is a branch of technology that deals with automating, monitoring,
and controlling complex processes. In an industrial process there are many factors and
parameters that have influence on the process. Some of them can make the process
deviate from its original objectives, thus are the operating conditions constantly subjected
to change. The job of the process control system is to actively make small alterations to
the process according to the process’ objectives. The process being controlled is
monitored for changes by sensor devices that provides information about the state of the
system. The gathered information is used by the control system to determine how to
manipulate the process. The control system calculates feedback signals that are used to
manipulate control devices (actuators). The actuators make small alterations to the
process and “guides” it according to the strategy chosen to attain the goal for the system.
We may, for instance, want to hold the process as close as possible to a given steady
state. Often both internal and external conditions constantly affects the process and
makes it deviate from the steady state. A control system must constantly generate
feedback signals, based on sensor readings, to modify the process in order to reduce this
deviation. One of the first installations using Foundation Fieldbus technology is sited in
the northern part of Alaska. The fieldbus is used in Arcos’ oil production plant in the
West Sak oilfield [2].

Some processes and systems involve risks. Risk is a combination of the frequency or
probability of an accident and the severity of the potential consequences. Systems
involving high risks obviously have the capability to do harm to personnel, the
environment and to expensive manufacturing equipment. These systems are termed
hazardous. It is often necessary to install a redundant system that reduces the entailed risk
to an acceptable level in hazardous environments or applications. Such “risk reducing
systems” falls into a category of safety-critical systems, or just safety systems. Examples
of these systems can be found in aviation, in nuclear power plants, in the oil and gas
industries, and in medical devices. The ANSI/ISA-S84 [3] standard defines a safety
system for process industry applications as, “A system composed of sensors, logic

[2] “Fieldbus Foundation låter instrumenten styra själva.”Automation, tidningen för
modern produktionsteknik, mars 1999 nummer 2.

[3] ANSI/ISA, “Application of Safety Instrumented Systems for the Process Industry,”
ANSI/ISA-S84.01-1996

17

solvers, and final control elements for the purpose of taking the process to a safe state
when predetermined conditions are violated.” This definition can also be applied to other
common systems used for plant safety, such as emergency shutdown systems and safety
shutdown systems. Safety systems exist because conventional control systems cannot be
depended upon in safety protection applications. Safety systems are critical in a sense that
they are absolutely necessary to maintain a certain level of safety. If they fail, critical and
hazardous situations are very likely to occur. The ANSI/ISA S91 [4] is a short, two
paged, standard that includes a definition of safety critical, “a control whose failure to
operate properly will directly result in a catastrophic release of toxic, reactive, flammable
or explosive chemical.” A safety system obviously has direct influence on the safety of
its users and the surrounding environment, and failure of this system will cause the
inherent risks of the application to escalate to an unacceptable level. This is illustrated in
Figure 1-1 below.

RISK

Inherent risk
associated

with process

No safety
function

Tolerable riskResidual risk

Necessary risk reduction

Risk reduction made by
the installation itself

Risk reduction made by
the safety system

Figure 1-1, The best way to minimise risks in plant operation is to design inherently safe processes, and in
that way reduce the entailed risk to an tolerable level. Often this approach alone does not fulfil the
necessary risk reduction. A safety system must be introduced to reduce the risk down to an acceptable
level. If the safety system fails, the application returns to a level of unacceptable risk [5].

It is important to understand the fundamental difference between process control and
safety control in industrial environments. A process control system is active and performs
continuos computations on input from sensors and sends commands and outputs to
actuators. Its task is to automate and regulate the process operation. Safety systems are
more of the passive kind and are operating behind the scenes. Safety systems place more
strict demands on the level of diagnostics and performance compared to process control
systems. Outwards they remain inactive until an error is detected. The safety systems
then perform a predefined action, like a shutdown procedure that brings the system to a
safe state instead of letting the process continue and possibly lead to a dangerous

[4] ANSI/ISA, “Identification of Emergency Shutdown Systems That Are Critical to
Maintaining Safety in Process Industries,“ANSI/ISA S91.01-1995, ISBN 1-55617-570-1.

[5] Based on a translated foil from Tor Onshus’ presentation on Safety Critical Systems
at ABB NOCRC, March 13th 2000

18

situation. If a system has a safe state it can adopt when errors are detected, the system is
said to be failsafe. Even though a safety system seems idle under normal operational
conditions, it is constantly monitoring selected variables in the process control system
(See Figure 1-2).

Process Control System

Safety System

P R O C E S S

SWHW Communication

e.g. Enter
"safe state"

Sensor readings

Actuator commands

Constant monitoring of
selected variables

Predefined action performed
when a fault is detected

Figure 1-2, The control system regulates the process by collecting information from sensors and sending
commands to actuators. The safety system monitors selected variables and its own integrity and is activated
if an abnormal situation arises.

Furthermore must a safety system also monitor itself and detect faults in its own
operation. The ability to detect faults within itself is very important for safety systems
and is defined as the system’s integrity. There exists a number of national and
international standards that defines different levels of safety, called safety integrity levels
(SIL), that must be assigned to safety systems. The integrity levels are an indication of
“how safe” a system is. The safety integrity levels express the probability of an error
passes undetected through the safety system. When an error occurs in a safety system, it
does not necessary have to pose a threat to the integrity of the system as long as the error
is detected and flagged, and some sort of action is taken to handle the situation. It is when
an error is not detected and passes unnoticed through the system, really hazardous
situations with severe consequences may occur. If this happens the safety system has
failed to do its task. This is where the SIL comes into the picture. The SIL provides an
estimate for the likelihood of a failure passes unnoticed through the safety system. This
issue will be discussed more thoroughly in chapter 3.

The two main fault-handling techniques used for making systems safe are fault detection
and fault tolerance. Fault detection is used during service to detect faults within the
operational system. If a fault is detected, an additional mechanism for forcing the system
to fail to a safe state is needed. Fault tolerance can be used to prevent system faults from
producing system failures. Fault tolerance techniques are designed to allow the system to
operate correctly in the presence of faults.

19

1.1.2 Technological Trends of Safety Systems
There are several technologies available for use in safety systems. The choice of
technology may be application dependent and driven by several factors like the level of
risk associated with the process, size of the system, size of the budget, maintenance,
flexibility, requirements put upon the communication and so on.

One of the earliest technologies used in safety systems was pneumatic, as in process
control. Pneumatic systems are still in use today, especially in some offshore installations
where systems are required to run without electrical power. Pneumatic systems are most
suitable for small applications where simplicity is desired.

Another technology that has been commonly used in safety systems is electromagnetic
relay systems based on logical signals. Relays are relatively simple devices with well-
understood failure characteristics. They are safe and can meet SIL 3 (See Chapter 3)
requirements assuming the right relays are used and that the system is designed properly
[6]. Nowadays are relay systems chosen for small and simple applications. They are low-
cost systems but can be expensive to maintain. Large relay systems are intricate and pose
challenges to engineers whenever changes are needed. All changes made in the wiring
must be documented and drawings and documentation must be updated.

Solid-state is yet another technology used within safety-critical systems. Solid-state
systems are hardwired and are therefore often expensive to implement. They perform
simple relay logic and include features for testing and performing bypasses. Solid-state
systems are quite easy to verify because they do not incorporate any software. A single
fault within a solid-state logic system usually disables one logic path, thus leaving all the
others available.

The most used technology for safety-critical applications today are microprocessor and
software-based systems (Programmable Logic Controllers, PLCs). The most obvious
advantage of computer-based systems is their processing power [7]. These systems
provide high flexibility. Just by modifying the system software its characteristics can be
altered completely without requiring changes of the hardware. The primary disadvantage
of such systems is the complexity involved. Both the hardware and software is associated
with great complexity. PLCs are therefore difficult to verify and validate. However, the
advantages of implementing a software-based system often outweigh the problems.
Sometimes the costs of implementing a programmable electronic control system are less
than that the cost of alternative methods and might also be the only feasible solution.

[6] Paul Gruhn and Harry L. Cheddie, ISA “Safety Shutdown Systems: Design, Analysis
and Justification,”

[7] Neil Storey, “Safety-Critical Computer Systems.” Addison-Wesley 1996.

20

1.1.3 Commercial Dimensions of Safety Systems
Humans have always been concerned about their safety. Safety takes different
perspectives depending on the viewpoint we are using. Aspects such as economy,
tradition and geographical location of the plant facility are factors that strongly affect
safety considerations and the amount of risk we are willing to accept. Risk is always
perceived in a subjective manner from a personal point of view. For a machine-operator
on the plant floor, safety may for instance involve some sort of an emergency stop
procedure. At the corporate level safety involves other concerns. Some corporations may
accept incidents others find unacceptable. Economic consideration of safety eventually
boils down to put a value on a human life, and this varies between different cultures.
Common tools used in the design of safety-critical systems are redundancy and formal
methods. Both of these methods are considered to imply considerable expenses. The safer
a plant is, the more expensive it will be. The expansion of the plant’s safety precautions
must be well balanced between the extra expense the increased safety would imply. “For
an international supplier of factory automation equipment, safety is critical. Corporations
can’t afford the risk of large accidents. Neither can they afford the associated bad press,
worldwide. It’s far less expensive to ensure proper safety, than pay for an accident after
the fact.“[8] This statement is an example of safety-critical systems playing an
increasingly crucial role in process plants. For the last few years the market for safety
systems has expanded rapidly. There are several factors that have contributed to this
growth. The two most important and recent contributors have been publications of
several safety standards and the general public’s increased awareness of safety. "Safety is
without doubt, the most crucial investment we can make. And the question is not what it
costs us, but what it saves." (Robert E McKee, Chairman and Managing Director, Conoco
(UK) Ltd.)

In parallel with a worldwide increased density of automation, there has been a continued
increase in industrial incidents. Other factors that have played a role in the growth of
safety systems include increased use of programmable systems instead of relay or solid-
state logic, increased use of safety systems in countries outside North America and
Europe. The introduction of low cost safety systems has also contributed to the
dissemination of safety systems [9].

Safety standards such as IEC 61508 [10] and IEC 61511 [11] and DIN V VDE 19250
[12], have gained worldwide recognition and are creating more strict safety requirements

[8] David J. Bak. “A factory floor ‘Safety Net’” - Global Design News, April 1999

[9]ARC Advisory Group “Critical Control & Safety Shutdown System World Wide
Outlook” – Market analysis and forecast through 2004.

[10] IEC 61508 – International Electrotechnical Commission (IEC) standard, IEC 61508
– “Functional safety of electrical / electronic / programmable electronic safety-related
systems.”

21

for process plants. Therefore, users in the process industry are looking for system
suppliers that can offer tightly integrated control and safety systems. Therefore there is
little or no doubt that safety is good business in the years to come. In 1999 the total of the
worldwide safety market amounted to over $375 million. This amount is expected to
grow to more than $500 million by the year 2004 [9]. North America, Europe, Middle
East and Africa constitute the major part of the market for safety systems, but as the
economy grows in Asia it is likely to think that this part of the world represents a long-
term growth opportunity for safety systems.

1.1.4 The Evolution of Process Control Systems
Between 50 and 60 years ago, in the 1940's, most plants relied upon 3-15 psi (Pounds per
Square Inch, a unit of stress or pressure) pneumatic signals to control their process. In the
1960's that standard was replaced by the 4-20 mA analogue signal for instrumentation.
Both the pneumatic and the electrical standards were analog and unidirectional.
Information could only flow in one direction. A more recent change in signal standards
was a digital communications format called HART (Highway Addressable Remote
Transducer). The HART protocol is an open system solution and provides simultaneous
digital communications with the 4-20 mA output. HART has gained widespread
acceptance within the process control industry. In 1970 the development of digital
processors sped up and led to a more widespread use of centralised computers in process
control automation. In the 1980’s, so called “smart” sensors were developed. These
“smart” or “intelligent” sensors were smart in a sense that they had built-in
microprocessors, and became capable of running more complex control algorithms and
performing self-diagnostics. Intelligent sensors were interconnected to form networks of
field devices. The networks were called fieldbuses. A fieldbus can therefore be described
as a network for factory floor instrumentation. Fieldbus is entirely digital, there is no
analog signals. This changed the signalling standard in process control from analogous to
digital. The introduction of fieldbus included more than a changing of the signal standard.
Fieldbus technology provides two-way digital communication between smart field
instruments. This allows an expansion of the amount of process data and non-process
information flowing both from and to the field devices. Some fieldbus technologies also
allow distribution of the control functions to the field devices. Each physical field device
performs a small portion of the total process control. This approach eliminates the need
for large, centralised and complex computers in control systems.

As the use of microprocessor technology got more common and widespread in control
systems, it soon became obvious that it was necessary to formalise the control of smart

[11] IEC 61511 – IEC standard entitled “Functional Safety: Safety Instrumented Systems
for the Process Industry Sector.” This standard adheres to the main attributes established
in IEC 61508.

[12] DIN V 19250 (Deutche Industri Normen, DIN) Control technology – “Fundamental
safety aspects to be considered for measurement and control equipment.”

22

instruments in a standard. In 1985 the Instrument Society of America joined by the
International Electrotechnical Commission, started to develop a standard for two-way,
multidrop digital communications that could be used to integrate the smart field devices.
This standard was originally outlined to comprise eight parts that each considered
different aspects of the communication standard. In 1993, eight years later just one of
these eight parts was completed and approved, the IEC61158-2. This part defines the
physical layer. The extensive and time consuming work on the IEC standard was
perceived by many to be moving too slowly. Some suppliers began using the currently
available elements of the IEC standard, assuming that the missing parts would be defined
in a certain way. The individual initiatives shown by the member companies lead to an
emerging of several proprietary “standards” based on the same physical layer. The
physical layer alone is of course not enough to ensure interoperability between different
technologies.

The extensive development of a fieldbus standard got complicated and time consuming
by the fact that company members of the IEC pushed to have their own product ideas
standardised. Some of these products became de facto standards in different regions of
the world and within different fields of process control. Finally in 1999 the IEC 61158
standard was complete and sent out for voting by the IEC-members. Company members
that developed their own standard that differed from the proposed 61158 standard was
negative to accept it as a standard and voted no whether to accept 61158 as an IEC
standard or not. After a period of arguing and several re-votes, the disputed fieldbus
standard finally got approved. 23 of the 26 member countries of the International
Electrotechnical Commission voted in December 1999 in favour of a highly revisited
draft of 61158 including eight different busses. 14 years of development and arguing
ended in a compromise many characterised as a catastrophe. The fieldbus standard had
become an “eight-headed-monster” of a standard that was quite different from the
original intentions. The standardisation work, that was started to provide end users with
device interoperability, ended up without a result according to its original intentions as
vendors kept pushing to promote their proprietary differentiation.

1.1.4.1 The eight parts of IEC 61158
There are today many fieldbus technologies available for industrial environments. Each
bus is designed to fulfil the specific needs of an area of applications, but many of the
buses have overlapping capabilities. It is convenient to divide the busses into two
categories, namely sensor-actuator networks and process level networks. The “sensor”
networks constitutes the lowest level of buses. These buses are fast and effective, but
with only limited applications beyond relatively simple machine-control. The next level
of buses are the process level networks. They provide analog and digital support for more
complex instruments and products.

The buses that is included in the IEC 61158 standard are some of the major industrial
networks available today, and are as follows:

23

Type 1 is an all-digital, serial two-way communication system that resembles the
“Foundation Fieldbus H1” from Fieldbus Foundation (The Foundation Fieldbus is
described more closely in chapter 2). It serves as a LAN for process control and
manufacturing automation instruments. The bus distributes the control application across
the network. Foundation Fieldbus is an open standard describing digital, serial, two-way
communication between fieldbus devices. Devices can be powered directly from the
fieldbus and can also support intrinsically safe fieldbuses. There is support for both
scheduled- and unscheduled- (user-initiated) communication. Foundation Fieldbus’ main
application area is within process control. One thing that makes Foundation Fieldbus
different from other technologies is that some parts of the application running in the field
devices are standardised. This ensures interoperability between devices from different
vendors. Foundation Fieldbus is the only fieldbus that has been implemented as a subset
of the original IEC 61158 standard before it was determined that 61158 should include
seven other fieldbuses.

Type 2 is ControlNet. ControlNet is a communications protocol that enables users to
predict data transmission and guarantee its arrival. ControlNet has a capacity of 5
Mbit/sec and is based on a Producer/Consumer model. ControlNet is highly deterministic
and repeatable. Repeatability ensures that transmit times are constant and unaffected by
devices connecting to, or leaving, the network. ControlNet supports media redundancy
and intrinsically safe options. ControlNet also provides a flexibility in topology options
(bus, tree, star) and media types (coax, optical fibre, other) to meet various application
needs.

Type 3 is Profibus, an open fieldbus standard and a part of a European Standard called
EN 50170. Profibus can be used for a wide range of applications in manufacturing and
process automation. Profibus comes in three variations. The most commonly used is DP
for discrete applications, followed by PA, which defines the parameters and function
blocks of process automation devices, and then FMS for critical, high-speed, complex
applications. The physical layer in Profibus-DP is based on the RS485 standard, whilst
PA has the same physical layer as Foundation Fieldbus H1. Profibus is a fieldbus
network designed for deterministic communication between computers and PLCs.
Profibus is a master/slave bus. Most of the master-slave communication is done in a
cyclic manner. The functions required for these communications are specified by profiles,
a basic set of rules and definitions that are valid within a group of field devices.
Advantages: Profibus is one of, if not, the most widely accepted international fieldbus
standard. Profibus can handle large amounts of data at high speed. The DP, FMS and PA
versions collectively address the majority of automation applications. The disadvantages
of Profibus include high overhead to message ratio for small amounts of data, no power
on the bus for field devices and slightly higher cost than some other buses.

Type 4 is P-Net. P-Net has been a part of the European Standard - EN 50170, since July
1996. The electrical specification of P-NET is based on the RS485 standard using a
shielded twisted pair cable. P-NET is a multi-master bus, which can accept up to 32
masters per bus segment. All communication is based on the principle, where a Master
sends a request, and the addressed Slave returns an immediate response. Requests can be

24

of a read or write type. Slaves handle the processing of data and the reception or
transmission of frames, in parallel. The processing of a request by the slave is initiated as
soon as the first data bytes arrive. The slave does not have to wait until the entire frame
arrives before processing begins. P-Net can handle up to 300 confirmed data transactions
per second, from 300 independent addresses. The right to access the bus, is transferred
from one P-NET master to another, by means of a token. When a master has finished bus
access, the token is automatically passed on to the next master, by a cyclic mechanism
based on time. Any P-NET module, including a master, can be powered down or
connected to or disconnected from the bus, without interfering with the rest of the bus
system.

Type 5 is the Foundation Fieldbus high-speed Ethernet (HSE). HSE, High Speed
Ethernet, is a 100Mbit Ethernet standard who uses the same protocol and objects as FF
H1, on UDP/IP. H1 has many good features that HSE does not have and vice-versa. It is
not believed that HSE will replace the H1 bus, rather that the two busses will complement
each other. In control system architecture, H1 fieldbus operates at the field level to
connect transmitters and the like. HSE operates at a higher level between linking devices
and workstations and enables a very large network that is also open at the host-level.
There are plenty of benefits to Ethernet, low cost, high speed, many media options, and
ease of use. Drawbacks of Ethernet include, Ethernet is limited to 100 meters, which is
too short for wiring instruments in the field. Ethernet requires multicore cable, which is
too costly for long field cable runs. Ethernet needs a hub, which although cheap can be
costly and outsized. A user would need one port for each field device. Ethernet provides
no power so you would need additional wires. Ethernet is not intrinsically safe so it can't
function in certain areas of the chemical and petrochemical industry.

Type 6 is SwiftNet. This is a producer/consumer technology created to satisfy the Boeing
Co.'s need for a synchronous, high-speed (85000 samples/sec) flight-data bus. SwiftNet
locks together the local clocks of all fieldbus nodes and therefore the common bus time is
inherently available in all devices. The bus provides synchronous global, group, and
individual triggers to stimulate device actions. SwiftNet is a very high efficiency / high
scan rate, truly-synchronous fieldbus. It minimises and controls jitter. The bus has
support for up to 896 bytes of user data. For large, bridged networks SwiftNet support up
to 30,000,000 nodes. Timestamping works between any levels of the bridged network.
SwiftNet is ideal for any control application that needs high-speed, synchronous data
acquisition or control, a large number of nodes and wide-area coverage.

Type 7 is WorldFIP and is a single communication technology for both time-critical data
and unscheduled messages. Applications include large distributed control systems down
to low-end non-intelligent sensors/actuators. A single communication technology serves
each level of control architecture. WorldFIP uses the producer/consumer model with a
centralised bus scheduler. WorldFIP is a single consistent technology for all levels of the
fieldbus system, combining the worlds of closed-loop control and information-technology
on one bus. WorldFIP is designed to provide links between level zero (sensors/actuators)
and level one (PLCs, controllers, etc.) in automation systems. WorldFIP provides a
deterministic scheme for communicating process variables and messages at up to 1Mbit

25

per second. WorldFIP uses a centralised scheduler that broadcasts a variable identifier to
all nodes on the network, triggering the node producing that variable to place its value on
the network. Once on the network, all modules which need that certain information
"consume" it simultaneously. This concept results in a decentralised database of variables
in the nodes and remarkable real-time characteristics. This feature eliminates the notion
of node address and makes it possible to design truly distributed process control systems.
WorldFIP can be used with all types of application architectures, centralised,
decentralised and master-slave.

Type 8 is the Interbus-S and uses a ring topology. Due to that ring structure and because
it has to carry the logic ground, Interbus-S requires a 5-wire cable between two devices.
InterBus was one of the very first fieldbuses to achieve widespread popularity. It
continues to be popular because of its versatility, speed, diagnostic and auto-addressing
capabilities. InterBus differs from the other fieldbuses in that it uses a ring topology, not
a bus. InterBus has two other advantages, because of its unusual network topology. First,
a master can configure itself because of the ring topology. Second, precise information
regarding network faults and where they have occurred can drastically simplify
troubleshooting. The protocol has minimal overhead and few buses are faster than
InterBus. InterBus is most commonly found in assembly, welding and material handling
machines. Advantages: Auto-addressing capability makes start-ups very simple,
extensive diagnostic capability, widespread acceptance (especially in Europe), low
overhead, fast response time and efficient use of bandwidth, power (for input devices)
available on the network. Disadvantages: One failed connection disables entire network,
limited ability to transfer large amounts of data.

1.1.5 The Benefits of Adopting Fieldbus
Users want benefits when adopting fieldbus technology. They demand more from their
control systems and industrial networks. The benefits of fieldbus in a factory are said to
be many, and span the life cycle of a plant, from planning and installation through
ongoing operations and maintenance. The main benefits include:

Lower installation costs
End users really expect this benefit. Compared to analog devices, fieldbus installations
costs are greatly reduced. The use of fieldbus greatly reduces initial plant costs and
installation labour. This can be attributed to the ability to pre-configure instrumentation
and make adjustments to devices located remote from the control room. A fieldbus allows
many devices to connect to one cable. This means that the installation costs are reduced
because less wire and fewer intrinsic safety barriers are needed. One of the most spoken
benefits of fieldbus is the reduced cost of cabling involved, but the most potential for
wiring savings will be in new plants or major retrofits [13]. Connecting multiple field

[13] M. J. L. Ochsner, Ken Beatty. Technical Papers of ISA, Networking and
Communications on the Plant Floor – Volume 392, 5-7 October, “Benefits and challenges
experienced by Foundation Fieldbus Installations”

26

devices to a single bus also means reduced I/O and control equipment needed, including
cabinets and power supplies.

Additional lower initial costs include
• Fewer, simplified drawings
• Easier control system engineering
• Self configuration with “Plug and Play” functionality
• Simplified commissioning and start-up.

Control System

PLCController
Sub-system

of I/O

I.S. I.S. I.S.

4-20 mA

PID

AI AO

1 cable per instrument
(2 wires per instrument) 1 I.S. Barrier per

instrument

Controller
(optional)

I.S.

AI AO
PID

Fieldbus

Control/Host/
Monitoring

System

1 I.S. Barrier for all
instruments

1 cable for all instruments

Safe area

Hazardous area

Figure 1-3, A fieldbus system needs only 1 I.S. barrier and 1 cable, compared to the traditional 4-20mA
systems that needs 1 cable and 1 I.S. barrier per instrument.

Lower maintenance costs
Maintenance and process management is easier and more effective with fieldbus. Cost
reductions are expected due to increased monitoring of process equipment. Lower
maintenance cost is a result from increased diagnostics from the individual instruments.
The operator's view of the entire process is expanded. This expanded view aids in
maintenance because operators have access to more information and diagnosis. The need
to send a maintenance person to the field to check a device that might have a problem is
decreased. The fieldbus device self-diagnostics notify you when a problem occurs and
more information allows preventive maintenance.

Improved performance
Digital communications from the field devices enable more detailed diagnostics directly
from remote stations. Because the fieldbus provides better diagnostics, the down time is
reduced and productivity and quality increased. Some fieldbus devices may perform
multiple measurements, control and computations. That means both increased control
over the entire process and the number of transmitters may be reduced

This is a very short and general indication of some of the many advantages fieldbus
technology introduces in process control over conventional technology. The value added
by implementing fieldbus technology span from a reduced cost of cabling, to making the
control system more flexible with the introduction of processing power in the field.
During the last couple of years there has been a movement in process-control industry

27

towards an increased use of fieldbuses. The result of an extensive survey of over 700 end-
users across 8 major industries throughout Europe points out two main reasons on why
customers want to install a fieldbus [14]:

26 % said ‘cost savings’
• less wiring
• lower maintenance
• simplified plant structure
• lower staffing

22 % said ‘facilitation of intelligent field devices’

1.1.6 ProfiSafe
ProfiSafe is an example of a safety system based on microprocessors and software.
ProfiSafe is a communication profile for safety-critical applications developed by the
Profibus organisation. ProfiSafe is used together with Profibus-DP to achieve a failsafe
safety function. If a system is failsafe, it has a safe state it can adopt when errors are
detected. ProfiSafe is certified for use in Safety Integrity Level 3 (IEC 61508 SIL 3)
applications. The concept of SIL is discussed in chapter 3.

The safe communication provided by ProfiSafe is achieved by using standard Profibus-
DP as a transmission system and adding specific safety transmission functions collected
in a profile above the protocol layers of Profibus-DP. The ProfiSafe safety profile is
designed as a superstructure placed on top of the standard fieldbus. This design allows
the use of standard devices and “failsafe devices” on the same bus. The ProfiSafe profile
constitutes an entity, or a sort of an application, in a device that communicates with a
similar entity in another device. The failsafe profile considers the basic DP-bus to be a
“grey channel” it uses to convey messages to another profile. Only profiles of the same
type can understand the contents of the safety-related data. Profibus is a Master/Slave bus
and the safe profile defines a 1:1 communication between the failsafe devices. ProfiSafe
supports only cyclic communication between master and slave.

[14] Datamonitor, “Developments and Customer Opinion on Fieldbus,” July 1999

28

Safety Logic
Operation

Layer 1

Layer 2

Layer 7

Standard
Input/Output

Safety Input Safety
Output Standard

Logic
Operation

Layer 1

Layer 2

Layer 7

Layer 1

Layer 2

Layer 7

Layer 1

Layer 2

Layer 7

Layer 1

Layer 2

Layer 7

Slave
Slave

SlaveMaster

Master

Safety-Layer Safety-Layer Safety-Layer

"Grey Channel": ASICs, wires, links, etc. are not safety relevant components

Not safety related functons, e.g. diagnostics

ProfiSafe: the safety relevant Profibus profile comprises: addressing, watch-dog timing,
sequencing, signatures, etc.
The safe I/O and safe logic controller functions are safety relevant, but not part of the
ProfiSafe profile

Figure 1-4, ProfiSafe layer architecture [15]

Error detection is the mechanism used in the ProfiSafe profile to keep the desired level of
safety. It is the profiles responsibility to detect communication errors like duplicated
frames, loss of frames, incorrect sequence of frames, corrupted data within the frames,
delay of frames and correct delivering of frames (addressing). The profile uses
information redundancy to validate the communication between two devices. Redundant
safety-relevant information is transmitted together with basic process data. The safety-
relevant data are embedded in the data field of a basic Profibus-DP frame. A basic
Profibus-DP-frame can hold maximum 244 bytes of process data. ProfiSafe reserves 128
of these bytes for safety relevant data. Out of these reserved bytes four or six bytes are set
aside as status and control bytes depending on amount of transmitted safety data. Two
control bytes are always sent in each frame, one byte for status and one byte for sequence
numbering the frames. The remaining four bytes are reserved for a checksum that is
generated to protect the redundant safety information. A small amount of transmitted
safety relevant data (up to 12 bytes) implies a 16 bit CRC, and the control bytes amount
to a total of four. For the transmission of more than 12 bytes of safety data (up to 122) a
32 bit CRC are used, thus six bytes are used for control bytes.

[15] PROFIBUS-DP/PA - ProfiSafe, Profile for Failsafe Technology, V1.0. Document
No. 740257

29

Standard Profibus-DP frame

Safety-relevant process
data

Max. 12 resp. 122 Bytes

Status /
Control byte

Consecutive
Number

Safety-
related CRC

1 Byte 1 Byte 2 respective
4 Bytes

max. 244 bytes of DP process data

(244 - ((4 resp. 6) +
safety-relevant data)

Standard process data

Figure 1-5, ProfiSafe frame structure. A maximum of 128 bytes can be used to hold safety data.

In addition to the redundant information mentioned above, there is implemented a time
monitor to check that the safety communication between master and slave is intact.

There has played both technical and economical/political factors in the choice of using
FF as a basis for safety-critical systems in this thesis. From a technical point of view is
FF considered by many to be the basis of the next generation of process control. It is the
most modern fieldbus and it is a subset of the original IEC 61158 fieldbus standard.
Siemens is big actor in the process control market and they are using Profibus as “their”
bus. There is also a desire from competitors of Siemens and the safety system industry to
prevent Siemens to gain dominance and a monopoly in the safety-critical fieldbus market
with “their” ProfiSafe profile. The industry would like to have an alternative to ProfiSafe
and the competing vendors all want to get a share of the market. Competition among
vendors is always an advantage for the end users.

1.2 Problem specification
The main goal of this thesis has been to analyse and propose an implementation of a safe
communication protocol for Foundation Fieldbus (FF). This task can be formalised in a
high level question to set the scene for this thesis:

“How can we make FF suitable as a communication system in a SIL 3 application?”

Recall from Figure 1-2 that a safety system can coarsely be divided into three parts,
namely hardware, software and a communication profile. In each of these parts errors can
occur and each part individually contributes to the total probability of failure of the safety
system.

In this thesis I will consider aspects making the communication between devices in a FF
network “safer,” frankly more reliable in a one-to-one communication.

I will not consider other aspects of safety-critical systems concerned with system
requirements, hazard analysis, implementation, verification and validation of system

30

specification and design, configuration, maintenance, and so on. I will neither address
issues directly related to security, even though safety and security are two qualities
closely related. Both qualities deal with threats or risks. Safety deals with threats to life or
property and security deals with threats to privacy, e.g. corrupt operators making
unauthorised access and deliberately jamming the network. The most important
difference is that security focuses on malicious activities, whereas safety is also
concerned with well-intended actions.

A safety system requires that data can be validated in both a value- and a time-domain.
This applies to all parts within the system. For every transmission of data, the safety layer
must be able to check if the transmission was carried out at the right time and with the
correct values. For the devices to determine the validity of the data they receive, they
must ascertain whether the data are correct or not, this can be done by answering the
following questions:

� Are this data I just received from the right sender?
� Does the data I just received have the right value?
� Is it correct that I received data at this point in time?
� Does the data have the right sequence number?

Systems for the safety-critical industry must not only be safe, they must be shown to be
safe. Before any new safety systems can go into service and to achieve confidence among
customers, they must be certified according to international safety standards by a
certifying body (e.g. TÜV in Germany). IEC 61508 is an international standard that
provides a framework for the use of programmable electronic devices in safety-related
systems. The IEC 61508 standard is considered as one of the most useful contributions to
industrial safety by suppliers and system integrators of safety systems today. The IEC
61508 points out among other things all known failure modes for communication
systems, such as software failures in the communication protocols, hardware failures in
transmitters, receivers, gateways and routers and sporadic disturbance of the transmission
path.

The following failure modes are introduced in IEC 61508:
1. Data corruption
2. Corruption of sender and/or receiver addresses
3. Transmission of data packages at the wrong point in time
4. Wrong sequence of packages

In the study “Using Foundation Fieldbus in Safety Applications” [1], the author uses
these four failure modes and investigates how they relate to the standard FF
communication stack. He concludes that each mode applies to FF in a safety critical
application in the following matter:

1. Data corruption: “The main problem of using “standard” FF protocols for safety
related communication is the frame check sequence.” The error detection mechanism

31

incorporated in FF is not strong enough to be used in SIL 3 applications, and can not
fulfil the validation of data in a value domain.

2. Corruption of sender and/or receiver addresses: Possible errors here can be

• Wrong sender and/or receiver addresses
• Multiple receiver addresses (identical addresses on different devices)
• No address match

There is only one of the three communication modes offered in standard FF that
supports full addressing scheme, (e.g. both the sender and the destination address is
included in the transmitted data frames). This mode is not time-deterministic and
violates the demand to validate data in a time domain.

3. Transmission of data packages at the wrong point in time:
• No transmission
• Delayed transmission

To be able to validate data in a time-domain, time-determinism is essential in safety
systems. The only communication mode in FF that is synchronised with a clock, does
not include sufficient addressing information.

4. Wrong sequence of packages: The only channel that supports sequence numbering of
data is not truly timed.

“Using Foundation Fieldbus in Safety Applications” [1] concludes that there is none of
the communication modes in FF that alone supports the required amount of redundant
data to make FF applicable for safety critical communication. The concept of
communication modes in FF is explained more closely in chapter 2. The pre-study does
not design a safety layer, it only identifies problems related to safe communication and
FF and points to possible means to handle the failure modes. The report leaves some
issues open. Studying this report, questions, of more or less concrete manner related to
design and implementation emerged. I structured the questions and tried to concretise the
loose ends by forming a set of questions that formed the foundation for this thesis:

• How can I implement a “Safety Layer” without tampering with the protocol stack
itself? Where in the FF system architecture does a “Safety Layer” fit in?

• How can we improve the CRC and the error detection mechanism to achieve a SIL 3
performance? Which CRC generator polynomial can provide the required error
detection properties?

• How do we transmit the safety-related data between devices? Which of the three
available communication channels do we use? What is the maximum amount of data
allowed to be sent in one transmission?

• How can we implement the concept of acknowledgement in a unidirectional
communication channel?

32

These questions served as a starting point for my work on proposing an implementation
of a safe communication protocol for FF.

1.3 The structure of this thesis
The structure of the rest of this thesis is as follows:

Chapter 2 gives an overview of the Fieldbus Foundation and its technology. The
Foundation Fieldbus communication stack is compared to the ISO OSI Reference
Model before the system architecture is examined more closely. The content of
this chapter serves as background information required for comprehending the
technical discussion carried out in chapters 5 and 6.

Chapter 3 gives a presentation of the IEC 61508 standard and some important concepts
related to safety are introduces and defined. IEC 61508 is an international
accepted standard for use of electronic programmable equipment in safety critical
applications.

Chapter 4 provides more necessary background information and discusses safety-critical
communication and different failure modes the safety function must handle.
Chapter four also looks at risk considerations for safety critical communication.

Chapter 5 gives a detailed description of the design of the safety layer I propose. This
chapter describes how a safety layer can be inserted into the Foundation Fieldbus
system architecture. Further are the safety layer’s countermeasures of the failure
modes discussed. Within this part the concept of CRC is shortly introduced.

Chapter 6 discusses the safety layer prototype described in Chapter 5, pros and cons.
There is also a section that deals with the work-process with this thesis, practical
problems I have encountered on the way.

Chapter 7 gives a conclusion for the work and points out issues to be further
investigated.

33

Chapter 2 Foundation Fieldbus
A large part of the work with this thesis has consisted of building up knowledge about the
Foundation Fieldbus and understanding how the different components of the technology
function and interacts. Chapter two summarises the Foundation Fieldbus System
Architecture [16] and gives a brief introduction to the most important concepts of the
Foundation Fieldbus technology. This chapter provides necessary background
information for the understanding of the main part of my thesis.

2.1 FF - Fieldbus Foundation or FOUNDATION Fieldbus?
The Fieldbus Foundation is a not-for-profit corporation established in September 1994.
The organisation is dedicated to a single international, interoperable fieldbus standard.
This work involves increasing the industry acceptance of interoperable fieldbus
technology, support the development of interoperable fieldbus standards and facilitate
the development of interoperable fieldbus products.

Since the Fieldbus Foundation was created, it has grown to over 120 member companies.
The members mainly consist of a mixture of the world's leading controls and
instrumentation suppliers and end users. In March 1996, the Fieldbus Foundation
released its own interoperable fieldbus technology called “FOUNDATION™ Fieldbus H1.”
This technology was developed using ISA and IEC standards to ensure openness, and to
move away from vendor specific and proprietary systems. The H1 fieldbus specifically
targets the need for robust, distributed control in process control environments. The H1
fieldbus provides “intelligent” field- and control-devices with a digital, two-way
communication link among.

Throughout the remainder of this document FF is used as an abbreviation for both the
foundation and it’s technology, depending on the context it is mentioned.

2.2 Foundation Fieldbus vs. the OSI Reference Model
The Foundation Fieldbus technology is based on the general communication architecture
for the interconnection of open systems defined by the OSI Reference Model [17]. The
Foundation Fieldbus model has been optimised, compared to the OSI Reference Model,
to meet the special requirements set by the needs of a fieldbus system. The FF model

[16] FOUNDATIONTM Specification. System Architecture. Document FF-800, Rev. 1.3,
May 8, 1998.

[17] ISO 7498 – International Standards Organization (ISO) Open Systems Interconnect
(OSI) Reference Model (RM)

34

constitutes only a subset of the seven-layered OSI model and includes three of the layers
defined in the reference model. The other four layers from the OSI model have been
ignored primarily for performance reasons. The functionality of the omitted layers is not
needed in a fieldbus system and has therefore been ignored. Starting from the bottom and
working up, the FF architecture adopts the IEC/ISA-approved physical layer (layer 1).
This physical layer is also used by other fieldbus standards. The physical layer handles
the transmission of raw bits over the physical media. The second layer defined in the FF
model is the data link layer. This layer collects a stream of bits from the physical layer
into frames. The third layer defined in FF brings us to the seventh layer in the OSI model,
the application layer. This layer provides communication services and a model for the
applications to interact over the fieldbus. The intermediate layers (layers 3 - 6), the
network-, transport-, session- and presentation- layer, which are normally associated with
non-time critical and general purpose applications (such as routing and forwarding), are
not needed in a LAN (such as a fieldbus) and has therefore been removed from the FF
architecture (See Figure 2-1).

APPLICATION LAYER

FIELDBUS MESSAGE
SPECIFICATION

FIELDBUS ACCESS
SUBLAYER

PRESENTAION LAYER

TRANSPORT LAYER

SESSION LAYER

NETWORK LAYER

DATA LINK LAYER

PHYSICAL LAYER

DATA LINK LAYER

PHYSICAL LAYER

USER APPLICATION/
"USER LAYER"

Foundation Fieldbus
model

OSI model.
The user application is not
defined by the OSI model

"COMMUNICATION STACK"

PHYSICAL LAYER

USER APPLICATION/
"USER LAYER"

Figure 2-1, The layered OSI communication model compared to the Foundation Fieldbus model

The Foundation Fieldbus system architecture also defines an eighth layer, a “user layer.”
This layer defines a standardised way for FF users to interact. The user layer provides
guidelines for how the fieldbus device applications shall be designed and implemented to
ensure interoperability. The user layer is described more closely in this chapter after the
section handling the FF communication stack.

35

The fundamental purpose of this layered system architecture, is to provide Virtual
Communication Relationships (VCRs). VCRs are communication channels between
applications in the devices that are interconnected to form the fieldbus network. Their
properties and functionality are discussed later in the section describing the application
layer.

2.3 Foundation Fieldbus System Architecture
The Foundation Fieldbus application model is based on object-oriented programming
concepts. This object-oriented approach is adopted to simplify the understanding of the
different fieldbus components and their functionality. By using object orientation the
architecture can be divided into naturally, logical and more manageable parts and
concepts.

A Foundation Fieldbus network is a distributed system composed of field devices and
control/monitoring equipment. In Foundation Fieldbus, the network is said to be the
control system. The total system operation is distributed over the physical devices. FF
allows the devices to perform control functions. Each device performs a small portion of
the total process control operation by running small applications. These control functions
are grouped in function blocks. Function blocks are an abstraction of software that models
elementary process control functions. The function blocks represent basic automation
functions, such as analog in- and output and PID (Proportional, Integral, Derivative).
Function blocks can be combined together into Application Processes. These function
block application processes represent actual automation functions to be performed by the
process control systems. The automation functions may reside in a single fieldbus device,
or may be distributed across several of the devices connected to the FF network (See
Figure 2-2). The concepts of function blocks are discussed more closely in the “User
Layer”-section of this chapter.

Device 1 Device 4Device 3Device 2

Controlled Process P

FF Communication Network

Application C

Application A Application B

Figure 2-2, Distribution of the process control Application Processes among the field devices. Applications
A, B and C control process P. Applications A and B are distributed over respectively devices 1, 2, 3 and 3,
4. Application C resides in device 2.

36

There exist three types of FF devices, master devices, basic devices and bridges. The
master device controls the communication on the bus. This device cyclically issues a
token to the other devices on the bus one by one and allows them to use the bus to
communicate. All devices connected to the same fieldbus have a common sense of time.
The execution of the device-applications is time-critical. The function blocks can be
scheduled to execute their elementary process control functions in a determined sequence
and publish the results on the bus at a determined time. Function blocks in other devices
may use the published results.

The key components of the FF system architecture are shown in Figure 2-3, and each
component is described in the following sections:

Physical Layer

Data Link Layer

System
Management

Function Block
 Application Processes

Application
Layer

Fieldbus Message Specification
(FMS)

FMS

Fieldbus Access Sublayer (FAS)

Network
Management

Figure 2-3, The key components of the Foundation System Architecture. The application layer is divided
into two sublayers, Fieldbus Access Sublayer (FAS) and Fieldbus Message Specification (FMS) (ref.
section 2.3.1.3 Application Layer).

The passing of data messages between entities connected to the fieldbus is described in
the communication stack.

2.3.1 FF Communication Stack

2.3.1.1 Physical Layer
The Physical Layer is composed of the signalling protocol used to transmit the data at the
physical medium. The physical layer protocol described in the Foundation Fieldbus H1
standard is defined by IEC 61158-2 [18]. This layer handles the transmission of raw bits
over the communication cable and provides services to the data link layer. The
transmission speed on the Foundation Fieldbus H1 network is 31,25kbit/s. This speed has
been specified to support intrinsically safe environments. Devices that are intrinsic safe
have been designed specifically for use in hazardous environments. The electrical power

[18] IEC 61158 – International standard for fieldbus for use in industrial control systems,
IEC 61158-2/ISA-S50.02-1992 Part 2 Physical Layer Specification and Service
Definition.

37

an intrinsically safe device use is below the level of power required to set off an
explosion within a given hazardous area. In addition, "intrinsically safe'" products are
incapable of storing large amounts of energy which might spark an explosion when
discharged. An intrinsically safe barrier is placed between the power supply in the safe
area and the intrinsically safe device in the hazardous area (See Figure 1-3).

The physical layer uses the Manchester (Biphase-L) technique to encode the physical
signals that are to be sent. The Manchester technique combines the clock signal in the
serial data stream to create the fieldbus signal. A positive transition in the middle of a bit
time represents a logic “0” and a falling edge represents a logic “1” (Figure 2-4).

CLOCK

1 bit time

DATA 1

0

1 1 1

00 0

1

MANCHESTER
SIGNAL

Figure 2-4, Manchester encoding. The signal is self-clocking, the clock is combined with the data stream to
create the signal.

Special preamble characters are defined to make the receivers able to synchronise its
internal clock with incoming signals. Start- and end-delimiters are used to mark the
boundaries of messages. It is only the data part of the physical layer frame that is encoded
using Manchester encoding. This makes the data part of the frame stand out from the
preamble and delimiters.

The interchanging of data between devices is half-duplex, only one bit stream can be
encoded on the fieldbus at a time; thus only one device can access the bus at a time. This
means that a device can transmit and receive data on the same media, but not
simultaneously. The devices must alternate using the bus by sending the messages
synchronously.

There are two power options for the FF devices, self-powered and bus powered. The self-
powered devices draw their power from an external source. The bus-powered devices
draw their power directly from the bus. A power supply is connected to the network and
the bus-powered devices require only the fieldbus cable for power supply and
communication.

38

2.3.1.2 Data Link Layer (DLL)
This layer provides the means to establish and maintain basic communication services
between field devices. About 90 % of the fieldbus communication functionality lies
within the Data Link Layer (DLL). The DLL specification defines three types of fieldbus
devices:

• Basic Device
All devices on the fieldbus have basic device capabilities, this includes receiving the
token and responding to it. Once a device has received the token it has the right to
publish data on the bus. Only one device may hold the token at a time, thus only one
device can access the bus at a time.

• Bridge
A bridge device is used to interconnect fieldbuses to create larger networks.

• Link Master Device
A link master device has the capability to become the Link Active Scheduler (LAS).
The LAS is an entity in the DLL that controls access to the bus. There are two types
of bus accesses offered, scheduled (cyclic) and unscheduled (acyclic). The scheduled
bus access is used for transmission of data that is part of the control strategy. Under
normal operation the devices cyclically access the fieldbus to exchange data needed
to control the process. Unscheduled traffic on the bus consists of diagnostics from
devices to operation interfaces and configuration information from a host system to
the devices.

The LAS maintains a list of transmit times of all data buffers in all devices on the bus that
needs to be sent on a cyclic or scheduled basis. Each time a device is scheduled to send
data, the LAS sends a “Compel Data” message to the device. The device can now gain
access to the bus and transmit the contents of its buffer. The “Compel Data” message
forces a device to publish the data in its output parameters. When the bus is idle between
scheduled transmissions, the LAS send a token to all the devices on the bus to grant
devices permission to send unscheduled data. The device that holds the token is able to
send data on the bus until it is finished or until the maximum token holding time has
expired. The LAS keeps the addresses of the devices that respond correctly to the token
between scheduled traffic in a “Live List.” The LAS is also responsible of detecting new
devices that are connected to the bus. New devices can be connected to the bus at any
time. The LAS periodically issues a “Probe Node” message to all of the addresses that are
not in the “Live List.” If a node responds to the “Probe Node” message the LAS adds the
node’s address to the “Live List.”

There may exist more than one link master devices in the fieldbus network, but only one
maser device can function as the LAS at a time. During start-up of the network, there is a
bidding procedure between all of the link master devices on the bus for becoming the
LAS. The bidding procedure is also started if an error is recognised in the existing LAS

39

by the other master devices on the bus. A new master device is selected to become the
new LAS in the network.

The LAS’ five primary functions are:
• “Compel Data” message scheduling: The highest priority function of the LAS is to

maintain a list of transmit times for all the buffers in all devices that are transmitted
cyclic. On precisely timed intervals the LAS sends out a “Compel Data” message to a
device, that forces the device to publish the contents of its buffer onto the bus.

• Token passing: Between the scheduled network traffic the LAS sends the token out to
the devices in a round-robin fashion to allow unscheduled transmission of data.

• “Live List” maintenance: The LAS monitors the devices and check if they fail to use
or return the token. Devices that do not respond to the LAS are removed from the list
of active devices, the “Live List.”

• Periodically distribution of data link time and link scheduling time. Every device in
the network periodically receives a message from the LAS containing the correct
time. This is important because every scheduled communication and executions of
user applications are based on this time.

• Checking for new devices on the fieldbus. The LAS periodically probes the unused
addresses on the fieldbus to check if any new devices have been connected to the bus.
If a device responds from a previously unused address, the LAS add the device to the
“Live List.”

2.3.1.3 Application Layer
The FF application layer is composed of two sublayers, Fieldbus Access Sublayer (FAS)
and Fieldbus Message Specification (FMS) (See Figure 2-1 and 2-3).

The distributed applications in the field devices need to communicate to be able to
control the process. The Fieldbus Access Sublayer (FAS) uses the scheduled and
unscheduled features of the Data Link Layer to provide Virtual Communication
Relationships (VCR) to the Fieldbus Message Specification (FMS). A VCR is a
preconfigured communication channel. There are three different types of VCRs defined
in the Foundation system architecture. Each of them offers various combinations of
communication characteristics. These communication relationships or channels meet the
various needs the fieldbus applications have, like messaging services and variable reading
and writing.

• Publisher/Subscriber VCR Type
The Publisher/Subscriber VCR is a connection-oriented channel that is buffered
and unconfirmed. Buffered means that when new data are generated in a function
block, it overwrites old data stored in the buffer. This results in that only the latest
version of data is present and transmitted in the network. An unconfirmed service
involves that no acknowledgement is given to the transmitter to indicate that the
message is received at its destination(s).

40

The Publisher/Subscriber channel is the only scheduled VCR and can be used for
one-to-one or one-to-many communication. The Publisher/Subscriber VCR is
used by an application to cyclically publish process data. The publisher’s role is to
continuously produce data (e.g. output parameters generated by a value measured
by a sensor). and broadcast it at cyclic intervals. The subscriber(s) in a
communication relationship is (are) configured to listen for data from a specific
publisher. The subscriber(s) in the relationship consumes the data produced by the
publisher. The scheduled transmission of data from a publisher can be initiated
either cyclically by the LAS or by a subscriber (a device that wants to receive the
published message) on an unscheduled basis.

The Publisher/Subscriber model is designed to handle the cyclic transmission of
data related to the control strategy of the plant operation. It is ideal for its use
because it offers a deterministic and efficient transmission of accurate data. No
efforts are wasted delivering data to uninterested receivers. The publisher
broadcasts its data so that all devices that are interested receive the data
simultaneously. No individual adjustments of data to each subscriber are needed
since every subscriber receives the data at the same time. Length of time to
deliver data is independent of the number of subscribers.

• Report Distribution VCR Type
The Report Distribution VCR is a connectionless data link service that provides
the application processes with unconfirmed services. This VCR is used for
unscheduled or user-initiated one-to-one or one-to-many communication. The
Report Distribution VCR is queued, which means that messages are sent and
received in the same order submitted for transmission, without overwriting
previous messages unlike the buffered Publisher/Subscriber VCR. The report
distribution VCR type is used to multicast event notifications and trend reports
(history information used for reviewing of behaviour of devices).

• Client/Server VCR Type
The Client/Server VCR is a request-response VCR that is always established
between two communicating applications. This VCR is queued and is used for
unscheduled communication. The Client/Server VCR is only used in a one-to-one
communication. A device can be both client and server. The Client/Server VCR
provides a confirmed service. The transmitter receives an acknowledgement from
its peer to indicate the arrival of a frame. The applications use the client/server
VCR to upload/download configuration information between a host system and
the devices.

The Fieldbus Message Specification (FMS) is the upper part of the application layer
(See Figure 2-1 and 2-3) and defines a model for applications to interact over the
fieldbus. FMS defines the application layer services and specifies the message formats
that allow the applications to access remote devices through communication objects. The
Object Dictionary (OD) and the Virtual Field Device (VFD) are important in this model.
The OD is a structure in a FF device that describes the data that can be communicated on

41

the bus. The OD can be thought of as a lookup table that provides information such as
data type about a variable that can be read from or written to in a device. The VFD is a
model for remotely viewing data described in the OD. The services provided by the FMS
allow the applications to read and write information about the OD, read and write the
variables described in the OD and perform other activities such as
uploading/downloading of data and invoking programs inside a device.

In addition to the three layers described above, FF includes two management layers or
entities called the Network Management and the System Management (See Figure 2-3).
Network Management configures the communication stack, loads the LAS configuration,
provides performance monitoring and provides fault detection monitoring. System
Management assigns unique addresses to the devices on the fieldbus network and
provides a function that locates objects in the network. The System Management entity in
each device maintains an application clock it uses to independently administer when to
execute its applications/functions. There is a device in the network called the Time
Publisher that periodically sends a clock sync message to all fieldbus devices. Each
device is responsible to maintain the clock between these synchronisation messages.
System Management provides for the synchronisation of clocks across the network so
that each device shares a common sense of time. The clock synchronisation mechanism
may for instance allow consistent time stamping of data throughout the fieldbus network.

2.3.2 User Layer
FF defines a special User Layer that ensures interoperability by using function blocks and
a standardised description of the blocks in a device called Device Description. The blocks
defined in the User Layer represent the functions and the data available in a device.
Rather than interfacing a device through a set of commands, like most communication
protocols, a FF user interacts with devices through a set of objects and blocks. Device
Descriptions are explained in the next section.

User Layer

Function
Block

Function
Block

Function
Block

Communication Stack

Physical Layer

Fieldbus

Figure 2-5, The FF system architecture specifies a User Layer. The User Layer defines function blocks that
model the user configurable part of a fieldbus system.

42

2.3.2.1 Function Blocks
We have already heard that application processes can be decomposed into a set of smaller
objects called function blocks. Function blocks are the core components in a control
system. They can be thought of as an abstraction of software that models repetitive and
time-critical functions. The function blocks describes a common way to define basic and
elementary automation functions, such as input and output, and other algorithms that is
necessary in process control systems. The Fieldbus Foundation has defined an initial set
of 10 function blocks. These definitions meet basic measurement and control
requirements of a broad group of control systems and instrumentation suppliers rather
than a single entity. It is expected that these function blocks form the basis for at least
80% of the function blocks implemented in FF H1 networks [19]. An additional set of
function blocks are also defined for more advanced applications.

Function blocks model repetitive and time-critical functions as parametric algorithms.
When a function block executes it takes its input parameters as argument, run the control
algorithm to completion and produces a set of output parameters. Function blocks are
invoked repeatedly, based either on a schedule or on the occurrence of an event. A
function block is defined by its I/O- and contained-parameters, and by the algorithms that
operate on these parameters. Input and output parameters may be used to exchange data
through links between function blocks. The contained parameters are used to define the
private data of a function block. Although visible over the network, they may not
participate in function block links. A loop or a control loop is a group of function blocks
linked together executing at a specific rate (See Figure 2-6). Each block is executed at the
configured rate in a specific order. Data is transmitted between the blocks along the
linkages. It is possible to have multiple loops running at different rates on a fieldbus
segment. For instance may one control loop have a loop time of one second and another
can have a loop time of two seconds. Even though loops can run at different rates they
can send data through linkages to each other. A macro cycle is defined to be the least
common multiple of all loop times on a given fieldbus segment.

When a function block is scheduled to execute, its input buffers are snapped. This ensures
that they are not changed during execution by some external sources. Once the inputs are
snapped, the function block algorithm operates on them and generates output. When the
algorithm has finished its execution, the contained parameters are saved for the next
execution and the output data is snapped and released for use by other function blocks.

[19] FOUNDATIONTM Specification. Function Block Application Process. Part 2.
Document FF-891, Rev. 1.3, May 8, 1998.

43

Block 3Block 1

Block 2

OUT ININ

OUT

Linkage Linkage

Loop = 2 sec

Figure 2-6, Schematic illustration of a control loop. A FF network is made up of devices connected together
by a serial bus. The set of functions a device can perform is represented by the function blocks within the
device. The function blocks are configured and linked together to control a process.

The object-oriented approach adopted in the FF system architecture allows us to
decompose function blocks into smaller objects. The lowest level of decomposition and
most suitable level of abstraction are simple variables. Function block parameters are
small data structures of simple variables. Simple variables can for example be of the
types integer, float and string.

Function blocks represent the user configurable part of a FF system. Blocks are
incorporated into fieldbus devices to achieve the desired device functionality, as well as
to define a wide range of features and behaviours that must work in a standard way for
devices to achieve interoperability. To allow the function block application to be as
independent as possible of the real I/O and physical device hardware, the function block
application architecture also provides transducer and resource blocks. Transducer blocks
are an interface between function blocks and the actual hardware of the device.
Transducer blocks disconnect the function blocks from the hardware specific details of a
device. Manufacturers of devices must define their own transducer blocks. There is only
one resource block per fieldbus device. The resource block describes the device’s general
characteristics, such as manufacturer, device name and tag.

Based on a function block’s processing algorithm, a desired monitoring, calculation or
control function may be provided by the block. The results from a function block’s
execution can be used in a number of ways depending on the type of function block and
the configuration of the application. Function blocks can be classified into four categories
based on their parameters and behaviour:

1. Input Function Block - accesses physical measurements through channel reference
to an input transducer block. After processing the value, the results will be
provided as an output for linking to other function blocks.

2. Output Function Block - acts upon input from other function blocks and passes its
results to an output transducer block through channel reference.

3. Control Function Block - acts upon inputs from other function blocks to produce
values that are passed to other control or output function blocks through output
parameters.

44

4. Calculation Function Block - acts upon inputs from other function blocks to
produce values that are passed to other function blocks through output parameters.

The Foundation Fieldbus system architecture allows device manufacturers to differentiate
their product from competitors by modifying the standard function blocks or defining
completely new function blocks. If interoperability is to be achieved between devices
from different manufacturers in a setting like this, where different suppliers can build
unique features into their devices, then some features and implementations must be
consistently implemented. The User Layer gives some general guidelines that should be
followed to ensure maximum consistency with other device implementations. If a
manufacturer has identified that there is a need to define a custom function block, it
should compare its needed variables and functionality with the 10 standardised function
blocks. If the variables and functionality of the needed function block closely match that
of a standardised function block, then this defined block may serve as the basis for the
new block. In this case, it will only be necessary to add the variables that are not included
in the defined block.

Device Description (DD) is the key element along with function blocks in the User Layer
that enables interoperability. Device Descriptions are used to describe a device and its
blocks and their parameters. A DD contains information needed for a control system or a
host to understand the meaning of the data in a device, such as name, engineering units
and how to display data and information about the relation of a parameter to others. DDs
are written in a special programming language called Device Description Language
(DDL). The DDL was developed to define a common way to describe FF devices. It is
used to describe the standard set of block and parameter definitions as well as user group
and vendor specific definitions. Device Descriptions allow the host system to operate the
device without custom programming. The DDL describes the semantics of user data.
Each device function, parameter or special feature can be described. DDL is a C-like
language compiled into a binary form. The DD provides all the information necessary for
a control system or host to understand the meaning of device data, including the human
interface for functions such as calibration and diagnostics. The Fieldbus Foundation
provides DDs for all the standardised blocks. What a device manufacturer typically will
do is to prepare an "incremental" DD, a DD which adds additional functionality to an
already existing standardised DD.

For further information on the Foundation Fieldbus system architecture refer to the FF
specification [20].

2.3.3 Function Block Shell
The Function Block Shell (FB shell) is the interface between the communication stack
and the application process. Function blocks residing in different devices use the services

[20] FOUNDATIONTM Fieldbus Technical Specifications. Fieldbus Foundation,
www.fieldbus.org

45

of the FB shell to communicate. The interface between function blocks in the same
physical device is locally defined for that device. The FB shell is an application-
programming interface (API) designed to allow easy implementation of function block
application processes. The FB shell is not defined in detail in the FF standard. It is the
vendors of FF stacks that are responsible for making the FB shell for their own stack. I
have seen FB shells from two vendors (National Instruments and Softing), and as far as I
am concerned they look very similar. Since the shell is squeezed in between the function
block applications and the FF stack, and both of them are quite rigidly specified in the FF
standard, the FB shells cannot be very unlike from the different vendors.

The FB shell has three major purposes. The first one is to provide services and functions
that are common to all function blocks (trend processing and notification, alert processing
- notification and reception of acknowledgement, establishment and maintenance of
function block links, publishing of outputs and subscription of inputs). The second
purpose is to insulate the function blocks from the FF stack. The FB shell must pass only
those instructions to the function blocks that are specific to the application. The FB shell
services all FMS indications and it only passes those read- and write-indications, which
require function block application-specific checks. The FB shell passes the function block
start indication to the FB application. The third purpose of the FB shell is to configure the
FF stack with the parameters and objects specific to the FB application and specific to the
manufacturer of the fieldbus device.

I used a FB shell from National Instruments in the implementation part of this thesis. This
shell is described more closely in the next section (2.4).

2.4 Development of a FF Device
In this section I will describe the fieldbus equipment I used during the practical part of
the thesis. The development environment I used during the implementation of the safety
layer was a “Fieldbus Device Starter Kit” from National Instruments (NI). This Starter
Kit includes all the components (both hardware and software) related to fieldbus
necessary for developing FF devices. The kit consists of two developmental fieldbus
round cards, a PC interface-card, a desktop power supply and cabling, a serial
programming daughter card and a software tool used for configuring the fieldbus. “A
fieldbus round card is a stand-alone card that allows you to interface to a network that
complies with the Foundation Fieldbus H1 specification… The fieldbus round card uses
the Motorola MC 68331 embedded processor and a programmable 128 KB X 16 Flash to
run the stack, FB shell and user applications” [21]. The PC interface-card connects the
fieldbus to a host running the fieldbus configuration tool called the Configurator. The
Configurator is a graphical environment for creating linkages, loops, setting device
addresses, creating and editing schedules and other things related to configuration of the
fieldbus communication. The Configurator tool can be seen in Figure 5-10.

[21] National Instruments, “MC 68331-Based Fieldbus Round Card User Manual.”

46

Figure 2-7, The picture shows the Fieldbus “Power hub,” two development round cards in the foreground
and the serial programming daughter card is up in the left corner.

The major part of the code running on the round cards has already been written. This
code comes along with the starter kit in the form as a linkable library and includes the FF
stack and the FB shell. The code that remains to be written for a new field device is parts
of the device application. The FB shell from NI is an interface between the stack and the
device application. It is this shell a device developer must deal with during
implementation. The FB shell provides a set of callback functions. These functions are
responsible for handling services such as parameter access, function block execution and
alert notification. For example is a callback function called ”cbExec(function block)“
invoked by the FB shell each time the specified function block is scheduled to run. This
callback performs whatever algorithm the developer has coded the function blocks to
perform, thus are the majority of the code required for a new device written in this
callback. The process of developing a new FF device with the Starter Kit is described in
[21] and can be coarsely described as following:

1. Write a device template and a device configuration for your device. A device
template contains information about the function blocks and their parameters that
constitutes the device application. The device configuration contains the initial
configuration of the device, such as device name (identification) and address. (See
Appendix 8.4 for both a template and a configuration). The template and the device
configuration are converted into C-code so that they can later be compiled and linked
with the other code.

2. Write the algorithms in the function block callbacks.

47

3. Compile, link and download the code to the round cards. After all C-files have
successfully been compiled they must be linked with the library containing the FF
stack and the FB shell. After the linking process the object bytes must be extracted
and converted into a binary image ready to be downloaded into the memory of the
target processor. To burn the Flash on the round card the daughter card is connected
to the round card and a downloading utility prompts for the binary file to be
downloaded.

For more information about this process refer to the round card user manual [21].

49

Chapter 3 IEC 61508
To day it is almost, if not impossible, for people involved in design and implementation
of safety systems to evade an international standard called IEC 61508 – “Functional
safety of electrical/electronic/programmable electronic safety-related systems.” This
standard set out a generic approach for all of the activities involved in the whole lifecycle
of electrical/electronic/programmable electronic systems related to safety. The general
awareness of safety is getting stronger and the acceptance of accidents to be a part of
every day life is decreasing as technology is making progress. This has large implications
for companies making safety systems. This chapter gives a short introduction to IEC
61508 and its content is essential for the further understanding of the rest of the thesis.

3.1 Risks in Industrial Processes
There is a vast array of hazards related to industrial processes, such as explosives, toxins,
large amounts of energy just to mention a few. Only the imagination sets a limit on the
amounts of hazards we can list. The importance of a hazard is expressed by risk. We
recall from section 1.1.1 that risk is a combination of the likelihood of an accident and its
consequences. The risk related to a system increases if either the likelihood of the system
to fail or the severity of the consequences of a system failure increases. Ever since the
beginning of the 20th century it has been an increasing concern about industrial safety.
More or less continuously efforts have been made to control and minimise risk based on
historical expertise. Despite the great advances that have been made in technology over
the last years, we are unable to eliminate risk altogether [22].

New hazards evolve as the complexity of installations increases in step with the
technological development. New techniques for minimising the risks related to these new
hazards are needed. Suppliers of safety related systems for the industry have to engineer
their equipment according to a number of local and national user-regulations applying to
the area where the facility is to be installed. This has to be done in order to attain the
necessary round of approvals a product needs before commissioning. Safety regulations
may vary greatly between projects in different parts of the world. For large suppliers
operating internationally on a global market, it is extensive work to cope with all the
different local regulations. In 1998 a new international standard called IEC 61508 was
published. The introduction of this standard should make it easier to obtain worldwide
approvals for safety-related equipment and systems. IEC 61508 can be used the world
over and might contribute to the reduction of the large quantity of local safety guidelines.
The IEC 61508 standard is considered by suppliers and system integrators of safety
systems to be one of the most useful contributions to industrial safety.

[22] Nancy G. Leveson. “Safeware. System safety and computers. A guide to preventing
accidents and losses caused by technology.”

50

3.2 What is the IEC 61508 standard?
The International Electrochemical Commission (IEC) standard, IEC 61508 – “Functional
safety of electrical/electronic/programmable electronic safety-related systems,” was
developed to provide an internationally accepted basis and a framework for the use of
programmable electronic devices in safety-related systems. The IEC 61508 is not a
reference book providing a recipe-like description to system designers on how to make
safety systems, “First you take a little bit of this, then you add some of that and stir well.
If the system is not safe enough, add some more of this and cook for 15 minutes.” Instead
of using this approach and exactly pinpointing the means to achieve a certain level of
safety, IEC 61508 describes general requirements and guidelines on safety-related
systems. The standard describes a generic approach for all safety relevant activities for
electrical/electronic/programmable electronic systems (E/E/PES). The IEC 61508 has a
wide scope, but it places great emphasis on process industry and focuses on the use of
computers and programmable electronic equipment and technology in safety related
systems. By taking this non-specific approach, IEC transfers much of the actual
responsibility of making safe and reliable critical systems over to the system designers
and implementers.

IEC 61508 is the first standard that addresses the entire lifecycle of a safety system. The
lifecycle describes all activities associated with safety during the entire lifetime of the
equipment. The first part of the standard describes the overall safety lifecycle
requirements that must be in order to act in a safe manner during the entire lifetime of the
equipment. The second and third part concern requirements with respect to the design and
development of hardware and software. Part 4 contains definitions and abbreviations. The
other three parts are informative.

3.3 Safety Integrity Levels
Considerations of safety have implications for an entire system. All the phases of the
system’s lifecycle are implicated by safety considerations, from inception to
decommissioning. Safety can only be assured by considering all the aspects of a system,
including both software and hardware. IEC 61508 states that a plant’s safety
requirements should be based on analysis of the risks posed by the equipment comprising
the plant’s control system, the equipment under control (EUC). Unmitigated analysis of
all individual components must be carried out to identify all possible faults. Such a
thorough analysis may be defined as consisting of three stages, hazard identification,
hazard analysis and risk assessment. Risk is usually defined as a combination of two
factors, the severity and the frequency of occurrence of an event. In other words, how
often can it happen and how bad is it when it does? There are many elements in industrial
processes that can be considered potential sources of harm and may pose hazards. Each
factor is carrying its own risk and contributes to increase the total risk related to the
application. IEC 61508 defines three generic means to reduce the risks involved in an
industrial process to an acceptable level (See Figure 3-1):

51

1. Use an E/E/PE safety-related system.
2. Use mechanical safety devices like relief valves and rupture disks.
3. Use external risk reduction facilities like mechanical changes such as stronger pipes,

firewalls and drain systems.

Residual risk Acceptable risk
Calculated risk for

equipment under control
/ installation

Increasing
riskNecessary risk reduction

Actual risk reduction

Risk reduction achieved by all safety-related systems and external
risk reduction facilities

Risk reduction
covered by external

risk reduction
facilities (e.g.

organisational)

Risk reduction
covered by safety-

related systems
based on other
technology (e.g.

mechanical)

Risk reduction
covered by E/E/PE

safety-related
systems

From IEC 61508:

The safety layer lies within
this category of risk

reduction

Figure 3-1, Risk considerations according to IEC 61508.

The outcome of a risk assessment analysis is a quantitative figure being one of four safety
integrity levels (SIL). These safety integrity levels represent a very important concept in
the IEC 61508. They reflect the importance of correct operation of a system. The
implications of failures differ widely between applications. Some system failures can
cause direct and serious harm to people and equipment, others may not. The integrity
levels are used to determine the development methods to be adopted when building a
safety system. Systems assigned with a high SIL can justify the use of more rigorous
design and testing compared to systems with a lower assigned level of integrity. There is
a difference between risk and safety integrity, although they are two concepts that are
closely related and almost always mentioned in association with each other. Risk is
related to a hazard and measures the likelihood of that specific hazard. The safety
integrity of a system is a measure of the likelihood of that the safety system correctly
performs its task. The SIL indicates the average probability that the safety-related system
will not perform its safety function on demand. The SIL can also be said to express the
likelihood of the event that an error passes undetected through a safety system.

52

The IEC standard distinguishes between two types of systems that are used in different
ways:

Low demand:
Systems in this class operate in a demand mode, they are called upon when
needed. Failure rates in the low demand class are expressed in the probability that
the system will fail to function correctly when called upon. Typical systems that
belong to this class are shut down systems. These systems sit idle and perform
nothing until they are needed.

Safety Integrity Level
(SIL)

Low demand mode of operation
(Average probability of failure to perform its
design function on demand)

4 ≥10-5 to < 10-4

3 ≥10-4 to < 10-3

2 ≥10-3 to < 10-2

1 ≥10-2 to < 10-1

Table 3-1, This class of systems operates in a demand mode. The demanded function is performed
less than once per year. The Safety Integrity Levels expresses the average probability of a
system’s failure to perform its design function on demand.

High demand:
Systems in the high demand class operate in a continuous mode, or uninterrupted
operation mode.

Safety Integrity Level
(SIL)

High demand or continuous mode of
operation
(Probability of a dangerous failure per hour)

4 ≥10-9 to < 10-8

3 ≥10-8 to < 10-7

2 ≥10-7 to < 10-6

1 ≥10-6 to < 10-5

Table 3-2, Safety Integrity Levels for systems with high demand or continuous mode of operation.
Shows SIL related the probability of a dangerous failure per hour.

The requirements for SIL 1 and 2 are met by many of the distributed control systems
(DCS) and programmable logic controller (PLC)-based control systems available today
[6]. Depending on the SIL assigned to a system, different amounts of functions must be
added to achieve the appropriate level of safety. According to “Using Foundation
Fieldbus in Safety Applications” [1], FF is in its standard form capable of fulfilling SIL 2
requirements. Dedicated safety systems are generally required for applications at or
above SIL 3. So, if FF is going to be used as a communication system in a SIL 3
application, some additions have to be made. These additions are described in chapter
five, where I also will return to SIL-issues and probabilistic considerations of the safety
layer.

53

3.4 Other standards and regulations
The IEC 61508 standard covers all safety systems based on E/E/PE equipment.
Technologies used in various safety systems for industrial applications are mentioned in
section 1.1.2 except pneumatic systems. The standard also provides requirements for sub-
systems that are part of a larger safety system. As mentioned introductorily in this
chapter, a safety system must comply with other international and national standards
applicable for the specific application the system are to be used in. Table 3-3 shows a list
of the standards most commonly used to supplement IEC 61508 compliance for safety
related sub-systems.

Applicable Standards for Safety Related Sub-Systems
Standard Specification
IEC 61508, Parts 1 to 7
(inclusive)

Functional Safety for Safety Related Systems

ANSI / ISA S84.01 Application of Safety Instrument Systems for the Process
Industries

IEC 68 Parts 1, 3,2,14, 26, 30 Environmental Testing
IEC 801Parts 3,4,.5,6 Electromagnetic Compatibility for Industrial Process

Measurement and Control
IEC 1000 Parts 4-4 and 4-6 Electromagnetic Compatibility (EMC)
IEC 1131 Programmable Controllers
EN 50081 Electromagnetic Compatibility -Emission Standard
EN 55011 Electromagnetic Compatibility -Emission Power Lines
ANSI / IEEE C62.41 Immunity, Power Line Surge
ANSI / IEEE C37.90 Immunity, Electrical Fast Transients
EMC Directive EMC European standard

Table 3-3, List of some of the most common standards used to supplement IEC 61508 [23]

[23] Paris Stavrianidis. “What Regulations and Standards Apply to Safety Instrumented
Systems?” Control Engineering Online.
http://www.controleng.com/archives/2000/ctl0301.00/0003we1.htm

55

Chapter 4 Safety Critical Communication
IEC 61508 generally divides a safety system into smaller logical units, or subsystems. On
the input side there is the sensors, sampling data from the process and feeding the system
with input. On the basis of this input the logic-solving unit determines actions according
to the control strategy the actuators performs. In traditional safety systems are these
subsystems directly connected together by cables. Each single actuator and sensor is
coupled to the centralised computer with a pair of wires. This is illustrated in Figure 4-1.
Most early safety systems used duplicated hardware modules to achieve a certain levels
of reliability and safety. The use of redundancy prevents that a failure of one module
would cause the whole system to fail. An arrangement of duplicated hardware allows the
logic solver to make use of majority voting to remove the effects of single failures. In
case of disagreements between the signals collected from the sensors, the centralised
computer assumes that the majority view is correct. The computer in the safety system
used loop supervision to monitor all the wires to the peripheral devices. Small electrical
currents were sent through the devices and back to the logic solver to check if the
connections and cables were intact.

Logic solving unit ActuatorSensor
Binary/
Analog
Input

Binary/
Analog
Output

Figure 4-1, In a traditional safety system the sensors and actuators were directly connected to a logic solver
by cables. Each peripheral device had at least one pair of wires coupled to the centralized computer.
Redundancy have been used on all levels in a safety system, from software redundancy with n-version
programming to redundancy of hardware (wires, sensors & actuators and logic solving units).

By replacing the direct cabling with a fieldbus communication system, the signalling
between the devices and the logic solver is changed drastically, and implementing these
software-based safety-critical systems require more in-depth methods and concepts than
what traditionally has been used in software engineering. In systems with direct cabling,
there is no actual communication between the sensor and the logic solver. The centralised
computer collects sensor readings and sends actuator commands through a pair of wires.
The signals and commands are sent as voltage levels or currents. Fieldbus supports real
data communication. Each device has communication abilities and data is transmitted in
digital messages. The fieldbus enables a two-way communication between the devices or
network nodes. Every device in the network shares the same communication media, the
bus (See Figure 4-2). It is obvious critical for a safety system that data can be reliably
exchanged. Fieldbus technology is more advanced and complex than direct cabling, thus
new challenges arise in terms of the communication between the devices in a safety
system. Failure modes related communication and fieldbus that may affect the system
safety are discussed more closely in section 4.2.

56

Comm.

Sensor

Comm.

Sensor

Comm.

Sensor

Comm.

Actuator

Comm.

Actuator

Comm.
Optional Logic

Solver

Figure 4-2, In fieldbus based systems is there a two-way communication between the devices and/or the
logic solving unit. All communication is done on through the same cable and this introduces more possible
sources of errors.

We are now touching the essence of this thesis; how can a standard fieldbus be modified
to provide the same level of safety and reliability as a direct-cabled system? This can be
done with modular redundancy and voting similar to what is done in traditional safety
systems, but this issue is outside the scope of this thesis. I have concentrated on issues
related to the communication between the “intelligent” fieldbus devices. The safety layer
shall ensure that messages are transmitted correctly from one device to another at the
right place in time.

Each single subsystem has an inherent probability of failure. A failure is an event that
occurs when a system or component is unable to perform its intended function for a
specified time under specified environmental conditions [22]. A failure can also be
described as the mechanism that makes faults within a system or component apparent. A
fault is a defect within a system. There are many types of faults and therefore it is
convenient to categorise them into two distinct classes, namely random faults and
systematic faults. Random faults are associated with transient hardware component
failures. All physical components are subjected to failure, due to e.g. wear-out and
degradation over time or sporadic environmental disturbance. This implies that individual
components fail randomly once in a while. This in turn implies that all systems are
subject to random faults. These failures are difficult to predict, but it is possible to build
up statistics to estimate failure rates and in that way predict the overall performance of
the system. Experience allows us to model the effects random hardware faults may have
on a system. Systematic faults cover many forms, design faults and mistakes within the
specification of the design of the system. All software faults are systematic. Systematic
faults are not random in their nature and are difficult to analyse. It is almost impossible to
predict their effects on system performance.

None of the subsystems in a safety system can be considered to be free of faults. Every
fault in each individual subsystem contributes to increase the probability of failure for the
whole safety system. Communication systems consist of both hardware and software, and
are therefore subject to both random and systematic faults. It is impossible to design a
system without faults and therefore also impossible to make an absolutely safe system. A
system must be adequately safe for its given role, and IEC 61508 can be used as a
reference to assist developers how to determine what “adequately safe” means.

57

4.1 Risk Considerations For Safety Critical Communication
In IEC 61508 a safety system is given a probability of failure as a whole by determining a
SIL for the system. The SIL is an expression of the probability of an event occurring
where the system is unable to perform its function correctly. This event may result in a
dangerous situation. Each subsystem is critical for the system safety and is allocated a
fraction of the total probability of failure. How much of a safety system’s probability of
failure that is allocated to each subsystems varies and must be determined for each single
system.

Subsystems are also built up of smaller systems. If we decompose a complete system
down in to smaller and smaller parts, we start to se that there are many single parts that
can fail and can directly or indirectly lead to dangerous situations. Only a small fraction
of the total probability of failure for a safety system is related to the communication
system. The rate at which errors do occur in a communication system are strongly
application dependent and must be considered individually. It is quite evident that data
transmitted via a wireless communication link in a noisy environment are much more
subject to errors, than data sent in an optical fibre under optimal conditions. Nevertheless,
a communication system is a part of the total system and the safety function depends
upon it to function correctly. It is extremely important that the inter-subsystem
communication is reliable. A chain can only be as strong as its weakest point.

Foundation Fieldbus is a communication system that sends and receives data several
times per second, this implies that a safety function based on FF has a high demand of
operation (Table 3-2). The relationship between the total probability of failure for the
safety system as a whole, and the communication system can be expressed in the
following manner:

PsafetyFunction: Probability of a hazardous error per hour in an uninterrupted operation
mode for the whole safety function.

PComSys: Probability of a hazardous error per hour in the communication system (In
this thesis the communication system is FF).

PComSys = k * PsafetyFunction

Sensor Logic solver ActuatorTransmission Transmission

Sensor

Sensor
Actuator

Actuator

1% 1%

Figure 4-3, The whole system should be considered for safety. The entire path from input, through logic
solving to output is relevant for the safety, but the communication subsystem is allocated 1% of the total
probability of failure.

58

For communication systems the k is typically set to 1% [1, 15] (See Figure 4-3). This
means that 1% of the total probability of failure of the safety system are allocated to the
communication system. This means that 1% of the failures that can happen in the safety
system is caused by an error during transmission of data.

Table 3-2 shows that for a high demand system with SIL 3 requirements we can see that
the maximum probability of a hazardous error per hour (in interrupted operation mode) is
less than 10-7. The following applies to the safety layer:

PsafetyFunction < 10-7/h
PComSys < (0.01 * 10-7) = 10-9/h

4.2 Communication failure modes outlined in IEC 61508
IEC 61508 address all known failure modes for communication systems, such as software
failures in the communication protocols, hardware failures in transmitters, receivers,
gateways and routers and sporadic disturbance of the transmission path.

The IEC 61508 introduces the following failure modes:
1. Data corruption
2. Corruption of sender and/or receiver addresses

� Wrong sender and/or receiver addresses
� Multiple receiver addresses (identical addresses on different devices)
� No address match

3. Transmission of data packages at the wrong point in time
� No transmission
� Delayed transmission

4. Wrong sequence of packages

A safety-critical system requires that data can be validated in both a value- and a time-
domain. To determine the validity of safety relevant data, we must have access to enough
information related to the data to be able to correctly answer four questions. Under each
of these questions I have listed alternative ways to look at the same questions to clearly
state what lays beneath the motivation for theses inquiries:

• Are the data I just received from the right sender?
Does this arrived data have the right sender-address? Is it right that this device is
sending data to me? Am I the right recipient?

• Does the data I just received have the right value?
Have the data been corrupted along the way to me? Can I trust the values I just
received from my communicating partner?

• Is it correct that I received data at this point in time?
Is it too late or too early to receive data now? I expect to receive data now, where is
it?

59

• Does the data have the right sequence number?
Have I received this data before? Have I missed some data?

4.2.1 The IEC 61508 communication failure modes related to the standard
FF communication protocol

In this section I summarise the findings presented in “Using Foundation Fieldbus in
Safety Applications” [1]. This report started the primary work on identifying weaknesses
in the standard FF stack that can be associated with safety. These “flaws” was related to
the failure modes in IEC 61508. The material presented in [1] served as basic
considerations for my approach to the safety layer problem.

4.2.1.1 Data corruption
The first weakness that renders it impossible for plain FF to be as the communication
system in highly safety-critical applications is its error detection mechanism. The data
link layer incorporates a Frame Check Sequence (FCS), also known in the literature as a
cyclic redundancy check or cyclic redundancy code (CRC). CRCs and the concept behind
them are discussed more closely in section 5.3.1 “Data Corruption.” The FCS is used to
detect small changes in the data frames. It is claimed in [1] that the FCS implemented in
the data link layer is the most uncertain issue related to using FF for safety relevant
communication. Standard FF uses a 16 – bit CRC generator polynomial. According to
IEC 61158-2 [18] the Hamming distance for telegrams shorter than 15 bytes using the
FCS is 5, and for telegrams longer than 15 bytes and shorter than 345 bytes the Hamming
distance is 4. In [1] there is put a question to whether FF’s error detection mechanism is
powerful enough to even meet SIL 2 requirements, therefore is it very likely that a new
FCS/CRC with a longer Hamming distance must be provided.

4.2.1.2 Corruption of sender and/or receiver addresses
The second problem with FF is the VCRs (Virtual Communication Relationship). The
three VCRs available in Foundation Fieldbus each offer a different Quality of Service
(QoS). Depending on which type of communication (VCR) channel used, a different
amount of addressing information is added to the header of the frames. Two of the
communication channels (Publisher/Subscriber and Report Distribution) include only the
address of the sender in the header of the transmitted data packages. In safety critical
communication it is necessary to include both the sender- and destination address. With
both addresses included in message headers, it is possible to check whether a package is
delivered according to its intentions. Wrong deliverance of packages may cause
unpredictable behaviour and problems in the system. Because some messages do not
include the destination address, the receiver does not have the ability to check if received
packages are really intended for them. The Client/Server VCR includes both the sender
and the destination address, despite this feature it is not suitable to convey safety critical
data. The Client/Server channel is used for user initiated communication, such as up and
downloading of data, but it does not offer time-deterministic capabilities. Even though
this VCR includes both sender and receiver addresses, it cannot be used for safety critical

60

communication because of its lack of time determinism. Thus none of the three standard
channels provided by FF incorporate all the QoS-attributes required in safety critical
communication.

4.2.1.3 Inaccurate timing of transmission of data packages
The third “weakness” of FF related to safety was introduced in the previous section,
namely time-determinism. To be able to answer whether an event, like the arrival of a
data frame, has occurred at the correct point in time, it is essential for the system to be
time deterministic. The Publisher/Subscriber VCR is the only communication channel
offered in FF that is scheduled and synchronised with time, and thus providing time-
determinism. The Publisher/Subscriber VCR is used during normal, operational, cyclic
communication on the bus to periodically distribute control loop data. The scheduled
traffic is controlled by the LAS, which ensure that fieldbus devices cyclically transmit
data at the right time. But as we remember from the previous section, the only address in
the frames sent while using the Publisher/Subscriber VCR is the transmitter’s address.
The subscribers are configured to listen for messages from their corresponding
publishers, instead of listening for messages addressed to themselves. A subscriber has no
way to verify the origin of received messages under these circumstances.

4.2.1.4 Wrong sequence of packages
If a frame sent from a device to another is lost because of some reason or another, the
consequences may vary from application to application. During configuration of a FF
system, the operator can configure the number of consecutive duplicate values a function
block should accept before it labels the input data as old. What happens when the data is
stamped old, is application dependent. In some non-safety-critical applications the
process can tolerate a relatively high number of losses of frames with fresh data,
depending on the inertia of the process. In a safety-critical communication system no loss
of data and frames can be tolerated. During normal operation of a FF system the
Publisher/Subscriber VCR is used. This VCR does not have any form of sequence
numbering of its frames, thus the receiver does not have any concrete means to detect
whether it have missed any transmitted frames, or whether a faulty publisher is locked in
one state and distributes legal but old data. The Client/Server VCR is the only channel
that supports package sequencing and retransmission of lost frames, but again, this
channel has no support for time determinism..

4.3 Principle Solution For Safety Critical Communication
The essence of the four previous sections is that none of the preconfigured
communication channels incorporates all of the attributes necessary in safety critical
communication. All of the three VCRs offered from FF have identical error detection
mechanism incorporated by the same FCS. This error detection mechanism is probably
not powerful enough to be used in an application that is assigned SIL 2 or higher [1]. In
this thesis I have had as a goal to design and implement a safe communication function

61

with a target of SIL 3. Hence, due to insufficient error detection none of the VCRs is
suited for use in the safety function. The Client/Server is the only VCR providing
sufficient amounts of addressing and sequence numbering, but this VCR lacks time-
determinism. The Publisher/Subscriber VCR distinguishes itself from the two others at
this point as being the only time-deterministic channel supporting scheduled
transmissions. But this VCR cannot be used in a safety function either without some
modifications, because this VCR does not incorporate sufficient addressing and do not
have any form of sequence numbering. We have now seen that when applying the failure
modes to the standard FF protocol, the result is that none of the standard VCRs are
suitable for safety critical communication.

4.3.1 The Safety Layer
The safety layer is a concept introduced in [1]. I chose to use the same name for my
safety function. One of the main design criteria posed for the safety layer was that it
should be done in a way that left the FF protocol layers untouched. Any solutions
involving making changes in the FF communication stack would make the system an
incompatible FF-hybrid. This was not an acceptable solution, as safety applications and
standard applications shall share the standard communication system at the same time.

This constraint limits the possible ways to approach a safety layer solution. The safe
communication protocol I describe in the next chapters is based on a model that uses
standard FF as the transmission system, with an additional safety function on top. This
approach provides the fieldbus applications safety on an application to application level.
By adopting this approach and aiming for a peer-to-peer safety among applications, I
ignore the built-in functionality of FF that relates to reliable transfer of data. I use FF as a
means (a channel) for conveying messages between the safety functions. The channel is
considered to be unreliable by the safety layer. The FF stack provides just availability of
communication abilities, and does not have anything to do with the safety. The protocol
stack just conveys messages for the applications independent of the content of the
messages. The standard FF stack has no means for understanding the content of the
transported data, and therefore knowing whether the messages are logical correct for the
applications. The added safety function provides for validation of safety relevant data
sent through the FF-channel. This design gives a fundamental and generic solution that
does not pose any demands for making changes of the fieldbus. This type of approach
makes the concept of the safety layer independent of the underlying technology. It is
therefore possible to use the safety layer design in conjunction with other fieldbuses than
just FF by allowing for small implementation specific differences. The safety layer shall
detect faults that are by some reason or another presented by the standard FF
communication network. By introducing a safety layer the probability of an error/fault
passing undetected through the system are kept under a certain limit. The safety integrity
level assigned to the safety system determines this error-limit.

63

Chapter 5 The “Safety Layer” for Fieldbus
Foundation

In chapter 1.2 it is stated that a major purpose of this thesis is to propose a safety layer
making Foundation Fieldbus suitable as a communication system in SIL 3 applications. I
have up to this point in the paper introduced FF and the concept of safety and safety
systems. I have also discussed how the communication failure modes described in IEC
61508 relate to FF and outlined counter measures for the failure modes. In this chapter I
will describe my own proposal for a way to implement the safety layer in a FF
environment. Sections 5.1 and 5.2 describe how the safety layer concept must be
specified to fit into the FF architecture. Section 5.3 deals with how the layer addresses the
individual failure modes. Then the design of the safety layer is outlined in 5.4 and I
explain more in detail how the safety layer works. At the end of the chapter I comment on
a demonstration implementation of the safety layer. The safety layer in the demo system
was implemented as described in the consecutive sections in this chapter.

The safety layer outlined in this report is strictly concerned with aspects related to
communication between FF devices. I have proposed a safety protocol that makes the
communication between two FF devices more reliable and able to meet the stringent SIL
3 requirements. The safety protocol gives the user-level applications in a field device an
increased probability to determine whether transmitted messages are valid or not. The
applications can with an increased amount of certainty claim that the messages are free
from errors. This will contribute to make the system safer by diminishing the possibility
of errors occurring and also the probability of not detecting present errors.

There is more than one possible approach to make the communication “safer” between
two FF devices. One possible solution is to change the protocol stack itself. This solution
involves making changes and additions in the different layers to improve the
communication reliability. There are both technical and practical reasons why I chose not
to adopt this solution. First of all I wanted to make a generic layer or mechanism that was
independent of the underlying technology. I wanted to make a safety layer that could be
used together with other technologies than FF. A completely generic approach like this is
of course not possible, because different technologies have distinct properties and
interfaces. By changing the protocol layers we produce a hybrid of the original FF stack.
This is not a practical solution concerning device interoperability, and may lead to that
“safe devices” and standard devices may not be used on the same bus. Another factor
keeping me from choosing an approach involving tampering with the protocols is simply
because I did not have access to the source code of the stack. I only had a binary file of
the FF stack. This also applied to the FB-Shell, the interface between the stack and the
user applications. First I thought that I could base the safety layer on communication
primitives, like send() and read(), provided by the FB shell. I soon realised this was not
possible since the shell only provides callback functions (Ref. paragraph 2.3.3 and 2.4).
The FF device starter kit from National Instruments that was employed for implementing

64

the safety layer did not provide the source code of the FB-Shell, therefore the only
possible way remaining of accessing the bus was through the user application.

The safety layer described in this report is conceptually based on a standard transmission
system (in this case FF). In order to achieve “safe communication” (strictly speaking,
more reliable communication) some additional safety transmission functions are added on
top of this standard transmission system. The communication stack is left untouched.
This approach is similar to how the safe profile is designed in ProfiSafe (Ref. section
1.1.6). With the term standard transmission systems I mean, in this context, the whole
standard FF communication stack including all the hardware and the belonging software
protocols.
At the top of the FF stack we have the user layer. The user layer defines function blocks
(See Figure 2-1 and 2-5). The FF standard opens for development of function blocks with
new functionality. Device vendors can therefore develop their own function blocks to
differentiate their devices and instruments from the products of their competitors. The
safety layer takes advantage of this feature. In a simple way the safety layer can be
described as a built-in part of a function block. The safety layer design is based on a
standard, regular function block that gets an addition of safety-related communication
parameters. The function block reside in the application on top of the stack, hence the
communication stack is left untouched. The majority of the safety-related add-ons are
placed inside the standard function blocks. This approach incorporates an application to
application safety-related communication. The safety layer or function disregards the
reasons for the errors and faults occurring in the transmission system. From the safety
function’s point of view, FF provides the availability of communication and not the
safety. It is the safety layer that is concerned with issues relevant for the safety-related
communication. The layer considers FF to be unreliable, and therefore it adds its own
redundant information it uses to validate transmitted data. The concept of the safety layer
presented in this thesis can be applied to other transmission systems. Some adjustments
have to be done in order to adapt the layer to the underlying technology. The principles
can be transformed to suit other underlying technologies. The underlying technology does
not have to be FF. But of course there are certain implementation specific details that
must be changed when applying the safety layer on other communication technologies.
The idea and principles can be used. With this approach we will not get a safety layer in
the layered sense. We will get application to application safety. This approach means that
the safety layer is not really a protocol layer, it is more like a part of the application, than
a separate layer like the other protocols in the OSI reference model. The safety protocol
runs as a user application in the CPU of the device. The safety layer is therefore also
referred to as the safety function in this document.

5.1 The Safe Function Block Concept
The general idea behind the “safe function block based safety layer” is based on the idea
of a library of “safe function blocks” that incorporates some means to communicate
safely, e.g. more reliably. The library shall contain similar blocks to the collection of
standardised function blocks. The difference between the regular function blocks and safe

65

blocks, is that the blocks from the “safe library” are customised and gets an overhead that
makes the communication between these blocks more reliable. From a process-control
point of view, the safe function blocks have the same functionality (i.e. the same control
algorithm) as the standard function blocks. The difference between standard and safe
blocks lies in the extra efforts that have been made to make the communication between
the safe function blocks more reliable. Building a library of safe function blocks will
practically speaking involve taking existing, regular blocks and modify them with the
necessary additions to make them communicate safer. The safe blocks will get redundant
information that is used to improve the reliability by strengthening their abilities to detect
communication failures.

To illustrate the concept of the safe function blocks and the main difference between
standard function blocks and the safe blocks, let us first consider a part of an ordinary
process control scenario with two regular FF function blocks FB1 and FB2. FB1 and FB2
are located in two separate physical devices and are configured to communicate via the
bus in the following manner; FB1’s OUT-parameter is linked to FB2’s IN-parameter (See
Figure 5-1). FB1 is constantly sampling data from the process environment. This data is
cyclically published by FB1 when the LAS issues a “Compel Data” message for FB1.
FB2 consumes the data produced by FB1 and is therefore configured to listen for
messages on the bus published by FB1. The transmission of data between FB1 and FB2 is
scheduled, thus the linkage between the two function blocks is based on a
Publisher/Subscriber VCR. We recall from section 2.3.1.3 that data transmissions using
the Publisher/Subscriber VCR are unidirectional broadcasts, thus data is flowing in only
one direction, from FB1 to FB2. The Publisher is told by the LAS to publish the data in
its output parameters on the bus. The Publisher do not care which function blocks that
might be interested in the data it just publishes it. The Subscribers are the destination of
the published data, and they are configured to listen on the link for messages and pick up
the messages they want. In safety-critical communication it is essential for a function
block receiving a frame to be able to notify the sender whether the frame arrived
correctly or not. In a scenario using regular function blocks, the Publisher do not have
any chance to know whether all of the destinations have correctly received the data they
subscribe to. The linkage between the Publisher and the Subscriber only supports a
monologue communication pattern.

FB2FB1

IN

Standard Function
Blocks

OUT

Function Block
Link

Figure 5-1, Two standard function blocks liked together. Data cyclically flows only in one direction, from
FB1 to FB2.

66

Let us now consider an installation with the similar configuration as shown in Figure 5-1,
but this time in a safety system. In this safety-critical setting the importance of correct
transmission of data is evident. In a safety critical setting a system engineer would
configure the system using blocks from the safety library. By adding a safety function to
a regular function block the probability of undetected errors between two communicating
applications will diminish, supposing both blocks have a synchronised safety function. In
that way a safety function will contribute to increase the safety and reduce the risk related
to the installation. When enhancing a standard block with a safety layer, a set of data and
some related software routines are added to its definition. Figure 5-2 shows the same
application as in Figure 5-1, but this time the application is built up of blocks from the
library of safe function blocks. There is no difference between operational functionality
of the safe configuration and the non-safety critical configuration. The difference
between the two configurations lies within the reliability of the transmission of data
between the function blocks. The function blocks in Figure 5-2 communicate safely
through their safety layers.

A safety layer performs its task when the function block executes. This implies that the
safety layer executes cyclically and is totally dependent on the LAS schedule. This in
turn means that a Publisher/Subscriber VCR lies beneath the connection between the two
safe blocks. So far there is no fundamental difference in the communication model
between the “safe-“ and the regular configuration. The safety layer takes advantage of the
scheduled properties of the Publisher/Subscriber VCR and uses it as a basis for the safety
critical communication. The safety layer enables a function block to monitor the
communication it performs with another block. The layer attaches redundant information
to the process data broadcasted by a Publisher. The safety layer on the receiving end of a
linkage use this information to validate both the time of arrival and value of each frame it
receives. The safety layer also implements a feature making the linkage between two
function blocks a bi-directional channel. This opens for a two-way communication
between safe function blocks and a Subscriber to acknowledge messages from the
Publisher. I have called the messages sent from a safety function-enhanced Publisher for
“safety frames.” A safety frame contains all the data needed for the Subscriber to validate
its communication with the Publisher. To confirm correct receptions of safety frames the
Subscriber sends short messages back to the Publisher. This short message is not a full
safety frame and is just referred to as an acknowledgement or an ack. The function blocks
in Figure 5-2 communicate safely through their safety layers.

67

FB2FB1

OUT IN

Safety Layer
Addition

sOUT/
sIN

Standard Function Blocks

sIN/
sOUT

Safety Layer
Addition

Safe
Communication

Safe Function
Block

Safe Function
Block

Safety Frames

Acknowledgements

Figure 5-2, Schematic illustration of the concept of the “safety layer.” The grey shaded area symbolises the
overhead added to ensure a safer communication between the function blocks. The safety layer has both
safe input- and output-parameters that makes two-way communication possible between the function
blocks.

The concept of safe function blocks results in that the safety layer only supports the
cyclic transmissions. User initiated communication, like downloading of configuration
data, will not be protected by the safety function. For system engineers using this
function block based solution, they can configure the system using the same tools and
techniques as they are used to with non-safety critical fieldbus systems. The use of
already known tools and techniques is advantageous and does not introduce the need for
any comprehensive training of personnel. The safety frame, the acknowledgement and
their contents are discussed more thoroughly in section 5.2 and 5.3.

5.2 Safe Function Block Specification
In the previous section the safety layer was defined to be an integrated part of a function
block. The safety layer manages a set of redundant variables used to hold information
about the communication. These variables are discussed more in detail in section 5.4.
When a safe function block is scheduled to run and publish data, its safety layer includes
updated versions of the safety-related variables in the message before the frame is
published. The redundant data consists of a new addressing scheme for the safe function
blocks, a frame counter that handles sequence numbering of transmitted frames,
timestamping of frames and an enhanced error detection mechanism. The receiver uses
the values of these variables to validate safety frames. Each published safety frame
incorporates the same amount of redundant data, only the content is updated between
each transmission. A safety frame has therefore a fixed size. The same applies to the
acknowledgements, except they are smaller in size than a complete safety frame.

For each scheduled execution of a function block there is a limited amount of data that
can be sent and received at a time. The data type of the I/O parameter in a function block
determines the amount of data the block can send/receive in one bulk. It is a FF
requirement that input and output parameters of function blocks have to be of one of

68

three data types, either a VsFloat, a VsDiscrete, or a VsBitstring. These I/O parameters
contain both value and status attributes.

FF I/O-Parameter Data Type Element Name Data Type Size
Status Unsigned Char 1 byteValue & Status – Floating Point

(VsFloat) Value Float 4 bytes
Status Unsigned Char 1 byteValue & Status – Discrete

(VsDiscrete) Value Unsigned Char 1 byte
Status Unsigned Char 1 byteValue & Status Bitstring

(VsBitstring) Value Unsigned Short 2 bytes
Table 5-1, The FF specification defines that a function block’s I/O parameters can be one of these data
structures.

Table 5-1 shows that the maximum amount of data a function block can send or receive
through one I/O parameter per execution are five bytes (4 + 1 in VsFloat). All of this
space is already occupied in a regular function block by the process value. The amount of
redundant data the safety layer appends exceeds the capacity of a regular function block’s
output. How can the safety layer append any redundant information if there is no vacant
space in the messages? What can we do to send more than five bytes at a time?

5.2.1 Safety Frame
To overcome the problem related to sending and receiving of a safety frame bigger than
the I/O parameter with the largest capacity, I have chosen to divide a safety frame into
smaller units called fields (See Figure 5-3). A field has a fixed size of five bytes so it can
fit into a function block’s I/O parameter of type VsFloat. When a safety frame is going to
be sent, the safety function on the publishing side of the communication splits the frame
into fields. Each field fit into the block’s output parameter and can be sent sequentially
one by one. The safety frame is therefore not transmitted as a single unit, but as separate
fields. The receiving safety layer builds the safety frame piece by piece as the fields
arrive and the frame is gradually assembled. After the arrival of the last field, the safety
layer validates the whole frame. If the safety frame is valid, an acknowledgement is
issued to the sender of the safety frame. If not, no acknowledgement is sent. If the
publishing safety layer do not receive an acknowledgement within a limited period of
time, a timer times out, and the layer flags the error.

Process data Timestamp
(upper)

Timestamp
(lower)Frame counterAddressing info CRC

10 2 3 4 5

Figure 5-3, One safety frame contain all the safety relevant data necessary to validate a transmission. The
frame is too big to be sent in one bulk and therefore must be split into fields that are individually
transmitted. A safety frame consist of 6 fields, numbered from 0 to 5.

69

The whole concept with splitting a frame into fields and serially transmitting frames
through a single I/O parameter seriously damages the systems throughput. This can be
compensated for, up to a certain point, by increasing the frequency of function block
executions. Let’s say a control loop (Ref. section 2.3.2.1 for definition of control loop) of
regular function blocks is configured to have a loop time of one second. This means that
each function block executes once in intervals of one second. If a loop consisting of safe
function blocks were configured to run at the same rate, process data would only be
transmitted each sixth second. The rest of the “bandwidth” would be occupied with safety
overhead. But if the safe function blocks were configured to run with an interval of 166
ms (on sixth of a second), approximately the same performance would be achieved as the
loop with regular blocks.

5.2.2 Fields
The content of a safety frame is not divided randomly into fields. Each safety-related
variable has a corresponding field in a frame, this means that a specific field holds the
same type of content during each transmission. The first field (field 0) in a frame always
contains process data. This means that the content of field 0 always corresponds to the
data regular function blocks would exchange under normal operation. Field 1 contains
addressing information used to identify the origin and destination of the safety frames.
Field 2 contains the actual frame's sequence number. This is primarily used to monitor
the continuity of frame transmission. The frame counter is used to detect loss of frames
and avoid function blocks to interpret a frame more than once. This last issue is rather
unlikely to happen because the safety layer does not support retransmissions of frames.
The fourth and fifth fields contain a timestamp. The timestamp is too large to fit into one
field, therefore must this parameter be divided into two separate fields. The sixth and last
field carries a checksum that is calculated to protect the five preceding fields (See Figure
5-3).

Process data prevTime.uppernewTime.lowerfCountersender dest 24-bit CRC

10 2 3 4 5

Status
byte

Status byte =
ADDRBIT

Status byte =
FCBIT

Status byte =
LOWERBIT

Status byte =
UPPERBIT

Status byte =
CRC24BIT

Safety frame:

Figure 5-4, The structure of a safety frame. The status byte is used to hold a bit that indicates which field
that are sent or received.

Each field has an identifier. This identifier is a byte containing a bit-pattern unique to the
field it represents, and acts as a field header that indicates what type of data the field
contains. This byte is always sent in the status byte of the I/O buffer (e.g. the status byte
in the VsFloat I/O parameter, see Table 5-1). As fields are arriving at the receiving end of
a safe communication link, the recipient checks if the arriving fields has the correct
identifier according to what is expected. When all six fields have arrived and the safety

70

frame is complete, the safety function computes a checksum for the arrived data. If the
calculated checksum in the destination is equal to the checksum it received from the
sending function block, the probability of error during transmission is so low that the
block presumes the frame is not corrupted. When a frame has arrived successfully, the
receiver issues an acknowledgement message to the sender.

5.2.3 Acknowledgements of Safety Frames
To enable the safety layer to send and receive acknowledgements, I have defined a new
I/O-parameter. This I/O parameter specifies two versions of the safety layer, one for a
Publisher and one for a Subscriber. The Publisher’s safety layer got an additional input
parameter while the Subscriber’s layer got an output parameter. These parameters were
included exclusively for one reason, namely to handle the sending of acknowledgements.
This means that the connection between two safe function blocks is composed of two
Publisher/Subscriber VCRs. One VCR is used to convey safety frames from one block to
another and the other VCR is used to transport acknowledgements from the recipient of
safety frames to the original Publisher. Both function blocks can therefore instantly be
considered to be a Publisher and a Subscriber. One safe block publishes safety frames
and subscribes to their related acknowledgements. The other function block subscribes to
safety frames and publishes their acknowledgements if the whole frame is received
correctly (See Figure 5-5).

OUT

INsafeIN

safeOUT

Publisher of Safety Frames,
Subscriber of
Acknowledgements

Subscriber of Safety Frames,
Publisher of
Acknowledgements.

Figure 5-5, The safe bi-directional channel between to safe function blocks is constructed from two
linkages based on the Publisher/Subscriber VCR.

The acknowledgement is defined to be one field. This size allows an ack to be sent during
a single transmission. By limiting the size of the ack to one field the throughput is
practically not affected. This leaves us with five bytes for disposal in an
acknowledgement message. The receiver of an acknowledgement, the ack-Subscriber,
needs to recognise which safety frame the ack is intended to confirm. The sequence
number serves this purpose. An ack include the sequence number of the safety frame to
indicate which frame it acknowledges. The safety layer is designed as a stop-and-wait
protocol, therefore a new safety frame can not be sent before the last of the previous
frame has been correctly acknowledged. It is not possible for a pair of communicating
safe blocks to have more than one outstanding unacknowledged frame at a time.

71

As already mentioned, the frame counter or sequence number is an important part of the
ack. An ack is invalid if it gets corrupted during transmission, therefore an error detection
mechanism is also required for the ack. To be able to fit both the frame counter, an ack-
bit that identifies that the message/field is an ack, and redundant data required by the
error detection mechanism, the available bytes in the ack must be managed carefully. I
have chosen to just send the two least significant bytes (LSB) of the frameCounter in the
acknowledgement. As the frame counter is incremented at intervals of six loop times and
the safety layer uses a stop-and-wait communication pattern, the two LSB of the
sequence number contains plenty of information to acknowledge a frame and keep track
of the frames in a stop-and-wait protocol. To protect the acknowledgement I
implemented a 16-bit CRC. A 16-bit CRC provides good error detection when it is used
to protect just 24 bits. CRC-performance is addressed in section 5.3.1.1. Figure 5-6 shows
the structure of an acknowledgement.

Acknowledgement:

 2 LSB 16-bit
 of CRC
fCounter

Status byte = ACKBIT

Figure 5-6, The acknowledgement frame is similar in size as a field. It is five bytes and contains four bytes
of data. The status byte contains an acknowledgement identifier. The four bytes of data is used to hold two
bytes of CRC and the two LSB of the frameCounter to identify the safety frame the function block is
acknowledging.

5.3 How the IEC 61508 failure modes are handled in detail in the
Safety Layer

There are several error cases the safety layer must handle and they are listed in the table
below together with counter measures for the respective failure modes.

Counter measure:
Failure:

Frame counter -
Sequence number

Time
expectation

Sender/Receiver
addresses

Data protection

Corruption of data X
Erroneous
addressing
Wrong address of
sender/receiver

X

Multiple receiver
addressing

X

No address match X
Wrong point in
time
No transmission X X
Delayed
transmission

X

Wrong sequence
Repetition X

Table 5-2, Measures for mastering errors and failure modes [1, 15].

72

In the rest of this section (5.3) I address the issues summarised in the table above (Table
5-2) and discuss in detail how the failure modes outlined in IEC 61508 (Ref. section 4.2)
are handled in the safety layer.

5.3.1 Data Corruption
The safety layer offers an enhanced protection of transmitted data so that a function block
can, with a sufficient certainty, determine if exchanged data are free of errors. The error
detection mechanism incorporated in the safety layer shall have a targeted performance
satisfying the requirements of SIL 3. These requirements are listed in Table 3-2. The
error detection mechanism is implemented by means of CRC (Cyclic Redundancy
Check) routines. CRC has been chosen to detect errors in the safety layer because it is
one of the most effective and popular mechanisms for detecting errors used today [24].
The CRC is widely used because it offers extremely good error detection performance in
proportion to the overhead it involves. In “Implementing CRCs” [24] it is given an
example on CRC performance. J. W. Crenshaw writes that if we have given the proper
choice of algorithm, a 16-bit CRC can detect:

� 100% of all single-bit-errors
� 100% of all two-bit errors
� 100% of all odd number of errors
� 100% of all burst error less than 17 bits wide
� 99,9969% of all bursts 17 bits wide
� 99,9985% of all bursts wider than 17 bits

The cyclic redundancy check is used as a way to detect small changes in blocks of data.
The basic idea behind CRCs is that a sender computes a number that is mathematically
related to message going to be transmitted. The number is appended to the message prior
to transmission. The receiver calculates the number using the same formula based on the
data it just received. The idea is that any errors in the data will affect the number
computed, so that the errors can be detected.

In practice will a CRC-algorithm treat a message as a large binary number and divide this
number by another binary number, the generator polynomial. The remainder of this
division is the checksum. The checksum is sent along with the message. When the
message reaches its final destination, the receiver performs the same division. If the two
remainders are identical, it is very likely that the transmission was successful and the
message has not been corrupted by any bit errors. Nevertheless, there is still a small
possibility that some errors will not be detected. This happens when the pattern of a bit
error affects the original message in a way that results in a new value which, when
divided, produces exactly the same remainder as a correct message.

[24] Jack W. Crenshaw, “Implementing CRCs.” Embedded Systems Programming,
January 1992.

73

5.3.1.1 CRC Performance
The performance of a CRC routine is measured by the probability of undetected-errors,
Pue. Pue denotes the probability of the event that channel noise transforms a sent codeword
into another codeword so that parity checking at the receiving end fails to detect the
errors in the transmitted codeword. A central parameter affecting the Pue is the minimum
Hamming distance. The Hamming distance (HD) between two equally long code words
is the number of bit positions two code words differ.

Given two code words,
N1: 10001001
N2: 10110001

To determine the Hamming distance between two code words, we can XOR the code
words and count the 1-bits in the result. Hence we can determine the HD between N1 and
N2:

10001001 : N1
XOR 10110001 : N2
= 00111000

In this example we have three 1-bits, thus the HD between N1 and N2 is 3.

When two code words have a Hamming distance of d, it takes d single flipping of bits to
convert one code word into the other. If a data frame consist of m data bits, called the
message or the payload, and r redundant bits called the checksum, the whole code word
has a length of n = m + r bits. In most situations of transmitting m data bits in frames of n
bits, all the 2m possible message alternatives are legal values in the data field of the
frame. Due to the way the redundant error detection bits (the checksum) for the message
is calculated, not all of the 2n alternatives of the n-bit long frame represent valid
messages. Given the algorithm that calculates the checksum, it is possible to calculate the
complete list of all legal n-bits code words. Legal code words mean frames that are not
corrupted. From this list can we find the two code words with the smallest HD. To do this
we have to compare all the code words in the list and locate the pair of code words that
are the most alike (with the lowest number of differing bits between them). This
Hamming distance is called the minimum Hamming distance (HDmin) of the CRC-code.
The HDmin expresses among other things how many single bit errors the CRC-code can
detect. This is a good indication of the polynomial’s error detection properties. To
guarantee the detection of d bit errors in a code word, we need a HDmin of d + 1. It is
guaranteed that a CRC-polynomial with HDmin = 4 can detect all 3-bit errors, because it is
not possible that three single bit errors in a code word, from the list of legal code words,
can transform it into an other legal code word. CRC-codes can also be used to correct
errors in data frames. To correct d bit errors in a frame, we need a HDmin = 2d + 1,
because in this case the legal code words differs so much that with d bit flips (errors), the
original code word is closer than any other code word, thus it can be determined. The

74

greater the Hamming distance between two code words, the more difficult it is to change
one into the other, thus we look for codes with the largest possible minimum distance.

When first confronted with the problem of choosing the CRC generator polynomials for
the safety layer, I assumed that the best thing to do was to go for polynomials that are
well known and widely used. After some more studying of the topic I quickly understood
that it was not as easy as just picking a polynomial, implement it and then expect that it
would do the job in the safety layer. Using generator polynomials just because they have
been proven in use is not a good enough argument by itself to justify the use of the
polynomial in this particular application. In the paper “Optimum Cyclic Redundancy-
Check Codes with 16-Bit Redundancy “[25] we can read “CRC-16 codes with maximal
minimum Hamming distance at short block lengths do not have maximal minimum
Hamming at large block lengths, and vice versa.” The same applies not only to CRC-16
codes, but also to CRC codes of other lengths. CRC generator polynomials are
constructed to optimise the HD in a certain range of block lengths. If we use a CRC-code
on a block with length outside the range the generator polynomial was designed for, the
code’s error detection properties may be completely unpredictable and show poor
performance compared to the performance expected.

5.3.1.2 Probabilistic Considerations
To be able to find an appropriate generator polynomial, it is first of all necessary to be
able to specify the performance we demand from the safety layer. This performance
demand is indirectly reflected in the SIL assigned to the entire safety system. The safety
layer is a high demand system operating in a continuous mode (Ref. section 4.1), and in
this thesis I am targeting SIL 3 performance. From Table 3-2 we have for the whole
safety system Pue < 10-7 per hour. The safety layer is a subsystem responsible for the
communication between the other subsystems in the safety system. In section 4.1 we read
that a communication subsystem is usually allocated 1% of the probability of failure for
the whole safety system. Thus the probability of a hazardous error per hour in the safety
layer during a continuous operating mode is:

PsafetyLayer < 10-9

Further have I assumed that the number of messages sent per hour from one safe function
block to another is 360.000 (assumes 100 messages pr second, thus a loop time of 10 ms.)

We have the following:
mr (message rate) = 360.000 ms/h (messages sent per hour)
PsafetyLayer < 10-9/h

[25] G. Castagnoli, J. Ganz, P. Graber. “Optimum Cyclic Redundancy-Check Codes with
16-Bit Redundancy.“ IEEE Transactions on Communication, vol. 38, No. 1, January
1990

75

The residual error rate R for decoding of one telegram is:
141459

5

9

10106,3106,3
106,3

10 −−−−
−

≈⋅=⋅=
⋅

==
mr

P
R rsafetyLaye

We must therefore choose a CRC generator polynomial that can guarantee the safety
layer that the probability of not detecting any errors when it decodes a messages is less
than 10-14 for representative bit error rates on the FF bus. This is discussed in more detail
in section 5.3.1.3.

The safety layer has two types of codewords with different lengths. First, there are the
safety frames, which are six fields long including the CRC field. Each field is five bytes.
A full safety frame is 30 bytes of which 25 bytes are the message string. The
acknowledgement message consists of 3 bytes of data and 2 bytes of CRC. These
codewords are relatively short compared to the codewords in i.a. Ethernet, were each
frame can contain up to 1500 bytes.

The safety layer implements two CRC routines, a 24-bit generator polynomial used for
the safety frames and a 16-bit polynomial protecting the acknowledgements. The CRC
algorithms and implementation specific details are discussed in paragraph 5.4.4.

5.3.1.3 16-bit CRC
The safety layer uses the 16-bit CRC polynomial to detect any bit-errors occurring during
the transmission of acknowledgements. An ack is quite short, only five bytes or 40 bits (4
bytes float and one byte status, Vs_Float). It is therefore necessary to choose a
polynomial with a high HDmin for short block lengths.

The 16 bit generator polynomial used in the safety layer is based on a 12-bit binary BCH
code (63, 51, 5), with generator polynomial g12(x) = 1001110010101 (x12 + x9 + x8 + x7 +
x4 + x2 + 1). BCH code is an abbreviation for Bose-Chaudhuri-Hochquenghem code,
which is a multilevel, cyclic, error-correcting, variable-length digital code used to correct
errors up to approximately 25% of the total number of digits [26]. The first number listed
in the parenthesis (63, 51, 5), denotes the length of the block inclusive the 12-bit
checksum. 51 is the length of the message or payload (63 bits – 12 bit checksum = 51
message bits). The last number is the HDmin of the polynomial for this block size. By
multiplying the 12-bit BCH code with the following terms, (x + 1) and (x3 + x +1), we
acquire a 16-bit polynomial. Each factor expanding the 12-bit BCH code affects the new
16-bit polynomial in the following manner:

[26] Federal Standard 1037C, “Telecommunications: Glossary of Telecommunication
Terms.”

76

(x + 1): As long as the generator polynomial contains this factor, any odd number
of errors are detected [27].

(x3 + x +1): As the polynomial has a factor of at least three terms, all double-bit errors
are detected [27].

The polynomial that constitutes the expanded BCH code is the actual generator
polynomial used by the safety layer to protect the acks;

g16(x) = 11111100000111001 (x16 + x15 + x14 + x13 + x12 + x11 + x5 + x4 + x3 + 1).

-4 -3 -2 -1

-17.5

-15

-12.5

-7.5

-5

Figure 5-7, X-axis: FF bit error rate, Y-axis: Residual error rate. This graph was generated with
Mathematica and the units on the axes are powers of 10.

The graph in Figure 5-7 shows the calculated residual error rate for the ack transmission
as a function of the bit error rate on the FF signal. The graph shows that the requirement
of R < 10-14 is satisfied for bit error rates less than 10-3. In order to understand the
significance of this, we have to consider the signal to noise ratio on the FF signal bus
needed to provide this bit error rate performance and consider whether or not this signal
to noise ratio is provided by the FF standard under normal operating conditions.

The signal on the FF bus is Manchester encoded with the following bit signal
representation [28]:

[27] Larry L. Peterson & Bruce S. Davie. “Computer Networks – A Systems Approach”
Morgan Kaufmann Publishers Inc.

[28] Ferrel G. Stremler. “Introduction to Communication Systems,” section 9.9.3.
Addison Wesley.

77

()
�
�
�

��
�

�

≤<

≤<
=

b
b

b

1

T t
2

T
A

2
T

 t 0A -
tf

f2(t) = - f1(t)

where A is the signal amplitude, Tb is the signal duration (bit duration) and f1(t) and f2(t)
represent the bit values 1 and 0 respectively.

This representation is equivalent to an antipodal binary signalling-scheme. The only
difference is that the Manchester signal has one phase shift during the bit duration while
the binary antipodal signal has no phase shift during the bit duration. This means that the
Manchester signal requires the double bandwidth of the antipodal signal for the same bit
duration or data rate. This means that for the same signal strength the signal to noise ratio
for the Manchester signal will be 3 dB below the signal to noise
ration of the antipodal signal for the same additive noise situation.

The theoretical bit error curve for binary signal is copied from [29] and shown in Figure
5-8. The corresponding curve for Manchester signalling is included as a curve shifted 3
dB to the right.

Figure 5-8, Signal to noise ratio per bit (dB).

From Figure 5-8 it is then possible to read out the correspondence between bit error rate
and signal to noise ratio per bit for a Manchester signal.

[29] John G Proakis. “Digital Communications,” Figure 5-2-4. McGraw-Hill Book Co.

Manchester
encoding

Antipodal

 B
it

er
ro

r r
at

e

78

Earlier in this section it was shown that the proposed 16 bit CRC will satisfy the residual
error requirement of R < 10-14 for bit error rates less than 10-3. From Figure 5-8 we can
see that a bit error rate less than 10-3 requires a minimum signal to noise ratio per bit of
10 dB. This seems to be a very reasonable requirement that will be satisfied for the FF
communication bus under normal operating conditions. Hence, the proposed 16-bit CRC
is a suitable choice for securing R< 10-14 for the transmission of acknowledgements.

5.3.1.4 24-bit CRC
The 24-bit generator polynomial implemented in the safety layer is used to generate a
checksum for the safety frames. The block length of a safety frame, exclusive the
checksum it self, is five fields and one byte long (the extra byte is the status-byte of the
sixth field). This is a total of 208 bits. The 24-bit CRC polynomial is a binary BCH code
(255, 231, 7). The generator polynomial is

g24(x) = 1101110111010000110110101
(x24 + x23 + x21 + x20 + x19 + x17 + x16 + x15 + x13 + x8 + x7 + x5 + x4 + x2 + 1)

Block length inclusive 24-bit checksum is 255, block length exclusive the 24-bit
checksum is 231, Hamming distance is 7 for the block length.

-4 -3 -2 -1

-20

-18

-16

-14

-12

-10

-8

Figure 5-9, X-axis: FF bit error rate, Y-axis: Residual error rate. The units on the axes are powers of 10.

The graph in Figure 5-9 shows the calculated residual error rate for the safety frame
transmission as a function of the bit error rate on the FF signal. The graph shows that the
requirement of R < 10-14 is satisfied for bit error rates less than 10-3. Hence, the proposed
24-bit CRC is considered a suitable choice for securing R< 10-14 during the transmission
of safety frames.

5.3.2 Corruption of Sender and Receiver Addresses
The safety layer addresses the problem related to the lack of sufficient addressing
information in the Publisher/Subscriber VCR by providing an arrangement for addressing

79

the safe function blocks. Each safe function block is assigned a unique 16-bit address.
These addresses are independent of the conventional FF naming scheme. The addresses
provided by the safety layer are used to identify the parties in a communication
relationship between two safe blocks. Each safety frame includes both the sender’s and
the receiver’s address. This enables the receiving function block to validate the
destination and the origin of the frame. A regular function block would not understand
this addressing. The safety-related addresses are static and do not change during
operation, but they can be changed during configuration.

5.3.3 Inaccurate Timing of Transmission
The communication between two safe function blocks can at a high level of abstraction
be described as a scheduled exchange of safety frames and acks. This high level safety-
critical communication is controlled by two separate events, namely; regularity of
function block execution and reception of “Compel Data” messages from the LAS.

Firstly, the safety layer depends on that the function block, it is a part of, executes
regularly. If the function block do not execute, the safety layer can not perform its
functions like updating the CRC, the safety-related addressing and other information used
to validate and monitor the safety-critical communication. In section 2.3.1 we read that
System Management (SM) in each device administers the execution of function blocks
according to an application clock it maintains (See Figure 5-10). If SM fails to trigger a
safe function block to execute, the block’s safety function is not executed.

Secondly, the high level transmission of safety frames and acks is dependent on “Compel
Data” messages from the LAS. This is quite obvious, because, if a function block do not
receive a “Compel Data” message from the LAS, the content of the function block’s
buffer is not published on the bus. For example, the Publisher that misses out on a
“Compel Data,” may never get to send a field, because the next time the function block
executes, the buffers are over-written with new data. The previous field is lost forever
and the complete safety frame the field is a part of is destroyed.

80

LAS

Safe function block
communication

"Compel Data" messages

Fieldbus

Devices with
safe function

blocks

Safe AI Safe AO

In/Out In/Out

SMSM

Execute AO
command

Execute AI
command

Figure 5-10, The communication between two safe function blocks consists of two events (marked as red
arrows): 1. The commands from System Management (SM) in each device telling the safety layer to update
its safety variables related to communication. 2. The arrival of “Compel Data” messages from the LAS
forcing the blocks to publish the safety variables.

In order for a safety layer to be able to accurately time transmissions of safety frames, it
must monitor both the frequency at which the function block executes and the arrivals of
“Compel Data” messages.

The safety layer maintains two timestamps that enables its safe function block to
determine whether “Compel Data” messages are arriving correctly according to the
schedule. One timestamp is used to hold the time of the previous sent or arrived frame,
depending on if the function block is on the sending or receiving end of a “safe
communication relationship.” The second timestamp is used to hold the time of the newly
sent or arrived frame. These two timestamps are used to check that the time lag between
the sent (or arrived) safety frames are within the correct interval (not too late neither too
early). These timestamps are sampled and updated inside the function block algorithm.
Section 5.4 continues the discussion of the timestamps.

The safety layer includes a watchdog-function to monitor that SM is triggering function
block executions correctly. The watchdog-function is not a part of the function block, and
is therefore not invoked by SM. It runs in loop and executes periodically. The interval at
which the watchdog is executed is equal to the loop time. This means that the watchdog-
function is invoked once for each time the safe function block executes. If a function
block is configured to run every second, the watchdog must also be configured to run at
this interval. The watchdog works similarly to the timestamping of safety frames. Each
time the algorithm in the safe function block is started by SM, the time is sampled and
stored in a variable. The watchdog’s assignment is to sit in the background and at regular
intervals compare the current time with the time stored in the variable holding the time of

81

the function block’s last execution. Function block execution is deterministic, thus if the
difference between the two times is longer than a preconfigured value, the watchdog flags
an error.

It is especially relevant to ensure that transmissions are accurately timed for output
function blocks, like an AO-block. An output block controls an actuator that can
physically affect the process. It is therefore crucial that an output block by itself is able to
detect loss or interruption of communication. The consequences of a communication
failure are highly application dependent. Some applications have a high degree of inertia,
and can tolerate loss of communication for some time. The system can wait to see if the
communication is restored. If not, a predetermined action is performed to shut the process
safety down. Other systems may need to take action more rapidly, sometimes there is no
time to wait to see if the communication can be re-established. In that case must the
output block just initiate some sort of safety procedure on its own.

5.3.4 Wrong sequence of data packages
The safety function incorporates a frame counter chosen to be 32 bit long. Practical
implementation considerations of the length of the counter are discussed in section 6.1.2.
The counter operates as a sequence numbering of safety frames transmitted between two
safe function blocks. The frame counter sequence numbers just whole logical frames, not
each field separately transmitted. This counter is therefore incremented once every sixth
macro cycle.

5.4 Safe Function Block Design
This section describes specific details directly related to the implementation of the safety
layer. The safety layer mainly consists of a set of variables and some related software
routines. Each variable and their intentions are discussed in detail.

There are six variables that together form the spine in the safety frames: fieldNo,
sender, dest, frameCounter, newTime and prevTime. Additionally there exist
four help-variables used for storage of temporary data during computations and
conversions. These variables are collected together to form a C-structure (struct). I have
called this structure safetyParams, an abbreviation for “safety parameters.” This
structure contains the majority of the parameters necessary to make a function block safe.
The structure is displayed below in Listing 1.

typedef struct safetyParams_t
{

uint16 fieldNo; /* 1 */
union{

uint16 num;
unsigned char c[2];

}sender; /* 2 */

82

union{
uint16 num;
unsigned char c[2];

}dest; /* 3 */
union{

uint32 num;
unsigned char c[4];

}frameCounter; /* 4 */
union{

float f;
unsigned char c[4];

}floatTemp; /* 5 */
union{

uint16 num;
unsigned char c[2];

}shortTemp; /* 6 */
float errorFlag; /* 7 */
FF_Time newTime; /* 8 */
FF_Time prevTime; /* 9 */

} safetyParams_t;

Listing 1, The type definition of safetyParams_t.

5.4.1 struct safetyParams_t
safetyParams_t is a data type defied as a “C” structure that holds safety relevant
data. Each of the variables shown in Listing 1 is described individually below. Many of
the struct-variables are defined as a union. These unions always include a character
array, of two or four unsigned characters depending on the data type of the other variable
declared in the union. I have done this to simplify the insertion of the variables in the
unsigned character array used to hold the argument for the computation of the CRC
checksum.

uint16 fieldNo:
An unsigned short variable that keeps track of the fields in a safety frame. This is
a local counter managed by the function block to keep track of the fields in the
safety frames. fieldNo is used by a safe function block to indicate what type of
data (actually, which field) the block shall send or expect to be receive. When a
function block is told by System Management to execute, the block reads its
fieldNo variable. If for instance the block is a Publisher and its fieldNo = 1,
then the block knows that it are supposed to send the address field (See Figure 5-3
and 5-4 for the contents of the different fields). The safe block prepares to send
the field by copying both its own address (“sender” – see next paragraph) and
the address of the receiving block (“dest” – see two paragraphs below) into its
output parameter. The status byte of the output parameter is assigned with the
value of an address field identifier bit. This bit is used by the frame destination
(the Subscriber) to recognise the content of the arriving field as addressing
information. Just before the function block is finished executing, it increments
fieldNo with one. The safe function block is now prepared to transmit field
number 2 of the frame next time the block algorithm is invoked by SM. The
“safe-Subscriber” is using its local fieldNo counter to tell which field is

83

arriving. When the “safe-Publisher” has sent the sixth and final field, a whole
safety frame has been conveyed from the sender to the receiver. The two function
blocks prepare themselves for the next safety frame by setting their local
fieldNo counters back to 0. It is therefore absolutely essential for two
communicating safe function blocks to be synchronised and have their fieldNo-
variables loop “in phase” from 0 to 5. A “safe-Publisher” and a “safe-Subscriber”
must have identical values on their fieldNo variables during the same macro
cycle. If a Subscriber’s fieldNo is 3 when the Publisher’s fieldNo is 2, the
Subscriber is not able to interpret the field correctly when it arrives. When the
sender has fieldNo = 2, it is sending the frame counter. The receiving block
must also have fieldNo = 2 to interpret the information in the arriving field as
the frame counter. It is vital for the safety function that this counter is
synchronised and “in phase” at all times between the communicating safe
function blocks.

uint16 sender:
A 16-bit variable used to hold the address assigned to the safe function block
considered being the sender (Publisher) in a safe communication relation. The
value of this variable must not be changed during operation. It is not declared as a
constant since it must be possible to change it during configuration of the system.
This address does not have anything to do with the name of the device the
function block resides.

uint16 dest:
dest is an abbreviation for “destination.” dest is similar to sender, but this
variable holds the safety-related address of the Subscriber of safety frames.

uint32 frameCounter:
This 32-bit variable serves as the sequence numbering of the logical safe data
frames. The frameCounter is incremented with 1 for each complete safety
frame being sent or received. The frameCounter is used to give a sequence
number to the frames and allows the parties in a safe communication relationship
to monitor the progress of their dialog.

float errorFlag:
This variable is initialised to 0 and is set t another value when an error is detected.
This flag can be set during the execution of the block algorithm or by the
watchdog-function. When an error is detected and the error flag is set, a
predefined action must be taken. This action is completely application dependent,
therefore have I chosen to just set this flag when an error is detected. Depending
on the type of detected error, the errorFlag can be assigned a certain value.
This value can later be used to determine what caused the error and if any repairs
must be done.

84

float floatTemp and uint16 shortTemp:
Variables used to store temporary values during computations. These variables
are also used to convert values between different data types, especially during
insertion of data into the array used as argument for CRC calculations.

FF_Time newTime and FF_Time prevTime:
newTime and prevTime are two timestamp variables used to validate the
safety frames in a time domain. The timestamping of the frames has nothing to do
with the data read from the process control. It is not an indicator on when the data
in the first field of a frame was sampled from the environment. The timestamps
are primarily used to record a point in time when the safety frames are sent. The
timestamps allow the safety layer to monitor the frequency of frame
transmissions/receptions and to check whether frames have arrived too late or too
early.

newTime holds the time of day when the first field in a frame is sent. This time
can be local time or an absolute time, depending on the time the Time Master
distributes. The Time Master is a device on the bus responsible of distributing the
time. If the time in the Time Master is correctly set, the application time is the
number if 1/32 ms periods that have passed since January 1, 1972. newTime is
sampled just before the function block is finished executing for the first field.
FF_Time is a 64-bits time type and can hold the application time. The application
time in a FF device comes from the Time Master (Ref. section 2.3.1.3).

prevTime this timestamp declares the time when the first field of the previous
frame arrived. This timestamp is used to check the validity of the newTime.

5.4.2 Safety related variables not in safetyParams
In addition to the safetyParams-struct, three (four) other variables must be added to a
function block in order to make it able to communicate more reliably with other safe
function blocks. These are shown in Listing 2:

FF_VsFloat fVal; /* NOT safety related! */
FF_VsFloat sIn / sOut;
FF_VsFloat ack;
char CRCarg[25];

Listing 2, Additional variables to the struct of “safe parameters” required in safe function blocks.

FF_VsFloat is one of three possible data types a function block’s I/O parameters may
have. Recalling form section 5.2 and Table 5-1 that the abbreviated name stands for
“Value and Status Float.” The FF_VsFloat is a type defined as a struct containing a float
variable called f, and a char status, hence the name “Value and status.”

FF_VsFloat sIn / sOut (“Safe Input” and “Safe Output”):
These two I/O-parameters are respectively used to receive and send
acknowledgements between the safe function blocks. They are the basis for

85

enabling a two-way communication between the safe function blocks. These
variables are the only visible difference in a configuration tool between a standard
and a safe function block. In other respects should the name of a block also reflect
whether it has a safety layer, e.g. can a regular AI-block be just called “AI-1”,
whilst a safe AI block should be called something like “safe AI-1” to emphasise
that it is not a regular block.

FF_VsFloat ack:
The ack variable is used to construct and store acknowledgement messages prior
to their transmission. ack is of date type FF_VsFloat so that it can be easily
placed in an output parameter for transmission. Like most of the other “fields”
that are sent, do the status byte in the ack-field contain a field identifier, the
acknowledgement identifier ACKBIT. The remaining four bytes of the ack
contains the two LSB of the frameCounter, and two bytes of checksum. The
function block at the publishing side of a communication relationship (“the ack-
Subscriber”) always check that the previous frame it transmitted has been ack’ed
correctly before it begins the process of sending a new frame.

char CRCarg[25]:
CRCarg[] is the argument array for the calculation of the CRC. This array is
used for both the CRC-24 and the CRC-16. The array has a size of 26 bytes,
capable of storing five fields and the ACKBIT. Each time a safe function block
executes, it copies the field into the argument array. Every sixth execution, the
CRCarg is filled up and the block is ready to calculate a checksum for the whole
frame. This calculation is identical in both the sending and the receiving function
block.

The receiving block is also responsible to make an acknowledgement message
when a frame has been successfully received. The argument array is cleared and
used again to hold the acknowledgement message. The original sending device
also uses the CRCarg array to calculate the checksum for the acknowledgement
message. This is done before the work on building a new frame is begun.

FF_VsFloat fVal:
This variable do not have anything to do with the safety function itself, it is
included just for simulation purposes only. The function block uses this variable
to store simulated input values between block executions. Each time a process
value is simulated, the function block just reads the value of this variable and
increments it with 1,2. When fVal reaches a value above 22,2, it is set to 0 (See
the simulateInput()-function in Appendix 8.2.1).

86

5.4.3 The Watchdog function
Execution of the watchdog-function is based around a data type called wDog_t. This
data type have I defined in the following way:

typedef struct wDog_t
{

FF_Time now;
FF_Time FBtime; /* sampled at each FB execution */

} wDog_t;

Listing 3, Type definition of wDog_t.

Each time a safe function block executes, the time is sampled and placed in a variable of
type wDog_t, for example called wDog, in the FBtime element. The time of the
function blocks last execution is therefore always stored in wDog.FBtime. The
watchdog-function executes once every macro cycle. The watchdog first samples the
current time and places it in the wDog.now-variable. wDog.now and wDog.FBtime is
compared by subtracting FBtime from now. If the absolute value of the difference is
larger than a preconfigured value, one of three things can be wrong. Either has SM
“forgotten” to start the function block, or the block’s algorithm was invoked too early or
too late. If the watchdog detects a delay or absents of block execution it notifies the
surroundings by setting the errorFlag to a specific value.

5.4.4 CRC-Implementation
CRC algorithms can be implemented both in software and hardware. The CRC routines
in the safety layer are operating at the application level and must therefore be
implemented in software. Implementations of CRC in software can be done in a variety
of ways. I have chosen to implement the CRC routines in the safety layer with high speed
a table driven algorithm. Table-oriented algorithms usually produce higher speeds, but at
the expense of memory usage. Before I describe how a table driven algorithm works, I
will outline a straightforward and slow software implementation using a division register.

The division register must be able to contain the same number of bits as the length of the
chosen generator polynomial. If a 16-bit polynomial is used, the register must be able to
hold exactly 2 bytes. The simple CRC algorithm described below is from “A painless
guide to CRC error detection algorithms” [30]. To perform a polynomial division the
following must be carried out:

[30] Ross N. Williams. “A painless guide to CRC error detection algorithms”
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

87

Load a W bit register with ‘0’ bits, where W is the length of the
generator polynomial.
Augment the binary message string by appending W ‘0’ bits to the end of
the message.
While (more message bits)

Begin
Shift the register left by one bit, reading the next bit of the
augmented message into registers rightmost bit position.
If (a 1 bit popped out of the register during step 3)
Register = Register XOR Generator polynomial.
End

The first thing to be done is to initialise the register by loading it ‘0’ bits. After the
register is cleared, the binary message string is shifted into the register from the right, one
bit at a time. During the first W shift operations, only ‘0’ bits are popping out on the left-
hand side of the register. These ‘0’ bits are the zeros initialising the register. If a ‘1’ bit
pops out of the register in the while-loop, we have to XOR the current content of the
register with the generator polynomial. The algorithm says that the polynomial shall be
XOR’ed into the register each time a ‘1’ bit is shifted out. As long as there are ‘0’ bits
popping out, do noting (except keep shifting message bits into the register). When the
least significant bit (the rightmost bit) of the message bit has been shifted out of the
register the polynomial division register holds the remainder of the division. This
remainder is the checksum. The checksum is appended to the message before it is
transmitted.

A table driven algorithm shows a much greater performance in terms of speed compared
to the straightforward algorithm. A table driven algorithm processes the binary message
in units larger than one bit. The most common unit used is a byte. A table driven
algorithm works somewhat different than the simple algorithm, but the two algorithms
produces the same result. A table driven algorithm shifts the register left by one byte,
reading in a new message byte from the right. The byte just rotated out of the register is
used as an index of a table. The value looked up in the table is XOR’ed into the register.
This is done until all message bytes have been processed through the register. The
register holds the checksum when the algorithm has run to completion.

The table holding the values XOR’ed into the register is related to the generator
polynomial. To generate the data for the lookup table, we need to generate the CRC result
for all 256 possible combinations of the message-byte popping out of the register. The
table is, of course, constant so it can be pre-computed at initialisation time or loaded as a
constant into memory. For a table driven algorithm to process the CRC, all it has to do is
a table lookup and a couple of XOR’s. The implementation of the table driven algorithms
can be seen in appendix 8.1.1. For more details on CRCs and how the table driven
algorithm works, I recommend [30] and [24].

5.4.5 Demo Implementation of the Safety Layer
In part 2 of the “Function Block Application Process Foundation Specification” [19] we
can read that the best way to make a new function block is to base the block on an
already existing block. The procedure aims at first choosing a standard function block

88

that closely match the new function block’s variables and functionality and use it as a
basis for implementing the new block.

For my demo implementation I picked two random types of function blocks which I
customised by adding a safety layer. The type of function blocks I chose for my demo
system was irrelevant from a safety-critical communication view, I only needed a block
producing and sending data (a Publisher) and a block capable of receiving the data (a
Subscriber). I ended up with an analog input (AI) and an analog output (AO) block.

To convert an ordinary and standard function block into a safe function block, the block
must be equipped with a safetyParams-struct and the other safe parameters discussed
in the previous section:

safetyParams_t sParams; /* Contains safety variables */
FF_VsFloat fVal; /* Simulates process values */
FF_VsFloat sIn/sOut; /* Receives ack / Sends ack */
FF_VsFloat ack;
char CRCarg[25];

Depending on whether the function block is a Subscriber or a Publisher, the function
block gets an additional I/O parameter to respectively send or receive acknowledgements.
In addition to these variables the block is equipped with a watchdog-function (See
Appendix 8.2 for an example of a block implementation). The devices DDs must also be
edited to reflect the modifications carried out on the function blocks. The modified DDs
can be seen in Appendix 8.3). Figure 5-11 shows how I configured the demo system. I
ended up putting the safe blocks in separate devices and configured them to send data
every two seconds. I chose this relatively low loop time because any lower loop time
would have made it impossible to monitor the execution of the function blocks with the
equipment I had access to. This application or arrangement of function blocks are, as far I
know, not of any practical relevance for process control, it is exclusively used for
demonstrating the communication aspects of my safety function between two arbitrary
function blocks.

89

Figure 5-11, In the left panel of the Configurator we can see two fieldbus devices symbolized as yellow
boxes. We can see that each device contains two blocks, one resource block and one function block. The
right panel displays the how the blocks are connected with two linkages.

I will now describe how a safety frame is transmitted from the safe AI-block to the safe
AO-block in the demo system. Let us say that device 1 contains the safe AI-block (SAI-
1) and the safe AO-block (SAO-1) is situated in device 2.

The whole process starts with System Management in device 1 recognises that its time
for the safe AI-block to execute. The Function Block Shell in the device makes a call to
the callback function cbExec() with a handle to the AI-block. Inside the cbExec() I
have implemented a switch statement that tests whether the blocks fieldNo matches
a number of constant integer values ranging from 0 to 5. When a case matches the
fieldNo, the actions related to the specific field are invoked. The first time the AI-
block executes, the fieldNo is 0 and the block generates an acknowledgement. This
acknowledgement represents the ack the SAI-block expects to receive for the frame it is
preparing to start sending. The ack is made at this point because the SAI-block’s
frameCounter is incremented when field 2 of the current frame is sent and at this
point is CRCarg free to be used. When SAI is in the middle of a frame transmission,
CRCarg is filled with the contents of the fields in the frame. After the expected
acknowledgement is made, a control loop input is simulated. This input is copied to
CRCarg and the output parameter of the AI-block for transmission. Before the callback
function is finished and returns, fieldNo is incremented so that the next field will be
“inserted into the frame” next time the function blocks executes. The next thing that
happens is that the LAS now issues a “Compel Data” message to device 1, which is in

90

turn is forced to publish the contents of its output buffer. The simulated process value in
the output buffer of the AI-block is transmitted via the bus and inserted into the input
buffer of the AO-block. The System Management in device 2 is now aware of that it is
time to start the execution of the safe AO-block (SAO-1). The FB shell in device 2 makes
a call to cbExec() with a handle to the safe AO-block. When the AO-block executes
the fieldNo is 0, this is an indication that the received data, is control loop process
data. The input buffer is inserted into the AO-block’s CRCarg, the fieldNo is
incremented and the function returns. The first of a total of six macro cycles is now
finished. During the next five macro-cycles, the same procedure is followed, but the
fieldNo is one larger for each block execution and different fields of the frames are
therefore copied into the output buffer and transmitted. When the AO-block executes for
the sixth time, its fieldNo is 5. The AO-block calculates a checksum using the contents
of its CRCarg as argument. CRCarg has been gradually filled with data arriving from
SAI-1. If the locally calculated checksum is equal to the checksum SAO-1 received from
device 1, the frame has arrived correctly with a very high probability (Ref. section 5.3.1.3
and 5.3.1.4). The AO-block then generates an acknowledgement message by taking the
two LSB of the AO-blocks frameCounter together with the acknowledgement identifier
and uses this to calculate a 16-bit checksum. The two LSB along with the checksum and
the acknowledgement identifier are copied into the safe output buffer of the AO-block. A
complete safety frame has been transmitted successfully from SAI to SAO. What
happens now is that the LAS issues a “Compel Data” message to SAO that forces the
block to publish the ack to SAI. When SAI is told by its SM to execute again and start on
the laborious process of sending a new safety frame, it first checks if it has received an
ack from SAO for the previous frame.

If the sender or receiver detects a communication failure of any kind during operation
like erroneous addressing, wrong sequence number or absence of ack and so on, a
predefined action must be taken. This action is totally dependent on the application. In
my test implementation I just flag the error by setting a parameter to a certain value
depending on what failure the safety function has detected, and the whole safety function
halts.

91

Chapter 6 Discussion Of The Solution
I have now shown how the communications in a standard process control system can be
made safer with a high-level safety layer running as a part of the user-application. In this
chapter I will look at different aspects of the safety layer as described in the previous
chapters. I will discuss why the proposed safety layer is not the optimal solution and
point in directions of alternative solutions. Due to lack of time I have not been able to
closely investigate and implement the issues discussed below.

6.1 Why The Proposed Safety Layer Is Not Optimal –
Weaknesses and Uncertainties

This section discusses weaknesses with the design of the safety layer I discovered as my
work progressed. I will also consider aspects I feel may could have been done better.

6.1.1 Weaknesses Related To The Addressing
There are a couple of weak or uncertain spots related to the addressing scheme in the
safety layer. First would I like to raise a question related to the address-size of the safe
function blocks. Do we really need 16-bit addresses or can we manage with just 8 bits? I
do not have an opinion whether 256 addresses would suffice in a safety system. If not, we
have to stick with the 16-bit addresses as they already are described earlier. Address
space is of course application dependent. In practice one can think that 8 bits are enough
to cover most safety systems, but in theory one can imagine larger systems requiring up
to 232 different addresses. If 8 bits were enough, we would free two bytes in the address
field and use them to send other information.

Another problem related to addressing is that acknowledgements do not incorporate
addressing information. The acks should incorporate addressing for the same reasons the
safety frames include such information. It should be possible for an “ack-Subscriber” to
validate the acks origin and destination. I have also realised that the ACKBIT and the
other field identifiers are obsolete. Each field arriving is identified with the local field
number and the field’s contents. In addition do the safety layer have the CRC which
functions as a “field identifier” in such a way that it will detect any erroneous fields or
fields arriving out of order. By choosing not to use the status byte to transport field
identifiers, valuable space is liberated and can be used to hold other redundant safety
related data.

From the discussion above we can construct a new ack-message and safety frame. By
adopting an 8-bit addressing scheme and skipping the field-identification bits the safety
frame can shrink with one field, into a total of five fields. We could further reduce the
safety frame into a total of four fields by implementing a rollover-check for a 1- or 2-byte
frameCounter (See Section 6.1.2). If we in addition choose to include only the least

92

significant byte (LSB) of the frameCounter in the ack, the acknowledgements could
contain more information that can be used for improved validation. An acknowledgement
would have the following structure: 8 bit sender, 8 bit receiver, LSB of frame counter and
16 bit CRC. This acknowledgement contains enough data enabling the original frame
sender (which is the receiver of the ack) to validate the ack in a value domain. The
watchdog is used together with the frameCounter to validate the ack in a time
domain. In a safety layer using a 16-bit addressing scheme, the ack-message can for
example be distributed over two fields to allow the inclusion of addressing information in
the acks.

6.1.2 Uncertain Issues Related To The frameCounter
Whether it is necessary to have a check for a rollover of the frameCounter can be
discussed. A rollover of the frameCounter is of course determined of the amount of
fields that forms a frame and the loop time of a safe function block. The loop time is in
turn application dependent. In the design I describe in chapter 5, a complete safety frame
consists of six fields (Process data, safety addresses, frameCounter, upper part of the
timestamp, lower part of timestamp and the 24-bit CRC). If the loop time is one second
the frameCounter will be incremented every sixth second and it will take more than
817 years for the counter to roll over. With a loop time of 100 ms frameCounter is
incremented every 0.6 second, and this would result in a rollover of approximately 82
years. I think it is very likely to assume that during a period of more than 80 years, either
the safety system would have been replaced or at some point shut down for maintenance.
When powering up the system again, the counters will be reset. However there is nothing
that renders it impossible to include a rollover check if that is required in a final
implementation. I have not had time to measure how long a safe function block execution
takes, therefore I have not been able to find out what the minimum loop-time a safe
function block can be configured to run in. If a rollover-check is implemented an 8-bit
counter would suffice. This would contribute to decrease the amount of fields in a frame
and release bandwidth and the safety layer would be more effective.

6.1.3 General Weaknesses
The safety layer outlined in this thesis supports in reality only a one-to-one
communication, this means that just two function blocks can more safely exchange data
with the use of the safety function. It is possible to expand the safety function in a block
to handle more than one communication partner. When having complex arrangements of
function blocks (one function block communication with more than one block) the
function blocks must have several sets of safety-related variables (safetyParams-
structs). This solution occupies a lot of memory, and memory is a limited and scarce
resource in the fieldbus devices. A solution involving several safety-structs is difficult to
manage. A multi-safety structure configuration of a function block would require a large
amount of time to execute. The implementation of the proposed safety layer is therefore
not well suited to handle more than one-to-one communication.

93

The sequential sending of safety-relevant data degrades the throughput of process data
quite substantially compared to normal, non-safe transmission. Compared to a solution
where a whole safety frame can be transmitted at once, the performance provided by the
safety layer is six times as slow. This can be compensated for down to a certain limit or
point, by setting the loop time lower than the control loop normally would be configured
with. With this adjustment of the loop time, the safety layer can roughly achieve the same
throughput of process data as a normal process control application. Whether this
compensation is possible is certainly application dependent. Safety systems with “hard”
real time constraints (e.g. demands rapid responses and high throughput), will this safety
function not be applicable. The safety layer’s CRC sets a theoretical limit to how low the
loop time can be configured. The CRC implemented in the safety layer was designed to
handle a frequency of 100 telegrams per second (one telegram each 10ms), so it can
theoretically handle a loop time of 10ms, that corresponds to a field transmission
approximately each 1.6 mili second. I reckon this is just a theoretical performance. I have
not been able to carry through calculations on a function block’s execution time and how
much added overhead the safety layer lead to. After all is FF designed for process control
systems and not applications with strict real-time requirements.

Another weakness with the proposed safety layer is that it only supports the cyclic
service. If for instance an operator accesses parameters in a “safe device” and makes
changes, there is no higher-level mechanism, like the safety function, that can ensure that
the changes are received correctly at the peripheral device. The safety function demands
that the LAS’ schedule is correct and not disturbed during the first couple of macro
cycles. The safety function needs two executions to initialise all the variables in the
safetyParams-data structure before it is fully operational. For instance must the
prevTime parameter be set properly before the safety layer can be able to determine
whether a frame is on time. Therefore is a correct functioning of the safety layer
dependent on that the first pair of frames is transmitted without any errors. The safety
layer is also dependent on that the application clocks in the devices are synchronised
correctly at start-up time. Once the system is up and running correctly, the safe function
blocks will detect communication errors and loss of communication.

6.2 Discussion Of Different Solution Proposals
After I got a reasonable overview of the FF-technology I started to consider different
possibilities for design of the safety layer. I will in the following section shortly outline
two of the ideas I considered and why I discarded them. The solution I ended up with is a
combination of the two designs sketched below.

6.2.1 Safety Frame Without Fields
The first design I thought of was to define a safe function block I/O parameter consisting
of a data structure containing all the necessary safety parameter, including a copy of the
standard process data. This parameter can be compared with a safety frame. The safe
parameter was meant to be in addition to, not instead of, the regular I/O parameter, so

94

that system engineers can choose between ordinary or safe communication by linking the
safe or regular I/O parameters between the blocks. The major advantage of this design is
that all of the safety data (equivalent to a safety frame) are transmitted as a single unit,
thus makes the serial transmission of “fields” unnecessary. The safety parameters are
collected in a structural manner and they are separated from the other block parameters.
This would allow a higher throughput because there is no need for sequential
transmission.

This approach was unfortunately not feasible because of the limited amount of data types
supported by the NI FB shell for I/O parameters. As I have mentioned earlier does this
shell only support three types of I/O parameters (FF_VsFloat, FF_VsBitString,
FF_VsDiscrete). My guess is that all of the FB shells on the market today support the
same types of I/O parameters, as the three supported types are the minimum required in a
process control application. I know that the FB shell offered from Softing supports only
these three data types for function block I/O parameters [31].

6.2.2 Multiple I/O Parameters
Another design that avoids the reduced throughput implied by the sequential transmission
is to define one I/O parameter for each safety-related variable. This allows a function
block to send all safety parameters in one macro cycle/in one execution of the function
block. No serial transmission of the safety parameters is necessary. No time is lost to
ensure safe communication compared to the ordinary non-safe communication. This
solution is very messy and there is really no structuring of the safety variables and they
are mixed with the regular block parameters. This multiple safety I/O parameter design
result in multiple linkages between two communicating function blocks. During
configuration of such a system the system engineer has to administrate many parameters
and linkages. This situation can quickly be difficult to follow and it could be easy to
make wrong connections/links between I/O parameters. This solution would have to use
the same type of acknowledgement technique as my final safety function.

6.3 Practical Problems Encountered During The Work Process
In this section I will summarise some reflections I made during the practical phase of this
thesis (the part involving implementation, debugging and testing). I experienced both
rewarding and entertaining moments, as well as frustrating and less satisfactorily periods.
I even got my share of bad luck.

6.3.1 Inconsistent User Manuals
First of all I encountered the well known, and what sometimes seems almost inevitable,
disagreement between the user manuals and reality. When writing this, I specifically have

[31] Softing GmbH, “FF Basic Field Device Application Interface,” Version 1.61, 24
September 1999

95

in mind the guidebooks from NI. On a general level do the user manuals describe the
most basic things of the Starter Kit in an orderly manner. The manuals were easy to read
and their contents were understandable. They provided a good background material and
helped me on my theoretical comprehension of FF, but the parts that dealt with practical
issues related to both installation and implementation, the manuals did not agree with
reality and the actual actions required to make progression. When I started to install the
kit and later using it, the manuals lacked important details. I frequently experienced
unwanted and unnecessary disruptions due to the inaccurate manuals. Under installation
and testing of the FF development kit, I was daily in contact with the support team just to
be able to get the equipment up and running. It was sometimes annoying that my work
was delayed by activities not related to the problem solving of my thesis. It felt
meaningless and I was frustrated to regularly “waste” time on issues remotely related to
the actual problem of my thesis. When this is said, I must admit in National Instruments’
defence that their starter kit is geared toward people who are already familiar with
Foundation Fieldbus. It is a starter kit that is designed to help experienced people start
with NI’s particular fieldbus products. Since I was a new fieldbus user there was
probably less painful ways to learn about FF than to start fumbling with equipment for
“experts.”

The first user manual related problem I encountered was when I wanted to test the
Fieldbus Configurator (See Section 2.4) and get familiarised with the NI tools. The
manuals said that one just had to connect the round cards to the power hub and they
would automatically appear in the left panel of the Configurator (See Figure 5-10). This
panel is the project window and displays all the configurable devices connected to the
fieldbus that comes along with the starter kit. Each object can be configured by double-
clicking on the icons in the project window, doing so opens new windows for configuring
the objects. Even though I exactly followed the instructions in the manuals, nothing
happened. I got a detailed guide from the NI support team telling me exactly what to do
step-by-step, but still did not the round cards appear in the project window. After numeral
exchanges of mails with support, we found out that the person at support and I had two
different processors on our round cards. She had an Intel based round card whilst I had
round cards with a Motorola processor. The user manual described the correct procedure
for Intel based round cards. The Motorola round card does not show up in the
configuration-utility until after firmware have been downloaded to it unlike the Intel-
based round card.

6.3.2 Compiler Problems
Another issue that is worth mentioning and caused me some worries in more than one
way was the compiler during the implementation of the safety layer. Compiler related
difficulties definitely delayed my progression the most. In the documentation from NI it
said that the stack library provided with the Starter Kit, I had to link my function block
code with, was made using the SDS CrossCode C/C++ version 7.11. The user manuals
recommended using the same compiler or a compatible compiler to ensure maximum
compatibility with the stack and the function block shell. This was all the information
that was provided by the manuals on this issue. I think it is natural to interpret this

96

statement in a way that one should think that a compatible compiler exists. I tried four
different compilers, respectively Borland, Microsoft Developer Studio, Tornado II and
National Instruments’ Lab Windows. None were able to understand the object file format
the library was compiled into. I checked the documentation for my compilers to see if
they claimed to be compatible with SDS. I found nothing indicating compatibility. I
contacted NI to ask whether they knew anything about the CrossCode Compiler, or if
they could find out which object file format the compiler generated. They could not offer
any help. When I contacted SDS I learnt that they had just merged with WindRiver (the
one that delivers Tornado II). The people I spoke with at WindRiver were unfamiliar with
the CrossCode Compiler and needed some time to locate information about that specific
compiler. After a week or so, WindRiver could report that the object file format used in
SDS was proprietary. There existed no such thing as a compatible compiler to the
CrossCode from SDS, even though the NI user manuals indicated so. I then decided to try
to get the pre-compiled stack library ported to a compatible format for one of the four
compilers I had access to, and asked NI for help. NI was probably fed up of me nagging
for help at this point and told me that they have stopped supporting the FF tools. They
referred me to a partner company called “Fieldbus Inc.” specialising in development
tools. The people at Fieldbus Inc. were very helpful and were glad to provide me with an
estimate of the cost to port the FF-stack library to a recognisable format. But at the same
time, Fieldbus Inc. guaranteed that it would be less expensive for me to purchase the SDS
compiler than for them to port the library. It was obviously time for contacting
WindRiver again about the CrossCode compiler. To make things even more complicated
and delaying my project even further, WindRiver told me that they had decided that the
“end of life” for the CrossCode compiler was imminent, the CrossCode compiler was
going to be phased out and they had stopped supporting it. For that reason was
WindRiver not willing to sell me the CrossCode Compiler. This meat that I was in a
situation where I had no development tools and the Fieldbus Device Starter Kit we
bought from NI for over NOK 100.000 was as good as useless. After a lot of fuzz and e-
mails back and forth I managed, with some help from colleagues at ABB, to borrow the
CrossCode from WindRiver for a limited period of time, just long enough to implement
the safety layer in two function blocks and set up a demo system. This whole process was
very time consuming as most of the correspondence was conducted via e-mail. It was not
unusual that responses arrived one or two weeks after my e-mail enquiries were sent.

Problems of this kind are difficult to foresee and in this case a consequence of bad luck,
inexperience and ignorance shown by NI. When we purchased the Starter Kit from NI we
could have conducted a more thorough research to find out whether additional tools were
required, such as the Compiler. As I have mentioned earlier I think that NI could have
spent more time on their user manuals to get them more accurate. Never the less, I have
learnt a valuable lesson, and I will probably be faced with similar situations later.

6.3.3 Debugging And Testing Of The Safety Layer
As I mentioned in section 5.4.5.1 I have implemented a prototype of the safety layer. The
prototype was implemented to demonstrate the feasibility of the proposed safety layer
and that the safety layer detects the failure modes it is designed to do. I have not had right

97

equipment required to conduct a proper and thorough test of my prototype
implementation of the safety function. The only test that I have been able to carry through
is to manually test the safety layer through the fieldbus Configurator-utility. The
Configurator provides a window for each function block that can be used to view and
change function block parameters and edit other settings. Figure 6-1 shows a block
window for a safe AI block, SAI-1. The window displays the values of the safety layer’s
safetyParams-struct.

Figure 6-1, The block window. This window displays a function block’s parameters as they appear in the
block or you can choose which of the parameters you want to display. In this figure only the safetyParams-
struct in the SAI-1 is block shown. The SAI-1 is here sending the first field of the tenth frame.

Actually was this picture taken during the development phase, therefore can we see
additional help-variables that are not a part of the safety layer, but was used during the
implementation. The values in the window can be updated periodically. I used this
feature to monitor the safety parameters as the blocks executed. I also used the block
window to change values in the function blocks to simulate errors. I inserted errors in the
sParams structure and the CRCarg array, both in the sending and the receiving
function block. All inserted errors were detected; faulty addresses, frames with wrong
sequence numbering and timestamps, and errors in either the checksum or the message
itself. I also physically disconnected one of the round cards from the “Power Hub” to se
if the safe function block in the other device detected the loss of its communication

98

partner. The safety layer in the function blocks detected all errors I inserted into the
system.

I have tested the implementations of the CRC algorithms I coded. Both algorithms were
tested separately before they were incorporated into the safety layer. Each algorithm was
tested with two different bit-strings in the following way:

First I calculated a checksum for the bit-strings using my implementation of the CRC
algorithm. Then I appended the checksum at the end of the bit-string and performed a
polynomial division in Mathematica. The dividend was the original bit-string with the
appended checksum, the generator polynomial was the divisor. If the quotient turned out
to be 0, which it did for both algorithms, the implementation was very likely to be correct
(See Appendix 8.1.2).

99

Chapter 7 Conclusion
During the work on this thesis I have been faced with challenges from a variety of
technical disciplines, like fieldbus technologies, process control, safety systems and
hardware related programming. I have also looked at issues within a branch of
mathematics called coding theory through my studies of CRC routines. Most of these
disciplines have not been covered in my previous studies. The effort required by me to
acquire the necessary knowledge in order to solve the various problems encountered has
been substantial.

Studies of the principles behind process control, fieldbus technology and how these two
terms can be joined together started the work on this thesis. Next I moved on to the
concept of safety and safety critical systems and the international standards applying to
these systems. The phase including practical work such as design, implementation and
other related activities offered many practical obstacles. I had to tackle problems, such as
incompatible tools and inconsistent manuals. This represents an important experience that
I will benefit from in my future career.

The problem specification in section 1.2 lists the central questions defining the main
challenges of this thesis. Through my work presented in this document I have answered
all of these central questions and can draw the following conclusions for my work:

• Through my studies of process control- and safety-critical systems I have proposed a
general safety layer concept which can be used together with any fieldbus technology.
I have also discussed a concrete design of the safety layer concept adapted to the
technology from Fieldbus Foundation. My thesis has further been extended with a
prototype implementation of this design to show that a practical safety layer
implementation is feasible.

• According to IEC 61508 the probability of a hazardous error per hour in the
communication subsystem in a safety-critical system fulfilling SIL 3 requirements,
shall not be larger than 10-9. In chapter 5 I assumed that a safety layer for FF will not
decode messages at a rate higher than maximum 100 telegrams per second. This
implies that the residual error rate for a FF SIL 3 safety layer must be less than 10-14. I
have proposed two CRC generator polynomials (a 16 bit and a 24 bit), incorporated in
the safety layer that offers an error detection performance well inside this
requirement.

• To be able to transmit redundant safety-related data, the proposed safety layer splits
the data into units called fields and sends them sequentially. Because the safety layer
is mainly implemented in the function blocks, the maximum amount of data possible
to transmit at a time is five bytes. The most orderly way to send larger frames with
safety-relevant data is to split the safety data into smaller units and send them
sequentially. This concept can be used in conjunction with other underlying

100

communication technologies where the size of the maximum transmission unit is
smaller than the total amount of safety-relevant data.

• I have shown how it is possible to achieve two-way scheduled and time deterministic
communication between two FF function blocks. The safety layer incorporates an
additional I/O parameter in each function block. This extra parameter enable a pair of
blocks to have an extra Publisher/Subscriber VCR based linkage between them. This
linkage is “reversed” compared to the regular linkage and allows the recipient to
publish scheduled messages in a similar manner as it receives messages from another
publishing block. The bi-directional flow of messages between function blocks
enables acknowledgements of safety frames.

I have also given my thoughts and recommendations on alternative solutions and designs
of the safety layer. Through my work I have realised that there are some issues that need
to be investigated further if my safety layer is eventually implemented in industrial
solutions.

7.1 Further Work
The safety layer has only been demonstrated in a one-to-one communication mode. The
safety layer can in principle be extended to support one-to-many communication. This
will increase the computation load for a Publisher of safety frames as it must handle the
reception of multiple acknowledgements. This obviously includes more code in the safety
layer. It would have been interesting to determine the amount of extra code necessary to
make the safety layer able to handle a configuration where a Publisher is broadcasting
safety frames to more than one Subscriber? I have not performed any research on
implementation limitations, such as how much memory is available in a device. Another
related and interesting issue that should be subject to further investigation is performance
testing of the safety layer and all other future safety layer designs, like determining how
long a function block execution takes with different designs of the safety layer.

One of the most obvious issues to investigate further is the function block shell. It would
be interesting to look at the possibilities of updating the function block shell to accept I/O
parameters of other types than the three it does today (VsFloat, VsBitstring and
VsDiscrete). I imagine a shell that accepts a composite safe data type similar to
safetyParams_t. This solution would permit the safety layers to transmit whole
safety frames instead of splitting the frames and sending fields. Additionally it would be
exciting to compare all of the development tools available on the market and look for the
possibilities for improving the tools.

Finally would it be interesting to investigate problems related to implementation methods
and techniques that would contribute to increase a device’s safety, like n-version
programming and diverse programming of a safety layer.

101

Further, I have identified the following list of unsolved crucial questions:
• How does the safety layer perform when the loop time is decreased?
• What is the lowest loop time the safety layer design can handle?

103

References
[1] Lars Lidström, “Using Foundation Fieldbus in Safety Applications.” ABB NOCRC,
June 1999.

[2] “Fieldbus Foundation låter instrumenten styra själva.”Automation, tidningen för
modern produktionsteknik, mars 1999 nummer 2.

[3] ANSI/ISA, “Application of Safety Instrumented Systems for the Process Industry,”
ANSI/ISA-S84.01-1996.

[4] ANSI/ISA, “Identification of Emergency Shutdown Systems That Are Critical to
Maintaining Safety in Process Industries,“ANSI/ISA S91.01-1995, ISBN 1-55617-570-1.

[5] Based on a translated foil from Tor Onshus’ presentation on Safety Critical Systems
at ABB NOCRC, March 13th 2000.

[6] Paul Gruhn and Harry L. Cheddie, ISA “Safety Shutdown Systems: Design, Analysis
and Justification.”

[7] Neil Storey, “Safety-Critical Computer Systems.” Addison-Wesley 1996.

[8] David J. Bak. “A factory floor ‘Safety Net’” - Global Design News, April 1999.

[9]ARC Advisory Group “Critical Control & Safety Shutdown System World Wide
Outlook” – Market analysis and forecast through 2004.

[10] IEC 61508 – International Electrotechnical Commission (IEC) standard, IEC 61508
– “Functional safety of electrical / electronic / programmable electronic safety-related
systems.”

[11] IEC 61511 – IEC standard entitled “Functional Safety: Safety Instrumented Systems
for the Process Industry Sector.” This standard adheres to the main attributes established
in IEC 61508.

[12] DIN V 19250 (Deutche Industri Normen, DIN) Control technology – “Fundamental
safety aspects to be considered for measurement and control equipment.”

[13] M. J. L. Ochsner, Ken Beatty. Technical Papers of ISA, Networking and
Communications on the Plant Floor – Volume 392, 5-7 October, “Benefits and challenges
experienced by Foundation Fieldbus Installations.”

[14] Datamonitor, “Developments and Customer Opinion on Fieldbus,” July 1999.

104

[15] PROFIBUS-DP/PA - ProfiSafe, Profile for Failsafe Technology, V1.0. Document
No. 740257.

[16] FOUNDATIONTM Specification. System Architecture. Document FF-800, Rev. 1.3,
May 8, 1998.

[17] ISO 7498 – International Standards Organization (ISO) Open Systems Interconnect
(OSI) Reference Model (RM).

[18] IEC 61158 – International standard for fieldbus for use in industrial control systems,
IEC 61158-2/ISA-S50.02-1992 Part 2 Physical Layer Specification and Service
Definition.

[19] FOUNDATIONTM Specification. Function Block Application Process. Part 2.
Document FF-891, Rev. 1.3, May 8, 1998.

[20] FOUNDATIONTM Fieldbus Technical Specifications. Fieldbus Foundation,
http://www.fieldbus.org

[21] National Instruments, “MC 68331-Based Fieldbus Round Card User Manual.”

[22] Nancy G. Leveson. “Safeware. System safety and computers. A guide to preventing
accidents and losses caused by technology.”

[23]Paris Stavrianidis. “What Regulations and Standards Apply to Safety Instrumented
Systems?” Control Engineering Online.
http://www.controleng.com/archives/2000/ctl0301.00/0003we1.htm

[24] Jack W. Crenshaw, “Implementing CRCs.” Embedded Systems Programming,
January 1992.

[25] G. Castagnoli, J. Ganz, P. Graber. “Optimum Cyclic Redundancy-Check Codes with
16-Bit Redundancy.“ IEEE Transactions on Communication, vol. 38, No. 1, January
1990.

[26] Federal Standard 1037C, “Telecommunications: Glossary of Telecommunication
Terms.”

[27] Larry L. Peterson & Bruce S. Davie. “Computer Networks – A Systems Approach.”
Morgan Kaufmann Publishers Inc.

[28] Ferrel G. Stremler. “Introduction to Communication Systems,” section 9.9.3.
Addison Wesley.

[29] John G Proakis. “Digital Communications,” Figure 5-2-4. McGraw-Hill Book Co.

105

[30] Ross N. Williams. “A painless guide to CRC error detection algorithms”
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

[31] Softing GmbH, “FF Basic Field Device Application Interface,” Version 1.61, 24
September 1999

107

Chapter 8 Appendix
Note: I have used the same naming conventions as used in the sample code from National
Instruments. It is important to notice this if parts of my code are to be used in other non-
NI implementations. The NI names are defined in several included header files and
makes this implementation a “hybrid” of the C programming language. The NI naming
scheme may be helpful to understand the names and types related to FF. In the safety.h
(CRC) file I have not used the NI type definitions because I placed the code in a separate
file.

8.1 CRC
8.1.1 CRC-Code and tables
#ifndef SAFE__H
#define SAFE__H

#include <stdlib.h> /* To be able to use size_t */
#include <fbtypes.h>
#include <stdio.h>
#include <string.h>

#define MAXBUF 64
#define ACKBIT 0x01 /* Bitpattern 00000001, indicates ACKNOWLEDGEMET (ACK). */
#define CRC24BIT 0x80 /* Bitpattern 10000000, indicates use of 24 bit CRC. */
#define CRC16BIT 0x40 /* Bitpattern 01000000, indicates use of 16 bit CRC. */
#define ADDRBIT 0x20 /* Bitpattern 00100000, indicates address field */
#define FCBIT 0x10 /* Bitpattern 00010000, indicates frameCounter field */
#define LOWERBIT 0x08 /* Bitpattern 00001000, indicates lower part of timestamp. */
#define UPPERBIT 0x04 /* Bitpattern 00000100, indicates upper part of timestamp. */

/* function prototypes */
unsigned short updateCRC16(unsigned short tempCRC, char *outPtr, size_t bufSize);
unsigned long updateCRC24(unsigned long tempCRC, char *outPtr, size_t bufSize);

static unsigned short crc16Table[256] =
{

0x0000L, 0xf839L, 0x084bL, 0xf072L, 0x1096L, 0xe8afL,
0x18ddL, 0xe0e4L, 0x212cL, 0xd915L, 0x2967L, 0xd15eL,
0x31baL, 0xc983L, 0x39f1L, 0xc1c8L, 0x4258L, 0xba61L,
0x4a13L, 0xb22aL, 0x52ceL, 0xaaf7L, 0x5a85L, 0xa2bcL,
0x6374L, 0x9b4dL, 0x6b3fL, 0x9306L, 0x73e2L, 0x8bdbL,
0x7ba9L, 0x8390L, 0x84b0L, 0x7c89L, 0x8cfbL, 0x74c2L,
0x9426L, 0x6c1fL, 0x9c6dL, 0x6454L, 0xa59cL, 0x5da5L,
0xadd7L, 0x55eeL, 0xb50aL, 0x4d33L, 0xbd41L, 0x4578L,
0xc6e8L, 0x3ed1L, 0xcea3L, 0x369aL, 0xd67eL, 0x2e47L,
0xde35L, 0x260cL, 0xe7c4L, 0x1ffdL, 0xef8fL, 0x17b6L,
0xf752L, 0x0f6bL, 0xff19L, 0x0720L, 0xf159L, 0x0960L,
0xf912L, 0x012bL, 0xe1cfL, 0x19f6L, 0xe984L, 0x11bdL,
0xd075L, 0x284cL, 0xd83eL, 0x2007L, 0xc0e3L, 0x38daL,
0xc8a8L, 0x3091L, 0xb301L, 0x4b38L, 0xbb4aL, 0x4373L,
0xa397L, 0x5baeL, 0xabdcL, 0x53e5L, 0x922dL, 0x6a14L,
0x9a66L, 0x625fL, 0x82bbL, 0x7a82L, 0x8af0L, 0x72c9L,
0x75e9L, 0x8dd0L, 0x7da2L, 0x859bL, 0x657fL, 0x9d46L,
0x6d34L, 0x950dL, 0x54c5L, 0xacfcL, 0x5c8eL, 0xa4b7L,
0x4453L, 0xbc6aL, 0x4c18L, 0xb421L, 0x37b1L, 0xcf88L,
0x3ffaL, 0xc7c3L, 0x2727L, 0xdf1eL, 0x2f6cL, 0xd755L,
0x169dL, 0xeea4L, 0x1ed6L, 0xe6efL, 0x060bL, 0xfe32L,
0x0e40L, 0xf679L, 0x1a8bL, 0xe2b2L, 0x12c0L, 0xeaf9L,
0x0a1dL, 0xf224L, 0x0256L, 0xfa6fL, 0x3ba7L, 0xc39eL,
0x33ecL, 0xcbd5L, 0x2b31L, 0xd308L, 0x237aL, 0xdb43L,
0x58d3L, 0xa0eaL, 0x5098L, 0xa8a1L, 0x4845L, 0xb07cL,
0x400eL, 0xb837L, 0x79ffL, 0x81c6L, 0x71b4L, 0x898dL,
0x6969L, 0x9150L, 0x6122L, 0x991bL, 0x9e3bL, 0x6602L,
0x9670L, 0x6e49L, 0x8eadL, 0x7694L, 0x86e6L, 0x7edfL,
0xbf17L, 0x472eL, 0xb75cL, 0x4f65L, 0xaf81L, 0x57b8L,
0xa7caL, 0x5ff3L, 0xdc63L, 0x245aL, 0xd428L, 0x2c11L,
0xccf5L, 0x34ccL, 0xc4beL, 0x3c87L, 0xfd4fL, 0x0576L,
0xf504L, 0x0d3dL, 0xedd9L, 0x15e0L, 0xe592L, 0x1dabL,

108

0xebd2L, 0x13ebL, 0xe399L, 0x1ba0L, 0xfb44L, 0x037dL,
0xf30fL, 0x0b36L, 0xcafeL, 0x32c7L, 0xc2b5L, 0x3a8cL,
0xda68L, 0x2251L, 0xd223L, 0x2a1aL, 0xa98aL, 0x51b3L,
0xa1c1L, 0x59f8L, 0xb91cL, 0x4125L, 0xb157L, 0x496eL,
0x88a6L, 0x709fL, 0x80edL, 0x78d4L, 0x9830L, 0x6009L,
0x907bL, 0x6842L, 0x6f62L, 0x975bL, 0x6729L, 0x9f10L,
0x7ff4L, 0x87cdL, 0x77bfL, 0x8f86L, 0x4e4eL, 0xb677L,
0x4605L, 0xbe3cL, 0x5ed8L, 0xa6e1L, 0x5693L, 0xaeaaL,
0x2d3aL, 0xd503L, 0x2571L, 0xdd48L, 0x3dacL, 0xc595L,
0x35e7L, 0xcddeL, 0x0c16L, 0xf42fL, 0x045dL, 0xfc64L,
0x1c80L, 0xe4b9L, 0x14cbL, 0xecf2L

};

/* CRC lookup table 24 bit generator polynomial */
/* g(x) = x^24 + x^23 + x^21 + x^20 + x^19 + x^17 + x^16 + x^15 + x^13 + x^8 + x^7 + x^5
+ x^4 + x^2 + 1 */
static unsigned long crc24Table[256] =
{

0x00000000L, 0x00bba1b5L, 0x00cce2dfL, 0x0077436aL,
0x0022640bL, 0x0099c5beL, 0x00ee86d4L, 0x00552761L,
0x0044c816L, 0x00ff69a3L, 0x00882ac9L, 0x00338b7cL,
0x0066ac1dL, 0x00dd0da8L, 0x00aa4ec2L, 0x0011ef77L,
0x0089902cL, 0x00323199L, 0x004572f3L, 0x00fed346L,
0x00abf427L, 0x00105592L, 0x006716f8L, 0x00dcb74dL,
0x00cd583aL, 0x0076f98fL, 0x0001bae5L, 0x00ba1b50L,
0x00ef3c31L, 0x00549d84L, 0x0023deeeL, 0x00987f5bL,
0x00a881edL, 0x00132058L, 0x00646332L, 0x00dfc287L,
0x008ae5e6L, 0x00314453L, 0x00460739L, 0x00fda68cL,
0x00ec49fbL, 0x0057e84eL, 0x0020ab24L, 0x009b0a91L,
0x00ce2df0L, 0x00758c45L, 0x0002cf2fL, 0x00b96e9aL,
0x002111c1L, 0x009ab074L, 0x00edf31eL, 0x005652abL,
0x000375caL, 0x00b8d47fL, 0x00cf9715L, 0x007436a0L,
0x0065d9d7L, 0x00de7862L, 0x00a93b08L, 0x00129abdL,
0x0047bddcL, 0x00fc1c69L, 0x008b5f03L, 0x0030feb6L,
0x00eaa26fL, 0x005103daL, 0x002640b0L, 0x009de105L,
0x00c8c664L, 0x007367d1L, 0x000424bbL, 0x00bf850eL,
0x00ae6a79L, 0x0015cbccL, 0x006288a6L, 0x00d92913L,
0x008c0e72L, 0x0037afc7L, 0x0040ecadL, 0x00fb4d18L,
0x00633243L, 0x00d893f6L, 0x00afd09cL, 0x00147129L,
0x00415648L, 0x00faf7fdL, 0x008db497L, 0x00361522L,
0x0027fa55L, 0x009c5be0L, 0x00eb188aL, 0x0050b93fL,
0x00059e5eL, 0x00be3febL, 0x00c97c81L, 0x0072dd34L,
0x00422382L, 0x00f98237L, 0x008ec15dL, 0x003560e8L,
0x00604789L, 0x00dbe63cL, 0x00aca556L, 0x001704e3L,
0x0006eb94L, 0x00bd4a21L, 0x00ca094bL, 0x0071a8feL,
0x00248f9fL, 0x009f2e2aL, 0x00e86d40L, 0x0053ccf5L,
0x00cbb3aeL, 0x0070121bL, 0x00075171L, 0x00bcf0c4L,
0x00e9d7a5L, 0x00527610L, 0x0025357aL, 0x009e94cfL,
0x008f7bb8L, 0x0034da0dL, 0x00439967L, 0x00f838d2L,
0x00ad1fb3L, 0x0016be06L, 0x0061fd6cL, 0x00da5cd9L,
0x006ee56bL, 0x00d544deL, 0x00a207b4L, 0x0019a601L,
0x004c8160L, 0x00f720d5L, 0x008063bfL, 0x003bc20aL,
0x002a2d7dL, 0x00918cc8L, 0x00e6cfa2L, 0x005d6e17L,
0x00084976L, 0x00b3e8c3L, 0x00c4aba9L, 0x007f0a1cL,
0x00e77547L, 0x005cd4f2L, 0x002b9798L, 0x0090362dL,
0x00c5114cL, 0x007eb0f9L, 0x0009f393L, 0x00b25226L,
0x00a3bd51L, 0x00181ce4L, 0x006f5f8eL, 0x00d4fe3bL,
0x0081d95aL, 0x003a78efL, 0x004d3b85L, 0x00f69a30L,
0x00c66486L, 0x007dc533L, 0x000a8659L, 0x00b127ecL,
0x00e4008dL, 0x005fa138L, 0x0028e252L, 0x009343e7L,
0x0082ac90L, 0x00390d25L, 0x004e4e4fL, 0x00f5effaL,
0x00a0c89bL, 0x001b692eL, 0x006c2a44L, 0x00d78bf1L,
0x004ff4aaL, 0x00f4551fL, 0x00831675L, 0x0038b7c0L,
0x006d90a1L, 0x00d63114L, 0x00a1727eL, 0x001ad3cbL,
0x000b3cbcL, 0x00b09d09L, 0x00c7de63L, 0x007c7fd6L,
0x002958b7L, 0x0092f902L, 0x00e5ba68L, 0x005e1bddL,
0x00844704L, 0x003fe6b1L, 0x0048a5dbL, 0x00f3046eL,
0x00a6230fL, 0x001d82baL, 0x006ac1d0L, 0x00d16065L,
0x00c08f12L, 0x007b2ea7L, 0x000c6dcdL, 0x00b7cc78L,
0x00e2eb19L, 0x00594aacL, 0x002e09c6L, 0x0095a873L,
0x000dd728L, 0x00b6769dL, 0x00c135f7L, 0x007a9442L,
0x002fb323L, 0x00941296L, 0x00e351fcL, 0x0058f049L,
0x00491f3eL, 0x00f2be8bL, 0x0085fde1L, 0x003e5c54L,
0x006b7b35L, 0x00d0da80L, 0x00a799eaL, 0x001c385fL,
0x002cc6e9L, 0x0097675cL, 0x00e02436L, 0x005b8583L,
0x000ea2e2L, 0x00b50357L, 0x00c2403dL, 0x0079e188L,
0x00680effL, 0x00d3af4aL, 0x00a4ec20L, 0x001f4d95L,
0x004a6af4L, 0x00f1cb41L, 0x0086882bL, 0x003d299eL,
0x00a556c5L, 0x001ef770L, 0x0069b41aL, 0x00d215afL,
0x008732ceL, 0x003c937bL, 0x004bd011L, 0x00f071a4L,

109

0x00e19ed3L, 0x005a3f66L, 0x002d7c0cL, 0x0096ddb9L,
0x00c3fad8L, 0x00785b6dL, 0x000f1807L, 0x00b4b9b2L

};

/* Calculates the checksum of a buffer. */
/* tempCRC: initial value of the checksum (CRC register). */
/* *outPtr: initially points to the first character in the buffer/message/string. */
/* bufSize: number of characters in the buffer. */
unsigned short updateCRC16(unsigned short tempCRC, char *outPtr, size_t bufSize)
{
/* A register declaration advises the compiler that the variable will be heavily */
/* used. The idea is that register variables are to be placed in machine */
/* registers, which may result in smaller and faster programs. */

register unsigned short crc = tempCRC;
register char *cp = outPtr;
register unsigned int count = bufSize;

while(count--)
crc = (crc<<8) ^ crc16Table[(crc>>8) ^ *cp++];
return(crc);

}

/* Calculates the checksum of a buffer. */
/* tempCRC: initial value of the checksum (CRC register). */
/* *bufPtr: initially points to the first character in the buffer/message/string. */
/* bufSize: number of characters in the buffer. */
unsigned long updateCRC24(unsigned long tempCRC, char *outPtr, size_t bufSize)
{

register unsigned long crc = tempCRC;
register char *cp = outPtr;
register unsigned int count = bufSize;

int i;

i=0;
while(count--)

{
i = ((int)(crc>>16) ^ *cp++) & 0xff;
crc = (crc<<8) ^ crc24Table[i];

}
return crc & 0xffffffL;

}
#endif /* SAFE__H */

8.1.2 Test of CRC implementations

8.1.2.1 24-bit CRC test
CHAR HEX BIN char hex bin

T 54 01010100 t 74 01110100
H 48 01001000 h 68 01101000
E 45 01000101 e 65 01100101
, 2C 00101100 , 2C 00101100
Q 51 01010001 q 71 01110001
U 55 01010101 u 75 01110101
I 49 01001001 i 69 01101001
C 43 01000011 c 63 01100011
K 4B 01001011 k 6B 01101011
, 2C 00101100 , 2C 00101100
B 42 01000010 b 62 01100010
R 52 01010010 r 72 01110010
O 4F 01001111 o 6F 01101111
W 57 01010111 w 77 01110111
N 4E 01001110 n 6E 01101110

110

, 2C 00101100 , 2C 00101100
F 46 01000110 f 66 01100110
O 4F 01001111 o 6F 01101111
X 58 01011000 x 78 01111000
, 2C 00101100 , 2C 00101100
0 30 00110000 0 30 00110000
1 31 00110001 1 31 00110001
2 32 00110010 2 32 00110010
3 33 00110011 3 33 00110011
4 34 00110100 4 34 00110100
5 35 00110101 5 35 00110101

Table 8-1, The test strings for the 24-bit CRC polynomial.

Bit string “UPPER CASE”: (26 chars => 208 bits):
010101000100100001000101001011000101000101010101010010010100001101001011
001011000100001001010010010011110101011101001110001011000100011001001111
0101100000101100001100000011000100110010001100110011010000110101

Bit string “lower case”: (26 chars => 208 bits):
011101000110100001100101001011000111000101110101011010010110001101101011
001011000110001001110010011011110111011101101110001011000110011001101111
0111100000101100001100000011000100110010001100110011010000110101

HEX BIN Hex bin
21 00100001 5F 1011111
75 01110101 24 00100100
3C 00111100 3A 00111010

Table 8-2, The checksums generated for the test string with the 24-bit CRC polynomial.

Checksum UPPER CASE: 0x21753C = 001000010111010100111100
Checksum lower case: 0x5F243A = 010111110010010000111010

Clipping from the Mathematica-test of the CRC-24 with the lower case bit string:
Comment: s is a binary representation of the generator polynomial.

s2 is a binary representation of the bit string with the appended checksum.
g24 is the generator polynomial.
f is the polynomial representation of the bit string with the checksum.
Out[7] prints the generator polynomial and Out[8] shows the result of the
polynomial division.

In[7]:= s = {1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1};
s2 =
{0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,

111

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0};
g24 = 0;
Do[g24 = g24 + s [[26 – i]] *x^ (i - 1), {i, 25}];
g24
f = 0;
Do[f = f + s2[[233 – i]] *x^ (i - 1), {i, 232}];
PolynomialMod[PolynomialReminder[f, g24, x], 2]

Out[7]=1 + x2 + x4 + x5 + x7 + x8 + x13 + x15 + x16 + x17 + x19 + x20 + x21 + x23 + x24

Out[8]= 0

8.1.2.2 16-bit CRC test
Char HEX BIN char Hex Bin

J 4A 01001010 j 6A 01101010
A 41 01000001 a 61 01100001
N 4E 01001110 n 6E 01101110

Table 8-3, The test strings for the 16-bit CRC polynomial.

Bit string “UPPER CASE”: 010010100100000101001110
Checksum UPPER CASE: 0x1303 = 0001001100000011

Bit string “lower case”: 011010100110000101101110
Checksum lower case: 0xc5aa = 1100010110101010

Clipping from the Mathematica-test of the CRC-16 with the upper case bit string:
Comment: s is a binary representation of the 12 bit BCH-code.

g12 is the 12 bit generator polynomial.
g16 is the 16 bit generator polynomial(expansion of the 12 bit BCH-code).
f is the polynomial representation of the bit string with the checksum.
Out[27] shows the polynomial representation the bit string and the
checksum. Out[28] shows the result of the polynomial division.

In[22]:= s = {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1};
g12 = 0;
Do[g12 = g12 + s [[14 – i]] *x^ (i - 1), {i, 13}];
g12
Factor[g12, Modulus →→→→ 2]
g16 = Expand[g12 (1 + x) (1 + x + x3), Modulus →→→→ 2]
Factor[g16, Modulus →→→→ 2]

Out[22]= 1 + x2 + x4 + x7 + x8 + x9 + x12

Out[23]= (1 + x5 + x6) (x1 + x2 + x4 + x5 + x6)
Out[24]= 1 + x3 + x4 + x5 + x11 + x12 + x13 + x14 + x15 + x16

Out[25]= (1 + x) (1 + x + x3) (1 + x5 + x6) (x1 + x2 + x4 + x5 + x6)
In[26]:= s = {0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0,
0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1};

f = 0;
Do[f = f + s2[[233 – i]] *x^ (i - 1), {i, 232}];
PolynomialMod[PolynomialReminder[f, g24, x], 2]

Out[26]=1 + x + x8 + x9 + x12 + x17 + x18 + x19 + x22 + x24 + x30 + x33 + x35 + x38

Out[27]= 0

112

8.2 Safe function blocks
I have chosen to just include parts of the code constituting the two blocks I implemented.
All code that is related to the safety layer has been included.

8.2.1 SAI-1 block
/* Sai.C -
*
* Sample of a "safe" application program built on top of FBSh
* version 2.15
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <fbsh.h>
#include <hart.h>
#include "safe.h"

/*
SAFECYCLE = 6 * loop time
Loop time = 2 sec
1 sec = 32000 periods
Loop time = 2 * 32000 = 64000 periods
SAFECYCLE = 64000 * 6 = 384000
*/
#define SAFECYCLE 384000
#define MAXJITTER 19200
/* sigma for each cycle is assumed to be 100ms

there is six fields in a frame, thus worst case
delay is 6 * 100ms = 600ms.
MAXJITTER should be 600ms =>
MAXJITTER = 60% of one second
Thus MAXJITTER = (32000 * 0.6) = 19200

*/
#define SIMULATE_CHANNEL 1
#define SENSOR_CHANNEL 2
#define HI_HI_ALM_IDX 33

typedef struct sFF_Time_t
{

int32 upper;
int32 lower;

}sFF_Time_t;

typedef struct wDog_t
{

FF_Time now;
FF_Time FBtime; /* sampled at each FB execution */

} wDog_t;

typedef struct safetyParams_t
{

uint16 fieldNo; /* 1 */
union{

uint16 num;
unsigned char c[2];

}sender; /* 2 */
union{

uint16 num;
unsigned char c[2];

}dest; /* 3 */
union{

uint32 num;
unsigned char c[4];

}frameCounter; /* 4 */
union{

113

float f;
unsigned char c[4];

}floatTemp; /* 5 */
union{

uint16 num;
unsigned char c[2];

}shortTemp; /* 6 */
float errorFlag; /* 7 */
FF_Time newTime; /* 8 */
FF_Time prevTime; /* 9 */

} safetyParams_t;

typedef struct resBlock_t
{

/* Resource block parameters */
/* I have omitted these parameters in the appendix to save space */
/* as they do noy have anything to do with the safety layer. */

} resBlock_t;

typedef struct transBlock_t
{

/* Transducer block parameters. */
/* I have omitted these parameters in the appendix to save space */
/* as they do noy have anything to do with the safety layer. */

} transBlock_t;

typedef struct aiBlock_t
{

uint16 st_rev;
FF_OctetStr tag_desc[32];
uint16 strategy;
uint8 alert_key;
FF_Mode mode_blk;
uint16 block_err;
FF_VsFloat pv;
FF_VsFloat out;
… (some parameters have been omitted)…
/* Safety additions */
safetyParams_t sParams;
FF_VsFloat fVal;
FF_VsFloat sIn; /* 39 - Receives ACK */
FF_VsFloat ack; /* 40 - Holds acknowledgement */
char CRCarg[25]; /* 41 */

} aiBlock_t;

resBlock_t resBlock;
transBlock_t transBlock;
aiBlock_t aiBlock;
wDog_t wDog;
bool_t firstTime;

extern nihDesc_t hartCMDDesc[3];

HDL_VFD hVfd = 1; /* VFD handle, it is 1 since there is only one VFD */

/* block handles */
HDL_BLOCK hResBlock = 1, hTransBlock = 2, hAiBlock = 3;

uint8 SystemClockSpeed = 1; /* Choose clock speed of 4 MHz */
uint8 RamSize = 2; /* Choose RAM size of 256K bytes */

void initialize_static_param();
void initialize_nv_param();
void initialize_dynamic_param();
void initApp();
void watchdog();

/* Help function prototypes: */
void simulateInput(HDL_BLOCK hBlock);
void insertInCRCarg(HDL_BLOCK hBlock, int pos);
void generateACK(HDL_BLOCK hBlock);

114

uint32 calculateCRC(HDL_BLOCK hBlock, int bits);
bool_t checkACK(HDL_BLOCK hBlock);
void initCRCarg(HDL_BLOCK hBlock);
void fatalError(float error);
int onTime(FF_Time *n, FF_Time *p);
FF_TimeComp(FF_Time *ne, FF_Time *pr);
struct sFF_Time_t FF_TimeSubtraction(FF_Time *a, FF_Time *b);

/*
* The code for the callback functions cbRead(), cbWrite(), cbNotifyRead(),
*cbNotifyWrite() have I not included here, as they are of no significance for the safety
*layer.
*/

/*
* Callback function for function block execution. Called by the fbsh when a
* function block is scheduled to run.
*/
void cbExec(HDL_BLOCK hBlock)
{

FF_Time curTime;
int16 r, stat;
bool_t stale;
char data[20];

/* AI-BLOCK. */
if (hBlock == hAiBlock)
{

shWaitBlockSem(hVfd, hAiBlock); /* Aquire the semaphore for the aiBlock */
wDog.FBtime = shGetTime(); /* sample time for watchdof function */

if (aiBlock.channel == SENSOR_CHANNEL)
{

/* Standarized AI Block things */
}

else
/* SIMULATE_CHANNEL – I have just implemented the safety function for the simulate mode
of this block. */

{
if (aiBlock.sParams.errorFlag == 0)
{

/* fieldNo indicates what to put in the out-parameter. */
switch (aiBlock.sParams.fieldNo)
{
case 0:

if (aiBlock.sParams.frameCounter.num == 0)
{ /* No ack to be checked this time, but */
/* generate a copy of expected ack for frame 0. */

initCRCarg(hBlock);
generateACK(hBlock);
initCRCarg(hBlock);
/* Simulate an input value. */
simulateInput(hBlock);
/* Put data into CRCarg for later CRC
calculation */
insertInCRCarg(hBlock, 0);
/* Capture time when first field of frame is
put in out-buffer */
aiBlock.sParams.prevTime = shGetTime();
aiBlock.sParams.fieldNo = 1;
break;

}
else if (aiBlock.sParams.frameCounter.num == 1)
{

/* Do not check ack. Simulate an input
value. */
simulateInput(hBlock);
/* Put data into CRCarg for later CRC
calculation */
insertInCRCarg(hBlock, 0);
aiBlock.sParams.newTime = shGetTime();

115

/* Capture time when first field of frame is
put in out buffer */
aiBlock.sParams.fieldNo = 1;
break;

}
else
{
/* Check if a correct acknowledgement have been
received. */
/* Generate next expected ack before frameCounter */
/* is incremented and CRCarg is filled up */
/* gradually with safety related data. */

initCRCarg(hBlock);
generateACK(hBlock);
initCRCarg(hBlock);
if (checkACK(hBlock))
{

/* Simulate an input value. */
simulateInput(hBlock);
/* Put data into CRCarg for later CRC
calculation */
insertInCRCarg(hBlock, 0);
/* save previous frame's timestamp in
prevTime */
aiBlock.sParams.prevTime =
aiBlock.sParams.newTime;
aiBlock.sParams.newTime =
shGetTime();
aiBlock.sParams.fieldNo = 1;
break;

}
else
{

/*fatalError(0.5);*/
break;

}
}

case 1: /* "Safe addresses */
aiBlock.sParams.floatTemp.c[0] =
aiBlock.sParams.sender.c[0];
aiBlock.sParams.floatTemp.c[1] =
aiBlock.sParams.sender.c[1];
aiBlock.sParams.floatTemp.c[2] =
aiBlock.sParams.dest.c[0];
aiBlock.sParams.floatTemp.c[3] =
aiBlock.sParams.dest.c[1];
aiBlock.out.f = aiBlock.sParams.floatTemp.f;
aiBlock.out.status = ADDRBIT;
insertInCRCarg(hBlock, 5);
aiBlock.sParams.fieldNo = 2;
break;

case 2: /* frameCounter */
/* increment fC. */
aiBlock.sParams.frameCounter.num++;
aiBlock.out.f =
(float)aiBlock.sParams.frameCounter.num;
aiBlock.out.status = FCBIT;
insertInCRCarg(hBlock, 10);
aiBlock.sParams.fieldNo = 3;
break;

case 3: /* lower part of time stamp */
if (aiBlock.sParams.frameCounter.num == 1)
{

aiBlock.out.f =
(float)aiBlock.sParams.prevTime.lower;
aiBlock.out.status = LOWERBIT;
insertInCRCarg(hBlock, 15);
aiBlock.sParams.fieldNo = 4;
break;

}

116

else
{

aiBlock.out.f =
(float)aiBlock.sParams.newTime.lower;
aiBlock.out.status = LOWERBIT;
insertInCRCarg(hBlock, 15);
aiBlock.sParams.fieldNo = 4;
break;

}

case 4: /* upper part of time stamp */
if (aiBlock.sParams.frameCounter.num == 1)
{

aiBlock.out.f =
(float)aiBlock.sParams.prevTime.upper;
aiBlock.out.status = UPPERBIT;
insertInCRCarg(hBlock, 20);
aiBlock.sParams.fieldNo = 5;
break;

}
else
{

aiBlock.out.f =
(float)aiBlock.sParams.newTime.upper;
aiBlock.out.status = UPPERBIT;
insertInCRCarg(hBlock, 20);
aiBlock.sParams.fieldNo = 5;
break;

}

case 5:
aiBlock.out.f = (float)calculateCRC(hBlock, 24);
initCRCarg(hBlock);
aiBlock.sParams.fieldNo = 0;
break;

default:
aiBlock.sParams.fieldNo = 0;
fatalError(6.1);
break;

} /* end of switch */
}/* end if no detected errors */

} /* end SIMULATE_CHANNEL */
/* Release the semaphore of the function block */
shSignalBlockSem(hVfd, hAiBlock);

}
} /* end of cdExec() */

/* Simulates a process value. */
void simulateInput(HDL_BLOCK hBlock)
{

aiBlock.out = aiBlock.fVal;
aiBlock.out.f += 1.2;
if (aiBlock.out.f > 22.2)

aiBlock.out.f = 0.0;
aiBlock.out.status = 0x80;

/* Save field vale and its status for next sampling. */
aiBlock.fVal = aiBlock.out;
return;

}

/* This function is used to paste field-data into the array storing the */
/* argument for the CRC calculation. The pos-variable identifies the offset */
/* at which the first character of the field is to be inserted. */
void insertInCRCarg(HDL_BLOCK hBlock, int pos)
{

int i = 0;

i = pos;
aiBlock.sParams.floatTemp.f = 0;

117

aiBlock.sParams.floatTemp.f = aiBlock.out.f;
aiBlock.CRCarg[i] = aiBlock.sParams.floatTemp.c[0];
aiBlock.CRCarg[++i] = aiBlock.sParams.floatTemp.c[1];
aiBlock.CRCarg[++i] = aiBlock.sParams.floatTemp.c[2];
aiBlock.CRCarg[++i] = aiBlock.sParams.floatTemp.c[3];
aiBlock.CRCarg[++i] = aiBlock.out.status;

}

uint32 calculateCRC(HDL_BLOCK hBlock, int bits)
{

uint16 checksum16;
uint32 checksum24;

switch(bits)
{
case 16:

checksum16 = 0x0000;
checksum16 = updateCRC16(checksum16, aiBlock.CRCarg, 3);
return (uint32)checksum16;

case 24:
checksum24 = 0x00000000L;
checksum24 = updateCRC24(checksum24, aiBlock.CRCarg, 25);
aiBlock.out.status = CRC24BIT;
return checksum24;

default:
return 0;

}
}

/* Generates a local ack-message. This message is compared with the ack from the
destination. IMPRTANT NOTE: CRCarg must be initiated before calling this function. */
void generateACK(HDL_BLOCK hBlock)
{

/* Get the two LSB from frameCounter and insert into CRCarg. */
aiBlock.CRCarg[0] = aiBlock.sParams.frameCounter.c[2];
aiBlock.CRCarg[1] = aiBlock.sParams.frameCounter.c[3];
aiBlock.CRCarg[2] = ACKBIT; /* Insert ack ID byte into CRCarg */
/* Calculate CRC-16 for ack-message */
aiBlock.sParams.shortTemp.num = (uint16)calculateCRC(hBlock, 16);
/* Insert two LSB from frameCounter into temp */
aiBlock.sParams.floatTemp.c[0] = aiBlock.sParams.frameCounter.c[2];
aiBlock.sParams.floatTemp.c[1] = aiBlock.sParams.frameCounter.c[3];
/* Insert CRC into temp */
aiBlock.sParams.floatTemp.c[2] = aiBlock.sParams.shortTemp.c[0];
aiBlock.sParams.floatTemp.c[3] = aiBlock.sParams.shortTemp.c[1];
/* aiBlock.ack.f = floatTemp.f; */
aiBlock.ack.f = aiBlock.sParams.floatTemp.f;
/* Insert ack ID byte into sOut.status */
aiBlock.ack.status = ACKBIT;
return;

}

/* Compares the locally generated ack with received ack. */
bool_t checkACK(HDL_BLOCK hBlock)
{

if (aiBlock.sIn.status == ACKBIT)
{

if (onTime(&aiBlock.sParams.newTime, &aiBlock.sParams.prevTime))
{

if (aiBlock.ack.f == aiBlock.sIn.f)
{

return TRUE;
}
else
{

fatalError(0.2);
return FALSE;

}
}

118

else
{

fatalError(0.3);
return FALSE;

}
}
else
{

fatalError(0.1);
return FALSE;

}
}

/* Initialises the CRC array. */
void initCRCarg(HDL_BLOCK hBlock)
{

int i;
for (i=0; i<25; i++)
{

aiBlock.CRCarg[i] = 0;
}
return;

}

void fatalError(float error)
{

aiBlock.sParams.errorFlag = error;
return;

}

/* Checks if the function block executes regularly. */
int onTime(FF_Time *n, FF_Time *p)
{

int res;
res = FF_TimeComp(n, p);
if (res <= 0) /* n==p or n<p */

return 0;
else if (res == 1) /* n>p */
{

struct sFF_Time_t difference;
difference = FF_TimeSubtraction(n, p);
if (insideTimeWindow(&difference))
{

return 1;
}
else

return 0;
}
else

return 0;
}

/* Compares two timestamps of type FF_Time. */
/* returns 0 if equal, 1 if ne>pr, -1 if ne<pr */
int FF_TimeComp(FF_Time *ne, FF_Time *pr)
{

int retv;
retv = -1;
if (ne->upper > pr->upper)

retv = 1;
else if (ne->upper == pr->upper)
{

if (ne->lower > pr->lower)
retv = 1;

else if (ne->lower == pr->lower)
retv = 0;

}
return retv;

}

119

/* Subtracts upper part of timestamp b from upper part of timestamp b. */
struct sFF_Time_t FF_TimeSubtraction(FF_Time *a, FF_Time *b)
{

struct sFF_Time_t diff;

diff.upper = a->upper - b->upper;
diff.lower = a->lower - b->lower;
return diff;

}

/* Checks that the difference between newTime and prevTime is less than MAXJITTER. */
int insideTimeWindow(sFF_Time_t *d)
{

if (d->upper == 0)
{

if ((abs(d->lower) - SAFECYCLE) <= MAXJITTER) /* inside time window */
return 1;

else
return 0;

}
else
{

return 0;
fatalError(0.4);

}
}

/* This is the starting point of the application. This function is called once after the
kernel boots up. Inside this function the callback functions are registered and the
function block shell is initialised. Application-specific initialisations are also
performed here. */
void userStart()
{

bool_t status;
RETCODE retcode;
PARAM_PTR param[41];
int i;

retcode = shRegisCallback(1, cbRead, cbWrite, cbNotifyRead, cbNotifyWrite,
cbExec, cbAckAlertNotify, cbAlarmAck, NULL);

if (retcode)
fatalError(0);

/* initialize hart interface */
hart_init_sequence();
for (i = 0; i < 41; i++)

param[i].offset = i + 1;
…
param[0].ptr = &aiBlock.st_rev;
param[1].ptr = &aiBlock.tag_desc;
param[2].ptr = &aiBlock.strategy;
param[3].ptr = &aiBlock.alert_key;
param[4].ptr = &aiBlock.mode_blk;
… (some parameters have been omitted)…
param[36].ptr = &aiBlock.sParams;
param[37].ptr = &aiBlock.fVal;
param[38].ptr = &aiBlock.sIn;
param[39].ptr = &aiBlock.ack;
param[40].ptr = &aiBlock.CRCarg;
retcode = shRegisParamPtr(1, hAiBlock, 41, param);
if (retcode != R_SUCCESS)

fatalError(0);

retcode = shInitShell(&firstTime);
if (retcode != R_SUCCESS) {

fatalError(0);
}

/* users do their own initializations here */
initApp();
retcode = shStartExecLoop(watchdog, 2000);

120

/* watchdog() runs in 2000ms intervals (the length of one macrocycle). */
}

/* Application-specific initialisations are performed in this function. */
void initApp()
{

if (firstTime) {
/* for STATIC parameter, only initialize them when firstTime is TRUE. */

initialize_static_param();
initialize_nv_param();

}

/* since NVM storage of parameters with non-volatile storage types
* are not yet implemented in the Funcion Block Shell, these parameters
* still needs to be initialized everytime the program starts
*/

/* always initialize the dynamic parameter */
initialize_dynamic_param();

}

#define XD_SCALE_OFFSET 10
#define MODE_OFFSET 5
#define HI_HI_LIM_OFFSET 26
#define HI_HI_PRI_OFFSET 25
#define MANUFAC_ID_OFFSET 10
#define DEV_TYPE_OFFSET 11
#define DEV_REV_OFFSET 12
#define DD_REV_OFFSET 13
#define CONFIRM_TIME_OFFSET 33

/* Initialisation of static parameters. */
void initialize_static_param()
{

aiBlock.xd_scale.EU100 = 100;
aiBlock.xd_scale.EU0 = 10;
aiBlock.xd_scale.unitIndex = 3;
aiBlock.xd_scale.decPoint = 2;
shWriteNVM(hVfd, hAiBlock, XD_SCALE_OFFSET, &aiBlock.xd_scale);

aiBlock.mode_blk.target = 0x08;
aiBlock.mode_blk.permitted = 0x0c;
aiBlock.mode_blk.normal = 0x08;
shWriteNVM(hVfd, hAiBlock, MODE_OFFSET, &aiBlock.mode_blk);

aiBlock.hi_hi_lim = 500;
aiBlock.hi_hi_pri = 4;
aiBlock.channel = SIMULATE_CHANNEL;
shWriteNVM(hVfd, hAiBlock, HI_HI_LIM_OFFSET, &aiBlock.hi_hi_lim);
shWriteNVM(hVfd, hAiBlock, HI_HI_PRI_OFFSET, &aiBlock.hi_hi_pri);

resBlock.manufac_id = 0x1234;
resBlock.dev_type = 1;
resBlock.dev_rev = 1;
resBlock.dd_rev = 1;
resBlock.confirm_time = 32000;
shWriteNVM(hVfd, hResBlock, MANUFAC_ID_OFFSET, &resBlock.manufac_id);

shWriteNVM(hVfd, hResBlock, DEV_TYPE_OFFSET, &resBlock.dev_type);
shWriteNVM(hVfd, hResBlock, DEV_REV_OFFSET, &resBlock.dev_rev);
shWriteNVM(hVfd, hResBlock, DD_REV_OFFSET, &resBlock.dd_rev);
shWriteNVM(hVfd, hResBlock, CONFIRM_TIME_OFFSET, &resBlock.confirm_time);

}

/* Initialisation of dynamic parameters. */
void initialize_dynamic_param()
{

int i;
aiBlock.sParams.fieldNo = 0;
aiBlock.sParams.sender.num = 1111; /* This device */
aiBlock.sParams.dest.num = 2222; /* Receivers address */

121

aiBlock.sParams.frameCounter.num = 0;
aiBlock.sParams.floatTemp.f = 0;
aiBlock.sParams.shortTemp.num = 0;
aiBlock.sParams.errorFlag = 0;

aiBlock.fVal.f = 0;
aiBlock.fVal.status = 0;
aiBlock.sIn.f = 0;
aiBlock.sIn.status = 0;
aiBlock.ack.f = 0;
aiBlock.ack.status = 0;

for (i=0; i<32; i++)
{

aiBlock.CRCarg[i] = 0;
}

}

/* This function checks whether the device's SM triggers the function */
/* blocks accoring to the configuration. This is done by comparing */
/* wDog.FBtime and wDog.now. If the difference between FBtime (sampled */
/* each time the function block executes) and now is bigger than an */
/* accepted jitter (SAFECYCLE), something is wrong. */
/* THIS FUNCTION DO NOT RUN AS A PART OF THE FUNCTION BLOCK! */
void watchdog()
{

uint32 dif;
struct sFF_Time_t differ;

wDog.now = shGetTime();
differ = FF_TimeSubtraction(&wDog.now, &wDog.FBtime);
if (differ.upper == 0)
{

dif = abs(differ.lower);
/* Application dependent acceptable jitter. Here: 2 seconds */
if (dif <= 64000)

return;
else
{

fatalError(100.1);
return;

}
}
else
{

fatalError(100.2);
return;

}
}

8.2.2 SAO-1 block
/* Sao.C -
*
* Sample of a "safe" application program built on top of FBSh
* version 2.15
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <fbsh.h>
#include <hart.h>
#include "safe.h"

/*
SAFECYCLE = 6 * loop time
Loop time = 2 sec
1 sec = 32000 periods

122

Loop time = 2 * 32000 = 64000 periods
SAFECYCLE = 64000 * 6 = 384000
*/
#define SAFECYCLE 384000
#define MAXJITTER 19200
/* sigma for each cycle is assumed to be 100ms

there is six fields in a frame, thus worst case
delay is 6 * 100ms = 600ms.
MAXJITTER should be 600ms =>
MAXJITTER = 60% of one second
Thus MAXJITTER = (32000 * 0.6) = 19200

*/

/*
* Type definitions of sFF_Time, wDog_t and safetyParams_t are identical as in SAI-1.
*/

typedef struct resBlock_t
{

/* Resource block parameters */
/* I have omitted these parameters in the appendix to save space */
/* as they do noy have anything to do with the safety layer. */

} resBlock_t;

typedef struct aoBlock_t {
uint16 st_rev;
FF_OctetStr tag_desc[32];
uint16 strategy;
uint8 alert_key;
FF_Mode mode_blk;
FF_VsFloat cas_in;
… (some parameters have been omitted)…
/* Safety additions: */
safetyParams_t sParams;
FF_VsFloat fVal;
FF_VsFloat sOut; /* Sends ACK */
FF_VsFloat ack; /* Holds acknowledgement */
char CRCarg[25]; /* 35 */

} aoBlock_t;

resBlock_t resBlock;
aoBlock_t aoBlock;
wDog_t wDog;
bool_t firstTime;

extern nihDesc_t hartCMDDesc[3];

HDL_VFD hVfd = 1; /* VFD handle, it is 1 since there is only one VFD */

/* block handles */
HDL_BLOCK hResBlock = 1, hAoBlock = 2;

/* Some required global variables for Stack */
uint8 SystemClockSpeed = 1; /* Choose clock speed of 4 MHz */
uint8 RamSize = 2; /* Choose RAM size of 256K bytes */
void initialize_static_param();
void initialize_nv_param();
void initialize_dynamic_param();
void initApp();
void watchdog();

/* Help function prototypes: */
void insertInCRCarg(HDL_BLOCK hBlock, int pos);
uint32 calculateCRC(HDL_BLOCK hBlock, int bits);
void generateACK(HDL_BLOCK hBlock);
void initCRCarg(HDL_BLOCK hBlock);
void fatalError(float error);
int onTime(FF_Time *n, FF_Time *p);
FF_TimeComp(FF_Time *ne, FF_Time *pr);
struct sFF_Time_t FF_TimeSubtraction(FF_Time *a, FF_Time *b);
int insideTimeWindow(sFF_Time_t *d);

123

/*
* The code for the callback functions cbRead(), cbWrite(), cbNotifyRead(),
*cbNotifyWrite() have I not included here, as they are of no significance for the safety
*layer.
*/

/*
* Callback function for function block execution. Called by the fbsh when a
* function block is scheduled to run.
*/
void cbExec(HDL_BLOCK hBlock)
{

/* AO-BLOCK. */
if (hBlock == hAoBlock)
{

shWaitBlockSem(hVfd, hAoBlock);
wDog.FBtime = shGetTime(); /* sample time for watchdof function */
if (aoBlock.sParams.errorFlag == 0)
{

/* fieldNo indicates what type of data that comes from the out-
parameter of the aiBlock. */
switch (aoBlock.sParams.fieldNo) {
case 0: /* field value */

aoBlock.fVal.f = aoBlock.cas_in.f;
insertInCRCarg(hBlock, 0);
aoBlock.sParams.fieldNo = 1;
break;

case 1: /* "Safe addresses */
insertInCRCarg(hBlock, 5);
/* Check received sender address */
aoBlock.sParams.shortTemp.c[0] =
aoBlock.sParams.floatTemp.c[0];
aoBlock.sParams.shortTemp.c[1] =
aoBlock.sParams.floatTemp.c[1];
if (aoBlock.sParams.shortTemp.num !=
aoBlock.sParams.sender.num) /* sender == 111 */
{

fatalError(1.1);
break;

}
/* Check received destination address */
aoBlock.sParams.shortTemp.c[0] =
aoBlock.sParams.floatTemp.c[2];
aoBlock.sParams.shortTemp.c[1] =
aoBlock.sParams.floatTemp.c[3];
if (aoBlock.sParams.shortTemp.num !=
aoBlock.sParams.dest.num) /* dest == 222 */
{

fatalError(1.2);
break;

}
aoBlock.sParams.fieldNo = 2;
break;

case 2: /* frameCounter */
insertInCRCarg(hBlock, 10);
/* Validate frameCounter */
if (aoBlock.sParams.frameCounter.num == 0 &&
(uint32)aoBlock.cas_in.f == 0)
{/* First frame, no special action required */

aoBlock.sParams.fieldNo = 3;
break;

}
else
{

if ((uint32)aoBlock.cas_in.f !=
(aoBlock.sParams.frameCounter.num+1)

&& aoBlock.cas_in.status != FCBIT)
{

124

fatalError(2.1);
break;

}
else
{

aoBlock.sParams.frameCounter.num =
(uint32)aoBlock.cas_in.f;
aoBlock.sParams.fieldNo = 3;
break;

}
}

case 3: /* lower part of timestamp */
insertInCRCarg(hBlock, 15);
/* No validation here, wait until upper has arrived. */
/* Just save in newTime.lower and check the status byte. */
if (aoBlock.cas_in.status != LOWERBIT)
{

fatalError(3.1);
break;

}
else if (aoBlock.sParams.frameCounter.num == 0)
{

aoBlock.sParams.prevTime.lower =
(uint32)aoBlock.cas_in.f;
aoBlock.sParams.fieldNo = 4;
break;

}
else
{

aoBlock.sParams.newTime.lower =
(uint32)aoBlock.cas_in.f;
aoBlock.sParams.fieldNo = 4;
break;

}

case 4: /* upper part of timestamp */
insertInCRCarg(hBlock, 20);
if (aoBlock.cas_in.status != UPPERBIT)
{

fatalError(4.1);
break;

}
else
{/* if this is the first frame arriving, then set prevTime
= newTime */

if (aoBlock.sParams.frameCounter.num == 0)
{

aoBlock.sParams.prevTime.upper =
(uint32)aoBlock.cas_in.f;
aoBlock.sParams.fieldNo = 5;
break;

}
else if (aoBlock.sParams.frameCounter.num == 1)
{/* Must do this to be able to determine
the jitter. */

aoBlock.sParams.newTime.upper =
(uint32)aoBlock.cas_in.f;
aoBlock.sParams.prevTime =
aoBlock.sParams.newTime;
aoBlock.sParams.fieldNo = 5;
break;

}
else
/* Check if newTime is correct in relation with
prevTime */
{

aoBlock.sParams.newTime.upper =
(uint32)aoBlock.cas_in.f;

125

if(onTime(&aoBlock.sParams.newTime,
&aoBlock.sParams.prevTime))/* is newTime >
prevTime */
{

aoBlock.sParams.prevTime =
aoBlock.sParams.newTime;
aoBlock.sParams.fieldNo = 5;
break;

}
else
{

fatalError(4.2);
break;

}
}

}

case 5:
if (aoBlock.cas_in.status != CRC24BIT)
{

fatalError(5.1);
break;

}
else
/* No field errors detected so far. Check whole frame */
{

aoBlock.sParams.floatTemp.f =
(float)calculateCRC(hBlock, 24);
if (aoBlock.sParams.floatTemp.f == aoBlock.cas_in.f)
/* frame is received OK */
{

initCRCarg(hBlock);
generateACK(hBlock);
initCRCarg(hBlock);
aoBlock.sOut.f = aoBlock.ack.f;
aoBlock.sOut.status = aoBlock.ack.status;
aoBlock.sParams.fieldNo = 0;
break;

}
else
{

fatalError(5.2);
break;

}
}

default:
aoBlock.sParams.fieldNo = 0;
break;

} /* end switch. */
} /* end if no detected errors */
shSignalBlockSem(hVfd, hAoBlock);

}
} /* end of cdExec() */

/* This function is used to paste field-data into the array storing the */
/* argument for the CRC calculation. The pos-variable identifies the offset */
/* at which the first character of the field is to be inserted. */
void insertInCRCarg(HDL_BLOCK hBlock, int pos)
{

/* Same as in SAI-1, just change aiBlock with aoBolck. */
}

uint32 calculateCRC(HDL_BLOCK hBlock, int bits)
{

/* Initialises the CRC array, except that aoBlock.CRCarg is sent as argument in
the updateCRC-functions. */

}

126

/* IMPRTANT NOTE: CRCarg must be initiated before calling this function. Therefore can an
ack only be generated before or after CRCarg is filled up with data */
void generateACK(HDL_BLOCK hBlock)
{

/* Get the two LSB from frameCounter and insert into CRCarg. */
aoBlock.CRCarg[0] = aoBlock.sParams.frameCounter.c[2];
aoBlock.CRCarg[1] = aoBlock.sParams.frameCounter.c[3];
aoBlock.CRCarg[2] = ACKBIT; /* Insert ack ID byte into CRCarg */
/* Calculate CRC-16 for ack-message */
aoBlock.sParams.shortTemp.num = (uint16)calculateCRC(hBlock, 16);
/* Insert two LSB from frameCounter into temp */
aoBlock.sParams.floatTemp.c[0] = aoBlock.sParams.frameCounter.c[2];
aoBlock.sParams.floatTemp.c[1] = aoBlock.sParams.frameCounter.c[3];
/* Insert CRC into temp */
aoBlock.sParams.floatTemp.c[2] = aoBlock.sParams.shortTemp.c[0];
aoBlock.sParams.floatTemp.c[3] = aoBlock.sParams.shortTemp.c[1];
/* ack.f = floatTemp.f; */
aoBlock.ack.f = aoBlock.sParams.floatTemp.f;
/* Insert ack ID byte into sOut.status */
aoBlock.ack.status = ACKBIT;
return;

}

/* Initialises the CRC array. */
void initCRCarg(HDL_BLOCK hBlock)
{

int i;
for (i=0; i<32; i++)
{

aoBlock.CRCarg[i] = 0;
}
return;

}

void fatalError(float error)
{

aoBlock.sParams.errorFlag = error;
}

/* Checks if the function block executes regularly. */
int onTime(FF_Time *n, FF_Time *p)
{

/* Identical as in SAI-1. */
}

/* Compares two timestamps of type FF_Time. */
/* returns 0 if equal, 1 if ne>pr, -1 if ne<pr */
int FF_TimeComp(FF_Time *ne, FF_Time *pr)
{

/* Identical as in SAI-1. */
}

/* Subtracts upper part of timestamp b from upper part of timestamp b. */
struct sFF_Time_t FF_TimeSubtraction(FF_Time *a, FF_Time *b)
{

/* Identical as in SAI-1. */
}

/* Checks that the difference between newTime and prevTime is less than MAXJITTER. */
int insideTimeWindow(sFF_Time_t *d)
{

if (d->upper == 0)
{

/* Identical as in SAI-1. */
}
else
{

return 0;
fatalError(4.3);

}
}

127

void userStart()
{

/* identical as userStart() in SAI-1 except: */

param[0].ptr = &aoBlock.st_rev;
param[1].ptr = &aoBlock.tag_desc;
… (some parameters have been omitted)…
param[30].ptr = &aoBlock.sParams;
param[31].ptr = &aoBlock.fVal;
param[32].ptr = &aoBlock.sOut;
param[33].ptr = &aoBlock.ack;
param[34].ptr = &aoBlock.CRCarg;
retcode = shRegisParamPtr(1, hAoBlock, 35, param);
if (retcode != R_SUCCESS)

fatalError(0);

/* rest of userStart() is identical with SAI-1. */
}

void
initApp()
{

/* Identical to initApp in SAI-1 */
}

#define XD_SCALE_OFFSET 10
#define MODE_OFFSET 5
#define HI_HI_LIM_OFFSET 26
#define HI_HI_PRI_OFFSET 25
#define CONFIRM_TIME_OFFSET 33
#define MANUFAC_ID_OFFSET 10
#define DEV_TYPE_OFFSET 11
#define DEV_REV_OFFSET 12
#define DD_REV_OFFSET 13

void initialize_static_param()
{

resBlock.manufac_id = 0x1234;
resBlock.dev_type = 2;
resBlock.dev_rev = 1;
resBlock.dd_rev = 1;
resBlock.confirm_time = 32000;
shWriteNVM(hVfd, hResBlock, MANUFAC_ID_OFFSET, &resBlock.manufac_id);

shWriteNVM(hVfd, hResBlock, DEV_TYPE_OFFSET, &resBlock.dev_type);
shWriteNVM(hVfd, hResBlock, DEV_REV_OFFSET, &resBlock.dev_rev);
shWriteNVM(hVfd, hResBlock, DD_REV_OFFSET, &resBlock.dd_rev);
shWriteNVM(hVfd, hResBlock, CONFIRM_TIME_OFFSET, &resBlock.confirm_time);

}

void initialize_dynamic_param()
{

int i;
aoBlock.sParams.fieldNo = 0;
aoBlock.sParams.sender.num = 1111;
aoBlock.sParams.dest.num = 2222;
aoBlock.sParams.frameCounter.num = 0;
aoBlock.sParams.floatTemp.f = 0;
aoBlock.sParams.shortTemp.num = 0;
aoBlock.sParams.errorFlag = 0;
aoBlock.sParams.newTime.upper = 0;
aoBlock.sParams.newTime.lower = 0;
aoBlock.sParams.prevTime.upper = 0;
aoBlock.sParams.prevTime.lower = 0;

aoBlock.fVal.f = 0;
aoBlock.fVal.status = 0;
aoBlock.sOut.f = 0;
aoBlock.sOut.status = 0;
aoBlock.ack.f = 0;
aoBlock.ack.status = 0;

128

for (i=0; i<32; i++)
{

aoBlock.CRCarg[i] = 0;
}

}

void watchdog()
{

/* Identical to watchdog in SAI-1 */
}

8.3 Device Descriptions
DD for the device containing the SAI-1 block. The DD for the device containing SAO-1,
except that the AO block gets an output-parameter (sOut) instead of an input-parameter
(sIn).

/* safeai.ddl 3. jan 2001
** This is the DD of my safe AI field device.
** © Tobias (2000) */

MANUFACTURER 0x1234, DEVICE_TYPE 1, DEVICE_REVISION 1, DD_REVISION 1
#include "std_defs.h"
#include "com_tbls.h"
/*
** Get generic block characteristics parameters
*/
IMPORT MANUFACTURER __FF, DEVICE_TYPE __STD_PARM, DEVICE_REVISION __STD_PARM_rel_dev_rev,
DD_REVISION __STD_PARM_rel_dd_rev
{

EVERYTHING ;
}
/**

Import standard Resource Block
**/
IMPORT MANUFACTURER __FF, DEVICE_TYPE __RES_BLOCK, DEVICE_REVISION
__RES_BLOCK_rel_dev_rev, DD_REVISION __RES_BLOCK_rel_dd_rev
{

EVERYTHING ;
}
/**

Import standard Analog Input Function Block
**/
IMPORT MANUFACTURER __FF, DEVICE_TYPE __AI_BLOCK, DEVICE_REVISION __AI_BLOCK_rel_dev_rev,
DD_REVISION __AI_BLOCK_rel_dd_rev
{

EVERYTHING ;
REDEFINITIONS
{

BLOCK __analog_input_block

{
PARAMETERS
{

ADD SPARAMS, sParams ;
ADD FVAL, fVal ;
ADD SIN, sIn ;
ADD ACK, ack ;
ADD CRCARG, CRCarg ;

}
}

}
}
/*
**
sParams:
RECORD sParams

VARIABLE fieldNo
VARIABLE sender
VARIABLE dest
VARIABLE frameCounter

129

VARIABLE floatTemp
VARIABLE shortTemp
VARIABLE errorFlag
VARIABLE newTime
VARIABLE prevTime

**
*/
VARIABLE fieldNo
{

LABEL "|en|fieldNo" ;
HELP "|en|fieldNo indicates which field that is sent or received what "

"kind of safety related data that is being sent or received. "
"0-proc data, 1-addr, 2-frameCounter, 3-tS.lower, 4-tS.upper, "
"5-CRC)" ;

CLASS CONTAINED ;
TYPE UNSIGNED_INTEGER (2) ;
HANDLING READ & WRITE ;

}
VARIABLE sender
{

LABEL "|en|sender" ;
HELP "|en|The logical safety address of this device. (The sender)" ;
CLASS CONTAINED ;
TYPE UNSIGNED_INTEGER (2) ;
HANDLING READ & WRITE ;

}
VARIABLE dest
{

LABEL "|en|dest" ;
HELP "|en|The logical safety address of the receiving device." ;
CLASS CONTAINED ;
TYPE UNSIGNED_INTEGER (2) ;
HANDLING READ & WRITE ;

}
VARIABLE frameCounter
{

LABEL "|en|frameCounter" ;
HELP "|en|FrameCounter counts the logical data frames sent." ;
CLASS CONTAINED ;
TYPE UNSIGNED_INTEGER (4) ;
HANDLING READ & WRITE ;

}
VARIABLE floatTemp
{

LABEL "|en|floatTemp" ;
HELP "|en|Variable used to hold temporary float values during "

"various calculations." ;
CLASS CONTAINED ;
TYPE FLOAT ;
HANDLING READ & WRITE ;

}
VARIABLE shortTemp
{

LABEL "|en|shortTemp" ;
HELP "|en|Variable used to hold temporary short values during various "

"calculations." ;
CLASS CONTAINED ;
TYPE UNSIGNED_INTEGER (2) ;
HANDLING READ & WRITE ;

}
VARIABLE errorFlag
{

LABEL "|en|errorFlag" ;
HELP "|en|A variable that indicated the type of a detected error." ;
CLASS CONTAINED ;
TYPE FLOAT ;
HANDLING READ & WRITE ;

}
VARIABLE newTime
{

LABEL "|en|newTime" ;
HELP "|en|newTime holds the time stamp for the newly arrived frame." ;
CLASS CONTAINED ;
TYPE TIME_VALUE ;
HANDLING READ & WRITE ;

}
VARIABLE prevTime
{

LABEL "|en|prevTime" ;
HELP "|en|prevTime holds the time stamp for the previous arrived "

"frame." ;

130

CLASS CONTAINED ;
TYPE TIME_VALUE ;
HANDLING READ & WRITE ;

}
RECORD sParams
{

LABEL "|en|sParams." ;
HELP "|en|Safety parameters data struct, contains logical addressing, "

"a safety frame counter, a temporary variable used during "
"variaous calculations, time stamps and a boolean variable that "
"is TRUE when the function Block is in running mode." ;

MEMBERS
{

FIELDNO, fieldNo ;
SENDER, sender ;
DEST, dest ;
FRAMECOUNTER, frameCounter ;
FLOATTEMP, floatTemp ;
SHORTTEMP, shortTemp ;
ERRORFLAG, errorFlag ;
NEWTIME, newTime ;
PREVTIME, prevTime ;

}
}
/*
**
fVal:
RECORD fVal

VARIABLE contained_float
VARIABLE contained_status

**
*/
VARIABLE contained_status
{

LABEL "|en|Contained status" ;
HELP "|en|The status byte of fVal" ;
CLASS CONTAINED ;
TYPE INTEGER(1) ;
HANDLING READ & WRITE ;

}
VARIABLE contained_float
{

LABEL "|en|Contained float" ;
HELP "|en|The fVal holds the previous simulated field Value" ;
CLASS CONTAINED ;
TYPE FLOAT ;
HANDLING READ & WRITE ;

}
RECORD fVal
{

LABEL "|en|fVal" ;
HELP "|en|Field Value is just a variable used to store the simulated "

"process data between each iteration to achieve the "
"incrementation of process data." ;

MEMBERS
{

CONTAINED_STATUS, contained_status ;
CONTAINED_FLOAT, contained_float ;

}
}
/*
**
sIn:
RECORD sIn

VARIABLE input_float
VARIABLE input_status

**
*/
VARIABLE input_status
{

LABEL "|en|Input status" ;
HELP "|en|The in parameters status byte" ;
CLASS INPUT ;
TYPE INTEGER (1) ;
HANDLING READ & WRITE ;

}

131

VARIABLE input_float
{

LABEL "|en|Input float" ;
HELP "|en|The input parameters float variable" ;
CLASS INPUT ;
TYPE FLOAT ;
HANDLING READ & WRITE ;

}
RECORD sIn
{

LABEL "|en|sIn" ;
HELP "|en|Input parameter in sAI block." ;
MEMBERS
{

INPUT_STATUS, input_status ;
INTPUT_FLOAT, input_float ;

}
}
/*
**
ack:
RECORD ack

VARIABLE input_float
VARIABLE input_status

**
*/
RECORD ack
{

LABEL "|en|ack" ;
HELP "|en|ack is a parameter used to hold an acknowledgement "

" message consisting of an ack identifier (ACKBIT), LSB of "
"the frameCounter and a 16 bit CRC. " ;

MEMBERS
{

CONTAINED_STATUS, contained_status ;
CONTAINED_FLOAT, contained_float ;

}
}
/*
**
CRCarg:
ARRAY CRCarg

VARIABLE CRCarg_entry
**
*/
VARIABLE CRCarg_entry
{

LABEL "|en|CRCarg_entry" ;
HELP "|en|A character in the CRC argument array" ;
CLASS CONTAINED ;
TYPE INTEGER (1) ;
CONSTANT_UNIT [blank] ;
HANDLING READ & WRITE ;

}
ARRAY CRCarg
{

LABEL "|en|CRCarg" ;
HELP "|en|The CRCarg array holds the argument for the CRC "

"calculations." ;
TYPE CRCarg_entry ;
NUMBER_OF_ELEMENTS 25 ;

}

132

8.4 Device Template & Device Configuration
8.4.1 Device Configuration

8.4.1.1 Safe AI
; Config file to be used in a basic device at address 0x20.
; Assumes AIAO function blocks - so does not contain client VCRs to
; talk to NMA or SMA of other devices.
;

[data link]
devClass = BASIC
nodeAddress= 0x20

[MIB]
devId= Safe AI - 1.0
pdTag= Safe Instrumentation

8.4.1.2 Safe AO
; Config file to be used in a basic device at address 0x20.
; Assumes AIAO function blocks - so does not contain client VCRs to
; talk to NMA or SMA of other devices.
;

[data link]
devClass = BASIC
nodeAddress= 0x22

[MIB]
devId= Safe A0 - 1.0
pdTag= Safe Instrumentation

8.4.2 Device Template
I have omitted some of the parameters in the blocks to save space. All of the parameters
that constitutes the safety layer is shown in the template below:

VFD
Safe Instruments // vendor name
S-AI // model name
Rev1.0 // revision
12, 22 // profile numbers
1 // number of user defined types
1 // number of transducer blocks
1 // number of function blocks
10 // maximum number of linkage objects
10 // maximum number of alert objects
5 // maximum number of trend float objects
1 // maximum number of trend Discrete objects
1 // maximum number of trend bitstring objects
15 // maximum number of variable list objects

USER_TYPE
9

// type, size, offset
6, 2, 0 // 1 - uint16 fieldNo
6, 2, 2 // 2 - uint16 sender
6, 2, 4 // 3 - uint16 dest
7, 4, 6 // 4 - uint32 frameCounter
8, 4, 10 // 5 - float floatTemp
6, 2, 14 // 6 - uint16 shortTemp
8, 4, 16 // 7 - float errorFlag

133

21, 8, 20 // 8 - (time value) FF_Time newTime
21, 8, 28 // 9 - (time value) FF_Time prevTime

BLOCKS

BLOCK
RES-DEV1 // tag
RESOURCE // block type
0x80020315, 0x80020310, 1 // characteristic DD item, DD item, DD revision
0x010B, 0, 0, 0, 0 // profile, profile rev, execution time,
40 // number of parameters

0xc001017a, 0x8002017a, ST_REV, USER_PTR // 1, ST_REV
0xc0010180, 0x80020180, TAG_DESC, USER_PTR // 2, TAG_DESC
0xc001017e, 0x8002017e, STRATEGY, USER_PTR // 3, STRATEGY
0xc0010096, 0x80020037, ALERT_KEY, USER_PTR // 4, ALERT_KEY
0xc0010126, 0x80020126, MODE_BLK, USER_PTR // 5, MODE_BLK
0xc00100ac, 0x800200ac, BLOCK_ERR, USER_PTR // 6, BLOCK_ERR
…
0xc001018c, 0x8002018c, WRITE_ALM, USER_PTR // 40, WRITE_ALM

BLOCK
Transducer // tag
TRANSDUCER // block type
11, 10, 2 // DD name, DD item, DD revision
13, 23, 0, 0, 0 // profile, profile rev, execution time,
8 // number of parameters

0xc001017a, 0x8002017a, ST_REV, USER_PTR // 1, ST_REV
0xc0010180, 0x80020180, TAG_DESC, USER_PTR // 2, TAG_DESC
…
0, 0, ARRAY, Float, 5, C, S, USER_PTR //8 f_array

BLOCK
SAI-1 // tag
FUNCTION // block type
0x800201d7, 0x800201D0, 3004 // characteristic DD item, DD item, DD revision
0x0101, 0, 2560, 0, 0 // profile, profile rev, execution time,

// number of view3 and number of view 4
41 // number of parameters

0xc001017a, 0x8002017a, ST_REV, USER_PTR // 1, ST_REV
0xc0010180, 0x80020180, TAG_DESC, USER_PTR // 2, TAG_DESC
0xc001017e, 0x8002017e, STRATEGY, USER_PTR // 3, STRATEGY
0xc0010096, 0x80020037, ALERT_KEY, USER_PTR // 4, ALERT_KEY
0xc0010126, 0x80020126, MODE_BLK, USER_PTR // 5, MODE_BLK
0xc00100ac, 0x800200ac, BLOCK_ERR, USER_PTR // 6, MODE_PER
0xc0010136, 0x80020136, PV, USER_PTR // 7, PV
0xc001012a, 0x8002012a, OUT, USER_PTR // 8, OUT
…
// MY OWN CUSTOM SAFETY ADDITIONS:
0, 0, RECORD, USER_TYPE1, C, D, USER_PTR // 37, sParams
0, 0, RECORD, VS Float, C, D, USER_PTR // 38, fVal
0, 0, RECORD, VS Float, IN, D, USER_PTR // 39, sIn
0, 0, RECORD, VS Float, C, D, USER_PTR // 40, ack
0, 0, ARRAY, int8, 25, C, D, USER_PTR // 41, CRCarg[25]

TRENDS
…
VARLISTS
…

I have only appended the block definition from the template containing the SAO-1 block,
because the rest of the block is almost identical to the SAI-1 template. If we compare the
custom safety additions made in SAI-1 and SAO-1, we can se that they are identical
except that SAI-1 gets an input-parameter (sIn) where the SAO-1 gets an output-
parameter (sOut).
BLOCK

SAO-1 // tag
FUNCTION // block type
0x800201f7, 0x800201F0, 1 // DD info
0x0102, 0, 2560, 0, 0
35 // number of parameters

0xc001017a, 0x8002017a, ST_REV, USER_PTR // 1, ST_REV
0xc0010180, 0x80020180, TAG_DESC, USER_PTR // 2, TAG_DESC
0xc001017e, 0x8002017e, STRATEGY, USER_PTR // 3, STRATEGY
0xc0010096, 0x80020037, ALERT_KEY, USER_PTR // 4, ALERT_KEY
0xc0010126, 0x80020126, MODE_BLK, USER_PTR // 5, MODE_BLK

134

0xc00100ac, 0x800200ac, BLOCK_ERR, USER_PTR // 6, MODE_PER
…
0xc00100b0, 0x800200b0, CAS_IN, USER_PTR // 17, CAS_IN
…
// MY OWN CUSTOM SAFETY ADDITIONS:
0, 0, RECORD, USER_TYPE1, C, D, USER_PTR // 31, sParams
0, 0, RECORD, VS Float, C, D, USER_PTR // 32, fVal
0, 0, RECORD, VS Float, OUT, D, USER_PTR // 33, sOut
0, 0, RECORD, VS Float, C, D, USER_PTR // 34, ack
0, 0, ARRAY, int8, 25, C, D, USER_PTR // 35, CRCarg[25]

	S
	Summary
	Acknowledgements
	Contents
	List of Tables
	Table 3˚1, This class of systems operates in a demand mode. The demanded function is performed less than once per year. The Safety Integrity Levels expresses the average probability of a system’s failure to perform its design function on demand.	52
	List of Figures
	Introduction
	Problem domain
	Safety Systems
	Technological Trends of Safety Systems
	Commercial Dimensions of Safety Systems
	The Evolution of Process Control Systems
	The eight parts of IEC 61158

	The Benefits of Adopting Fieldbus
	ProfiSafe

	Problem specification
	The structure of this thesis

	Foundation Fieldbus
	FF - Fieldbus Foundation or FOUNDATION Fieldbus?
	Foundation Fieldbus vs. the OSI Reference Model
	Foundation Fieldbus System Architecture
	FF Communication Stack
	Physical Layer
	Data Link Layer (DLL)
	Application Layer

	User Layer
	Function Blocks

	Function Block Shell

	Development of a FF Device

	IEC 61508
	Risks in Industrial Processes
	What is the IEC 61508 standard?
	Safety Integrity Levels
	Other standards and regulations

	Safety Critical Communication
	Risk Considerations For Safety Critical Communication
	Communication failure modes outlined in IEC 61508
	The IEC 61508 communication failure modes related to the standard FF communication protocol
	Data corruption
	Corruption of sender and/or receiver addresses
	Inaccurate timing of transmission of data packages
	Wrong sequence of packages

	Principle Solution For Safety Critical Communication
	The Safety Layer

	The “Safety Layer” for Fieldbus Foundation
	The Safe Function Block Concept
	Safe Function Block Specification
	Safety Frame
	Fields
	Acknowledgements of Safety Frames

	How the IEC 61508 failure modes are handled in detail in the Safety Layer
	Data Corruption
	CRC Performance
	Probabilistic Considerations
	16-bit CRC
	24-bit CRC

	Corruption of Sender and Receiver Addresses
	Inaccurate Timing of Transmission
	Wrong sequence of data packages

	Safe Function Block Design
	struct safetyParams_t
	Safety related variables not in safetyParams
	The Watchdog function
	CRC-Implementation
	Demo Implementation of the Safety Layer

	Discussion Of The Solution
	Why The Proposed Safety Layer Is Not Optimal – Weaknesses and Uncertainties
	Weaknesses Related To The Addressing
	Uncertain Issues Related To The frameCounter
	General Weaknesses

	Discussion Of Different Solution Proposals
	Safety Frame Without Fields
	Multiple I/O Parameters

	Practical Problems Encountered During The Work Process
	Inconsistent User Manuals
	Compiler Problems
	Debugging And Testing Of The Safety Layer

	C
	Conclusion
	Further Work

	References
	A
	Appendix
	CRC
	CRC-Code and tables
	Test of CRC implementations
	24-bit CRC test
	16-bit CRC test

	Safe function blocks
	SAI-1 block
	SAO-1 block

	Device Descriptions
	Device Template & Device Configuration
	Device Configuration
	Safe AI
	Safe AO

	Device Template

