
Meaningful Method Names

Doctoral dissertation by

Einar W. Høst

Submitted to the Faculty of Mathematics and
Natural Sciences at the University of Oslo

in partial fulfillment of the requirements for
the degree Philosophiae Doctor in Computer Science

November 2010

© Einar W. Høst, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1044

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

We build computer programs by creating named abstractions, aggregations of be-
haviour that can be invoked by referring to the name alone. Abstractions can be
nested, meaning we can construct new, more powerful abstractions that use more
primitive abstractions. Thus we can start from tiny blocks of behaviour and build ar-
bitrarily complex systems. For this to work, however, the abstractions must be sound
— in other words, the names must suit the behaviour they represent. Otherwise our
tower of abstractions will collapse. Hence we see the crucial importance of naming in
programming.

Despite this importance, programmers almost completely lack tools to assist them.
The computer treats names as arbitrary, allowing for sloppy and inconsistent naming.
Tool support for good naming would be beneficial for many reasons. Most obviously, it
would help create programs that are easier to understand, and hence easier to maintain.
A secondary, but equally important, effect is that good naming and good design go
together. In other words, good naming strengthens the tower of abstractions.

In this thesis, we show that the method names used in Java programs are far from
arbitrary. They are meaningful in a sense that relates to the behaviour they represent.
By analysing the implementation of methods in real-world Java programs, we can
approximate the meaning of names and gain a deeper understanding of key aspects of
naming in Java. For instance, we show that it is feasible to create a tool to discover
naming bugs in Java programs — methods that have been improperly named. Our
analyses are completely mechanical, meaning that they require no human supervision.

iii

iv

Acknowledgements

First of all, I would like to thank my main supervisor, Bjarte M. Østvold, for providing
motivation, support, inspiring discussions and never-faltering faith in the research.
You are an excellent supervisor — it has been invaluable to me that you always kept
your door open, always found time and energy to listen or contribute ideas. Working
with you has been both educational and great fun. I would also like to thank my
co-supervisor Gerardo Schneider for kind assistance and cooperation in all practical
matters, as well as valuable proofreading and comments.

The main part of the work presented in this thesis was done while I was employed
as a PhD fellow at Norsk Regnesentral. I would like to thank the head of the DART
department, Åsmund Skomedal, for having enough faith in me to hire me. I also
appreciate the kind faces of the rest of the DART employees. Thank you to professor
Barbara G. Ryder for inviting me to Rutgers during my PhD fellowship, a trip that
greatly expanded my horizon and taught me some valuable lessons. I would also like
to thank Jan Wloka for many interesting discussions, both professional and personal,
over coffee ranging from the excellent to the abysmal. I learned much from you.

My work at Norsk Regnesentral was supported by a grant from the Research Council
of Norway through the RSE-SIP project. I am grateful to the staff at the Department
of Informatics at the University of Oslo for extending my PhD contract so that I have
been able to complete my work. I would also like to thank my current employer,
Computas, for flexibility and support during the final phase of my work.

Thank you mum and dad for your endless support and understanding. You have
taught me the value of knowledge and learning, as well as the joy in working to ac-
complish something. I am proud and grateful to have been raised in that tradition.
Finally, my deepest thanks to my wonderful family — my ever-optimistic and positive
wife Line and my two amazing children Astrid and Sigurd — for filling my life with
light, laughter and love. You make every day meaningful and valuable. Thank you.

v

vi

Contents

I Overview 1

1 Introduction 3
1.1 Research Goals . 4
1.2 Summary of contributions . 4

2 Research method 7
2.1 Research on programming . 8
2.2 Narrative and relevance: Influencing programmers 8
2.3 Method: Empirical studies . 9
2.4 The research method of this thesis . 9

2.4.1 Informational phase: Informal meaning 10
2.4.2 Propositional phase: Abstract semantics 10
2.4.3 Analytical phase: Answering questions 10
2.4.4 Evaluational phase: Hypothesis testing 11

3 Problem analysis 13
3.1 A pragmatic theory of meaning . 13
3.2 Informal meaning in programs . 14
3.3 Interpretation of meaning . 15
3.4 Ambitions . 16

3.4.1 Goal G1: Name patterns . 16
3.4.2 Goal G2: Usage semantics . 17
3.4.3 Goal G3: Understanding naming 17
3.4.4 Prerequisite: Representative corpus 18

4 State of the art 21
4.1 Exploring programmer language . 21
4.2 Finding meaningful artefacts in programs 23

4.2.1 Finding patterns . 23
4.2.2 Finding clones . 24
4.2.3 Finding examples . 24

4.3 Relating names to meaningful artefacts 25

5 Contribution 27
5.1 Research goals . 27

5.1.1 Goal G1: Name patterns . 27
5.1.2 Goal G2: Usage semantics . 27
5.1.3 Goal G3: Understanding naming 28

vii

viii CONTENTS

5.1.4 Prerequisite: Representative corpus 29
5.2 Critique . 30

5.2.1 Limitations of the usage semantics model 30
5.2.2 Limitations of the corpus . 31

5.3 Conclusion . 32

Bibliography 33

II Research papers 37

6 Overview of Research Papers 39

7 Paper 1: The Programmer’s Lexicon 41
7.1 Introduction . 41
7.2 Definitions . 43

7.2.1 Preliminaries . 43
7.2.2 Distribution and entropy . 44
7.2.3 The Usage Semantics of Names 44

7.3 Approach to Name Analysis . 45
7.3.1 Restricting the Set of Names . 45
7.3.2 Describing Names . 46
7.3.3 Measuring the Precision of Names 46
7.3.4 Comparing and Relating Names 46

7.4 The Attribute Catalogue . 47
7.4.1 Critique of the Catalogue . 48

7.5 The Corpus of Java Programs . 48
7.6 Experimental Results . 50

7.6.1 Exploring Nuances with a Larger Lexicon 54
7.7 Related Work . 54
7.8 Conclusion . 55
7.A The Lexicon . 58

8 Paper 2: The Java Programmer’s Phrase Book 61
8.1 Introduction . 61
8.2 Conceptual Overview . 63

8.2.1 Programmer English . 63
8.2.2 Requirements for The Phrase Book 64
8.2.3 Approach . 64
8.2.4 Definitions . 65

8.3 Method Analysis . 66
8.3.1 Syntactic Analysis of Method Names 66
8.3.2 Semantic Analysis of Method Implementations 68
8.3.3 Phrase Semantics . 70
8.3.4 Method Delegation . 71

8.4 Engineering the phrase book . 71
8.4.1 Meeting the Requirements . 72
8.4.2 Generation Algorithm . 73

8.5 Results . 74

CONTENTS ix

8.6 Related Work . 77
8.7 Conclusion . 77

9 Paper 3: Debugging Method Names 81
9.1 Introduction . 81
9.2 Motivation . 83

9.2.1 The Java Language Game . 83
9.3 Analysis of Methods . 84

9.3.1 Definitions . 85
9.3.2 Analysing Method Names . 86
9.3.3 Analysing Method Semantics 88
9.3.4 Deriving Phrase-Specific Implementation Rules 90
9.3.5 Finding Naming Bugs . 91
9.3.6 Fixing Naming Bugs . 91

9.4 The Corpus . 92
9.5 Results . 94

9.5.1 Name Debugging in Practice . 94
9.5.2 Notable Naming Bugs . 96
9.5.3 Naming Bug Statistics . 98
9.5.4 Threats to Validity . 100

9.6 Related Work . 101
9.7 Conclusion . 102

10 Paper 4: Canonical Method Names For Java 109
10.1 Introduction . 109
10.2 Problem description . 110
10.3 Analysis of methods . 111

10.3.1 Definitions . 111
10.3.2 Semantic model . 114
10.3.3 Identifying synonyms . 116

10.4 Software corpus . 117
10.4.1 Source code generation . 119
10.4.2 Common verbs . 119
10.4.3 Unnameable cliches . 121

10.5 Addressing synonyms . 121
10.5.1 Identifying synonyms . 121
10.5.2 Eliminating synonyms . 122
10.5.3 Canonicalisation . 124

10.6 Related Work . 125
10.7 Conclusion and further work . 126

x CONTENTS

Part I

Overview

1

Chapter 1

Introduction

The limits of my language mean the limits of my world.
- Ludwig Wittgenstein.

In computer science, the world is the artificial world of the computer. This world is
shaped by humans, who use artificial languages to write programs to make it ever
more sophisticated. In this respect, Wittgenstein’s quote is especially appropriate: the
richness of the artificial world of the computer is determined by what we can express
using programming languages.

Programming languages lend much of their power from the ability to create mean-
ingful abstractions. Abstractions are useful because they allow programmers to create
a more powerful language in which they can express the solution to a problem. In
his 1998 OOPSLA keynote, Steele referred to this as growing a language [38]. In a
sense, creating meaningful abstractions is the core programmer activity. At the same
time, we don’t seem to understand it very well [41]. For instance, we lack the ability to
check whether or not an abstraction is meaningful. Indeed, we don’t even have suitable
criteria for making such claims.

Typically, abstractions are built by grouping together a sequence of instructions for
the computer (with a formal semantics in terms of the low-level operations the computer
should perform), and providing a label, a name, for that sequence of instructions. In
most conventional programming languages, the basic unit of abstraction is themethod1.
The name of a method acts as an informal semantic annotation for the implementation.
This annotation has no formal function besides acting as a lookup-mechanism: in text-
based programming languages, the method name is used to find the correct sequence
of instructions to execute. In principle, however, the annotation could have a formal
meaning enforced by the computer.

While the computer treats the method name as arbitrary in all programming lan-
guages we are aware of, we also know that it rarely is arbitrary in practice. Rather,
programmers choose as meaningful names as they can for their methods, since this is
needed for the abstractions to be sound and solid. It is very difficult indeed to read
a program without meaningful names — which is why every program obfuscator will
make sure to scramble names.

1Also: function, procedure.

3

4 CHAPTER 1. INTRODUCTION

1.1 Research Goals

The overall goal of this thesis is to show that:

The meaning of method names can be derived from programming practice.

While this is a straightforward statement of ambition, we must explore it further for
it to become truly meaningful. Indeed, all the salient terms in the statement warrant
investigation and interpretation. First, we must investigate what method names are.
Second, we must establish a theory of meaning that applies to the method names.
Third, we must provide some interpretation of what programming practice is. Finally,
we must specify what it means to derive the meaning from practice.

These considerations lead us to formulate the following research goals:

G1 Show that a significant part of method names in the real world follows patterns
that can be identified and described.

G2 Forge a link between the informal semantics indicated by method names and the
formal semantics of method implementations.

G3 Investigate key aspects of naming by inspecting how method names are applied
to implementations in practice.

These research goals presuppose that we have some way of tapping into what is
representative of programming practice in the real world. A suitable corpus of software
applications must therefore be considered a prerequisite for all the goals.

1.2 Summary of contributions

Here we summarise our contributions towards the research goals and the thesis state-
ment. We believe that the informal meaning of method names relates to the formal
semantics of implementations in such a way that we can usefully approximate the in-
formal meaning of names by analysing the implementations they represent. In order to
do so, we must build a suitable framework for analysis, gather a representative corpus
of programs to analyse, and show that by applying the analysis, we can indeed answer
interesting questions about what method names mean in terms of implementations,
and how they relate to one another.

Name patterns. We show that method names are phrases that exhibit simple gram-
matical structure — typically, a method name is a command consisting of a verb, often
followed by a noun. Furthermore, we develop a simple notation that allows us to ab-
stract over concrete method names to form name patterns. We also measure the preva-
lence of the most common patterns. We find that name patterns are useful because
they allow us to focus on the generic, domain-independent vocabulary of programmers.

1.2. SUMMARY OF CONTRIBUTIONS 5

Usage semantics. We supply a formal definition of a usage semantics for method
names. The usage semantics reflects the formal semantics of the methods implemen-
tations themselves. In other words, we root the meaning of method names in how the
methods are typically implemented. To abstract over the concrete implementations,
we use a notion of semantic profiles. This notion greatly simplifies comparison of im-
plementations and recognition of essential similarity in the face of many superficial
differences.

Understanding naming. We demonstrate the usefulness of our approach by illumi-
nating key aspects of naming. We characterise each commonly used method name by
providing an automatically generated textual description based on typical implementa-
tion features. We also measure precision and consistency in naming. Furthermore, we
identify names that are similar to each other, and mechanically detect “naming bugs”
in many Java programs.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Research method

We outlined in Chapter 1 the problem domain we want to investigate; here we consider
how the investigation should be conducted. Clearly, we would like the investigation
to qualify as scientific. However, this is non-trivial since we share Chalmers’ belief
that no universal account for science or scientific method as such can be given [7].
We nevertheless assume that some sort of scientific research method is both attainable
and desirable for the investigation. We take here the position of what Worrall calls
structural realism [43], meaning that we believe that scientific theories can capture
some essence about reality, without necessarily being “true” in the unattainable ob-
jective sense. In particular, scientific theories are suitable to describe the structural
relationships between entities. Worrall’s account of structural realism is ambiguous
with respect to the entities themselves, which could be considered beyond the grasp of
scientific inquiry, or even illusory.

Philosophically, computer science is interesting because man-made artefacts con-
stitute a major part of the field of inquiry – with man constituting the other major
part. We note three dimensions to consider when discussing computer science research:
method, narrative and relevance.

By method, we mean the way in which the researcher conducts research. In lieu of
a universally applicable approach to “scientific method”, generic frameworks or models
describing a work process for scientific conduct have been suggested [15, 37]. These
frameworks cannot by themselves guarantee proper scientific method. Rather, they
can be useful in planning research work, or to enable accounting for the “scientificity”
of the work leading to the research narrative.

By narrative, we mean the way in which the researcher embodies the research, and
conveys it to the rest of the scientific community. This is as important as the research
method itself. Russell reminds us that science is about description, not logic or causa-
tion or any other naive notion we have about necessity [33]. We must therefore consider
what scientific narrative is. Clearly, we have expectations regarding honesty, account-
ability, transparency, completeness and so forth. We also expect a certain style of
presentation, typically “fact-oriented” and without rhetorical tricks such as suggestive
language. Arguably, however, these demands can potentially act as hindrance to radi-
cally new approaches or ideas. Whereas in-paradigm research can rely on conventional
opinions and be modelled after existing papers, paradigm-breaking research may have
to convince its readers about new kinds of facts or justifications. To compensate for
this, some computer science conferences have started inviting “big idea” papers, essays
(a loosening of the requirements for scientific narrative) and so forth. The Onward!

7

8 CHAPTER 2. RESEARCH METHOD

conference series, for instance, invites papers on “not so well-proven but well-argued
ideas”. This is a direct tipping of the equilibrium away from the strictly scientific.

By relevance, we mean the degree to which the narrative is of interest to anyone
outside the scientific community. Of course, scientific work need not be relevant (useful)
in order to be valuable: this is the distinction between basic and applied research. On
the other hand, many researchers would like for their narrative to be influential in “the
real world” — whether for altruistic or egotistical motives. Hence, there is an incentive
for the researcher to make the narrative as appealing as possible to outsiders, so as
to appear relevant. The desire for perceived relevance could be in conflict with the
goal of a sober, scientific narrative, in that the researcher may be tempted to employ
rhetorical tricks to compensate for lackluster results.

2.1 Research on programming

The research topic of this thesis is programming, the activity by which we are able
to create and expand the artificial world that is the modern computer in operation.
The study of programming is often limited to research on programming languages.
Programming languages are peculiar languages, since they are devised to directly bridge
the gap between man and man-made artefact. As such, research on programming
languages is a particularly poignant example of the dual nature of computer science
research. Yet we are primarily interested in the languages as a means of programming:
we would like research on programming languages to improve the way in which we
program!

As objects for scientific inquiry, man and artefact (computer) are radically different.
Man is notoriously unpredictable, whereas the computer is designed to be deterministic.
In a sense, it is easier to do “obviously scientific work” on the computer side of the
equation. It is clearly desirable that features of a programming language are rooted in
a theoretical framework that allows for the verification of soundness and consistency.
Indeed, computer scientists have enjoyed great success by thorough investigation of the
mathematical, logical and semantic properties of language constructs, yielding great
benefits for instance in the form of unambiguous, consistent programming languages,
ever better compilers, methods for formal verification of correctness and so forth.

The human side of the equation is more problematic, since research involving hu-
mans is both difficult and expensive. But we need this research to verify — or at
least make probable — that our programming language research is indeed improving
the way we program. Otherwise, we run the risk that our innovations are intellectual
exercises with little practical value.

2.2 Narrative and relevance: Influencing program-

mers

It is common among industry practitioners to complain that computer science re-
searchers pay too little attention to “the real world”. Scientists are accused of locking
themselves up in the “ivory tower”, a somewhat derogatory term that designates a
distant place where intellectuals engage in pursuits that are disconnected from the
practical concerns of everyday life. By contrast, the same practitioners use a metaphor

2.3. METHOD: EMPIRICAL STUDIES 9

as severe as war to illustrate the harshness of the reality in which they find themselves,
speaking of “life in the trenches” and “veterans” recounting “war stories” from both
failed and successful projects.

When aiming for relevance of research, researchers must create a narrative that is
compelling enough to compete with such war stories. The primary selling point of war
stories is the credibility that stems from the real world. At the same time, war stories
are unscientific, anecdotal and suggestive by nature. They have serious shortcomings
when held against scientific standards. This indicates that learning from war stories
is problematic, that generalisation from story to principle may be unsound. Scientific
narratives in the form of research papers can compete, if they can overcome the problem
of being removed from the real world. Ironically, a research paper on programming that
is limited to toy examples suffers from similar problems as war stories: it is hard to
generalise from the results.

2.3 Method: Empirical studies

The preceding discussion indicates that empirical studies are suitable for research on
programming, both as a means to study programming as a human activity, and to
recount a scientific narrative that is relevant to practitioners. Arguably, innovation
in programming languages is arbitrary and essentially un-scientific unless it is guided
by an understanding of how programming with current languages is conducted. This
understanding can only be gained from empirical studies.

Of course, this idea is not new: in their 1975 ACM Turing Award lecture, Newell
and Simon note that computer science is an empirical discipline [29]. However, they
also note that “some of its unique forms of observation and experience do not fit a
narrow stereotype of the experimental method”. Indeed, it is both costly and difficult
to set up controlled and reproducable experiments in programming, since there are
so many contributing factors and sources of uncertainty — in particular, the human
programmers themselves. Presumably this is why, twenty years later, Tichy et al. [39]
find that computer science is still sorely lacking in the use of experiments.

However, there may be questions about programming that we seek answers to
empirically, without conducting experiments. Rather than studying the programmer
at work, we can study the artifacts he has created. This study is facilitated by the
rise of the open-source software movement, which has made available a rich and varied
“body of literature” written in programming languages. Unsurprisingly, we observe
a corresponding increased interest in research on software artifacts, in particular in
the software repository mining community. This community holds promise to fill an
arguable gap in computer science research, by enabling research on programming that
takes into account the programmer as well as the machine. In his keynote at the Mining
Software Repositories 2010 conference, James Herbsleb argued that the conference
should be ambitious enough to aim at forging a science of socio-technical behaviour.

2.4 The research method of this thesis

We discuss the research method employed in this thesis in terms of the four phases de-
scribed by Glass [15]. The phases are the informational phase (gathering of information
through reflection and/or surveys of literature), the propositional phase (proposition

10 CHAPTER 2. RESEARCH METHOD

of a model or approach), the analytical phase (exploration of the proposition) and the
evaluative phase (evaluation of analytic findings). Note that we use these phases for a
structured discussion of the research work, rather than as an absolute presentation of
the chronology of the work. In practice, the actual work was not as neatly structured
into phrases as the presentation might suggest; in particular, analytical findings would
often cause us to revise details of our proposed model.

2.4.1 Informational phase: Informal meaning

The informational phase coincided with a hermeneutical process of identifying and for-
mulating research goals. As a backdrop to our reflections, we conducted a relatively
broad survey of research papers on patterns, tools for programmer assistance, code
analysis, software artifact search, natural language programming and so forth. During
this process, the idea crystallised of investigating the relationship between the infor-
mal meaning of natural language names and the formal meaning of the programming
language constructs. Following this idea further lead to identifying a philosophy of
how meaning arises in traditional use of natural languages, and transferring this to the
realm of programming, where natural language expressions are mapped onto sequences
of programming language instructions.

2.4.2 Propositional phase: Abstract semantics

Once we knew the overall goal for our research — that is, to investigate the meaning
of method names — we ventured to create a model of programs that would facilitate
this investigation. Any model is a description of reality that highlights some aspects
while ignoring others. The essential problem that we needed to overcome was that
it is generally hard to compare programs, hard even to compare individual methods.
Furthermore, we identified the need to forge a link between the informal semantics of
method names and the formal semantics of the programming language.

In this thesis, we propose to use abstract semantics and statistical considerations
to accomplish these goals. The abstract semantics is used to capture “the essence” of
a method implementation, while filtering out “the accidental”. We use statistics to
correlate names and implementation characteristics. This is rooted in our philosophy
of how the meaning of a word arises in natural language: it simply stems from how
the word is used in practice. Hence the proposition indicates the need for a software
corpus representative of programming practice in the real world.

We therefore created a theoretical framework that ties the informal method name
semantics to the formal semantics of the method implementations themselves. The
central notion in this framework is a coarse-grained model of implementation semantics
that abstracts over the formal semantics. The salient feature of this model is that it
enables comparison between method bodies as semantic objects.

2.4.3 Analytical phase: Answering questions

The analytical phase consisted of three major parts: 1) coming up with interesting
and suitable research questions to investigate using our proposed approach, 2) creating
the software corpus to be used as data for our analyses when seeking answers to these

2.4. THE RESEARCH METHOD OF THIS THESIS 11

questions, and 3) defining and performing the actual analyses. To come up with inter-
esting research questions is easy; however, they must also be suitable for investigation
using our approach.

The availability of open-source software makes creating a software corpus easier.
However, there are still many issues to consider when creating a corpus. First, the
corpus needs to be large and diverse enough, so as to represent a reasonable cross-
section of programming practice. Second, boundaries between programs can be weak,
due to heavy use of libraries and frameworks. Care must be taken to avoid analysing
the same software artifact more than once. Third, code generation can lead to software
artifacts that are “unnatural” (that is, not representative of human programming), and
that can skew deductions about programming practice due to duplication.

Our basic approach of using abstract semantics and corpus analysis to seek answers
to research questions is common for all our research. However, what is “essential”
for a method implementation is somewhat dependent upon the actual question being
answered. For some questions, such as how to best describe a given verb in a method
name (see Chapter 7), relatively broad characterisations of implementations may be
useful — such as whether or not it is common for the implementation to contain a loop.
For other questions, such as which implementation features are improper for methods
of a given name (see Chapter 9), narrow characterisations are more appropriate —
such as whether or not the method returns an object it has created. In each paper, we
therefore tailor the abstract semantics to the questions we seek to answer.

2.4.4 Evaluational phase: Hypothesis testing

We identified the need for two levels of evaluation in our work. At the overall thesis
level, we need to evaluate the adequacy of our propositions. A model is useful to the
extent that it gives useful answers to the questions we pose. Also, we want the answers
not to be misleading. While we believe that the model has proven its capabilities
through the results presented in the research papers, we also acknowledge that it has
some limitations. In Section 5.2, we summarise our critique of the model.

At a lower level, we need to evaluate what happens when we answer the individual
questions in the various papers. In our case, this is particularly important, since
we do unsound analysis — that is, analysis that can yield false positives. Since we
deal with informal semantics, modelling something that is not formalised, implicitly
understood by programmers, we need to rely on subjective judgement when performing
this evaluation. In other words, we need a human oracle to measure the performance
of our approach.

In the individual research papers, we present our own subjective judgement of the
accuracy of our results. Where possible, we quantify the number of false positives —
however, this number is still subject to our own judgement. Unfortunately, given the
nature of the problem, we lack any objective measure with which to compare our work.

12 CHAPTER 2. RESEARCH METHOD

Chapter 3

Problem analysis

We noted in Chapter 1 that named abstractions are the building blocks used by pro-
grammers when constructing programs. Modern programming languages are typically
accompanied by a rich set of existing building blocks, in the form of application pro-
gramming interfaces (APIs) and frameworks. Programmers build their own named
abstractions on top of the pre-existing ones. In an object-oriented language like Java,
the named abstractions are methods and objects. The names act as informal annota-
tions of semantics; unimportant to the computer, but crucial to the programmer. It
is the programmer’s main defence against the overwhelming number of semantic levels
involved in programming [10]. The resulting program is a complex structure, consist-
ing of interrelated abstractions that have both formal semantics (as specified by the
programming language) and informal semantics (as indicated by the annotations or
names). The formal and informal semantics of abstractions are not independent; they
mirror each other. As programmers, we share the experience of changing a method
implementation to better suit a method name, and of updating a method name to
reflect a change in the implementation. However, the relationship between formal and
informal semantics is not well understood beyond the simple intuition that they should
somehow “harmonise”. We aim at understanding how these two layers of meaning
relate to one another.

We restrict our discussion of named abstractions to methods in the Java program-
ming language. In our perspective, the method form the cornerstone of abstraction
in programming, since it represents the smallest unit of named, aggregated behaviour.
We find it likely that the analysis that follows holds for other object-oriented languages
as well, since naming patterns and semantics are similar. For languages belonging to
different paradigms, it may have to be adjusted. However, there is a similar relation-
ship between names and implementations in functional languages as well, although the
naming patterns and semantics may be different.

3.1 A pragmatic theory of meaning

To understand the relationship between names and implementation semantics, we must
first establish a theory of how natural language expressions become meaningful in the
first place. Inspired by Wittgenstein [42], we believe that meaning derives from prac-
tice: the meaning of an expression is merely a summary of previous uses of that ex-
pression. It follows that expressions are only meaningful if they are used consistently.

13

14 CHAPTER 3. PROBLEM ANALYSIS

t1 t3

caller of m method m callee of m

* *n2 s2n1 s1 n3 s3

t2

Figure 3.1: A method acts as a focal point of meaning.

Furthermore, it is clear that we need experience with how an expression is convention-
ally used in order to meaningfully use the expression ourselves.

When we use an expression in natural language, many dimensions are at play: the
expression itself, the context in which it is used (which often includes other expres-
sions), what the user meant by the expression, and the history of previous uses of the
expression. According to Wittgenstein, it is this history that is the meaning of the
expression. This may or may not coincide with what the user really meant. It is worth
noting that in the context of programming languages, there are two ways in which we
can “use” an expression involving a method: as implementer or caller. Use-as-caller
is very similar to conventional use of expressions in natural languages. However, use-
as-implementer is interesting, because it provides us with an explicit specification of
what the user meant by the expression: the actual implementation, which has a formal
semantics. This is an alternative source of meaning for the expression, and one that
can be in harmony or conflict with the history of previous uses. (When a programmer
names an abstraction, we have an instance of use-as-implementer.)

The naming of an abstraction is really just an instance of juxtaposition of label
(the name) and semantic object (the implementation). As a consequence of the juxta-
position, the semantics of the object “rubs off” on the label that is used. Of course, a
single juxtaposition of label and object is insufficient to establish a stable link between
the two. Rather, the meaning of a label stems from consistency in juxtaposition: we
repeatedly use the same label for the same object.

3.2 Informal meaning in programs

We can use a call graph [16] as a starting point for our investigation. A call graph
is a common representation of a program, where the nodes represent methods, and
the edges represent calling relationships between methods. The method names act as
informal annotations of the semantics of a method. The call graph is an interesting
object of study for our purposes, since it exposes formal relationships between named
entities, and relates names to entities with formal semantics.

Fig. 3.1 shows how a method may act as a focal point of meaning in a call graph.
All methods m have a name n, a formal semantics s and an associated type t. In
addition, the call graph will reveal that m has a set Cr of zero-to-many callers (other
methods that call m), as well as a set Ce of zero-to-many callees (other methods called
by m). From this, we can identify all kinds of interesting relationships to investigate,
such as between n and s, between n and the names of the callers, between n and the
names of the callees, between s and the semantics of the callers, between s and the

3.3. INTERPRETATION OF MEANING 15

semantics of the callees, and so forth. These relationships are all established by method
calls present in the method implementations. Method calls are particularly interesting
for our purposes, since they represent uses of names. In addition, we note that types
serve to create another set of meaningful relationships between methods.

What is the method name? Ironically, the term method name is something of a
misnomer. In The Java Programmer’s Phrase Book (Chapter 8), we note that method
names play three quite different roles in programs: a technical role (to allow lookup
of methods), a mnemonic role (to aid human memory) and a semantic role (to reflect
implementation). The terms we use, method name and method identifier, both fail to
capture these three roles adequately. The term identifier seems to correspond to the
technical role, whereas the term name corresponds to the mnemonic role. However,
there is no term corresponding to the third role, which is the one we are most interested
in here.

We can plainly see that a method name is not simply a name, since a typical method
name has grammatical structure. Rather, a method name is a natural language phrase
that act as a description of what a method does. This description simultaneously
acts as a promise made to callers of the method. Hence there needs to be an implicit
contract of accountability in naming between programmers. In other words, the method
must hold true to its promise: do as the name indicates, and nothing else.

What is the method semantics? We have stressed the dual nature of the method
as a named abstraction, where the name acts as a promise to what the implementation
does. The implementation is quite simply the sequence of bytecode instructions found
in the method body. However, we know from the very existence of a call graph that
methods often call other methods. In an interprocedural perspective, therefore, the full
semantics of a method must recursively subsume the semantics of any callee. Hence
the promise made in the name of a method really encompasses a sub call graph with
the original method as the root.

3.3 Interpretation of meaning

Any methodm in a program lives in the intersection of force fields of meaning stemming
from the many relationships implied by Fig. 3.1: between expectations from the callers,
promises from the callees, and its own implementation. Taken together, we see a web
of meaningful relationships stemming from the call graph. The problem, then, becomes
how to interpret or make sense of this web.

Our pragmatic theory of meaning indicates some need for aggregation in order to
understand how names relate to implementations. If meaning emerges from a history
of consistently applying the same label (method name) to the same semantic object
(method semantics), then we need a way to identify instances where the same label has
been applied, as well as instances where the same semantic object has been labelled.
Furthermore, we need to be able to aggregate across programs. A single text in natural
language is insufficient to establish the conventional meaning of words in that text;
similarly, we must investigate naming across many programs to understand what the
names mean.

16 CHAPTER 3. PROBLEM ANALYSIS

N2 S3

N2 S4
N3 S4

N2 S2 N4 S5

N5 S6

N2 S2

N2 S3

N1 S1

N4 S3 N6 S4

N2 S3

N2 S4

N2 S2

N2 S2

N2 S3

N2S3

N2 S3

N2 S3

N4 S3

original set of methodsfiltered by semantics filtered by name

Figure 3.2: Selecting nodes.

We can define selectors to identify substructures in a call graph that are equal in
some respect. These selectors can be very simple or arbitrarily complex. An example
of a simple selector is one that selects methods based on a naming pattern. A more
sophisticated selector may attempt to identify design patterns in the call graph. Fig. 3.2
shows the effect of two ways of filtering or selecting groups of nodes from a graph, based
on semantics and name, respectively.

3.4 Ambitions

In Section 1.1 we presented three research goals to support our thesis statement. We
now elaborate on each research goal somewhat, and present our ambitions with respect
to each goal.

3.4.1 Goal G1: Name patterns

Underlying this thesis is the claim that method names are not arbitrary labels; they
are meaningful natural language expressions, composed of one or more words. If this
is the case, we must be able to find traces of grammatical structure in method names,
just as we do in expressions in conventional natural languages like English. Indeed,
implicitly in goal G1 is a notion that there exists a “generic” natural language used by
Java programmers when writing programs. We seek to uncover and understand this
language. This requires us to:

• Decompose the names. If method names are multiword natural language
expressions encoded in a single string of characters, we must parse and decompose
the names to recover the individual words in the expressions.

• Analyse the names. When we have recovered the individual words we must
analyse the name as a natural language expression. We should then look for

3.4. AMBITIONS 17

patterns by finding what varies and what remains stable between names.

• Abstract over names. We must provide an abstraction over method names,
so as to highlight the stable parts of method names while allowing for variation.
This will in turn enable us to express naming patterns.

• Identify name patterns. We should verify our claims by identifying, describing
and counting occurrences of naming patterns in real-world Java applications.

3.4.2 Goal G2: Usage semantics

The purpose of this goal is to enable us to capture the meaning embedded in method
names. Arguably, this is the pivotal requirement for our thesis. To forge a link be-
tween method names and implementations, we must define a formal semantics for
method names to approximate the informal meaning of method names as understood
by programmers. The definition must reflect our pragmatic view of how meaning arises
— or rather, how names accumulate meaning through use. Hence the semantics must
be a usage semantics, one that reflects how names and implementations are paired in
the real world of Java programming. In other words, we are exploiting the use-as-
implementer view as discussed in Section 3.1.

In order to be useful, the semantics we define for method names must overcome
the difficulties in comparing method implementations that arise due to accidental or
non-essential differences. We must therefore provide a suitable and flexible abstraction
over method implementations that enables us to focus on the essential attributes of
the implementations and disregard the rest.

3.4.3 Goal G3: Understanding naming

Ultimately, the usage semantics of research goal G2 is only useful if it allows us to
illuminate key aspects of the meaning of names. In particular, the approach should
prove its worth by allowing us to characterise methods with a given name, deem
whether or not an implementation is suitable for the name, identify other names that
are similar, as well as measure the precision and consistency of the name. Below we
provide rationale for each of these aspects.

Characterisation. To know what a name means, we must be able to articulate its
meaning. We note that to characterise a name implies distinguishing it from other
names. To say what something is, is also to say what it is not. Of course, we find
the same phenomenon in natural languages: when we seek to describe the meaning
of words, we must ultimately do so circularly, in terms of other words that may be
synonyms or antonyms. We aim to provide meaningful textual descriptions for all the
commonly used method names. The descriptions should be non-trivial, ring true with
Java programmers, and feel like a reasonable summary of the salient features of typical
method implementations.

Suitability. To know what a name means, we must be able to say when something
is in violation of that meaning. A violation of meaning occurs when there is con-
flict between the name and implementation of a method. In other words, the name

18 CHAPTER 3. PROBLEM ANALYSIS

and implementation should suit each other — otherwise one or the other should be
corrected. In a sense, the notion of suitability is just a different perspective on the
characterisation of a name. For each name, we can imagine a boundary between mean-
ing and not-meaning. What we think of as the meaning of a name is really just one
side of the boundary: we cannot say what something means without the backdrop of
an implicit not-meaning. We aim to associate rules for implementation with method
names, providing a clear boundary that lets us identify violations of meaning. We
should demonstrate this by finding examples where implementation rules are violated
in real-world Java applications.

Similarity. In general, an important aspect of a name’s meaning is how it relates to
the meaning of other names. Similarity is particularly interesting relationship since it
involves the degree to which the meaning of two names overlap. We should be able to
judge two method names as being similar or dissimilar, and to order names according
to similarity. For names that are very similar, another question arises: whether or not
the names can be considered to be synonymous.

Precision. Precision can be interpreted as how much meaning a name has. A precise
name tends to be implemented consistently in the same way. As such, precision is a
partial measure of the quality of a name. In general, we prefer names that are clear,
well-understood and useful. As noted by Blackwell [5], a name such as processData
is practically useless since it conveys no meaning1 — reading the name gives us no
intuition about what the method does. We aim to quantify the precision of names,
thus being able to judge whether or not a method name has a clear convention with
regards to implementation.

Consistency. Consistency of naming means applying the same label to the same
object; in other words, naming our implementations consistently. Interestingly, we
can only do so if the implementation has a precise meaning. Hence there is a duality
between precision and consistency: precision in naming requires consistency in imple-
mentation, consistency in naming requires precision in implementation. We aim to
quantify how consistently an implementation is named, and to identify implementa-
tions that are problematic in the sense that they are practically “unnameable”.

3.4.4 Prerequisite: Representative corpus

To meet our ambitions with respect to the research goals, we need a corpus of real-world
Java applications that is representative of Java programming. To be representative,
the corpus must meet requirements with respect to:

• Size. The corpus must be large enough. This is to ensure that idiosyncrasies of
individual applications are levelled out.

• Variety. The corpus must consist of applications from a wide range of domains.
This is to ensure that we cover all kinds of Java programming; there might be
stylistic or conventional differences between different types of applications.

1So-called functors or function objects are a notable exception; the convention is to give the functor
a single public method with a generic name like execute. The meaning missing from the method is
often found in the type name, however.

3.4. AMBITIONS 19

• Recognition. The corpus should consist of well-known Java applications. We
should strive to avoid obvious omissions. Well-known applications are interest-
ing because they are examples of “successful” Java programming and might be
influential with respect to naming.

We also need to address potential problems with the data in the corpus. In particu-
lar, we are sensitive to the fact that the corpus is likely to include some very commonly
used libraries. Unfortunately, there is no simple way of providing a clear boundary
around a single Java application. Measures must be taken to ensure that each library
is included only once. Code generation is another potential problem; we should take
precautions so as to diminish any negative impact of this.

20 CHAPTER 3. PROBLEM ANALYSIS

Chapter 4

State of the art

In Chapter 3, we presented the problem of how identifiers become meaningful. We
claimed that the program graph, annotated with names, is the principal object to
examine in order to understand the problem better. Using the name-annotated graph,
we will seek to bridge the gap between the programmer language we find in the natural-
language expressions encoded in the names, and the formal semantics of the program
structure. In this chapter, therefore, we survey the state of the art with respect to
exploring programmer language and finding meaningful artefacts in program structure,
as well as attempts to combine the two.

We narrow our discussion of programmer language down to the language encoded
in identifiers. Encoded in identifiers such as method names, we find natural language
expressions. In Java, the expressions are subject to some syntactic limitations; a
method name may not contain white space or punctuation, for instance. This can
sometimes cause problems, since we typically rely on punctuation (in particular quotes)
for meta expressions.

4.1 Exploring programmer language

Delorey et al. [9] note a series of developments that conspire to make it reasonable to
apply linguistic techniques to study programs: 1) the emergence of corpus linguistics
which emphasizes the study of language use based on data from written language, 2) the
increase in publicly available source code due to the open source software movement,
and 3) the advent of the software repository mining community. The authors propose
expanding the study of programming language to include not only its design and theory
but also its use by practitioners, which is in agreement with our claims in Section 2.1.

Baniassad and Myers [2] argue that a program can be seen as both the definition
and sole usage of a program-specific language. In such a view, emphasis is put on
the language-constructing activities of creating and naming abstractions. Indeed, the
naming of abstractions is simultaneously both how the basic language is extended
to suit the domain of the program, and the very means by which the program is
constructed. However, this view does not take into account intertextuality [21] between
programs written in the same programming language, and indeed between programs
written in similar programming languages. This is what allows a Java programmer
to make sense out of both Java programs written by other programmers and even
programs written in Python or C++. If we see programs as separate languages, we
fail to recognise the influence of others programs on our program. We argue that the

21

22 CHAPTER 4. STATE OF THE ART

meaning of identifiers does not stem from the implementations provided in our program
alone, but also from tradition and experience.

Liblit et al. [26] find that there is rhyme and reason to the way abstractions are
created and named. Investigating the cognitive role played by names in programs, the
authors find that names are far from arbitrary. Rather, programmers select and use
names in cognitively motivated ways. Indeed, there are underlying principles for how
abstractions are created and named. These principles are shared among programmers.
Inspired by Lakoff and Johnson [22], the authors identify common metaphors employed
by programmers, such as Methods are Actions and Methods are Mathemat-
ical Functions. The idea of conceptual metaphors shared by programmers is also
investigated by Blackwell [4]. By analysing the JavaDoc of a corpus of Java libraries, the
author finds a rich set of textual metaphors used to describe the relationships between
program entities. In this case, the analysed texts are not programs per se (although
they are technically embedded in the programs), but rather texts about programs.
Still, these texts are clearly related to the text in the programs, and the metaphors are
interesting because they relate to the elements of the programs (for instance, Com-
ponents are Agents of Action in a Causal Universe). Milner [28] makes
the interesting claim that the metaphor of a listener in event-driven programming in
Java is broken, leading to much confusion among novice programmers. According to
Milner, the metaphor is broken since implementation-wise, no-one is really listening.
Hence confusion arises from a discrepancy between metaphor and implementation — a
“naming bug” (Chapter 9), as it were. A more appropriate metaphor for event-driven
programming is subscription.

According to Biggerstaff [3], the mapping between human-oriented concepts and
implementation-oriented concepts is of critical importance for program understanding.
The author refers to this mapping as the concept assignment problem. A program is
written to accomplish some goal articulated in high-level human concepts. However, the
program accomplishes this goal indirectly — the written program is a projection into
a space of implementation concepts. The concepts used in human descriptions of the
purpose and structure of a program are qualitatively different from the concepts used
in the implementation. When reading and attempting to understand a program, the
reader must mentally reverse engineer the process of translating between the concepts.
The names of types and methods can be seen as living in the mapping space between
human-oriented and implementation-oriented concepts. This means that high-quality
names provide crucial support for the task of program understanding.

Deißenböck and Pizka [8] address the notion of identifier quality as something en-
tirely subjective and relativistic. The authors present a formal model based on bijective
mappings between concepts and names. The model is used to derive precise rules for
what constitutes concise and consistent naming. To be concise, a name should hit the
right abstraction level for the concept it represents: in other words, it should not be so
general as to be rendered meaningless, as noted by Blackwell [5]. To be consistent, there
should be a one-to-one relationship between names and concepts — in other words, no
synonyms or homonyms. The authors make no distinction between kinds of concepts:
these could be either domain-specific concepts or generic programming concepts. A
human expert is required to provide and keep up-to-date the mapping between names
and concepts. Recognising this requirement as cumbersome, Lawrie et al. [23] propose
to derive syntax-based rules for identifier conciseness and consistency instead. This
yields less precise results but nevertheless identifies genuine rule violations. Lawrie et

4.2. FINDING MEANINGFUL ARTEFACTS IN PROGRAMS 23

al. have also investigated ways of quantifying identifier quality [24] and the impact of
identifier abbreviations on program comprehension [25].

Caprile and Tonella [6] investigate the rules of function identifier structure in C
programs. As in Java method names, function identifiers in C tend to be composed
of several words. By means of iterative refinement, the authors arrive at a regular
grammar for the composition of words in function identifiers. The grammar goes
beyond simple part-of-speech tags, providing instead classifications of the roles played
by each word. In addition, the authors provide a concept lattice derived from the
individual identifiers, highlighting both important concepts and how they relate to one
another.

4.2 Finding meaningful artefacts in programs

Much research has been devoted to analysing program code with the intent of extracting
artefacts that are meaningful. The goals are typically related to the intangible and
fleeting property of quality, which we clearly want our programs to inhibit. To aid in
the quest for quality, researchers have come up with strategies for identifying partial
structures that are good (for instance design patterns), bad (for instance code clones)
or educational (for instance code examples).

4.2.1 Finding patterns

A design pattern is a well-understood and documented solution to a common pro-
gramming problem in a given context. The presence or absence of design patterns
is sometimes taken as an indicator of program quality. This view is understandable,
albeit a bit naive, as we have no guarantee that the right pattern has been applied
to the right problem in the right context. Indeed, the seminal book on design pat-
terns [13] emphasises this point strongly, noting that the application of design patterns
always involves judgement and trade-offs. Nevertheless, researchers have been fervently
investigating ways of using data mining to identify design patterns in code, arguing
that it might aid program understanding and maintenance. Dong et al. [11] present
a review of more than twenty approaches, classifying each with respect to such cri-
teria as automation degree and matching degree. One of the approaches [17] uses a
notion of fingerprints using external attributes such as number of methods, number of
supertypes and subtypes, as well as cohesion and coupling to characterise classes.

A fundamental problem with identifying design patterns in programs is that they
have no formal specifications; rather, they are blueprints for implementations. Gil and
Maman [14] introduce the notion of micro patterns, which are machine-recognizable
implementation patterns on the class level. In other words, a micro pattern can be
expressed as a formal condition on the structure of a class. In addition, the authors
demand that the patterns be purposeful, prevalent and simple. Of particular interest
to us is the notion of purpose, which indicates the meaning of the pattern — why it is
applied. The purpose is summarized in a name for the pattern. Interestingly, Singer
and Kirkham [36] investigate the correspondence between micro patterns found in Java
code with the suffixes of the corresponding class names. They find some support for
their hypothesis, that the class name suffix is often an indicator of micro patterns
exhibited by that class.

24 CHAPTER 4. STATE OF THE ART

4.2.2 Finding clones

A code clone is a set of two or more program structure fragments that are essentially
the same. Code clones are generally seen as the result of bad coding habits. The typical
example is clones that are due to “cut-and-paste” of source code from one location in
a program to another. This practice violates well-known engineering rules of thumb
in the industry, affectionately known as the DRY1 or SPOT2 principle. The reason is
that code clones can easily lead to maintenance problems: a bug must be fixed in all
instances of a clone, for example.

Researches have suggested a wide array of approaches to identify potential code
clones in programs. Roy et al. [32] present a comprehensive comparison and evaluation
of techniques and tools. The approaches are grouped into textual, lexical, syntactical
and semantic approaches. Semantics-aware approaches employ static analysis to pro-
vide more precise information than simple syntactic similarity. This involves abstract-
ing over expressions and statements that are semantically equivalent and searching for
isomorphic subgraphs in the resulting program graph.

4.2.3 Finding examples

Programs are rarely written as self-contained, isolated islands. Rather, programmers
rely on existing libraries and frameworks to provide functionality from which they can
compose their programs. Libraries and frameworks expose their functionality by means
of application programming interfaces (APIs). An API presents the programmer with
a learning curve to overcome: the programmer must somehow figure out how to use the
API to accomplish the task at hand. This process can be greatly simplified if relevant
code examples are present. Arguably, the best source for such examples is in programs
that already successfully use the API to accomplish similar tasks. Researchers have
therefor been investigating ways in which to search for relevant examples in program
repositories.

Searching for artefacts can be done in many ways. A basic distinction is between
characterising the artefact to look for itself, and characterising the context in which it
is used. An example of the former is Sourcerer, presented by Bajracharya et al. [1].
Sourcerer is a source code search engine that uses a notion of fingerprints to identify
artefacs. The fingerprints can be either control structure fingerprints, Java type fin-
gerprints or micro pattern fingerprints. In other words, Sourcerer looks for artefacts in
the program structure based on an abstraction over the implementation.

By contrast, Holmes and Murphy [18] use structural context to recommend source
code examples. Their tool, Strathcona, uses certain heuristics to match the structure
of code the programmer is writing to existing structures in a repository. Again, these
heuristics represent an abstraction over the implementation, to facilitate comparison
of program structure. The heuristics used by Strathcona include inheritance, method
calls and type usage. Rather similarly, Sahavechaphan and Claypool [34] search for
so-called “code-snippets” using a notion of code contexts. When writing method m in
class C, the code is simultaneously in a parent context (defined by the supertypes of
C) and in a type context (defined by the types referenced in m). From these contexts,
the authors derive a set of code queries, ranging from generalised to specialised. The

1Don’t Repeat Yourself [19].
2Single Point Of Truth [31].

4.3. RELATING NAMES TO MEANINGFUL ARTEFACTS 25

queries are then used to search for relevant code snippets.
Mandelin et al. [27] present a different take on the task of finding examples of

API usage. The technique can best be described as type chaining. Using an API
to accomplish something useful is cast as a transition from a source type to a target
type. The authors introduce the notion of jungloids, which are mappings from one
type to another. Simple jungloids can be mined from a repository of API usage ex-
amples. Jungloids are composable, however, so that a long chain of type transitions
can be modelled by nesting jungloids. A programmer can use the Prospector tool to
automatically synthesise code examples based on jungloids.

4.3 Relating names to meaningful artefacts

Pollock et al. [30] introduce the notion of natural language program analysis (NLPA),
which aims to exploit natural language clues found in identifier names to inform and
augment program analysis. Recognising that method identifiers tend to contain verbs
designating actions and nouns designating actors, the authors build a program model
called an action-oriented identifier graph (AOIG). This graph captures the relationships
between actions and actors as found in the identifiers. Given that names are applied
ad-hoc by programmers, NLPA is by nature unsound. Hence, it is most amenable to
problems where a certain rate of false positives and negatives are acceptable, such as
aiding in program understanding and navigation.

An interesting application of NLPA is in locating concerns that are semantically
related through some high-level concept, yet physically scattered in the source code.
Using NLPA, Shepherd et al. [35] have implemented Find-Concept, a semi-automated
concern location and comprehension tool. Of course, scattered concerns are often
discussed in the context of Aspect-Oriented Programming (AOP), which aims at im-
proving program modularisation by providing a mechanism to avoid the scattering.
Locating the concerns, then, is a prerequisite for successful application of AOP.

By itself, AOP is an example of bridging the semantic gap between the informal
yet meaningful names, and the formal semantics of the program graph. AOP works by
injecting a piece of code, known as an aspect, at certain places in the program graph, as
specified by the programmer. This is known as applying the advice at the relevant join
points. To specify the join points, the programmer must define a pointcut. In theory,
a pointcut can provide an arbitrary way of selecting join points, but in practice, some
abstraction over method names or signatures is used. In other words, the programmer
exploits the regularity or patterns in method names to directly influence the semantics
of the method. (Hence one would expect programs written using AOP to be particularly
structured with respect to naming.)

26 CHAPTER 4. STATE OF THE ART

Chapter 5

Contribution

Here we discuss the contribution of the thesis.

5.1 Research goals

We discuss the contribution in terms of the research goals that were introduced in
Section 1.1 and elaborated upon in Section 3.4. These contributions were summarised
in Section 1.2; here we provide a more detailed discussion.

5.1.1 Goal G1: Name patterns

We claim that method names are natural language expressions with grammatical struc-
ture. We see hints of this in our initial investigation in The Programmer’s Lexi-
con (Chapter 7), where we find that we can associate meaning with the leading verbs
in method names. The Java Programmer’s Phrase Book (Chapter 8) contains a much
more thorough treatment. In the latter paper we perform syntactic analysis of method
names. The analysis includes decomposing method names into individual words, part-
of-speech tagging, and developing a simple notation to express method name patterns.
The notation allows for mixing concrete words, word classes and wildcards (for instance
get-[adjective]-*, which covers method names like getLastElement). We introduce
the term Programmer English to refer to the special dialect of English found in Java
method names. We find that method names indeed exhibit grammatical structure, but
it is fairly degenerate and simple. Nearly 40% of method names have a grammatical
structure matching [verb]-[noun+] (meaning a single verb followed by one or more
nouns), whereas nearly 80% of method names can be accounted for with the top ten
grammatical structures. Most of these structures have a leading verb. The exceptions
are due to “degenerate” names such as length (where one can imagine an implicit
leading get), or converters such as to-[type].

5.1.2 Goal G2: Usage semantics

In Section 3.4.2, we specify the requirements for a formal semantics of method names.
We approach the problem of comparing method implementations by radically abstract-
ing over the method implementation. The purpose of the abstraction is to highlight the
essential aspects of the method implementations and ignore superficial differences. We
therefore introduce the notion of a semantic profile. The semantic profile for a method

27

28 CHAPTER 5. CONTRIBUTION

m is defined in terms of a set of attributes. Attributes are simple logical predicates
defined on Java bytecode. The profile can be represented as a bit string, corresponding
to evaluating each attribute on the bytecode of m in a specific order. The semantics of
a method name n is defined as the collection of the bit strings for all the methods shar-
ing the name n. Note that n is really a name pattern, rather than an actual method
name.

The essential idea of a formal semantics based on attribute-profiles is introduced in
The Programmer’s Lexicon (Chapter 7) and carried forward throughout the subsequent
papers. However, since the different papers address different aspects of naming, the
set of attributes varies somewhat. For the purposes of characterising names in The
Java Programmer’s Phrase Book (Chapter 8), for instance, we prefer a set of fairly
“broad” attributes that focus on typical behaviour. For the purposes of discovering
naming bugs in Debugging Method Names (Chapter 9), on the other hand, we find
that “narrow” attributes are useful — in order to identify particular unsuitable or
“forbidden” behaviour.

5.1.3 Goal G3: Understanding naming

In Section 3.4.3, we enumerated some key points of investigation in order to better
understand the meaning of names. Here we discuss our contributions relating to each
point.

Characterisation. The usage semantics gives us a characterisation of a group of
method implementations, and indirectly of the method name shared by such a group. In
The Programmer’s Lexicon (Chapter 7), we exploit the characterisation to mechanically
generate a textual description of methods that share the same verb. The output of
the generation is a “lexicon” containing textual descriptions of each verb commonly
used in Java programs. In The Java Programmer’s Phrase Book (Chapter 8), we
perform a more sophisticated grouping of methods based on phrases, abstract method
names that may include concrete words, word types and wildcards. We then generate
textual descriptions for each significant phrase in the vocabulary of Java programmers.
The descriptions are collected in a “phrase book”1. The phrase book is organised
hierarchically, since some phrases are specialisations of others.

Since the usage semantics is defined in terms of abstraction over the method imple-
mentations, the textual description of each name2 reflects what characterises a typical
implementation for a method with that name. Note that a meaningful characterisation
is only possible by means of comparison and contrast: we must relate the characterisa-
tion of one group of methods to other groups of methods. Hence, we find that methods
with a given name n may be, say, more inclined to fulfil some attribute a1, and less
inclined to fulfil some other attribute a2 than average. The characterisation of n, then,
stems from noting how the implementations of methods named n deviate from the
average.

Suitability. In Debugging Method Names (Chapter 9), we investigate what it means
for a name and implementation to suit each other. More precisely, we consider ill-

1The phrase book can be browsed at http://phrasebook.nr.no.
2Here name is understood abstractly, and may refer to a verb or a phrase.

5.1. RESEARCH GOALS 29

suited implementation characteristics for methods of a given name. In other words,
we focus on the not-meaning of names. Instead of textual descriptions, we generate
implementation rules based on the usage semantics for each commonly used method
phrase. A violation of an implementation rule is considered a naming bug. We use
the implementation rules to find many examples of naming bugs in well-known Java
applications. We present statistics showing the prevalence of naming bugs in the corpus
and discuss some salient examples of naming bugs in detail. We note that resolving a
naming bug requires changing either the name or the implementation. To support the
former, we propose a simple approach for automatic renaming of methods.

Similarity. In The Programmer’s Lexicon (Chapter 7), we look at similarity with the
purpose of augmenting the textual description of verbs in method names. Including
a list of similar words is common in natural language dictionaries; we do the same
in our lexicon of verbs. In our model, each method name is associated with a bag of
implementations. Intuitively, if the implementations in two bags are similar, then the
corresponding verbs/phrases hold similar meaning. In The Programmer’s Lexicon, we
use overlap of implementation cliches to identify similar names.

The investigation of similarity is taken much further in Canonical Method Names
for Java (Chapter 10), where we use similarity of implementation to identify candi-
dates for synonym unification. In Canonical Method Names for Java, we measure
similarity using a formula that includes nominal entropy and semantic entropy. This
is a more sophisticated approach that accounts for all implementations corresponding
to a name, rather than just the cliches. We use the formula to mechanically generate
a graph showing synonym candidates for the most commonly used verbs in Java. We
also generate a list of suggestions for canonicalisation of verbs through unsupervised
synonym unification.

Precision. In The Programmer’s Lexicon (Chapter 7), we introduce semantic entropy
as an inverse measure of precision (since precision is inversely proportional to semantic
entropy); it is also used in The Java Programmer’s Phrase Book (Chapter 8). As
mentioned in Section 3.4.3, precision in naming is really consistency of implementation.
Intuitively, a wide variety of implementations leads to high entropy. We associate a
number for semantic entropy with each name. Comparing entropies allows us to make
relative statements about how precise a certain name is. In The Programmer’s Lexicon,
we find that size is the most precise common verb, whereas load is the least precise.

Consistency. In Canonical Method Names for Java (Chapter 10), we are interested
in identifying methods with “unnameable semantics”. To do so, we introduce nominal
entropy as an inverse measure of consistency — a semantic object with high entropy
is inconsistently named. We interpret this to mean that the object has semantics that
cannot be given a reasonable name.

5.1.4 Prerequisite: Representative corpus

We gather a corpus aimed at satisfying the criteria of size, variety and recognition as
outlined in Section 3.4.4. The corpus consists of 100 well-known, open-source applica-
tions, frameworks and libraries written in Java. They cover a wide range of domains,

30 CHAPTER 5. CONTRIBUTION

including desktop applications, developer tools, servers, implementations of program-
ming languages, and so forth. The corpus is pruned to ensure that each class file was
only included once, using the fully qualified class name. The corpus is shared between
the papers. The only exception is Canonical Method Names for Java (Chapter 10),
where the corpus was subject to some additional filtering. The reason is that synonym
identification is a delicate task, particularly sensitive to noise in the data. We there-
fore develop a technique to mechanically identify likely instances of code generation
in a corpus of methods, and impose a limit on how many near-identical methods with
identical name a single application may contribute to the corpus. We also identify and
eliminate unnameable methods from the corpus.

5.2 Critique

During the course of working with the thesis, we identified some limitations and po-
tential issues with our approach. These are discussed below.

5.2.1 Limitations of the usage semantics model

The usage semantics model for method names is what enables our investigation into
the meaning of method names. However, it has a number of limitations.

Philosophical issues. Our pragmatic theory of meaning is inspired by Wittgenstein,
who claimed that “the meaning of a word is its use in the language” [42]. In Section 3.1
we note two interpretations of the word use: use-as-caller and use-as-implementer.
Wittgenstein’s claim relates to the former interpretation, yet in this thesis we have
chosen the latter. The reason is that natural language phrases in programming lan-
guages include an explicit specification of meaning — the method implementation.
Transferred to a conventional natural language, we can imagine each use of a phrase
followed by the statement “by which I mean...”.

Violation of encapsulation. A method name is not just a mirror of the implemen-
tation, or a terse way of stating the same thing the implementation does. It represents
an abstraction, and also a barrier: an encapsulation. Arguably, the reader of the name
should understand what the method does conceptually (which task it carries out), but
not how it does it. Defining the meaning in terms of the implementation is a glass box
approach. Arguably, it violates encapsulation by revealing implementation details.

Simplistic semantics. We provide a simplistic semantic profile for methods, based
on a crude abstraction over method implementations. With respect to the call graph
(Section 3.2), we disregard the edges (method calls), except for some attributes that
capture the existence of certain method calls. The model does not handle delegation,
neither at the semantic nor at the nominal level. This is problematic, since the seman-
tics of a method arguably subsumes the semantics of the methods it calls. A possible
solution at the semantic level would be to inline methods, in particular private meth-
ods. A possible solution at the nominal level would be to incorporate a nominal profile
for methods, so as to note which names tend to invoke which other names.

5.2. CRITIQUE 31

Subjectivity of attributes. The purpose of a semantic profile based on attributes
is to highlight the essential aspects of an implementation and ignore the non-essential
aspects. However, it is not obvious what the essential aspects are. We have chosen
to select attributes subjectively based on our own knowledge of what is significant in
implementations. This means that we may have created a flawed or imperfect abstrac-
tion of method semantics. Indeed, we would have preferred to have generated the set
of attributes mechanically. For instance, we could use some metric to mechanically
select the most appropriate attributes from a systematically constructed pool of at-
tributes. The benefit of using a metric instead of relying on subjective judgement is
that the process is more transparent. The choice of metric is nevertheless still largely
subjective, however. Even if we were to perform a triage of metrics, we would have
to make a judgement regarding which is better. We have therefore sought to provide
clear rationale for our selection of attributes instead.

Ad hoc reasoning. We have arrived at a number of formulas, threshold values,
statistical considerations and so forth to illuminate the aspects of naming we are in-
terested in. Viewed in retrospect, the formal framework we have developed has a tinge
of exploratory, ad hoc reasoning. It may have been preferable to use data mining as
an alternative approach. This would have given us a sound theoretical foundation and
well-known techniques to apply. For instance, we could train a “naming bug finder”
(confer Chapter 9) on a pre-classified set of examples3. This could potentially give
us a more targeted set of implementation rules for a given name (or phrase), since it
would not have to be constrained to a pre-defined set of attributes. However, it is
not obvious how to recast all the questions we address in this thesis as data mining
problems. Moreover, data mining would not relieve us of the problem of subjectivity,
as data mining typically occurs iteratively, involving many opportunities for subjective
choice.

5.2.2 Limitations of the corpus

We assume that the corpus is representative of real-world Java programming; that the
examples of programming practice found in the corpus represent a fair cross-section
of Java programming in general. We have made efforts to make it likely for this as-
sumption to be valid, as described in Section 5.1.4. However, there are some potential
problems with gathering a software corpus, in particular with respect to which applica-
tions to include, and how to ensure that the corpus is not polluted by code generation.

Selection of applications. We have selected a large number of well-known open
source Java applications for our corpus, covering a wide variety of domains. We did so
to create balance in the corpus, so that no domain or particular style of programming
would be dominant. However, the applications in the corpus vary significantly by size.
It is therefore a potential problem that the largest applications, such as Eclipse and
the Java SDK, will dominate.

Impurity. Code generation poses a challenge for our analysis, since it has the poten-
tial to skew the data. This could in turn lead to misrepresentation of the meaning of

3Yossi Gil made this suggestion at the ECOOP 2009 conference.

32 CHAPTER 5. CONTRIBUTION

names. Unfortunately, we are not aware of any general solution to eradicating gener-
ated code, since it is not labelled the way the compiler labels code it synthesises during
compilation. We have taken some measures to diminish the effect of code generation,
but there are probably many minor instances of code generation that we have not iden-
tified. For instance, we have made no effort to discover instances of code generation
that involve variation of name patterns. It may be that some newer approaches, such
as using the Gini coefficient to identify generated code [40], would yield better results.

5.3 Conclusion

We believe we have found substantial support for the thesis statement. Method names
are meaningful phrases in natural language, a programming-specific dialect of English
we refer to as Programmer English. The meaning of these phrases can be approxi-
mated by inspecting how they are used in practice in real-world Java programs. This
approximation in turn allows us to illuminate key aspects of naming in Java.

There is an untapped potential in exploiting the meaning of method names to
provide a better programming experience. Naming has been neglected for too long —
we see an opportunity for naming-aware programming, where the computer no longer
is allowed to ignore the names we use when programming.

At the lowest level of ambition, tools should be developed to aid programmers in
choosing appropriate names. Using ideas from this thesis, it would be easy to create
a tool to find and rectify naming bugs, for instance. One can also imagine tools to
handle automatic naming of certain cliche implementations, for instance for getters
and setters — but also for finders and creators. Conversely, tools could be used to
generate meaningful implementation stubs from method names.

A more ambitious idea is to design new programming languages that provide better
support for naming as a means of communication. The expressiveness of names is
limited due to the many roles names must play in programs [12]. Relieving names from
the role of linking program elements would allow the programmer to write phrases in a
more operative language. In such a language, verbs could be recognised as meaningful,
and nouns be linked to types as appropriate.

Finally, one could envision names as an enabling mechanism for a language that
is intrinsically self-learning — in other words, a programming language that would
become aware of its own patterns and idioms, by accumulating a history of name usage.
This would enable a notion of crowd-sourced programming, harnessing the knowledge
embedded in an ever-growing body of programs to improve ease of learning, reliability
and productivity when writing new programs. One might even imagine a market for
free or proprietary knowledge banks for programming practice by leading authorities
(that is, subscribe to the programming practice of the open-source movement, Google
or Microsoft!). This could enable reuse at a deeper, more philosophical level than
currently envisioned. A program would no longer exist in isolation, but be informed
by the wisdom embedded in its myriad of predecessors.

Bibliography

[1] S. K. Bajracharya, T. C. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. V.
Lopes. Sourcerer: A search engine for open source code supporting structure-based
search. In P. L. Tarr and W. R. Cook, editors, Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages
681–682. ACM, 2006.

[2] E. Baniassad and C. Myers. An exploration of program as language. In Proceedings
of the 24th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2009), pages 547–556, New York,
NY, USA, 2009. ACM.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The concept assignment
problem in program understanding. In Proceedings of the 15th International Con-
ference on Software Engineering (ICSE 1993), pages 482–498, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[4] A. F. Blackwell. Metaphors we program by: Space, action and society in Java. In
Proceedings of the Psychology of Programming Interest Group Conference (PPIG
2006), September 2006.

[5] A. F. Blackwell, L. Church, and T. Green. The abstract is ’an enemy’: Alterna-
tive perspectives to computational thinking. In Proceedings of the Psychology of
Programming Interest Group Conference (PPIG 2008), September 2008.

[6] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proceedings of the Sixth Working Conference on Reverse Engineering
(WCRE 1999), 6-8 October 1999, Atlanta, Georgia, USA, pages 112–122. IEEE
Computer Society, 1999.

[7] A. F. Chalmers. What is This Thing Called Science? Open University Press, 3rd
edition, 1999.

[8] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proceedings of
the 13th IEEE International Workshop on Program Comprehension (IWPC 2005),
pages 97–106. IEEE Computer Society, 2005.

[9] D. P. Delorey, C. D. Knutson, and M. Davies. Mining programming language
vocabularies from source code. In Proceedings of the Psychology of Programming
Interest Group Conference (PPIG 2009), June 2009.

33

34 BIBLIOGRAPHY

[10] E. W. Dijkstra. On the cruelty of really teaching computing science. http:

//www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF, December 1988.

[11] J. Dong, Y. Zhao, and T. Peng. A review of design pattern mining tech-
niques. International Journal of Software Engineering and Knowledge Engineer-
ing, 19(6):823–855, 2009.

[12] J. Edwards. Subtext: Uncovering the simplicity of programming. In Johnson and
Gabriel [20], pages 505–518.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, 1995.

[14] J. Gil and I. Maman. Micro patterns in Java code. In Johnson and Gabriel [20],
pages 97–116.

[15] R. L. Glass. A structure-based critique of contemporary computing research.
Journal of Systems and Software, 28(1):3–7, 1995.

[16] D. Grove and C. Chambers. A framework for call graph construction algo-
rithms. ACM Transactions on Programming Languages and Systems (TOPLAS),
23(6):685–746, 2001.

[17] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi. Fingerprinting design patterns.
In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE
2004), pages 172–181, Washington, DC, USA, 2004. IEEE Computer Society.

[18] R. Holmes and G. C. Murphy. Using structural context to recommend source
code examples. In G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors, 27th
International Conference on Software Engineering (ICSE 2005), 15-21 May 2005,
St. Louis, Missouri, USA, pages 117–125. ACM, 2005.

[19] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, 1999.

[20] R. E. Johnson and R. P. Gabriel, editors. Proceedings of the 20th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2005), October 16-20, 2005, San Diego, CA, USA. ACM, 2005.

[21] J. Kristeva. Desire in Language: A Semiotic Approach to Literature and Art.
Columbia University Press, New York, 1980.

[22] G. Lakoff and M. Johnson. Metaphors we Live by. University of Chicago Press,
Chicago, 1980.

[23] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier conciseness and consis-
tency. In Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2006), 27-29 September 2006, Philadelphia,
Pennsylvania, USA, pages 139–148. IEEE Computer Society, 2006.

[24] D. Lawrie, H. Feild, and D. Binkley. Quantifying identifier quality: An analysis of
trends. Journal of Empirical Software Engineering, 12(4):359–388, August 2007.

BIBLIOGRAPHY 35

[25] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study
of identifiers. In Proceedings of the 14th International Conference on Program
Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages 3–12. IEEE
Computer Society, 2006.

[26] B. Liblit, A. Begel, and E. Sweeser. Cognitive perspectives on the role of naming in
computer programs. In Proceedings of the 18th Annual Psychology of Programming
Workshop, Sussex, United Kingdom, September 2006. Psychology of Programming
Interest Group.

[27] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining: Helping to
navigate the API jungle. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation (PLDI 2005), pages 48–61,
New York, NY, USA, 2005.

[28] W. W. Milner. A broken metaphor in Java. ACM SIGCSE Bulletin, 41(4):76–77,
2009.

[29] A. Newell and H. A. Simon. Computer science as empirical inquiry: symbols and
search. Communications of the ACM, 19(3):113–126, 1976.

[30] L. L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and K. Maloor.
Introducing natural language program analysis. In M. Das and D. Grossman,
editors, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2007), San Diego, Califor-
nia, USA, June 13-14, 2007, pages 15–16. ACM, 2007.

[31] E. S. Raymond. The Art of UNIX Programming. Addison-Wesley, 2003.

[32] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, 2009.

[33] B. Russell. Mysticism and Logic: And Other Essays. Cornell University Library,
2009.

[34] N. Sahavechaphan and K. Claypool. XSnippet: Mining for sample code. In
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006), October
22-26, 2006, Portland, Oregon, USA, pages 413–430. ACM, 2006.

[35] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns. In
Proceedings of the 6th international conference on Aspect-oriented software devel-
opment (AOSD 2007), pages 212–224, New York, NY, USA, 2007. ACM.

[36] J. Singer and C. Kirkham. Exploiting the correspondence between micro patterns
and class names. In Proceedings of the 8th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2008), pages 67–76, Beijing,
China, 2008. IEEE Computer Society.

36 BIBLIOGRAPHY

[37] I. Solheim and K. Stølen. Technology research explained. Technical report, SIN-
TEF, 2007.

[38] G. L. Steele Jr. Growing a language. Higher-Order and Symbolic Computation,
12(3):221–236, 1999. Original OOPSLA 1998 keynote: http://video.google.

com/videoplay?docid=-8860158196198824415.

[39] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. Experimental evaluation
in computer science: A quantitative study. Journal of Systems and Software,
28(1):9–18, 1995.

[40] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz. Comparative analysis of evolv-
ing software systems using the Gini coefficient. In Proceedings of the 25th IEEE
International Conference on Software Maintenance (ICSM 2009), September 20-
26, 2009, Edmonton, Alberta, Canada, pages 179–188. IEEE, 2009.

[41] S. Wagner and F. Deißenböck. Abstractness, specificity, and complexity in software
design. In Proceedings of the 2nd international workshop on the role of abstraction
in software engineering (ROA 2008), pages 35–42, New York, NY, USA, 2008.
ACM.

[42] L. Wittgenstein. Philosophical Investigations. Prentice Hall, 1973.

[43] J. Worrall. Structural realism: The best of both worlds? In M. Lange, editor,
Philosophy of Science: An anthology, pages 262–279. Wiley-Blackwell, 2006.

Part II

Research papers

37

Chapter 6

Overview of Research Papers

Paper 1: The Programmer’s Lexicon, Vol I: The

Verbs

Authors: Einar W. Høst and Bjarte M. Østvold.
Publication: In Proceedings of the Seventh IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2007), pages 193–202, IEEE Com-
puter Society, 2007.
My contribution: Approximately 90%. The paper is the result of my work under
the supervision of Bjarte M. Østvold. I have done the analysis and implementation,
and written practically all text.
Comment: We introduce the usage semantics for method names. For simplicity, we
abstract away everything but the leading verb of the names. We generate a textual
description for each verb, including salient features of a typical implementation, a
measure of its precision and a list of similar verbs.

Paper 2: The Java Programmer’s Phrase Book

Authors: Einar W. Høst and Bjarte M. Østvold.
Publication: In Proceedings of the 1st International Conference on Software Language
Engineering (SLE 2008), pages 322–341, Lecture Notes in Computer Science, Springer,
2008.
My contribution: Approximately 90%. The paper is the result of my work under
the supervision of Bjarte M. Østvold. I have done the analysis and implementation,
and written practically all text.
Comment: We refine our analysis of method names patterns greatly. We decompose
the names into phrases and perform part-of-speech tagging on the individual words.
For each commonly used method phrase, we generate a textual description.

Paper 3: Debugging Method Names

Authors: Einar W. Høst and Bjarte M. Østvold.
Publication: In Proceedings of the 23rd European Conference on Object-Oriented
Programming (ECOOP 2009), pages 219–317, Lecture Notes in Computer Science,

39

40 CHAPTER 6. OVERVIEW OF RESEARCH PAPERS

Springer, 2009.
My contribution: Approximately 90%. The paper is the result of my work under
the supervision of Bjarte M. Østvold. I have done the analysis and implementation,
and written practically all text.
Comment: We generate implementation rules rather than descriptions. We use the
rules to find mismatches between names and implementations — such mismatches are
considered naming bugs. The paper was awarded one of two best paper awards at
ECOOP 2009.

Paper 4: Canonical Method Names for Java

Authors: Einar W. Høst and Bjarte M. Østvold.
Publication: To appear in Proceedings of the 3rd International Conference on Soft-
ware Language Engineering (SLE 2010).
My contribution: Approximately 90%. The paper is the result of my work under
the supervision of Bjarte M. Østvold. I have done the analysis and implementation,
and written practically all text.
Comment: We use usage semantics and entropy considerations to identify candidates
for synonym unification.

Chapter 7

Paper 1: The Programmer’s
Lexicon, Volume I: The Verbs

Method names make or break abstractions: good ones communicate the
intention of the method, whereas bad ones cause confusion and frustration.
The task of naming is subject to the whims and idiosyncracies of the in-
dividual since programmers have little to guide them except their personal
experience. By analysing method implementations taken from a corpus of
Java applications, we establish the meaning of verbs in method names based
on actual use. The result is an automatically generated, domain-neutral lex-
icon of verbs, similar to a natural language dictionary, that represents the
common usages of many programmers.

7.1 Introduction

At the heart of programming is abstraction, the creation and naming of a set of be-
haviours — an implementation — to form an aggregated behaviour that can be invoked
by referring to the name. The wonderful thing about abstraction is that it scales: we
can build new abstractions using those we have previously created. The crucial part of
abstraction is to have the name reflect the semantics of the implementation. Failure in
this regard is catastrophic, as a single faulty abstraction contaminates all abstractions
built on top of it.

We conclude that the problem of naming is vital to the task of programming. The
programmer must constantly ask of herself:

• What names should I use?

• Is this a good name for the behaviour?

• Will other programmers understand the meaning of this name?

• How can I be sure that I’ve used a name correctly?

If we were dealing with words in natural language, we might consult a dictionary to
help answer these questions. Lacking such a tool, we turn instead to the implementation
that the name is supposed to represent. Consider, for instance, the following simple
Java method, where the name has been omitted:

41

42 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

Person ___() {
return p;

}

In spite of the missing name, we immediately notice that it is a getter, that is, a method
whose name should start with get, and which returns the value of a local field.

Adding a parameter and a loop, we get:

Person ___(String id) {
for (Person p : persons) {

if (p.getID().equals(id)) {
return p;

}
}
return null;

}

Now we would consider it sloppy naming, if not downright wrong, if the method name
started with get ; here we are clearly trying to find something.

While trivial, these examples illustrate something important: there are clues in
the implementation that can be used to indicate whether or not a name is suitable.
This leads us to formulate the problem investigated in this paper: Can we create a
semantics which captures our common interpretation of method names?

The essence of our approach is to encode the implementation of a method by means
of semantic attributes ; properties that a given implementation may or may not possess.
A simple example is whether or not the implementation contains a loop. This encoding
can then be used to characterise the name of the method, by aggregating all the
encodings that share the same name. The characterisation constitutes a sort of “usage
semantics” for the method name. Clearly, this is radically different from the formal
semantics of the program itself. In a sense, it is the difference between the semantics of
the informal programmer language on one hand and the formal programming language
on the other.

For simplicity, we consider only the domain-neutral, action-oriented initial part of
a Java method name. Typically, this is a verb. Hence, if the full method name is
findPersonByID, we abstract the name to be simply find. In other words, we investi-
gate the properties of getters, setters, finders, closers, adders and so forth. These names
indicate the basic actions performed by Java methods. By linking these verbs to the
attributes of the method implementations, we are able to create the missing dictionary
of “programmer English”. We call this dictionary The Programmer’s Lexicon.

The contributions of this paper are:

• A set of attributes, defined on Java byte code, that can be used to characterise
the implementation of a method (Section 7.4).

• A definition of the usage semantics of a name by means of the distribution of
attribute-value combinations in a corpus (Section 7.2.3), establishing a formal
relationship between method names and implementations.

• A measure for the precision of a name in programmer English (Section 7.3.3),
based on a notion of entropy related to the semantics.

7.2. DEFINITIONS 43

• A technique for comparing names, based on comparing their semantics (Sec-
tion 7.3.4).

We use our techniques to analyse a large software corpus (Section 7.5), and explain
the results by investigating some notable examples (Section 7.6).

The contributions are manifest in The Programmer’s Lexicon, an automatically
generated description of domain-neutral verbs often used in Java programming. The
lexicon can be found in the appendix.

7.2 Definitions

7.2.1 Preliminaries

An attribute has an attribute name a and a binary value b, that is, the value is 0 or
1. For simplicity, we consider an attribute and its name as the same. An object o has
three features: two symbols and a set of attributes a1, . . . , am with values v1, . . . , vm.
The symbols are a unique fingerprint u and a name n. We use fingerprints for technical
purposes and never consider their actual values. Unique fingerprints ensure that a set
made from arbitrary objects o1, . . . , ok always has k elements, that is, they prevent
that several set elements collapse into one.

A corpus C is a set of objects with the same attributes. We sometimes leave C
implicit when there is no risk of confusion. There are two fundamental ways of dividing
a corpus into parts: group objects with the same name together, or group objects with
the same attribute values together. We need both.

7.2.1.1 Objects with same name

The n-corpus of C, denoted C(n), is the set of all objects from corpus C that have the
same name n. The cardinality of name n in C, denoted |n|C, is defined as follows:

|n|C def
= |C(n)|

where |C(n)| is the cardinality of set C(n). The relative frequency of an attribute a
with respect to a name n, denoted ξa(n), is the fraction of objects in C(n) that has
attribute a set to value 1.1

7.2.1.2 Objects with same attribute values

If two objects o, o′ have the same values for all attributes we say that they are attribute-
value identical, denoted o � o′. Note that this relation ignores the fingerprint and name
of an object. Using relation � we can divide a corpus C into a set of equivalence classes
EC(C) = [o1]C, . . . , [ok]C, where [o]C is defined as:

[o]C
def
= {o′ ∈ C | o′ � o}.

We simplify the notation to [o] when there can be no confusion about the interpretation
of C.

1Gil and Maman call ξa(n) the prevalence of ‘pattern’ a [5].

44 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

By definition the equivalence classes of a corpus are disjoint — each object belongs
to exactly one equivalence class. The cardinality |[o]C| is the number of distinct ob-
jects in C that are equivalent to o by relation �. The sum of the cardinalities of the
equivalence classes equals the cardinality of C,

|[o1]| + · · · + |[ok]| = |C|.

7.2.2 Distribution and entropy

We repeat some information-theoretical concepts related to entropy [2]. Let X be
a discrete random variable with alphabet χ and probability mass function p(x) =
Pr{X = x}, x ∈ χ. Since a) for all i = 1, . . . , k it holds that 0 ≤ p(xi) ≤ 1; and b)∑k

i=1 p(xi) = 1, we have that p(x1), . . . , p(xk) form a probability distribution.
The Shannon entropy H of X can then be defined as:

H(X)
def
= −

∑
x∈χ

p(x) log2 p(x)

where we assume 0 log2 0 = 0.
The entropy of a distribution measures the uncertainty of a random variable having

that distribution. Alternatively, it measures the expected number of bits required to
represent an event from the distribution.

Next we define the entropy of a corpus, and based on this, the entropy of a name.
Let the probability mass function p([o]) of corpus C be defined as

p([o])
def
=

|[o]|
|C| , [o] ∈ EC(C).

By the definitions of [o] and cardinality, it follows that a corpus has a probability
distribution p([o1]), . . . , p([ok]). Thus we can define the entropy of corpus C as

H(C)
def
= H

(
p([o1]

)
, . . . , p([ok])

)
.

Since C(n) also has a probability distribution, we have that a name has an entropy,
denoted H(n), defined as the entropy of C(n),

H(n)
def
= H

(C(n)
)
.

7.2.3 The Usage Semantics of Names

We define the usage semantics of a name n, written �n�, in terms of C(n) as follows:

�n�
def
=

{
([o], |[o]|) ∣∣ [o] ∈ EC(C(n))

}
,

where ([o], |[o]|) is the pair consisting of the equivalence class [o] and the cardinality of
that class.

Thus �n� reflects all the ways in which n is used in C(n), as well as the number
of times it is used in each way. We can visualise �n� by drawing a vertical bar for
each equivalence class [o] in the probability distribution of C(n). We refer to this
visualisation as the distribution diagram for n (see Section 7.6).

7.3. APPROACH TO NAME ANALYSIS 45

Finally, we define a function S that yields a set of equivalence classes which each
cover at least a fraction q of the objects in C(n):

S(n, q)
def
=

{
([o], |[o]|) ∣∣ ([o], |[o]|) ∈ �n� ∧ p([o]) ≥ q}

We call this a spike set. It has a straightforward interpretation in light of distribution
diagrams, in that the most prominent equivalence classes reveal themselves as spikes
in the diagrams.

7.3 Approach to Name Analysis

The names we consider in this paper are abstractions of the real method names used in
Java programs. The aim is to capture the essence of the common names — typically
verbs — used to denote the actions performed by Java methods. For instance, the
concrete method names open, openConnection and openFile will all be considered
instances of the abstract name open. Hence a name is an abstraction that will typically
represent many concrete methods.

We investigate the name abstraction by looking at what is being abstracted; that is,
we distil information from analysing the implementation of each method. In doing so,
we apply a corpus-based usage semantics for names, in that the meaning is determined
by the actual use of the name in a large software corpus. This is similar to how the
semantics of words in natural language is established.

Of particular interest to us is the precision of the name, that is, how clearly the
abstraction indicates the semantic content of the method, a description of the name,
that is, what the typical semantic content is, and a comparison of the name to other
names, in particular to find names that are similar or related in some way.

A problem not addressed in our current work is that of polysemy : the same name
may have more than one meaning. If present, polysemy will manifest itself indirectly
as lowered precision in the characterisation of the name, as well as a potentially skewed
description of the name itself.

7.3.1 Restricting the Set of Names

Since the set of names used in programming is potentially unbounded, we device an
algorithm for establishing the set of common names based on all the names in the
corpus.

To ameliorate the effect of any idiosyncracies in large software projects (for instance,
Sun’s Java API), we sort the corpus of applications alphabetically, mechanically divide
it into k subcorpora, and choose the n most frequent names in each subcorpus. Con-
structing the intersection of the k sets yields a set of N names, where |N | ≤ n. This
is the set of common names. The set of objects with common names is denoted Ccom .
We use this set as the data material from which we establish semantic similarities and
dissimilarities.

For the sake of brevity, we focus our investigation on a subset of the m < |N |
most frequent among the common names. This is the set of names presented in The
Programmer’s Lexicon. We write Clex for the corresponding corpus of objects.

46 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

Percentile Group name
< 5% Low extreme
< 25% Low
25% - 75% Unlabelled
> 75% High
> 95% High extreme

Table 7.1: Quantile groups for attribute values.

The concrete values used in our analysis are k = 5 subcorpora with n = 150
candidate names from each subcorpus, yielding |N | = 100 common names. The number
of names in the lexicon is restricted to m = 40.

7.3.2 Describing Names

As is the case for natural language, it makes little sense to describe a name in isolation;
a symbol requires the contrast of other symbols to become meaningful. We therefore
wish to say that the relative frequency of an attribute on a name, ξa(n), is high or low
compared to that of all other names.

For a given attribute a, the relative frequencies ξa(n)i for all names ni ∈ N are
distributed within the boundaries 0 ≤ ξa(n)i ≤ 1. We divide this distribution into five
named groups, based on the 5%, 25%, 75% and 95% percentiles of relative frequencies,
as shown in Table 7.1. Each name then becomes associated with a certain group for a,
depending on the value for ξa(n): the 5% of names with the lowest relative frequencies
end up in the “low extreme” group, and so forth.

Taken together, the group memberships for attributes ai, . . . , ak becomes an ab-
stract characterisation of a name, which can be used to generate a description of it.

7.3.3 Measuring the Precision of Names

Intuitively, precision denotes how consistently a name refers to the same thing or
combination of things. In our context, this translates to attribute value combinations.
If a name n tends to indicate the same combinations of values for the objects in C(n),
we think of it as precise. In other words, the more dependent the attributes are on
each other for a name n, the more precise n is.

Since entropy is a measure of how independent the attributes are, we can use entropy
to measure the precision of each name. A precise name has a low degree of entropy,
an imprecise name a high degree. However, low and high are relative notions; hence,
a name can only be precise or imprecise compared to other names. We therefore base
our characterisation on quartiles: the names with entropy in the lowest quartile are
deemed precise, in the highest quartile imprecise.

7.3.4 Comparing and Relating Names

A basic assumption for our work is that no name is completely arbitrary or impre-
cise. For any name, then, some equivalence classes will consist of more objects than
others. These equivalence classes can be thought of as the distinguishing traits of the

7.4. THE ATTRIBUTE CATALOGUE 47

Name Formal definition
Returns void The return descriptor is V.
No parameters The list of parameter descriptors is empty.
Field reader GETFIELD or GETSTATIC instruction.
Field writer PUTFIELD or PUTSTATIC instruction.
Contains loop Jump instructions that allow for instructions to be executed

more than once in the same method invocation.
Creates object NEW instruction.
Throws exception ATHROW instruction.
Type manipulator INSTANCEOF or CHECKCAST instruction.
Local assignment One of the STORE instructions (for instance, ISTORE).
Same name call Calls a method of the same name.

Table 7.2: The attribute catalogue.

name. We exploit this fact to compare individual names, with the aim of characterising
the relationship between them. This allows us to conveniently ignore inevitable varia-
tions in precision and nuance between names, and focus on the essential similarities or
differences.

We use the spike sets S(n1, q) and S(n2, q) (see Section 7.2.3) to characterise two
names n1 and n2 as being:

• Similar, in which case S(n1, q) = S(n2, q).

• Generalisations or specialisations of each other. We say that n1 generalises n2

(and, conversely, that n2 specialises n1) if S(n1, q) ⊂ S(n2, q).

• Somewhat related, when S(n1, q) ∩ S(n2, q) 	= ∅.

The value for q must be set based on human judgement — we simply choose the
value that seems to yield the best results: q = 0.1.

7.4 The Attribute Catalogue

Gil and Maman [5] define the term traceable pattern as “a simple formal condition on
the attributes, types, name and body of a software module and its components.” Here
formal means that a program can check if a module matches a pattern or not. The term
module includes packages, classes, methods, procedures, and fragments of code, code
attributes or names. Design patterns [4] are not traceable: they cannot be recognised
mechanically. A traceable pattern on a method or procedure is called a nano pattern.

We do not propose nano patterns here; rather, we define a set of traceable attributes
that could be used as building blocks for creating such patterns. An attribute is trace-
able if its value can be determined mechanically. We also require that the attributes
be independent, in the sense that the value of an attribute cannot be derived logically
from another.

We define our attributes in terms of formal conditions on the byte code. We have
chosen to analyse byte code because it is easily available both for open source and

48 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

commercial applications, and because we are then guaranteed to analyse the actual
code that runs.

The attributes are listed in Table 7.2. For explanations of the terms used in the
formal definitions, see Lindholm and Yellin [8]. The selection is based on our expe-
rience as Java programmers. The attributes are meant to indicate the basic, generic
behaviours of a method implementation. For instance, field writer indicates that the
method alters the state of an object, same name call hints at recursion or delegation,
and so forth.

7.4.1 Critique of the Catalogue

Our current choice of attributes is somewhat arbitrary, in the sense that it rests on
our intuitions about what distinguishes methods from each other. A more structured
approach would be to use the marginal entropy [5] of individual attributes to select
from a pool of candidate attributes those that provide the best separation power. That
way, we would rely less on our own preconceptions.

Furthermore, the quality of attributes is limited by the sophistication of our cur-
rent analysis. Using simple data flow analysis [9], for instance, we could define more
poignant attributes such as “return value stems from field”, or “parameter value is
written to field”.

7.5 The Corpus of Java Programs

We introduce some informal terms to aid in the discussion of our data set. By applica-
tion we mean a compiled Java application having an intended use. Applications may
range widely in domain and complexity, from the lithe JUnit testing framework to the
massive JBoss Application Server. A software collection is a set of applications. A
corpus is large collection chosen deliberately to cover a spectrum of intended purposes,
to ensure that it is representative of all kinds of applications.

We had two main goals when gathering applications for the software corpus: we
wanted it to be as large as possible, and we wanted it to consist of applications that
are commonplace or well-known.

We identified several groups of applications to help balance the corpus, and to
make sure it covered a wide range of domains: desktop applications, programmer tools,
languages, language tools, middleware, servers, software development kits, XML tools
and common utilities. Note that this grouping was not intended to be an exhaustive
taxonomy for applications, but rather to act as a skeleton to span the extent of our
corpus. The resulting list of applications is presented in Table 7.3.

Since applications are rarely built from scratch, they often contain dependencies
upon other bits and pieces of software, ranging from applications to libraries to indi-
vidual class files. Hence, the corpus is littered with all kinds of additional applications
that we did not originally plan to include.

In principle, we would like to identify, separate and label all the different appli-
cations in the corpus. In practice, this task is infeasible due to the multitude of
applications and versions, and the myriad ways they can be combined and intertwined.
Instead, we chose to eliminate JAR files that contained many classes that collide with
classes in other JAR files, that is, when the classes had the same fully qualified name.

7.5. THE CORPUS OF JAVA PROGRAMS 49

Applications
Desktop applications
ArgoUML 0.24 JEdit 4.3
Azureus 2.5.0 LimeWire 4.12.11
BlueJ 2.1.3 NetBeans 5.5
Eclipse 2.3.1 Poseidon CE 5.0.1
Programmer tools
Ant 1.7.0 FitNesse
Cactus 1.7.2 JUnit 4.2
Cobertura 1.8 Maven 2.0.4
CruiseControl 2.6 Velocity 1.4
Languages
BeanShell 2.0b Jython 2.2b1
Groovy 1.0 Kawa 1.9.1
JRuby 0.9.2 Rhino 1.6r5
Language tools
ANTLR 2.7.6 MJC 1.3.2
ASM 2.2.3 JavaCC 4.0
AspectJ 1.5.3 Polyglot 2.1.0
BCEL 5.2
Middleware and frameworks
AXIS 1.4 PicoContainer 1.3
Jini 2.1 Spring 2.0.2
JXTA 2.4.1 Struts 2.0.1
OpenJMS 0.7.7a Tapestry 4.0.2
Mule 1.3.3
Servers
Geronimo 1.1.1 Jetty 6.1.1
James 2.3.0 JOnAS 4.8.4
JBoss 4.0.5 Tomcat 6.0.7b
Software development kits
Google Web Toolkit 1.3.3 Java 6 SDK
Java 5 EE SDK Sun Wireless Toolkit 2.5
XML tools
Castor 1.1 Xerces-J 2.9.0
JDOM 1.0 XOM 1.1
Saxon 8.8
Common utilities
Hibernate 3.2.1 Log4J 1.2.14

Table 7.3: Original list of corpus applications.

50 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

The pruned corpus contains:

• 1004 JAR files

• 190572 class files

• 1384205 non-constructor methods

• 157779 omitted methods

• 1226426 included methods

We enforce rather strict qualifications for the methods to be included in the corpus.
In addition to ignoring constructors, we also omit all synthetic methods. Furthermore,
we demand that method names follow the standard camel-case convention for Java,
use letters or digits only, and consist of more than a single character. For instance, the
method name getParser() is included, whereas get parser(), getParser$1() and
f() are all omitted. The primary rationale for this strictness is that the camel-case
convention is so well-established and well-known that we consider it a sign of noise
when it is not followed. For instance, it might indicate that the code was generated.

7.6 Experimental Results

We perform a fully automated analysis of the software corpus. The output of our
analysis is summarised in The Programmer’s Lexicon, printed in the appendix.

As an example illustrating both how the lexicon is constructed and how to read
it, we look at the name get and its closest neighbours semantically. Note that the
observations we make merely mimic those made mechanically by our analysis software.
The name get is interesting because it is by far the most common one; nearly a third
of all Java methods in the corpus are get-methods.

The Programmer’s Lexicon defines get as follows:

get. The most common method name. Methods named get often read state
and have no parameters, and rarely return void, call methods of the same name,
manipulate state, use local variables or contain loops. A similar name is has.
Specialisations of get are is and size. A somewhat related name is hash.

A Java programmer should not be very surprised by this description: get methods
tend to be short and simple functions that read object state. That methods starting
with the name has, is, size and hash fit more or less the same description also matches
intuition.

The entry for each name is generated by combining several pieces of information; the
frequency and entropy of the name, an account of how its usage semantics compare to
that of other names, and the spikes showing the most common attribute combinations
for the name.

The description of the characteristics of methods with a given name is based on
how the relative frequencies of attributes compare to methods with other names in the
same corpus. For instance, get has a relative frequency of approximately 0.694 for the
no parameters attribute. The distribution plot in Figure 7.1 shows how this compares
to other names. Each dot represents one of the common names. We can see that 0.694

7.6. EXPERIMENTAL RESULTS 51

0

0.2

0.4

0.6

0.8

1

N=100

Figure 7.1: Distribution of relative frequencies for the no parameters attribute.

places get between the 75% and 95% percentiles, which leads us to characterise its
score as high, see Table 7.1. For a mapping between quantile groups and the words
used in the lexicon, see Table 7.5. It turns out that get has no attribute frequencies in
the extremal groups.

Some significant entropy values are listed in Table 7.4. We see that get has a higher
degree of entropy than we might have anticipated. This implies that get-methods
are not always simple field-retriever functions. Investigating the table a bit further,
we notice that there are names such as load, with greater entropy than the corpus
as a whole. The reason is that the entropy of the corpus is dominated by the most
common names; again, nearly a third of all methods are getters. Apart from that, the
most surprising entry is that of parse, which appears to be much more precise than
we would have guessed. The explanation is that the Apache XmlBeans project, which
is distributed as part of Geronimo, contributes more than 3000 near-identical parse
methods. Presumably these have been generated. Unfortunately, there is no simple
way to automatically discover generated code.

For each name n, we visualise the probability distribution for C(n) by means of a
distribution diagram. The height of each vertical bar is p([o]), meaning that the y-axis
signifies the fraction of objects belonging to an equivalence class. Since we use ten
binary attributes, we have 210 equivalence classes, yielding a resolution of 1024 on the
x-axis.

Figure 7.2 shows the distributions for get and its semantic neighbours2. For clarity,
the relationship between the names is also illustrated in Figure 7.3, where similar names
are connected with a bold line, specialisations point to generalisations, and somewhat
related names are connected with a dotted line.

Recall that an equivalence class is included in the spike set S(n, q) for a name n if

2Except is, which is omitted because it resembles size.

52 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

0 128 256 384 512 640 768 896 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) get

0 128 256 384 512 640 768 896 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) has

0 128 256 384 512 640 768 896 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) size

0 128 256 384 512 640 768 896 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d) hash

Figure 7.2: Distribution of get and its semantic neighbours.

7.6. EXPERIMENTAL RESULTS 53

Corpus Entropy Comment
C 6.8893 All names
Ccom 6.7591 Common names
Clex 6.5931 Lexicon names
C(size) 2.5343 Most precise name
C(load) 7.4798 Least precise name
C(get) 4.9966 Most common name
C(hash) 3.5616
C(has) 4.1766
C(is) 4.2318
C(parse) 3.6886 Suspiciously low

Table 7.4: Significant entropy values.

has

get

hash

size

is

Figure 7.3: The relationships between get and associated names.

54 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

it accounts for at least a fraction q = 0.1 of the objects in C(n). As we can see from
Figures 7.2a and 7.2b, the spikes of get and has that are higher than 0.1 correspond
perfectly. This leads us to label the names as “similar”.

Figure 7.2c, on the other hand, reveals that size has a spike that get does not,
but not vice versa. The spike indicates a significant, specialised use; hence size is a
specialisation of get. The additional spike for size, at position x = 580, represents a
group of methods that read state, have no parameters, and also call other methods
named size. This matches our intuition of what a size method might look like, and it
also makes sense that get methods are not like that.

Finally, the lexicon entry says that get is somewhat related to hash. This stems
from the fact that they have a spike in common (where only the attributes reads state
and no parameters are set), but also that they both have spikes that are not shared by
the other. To see this requires a little scrutiny of Figures 7.2a and 7.2d. The bar at
position x = 512 for get represents 10.8% of all getters, whereas the corresponding bar
for hash represents merely 3.1% of hash methods. It is more obvious that hash has at
least one spike not shared by get ; namely, a spike at position x = 580 similar to the
one that differentiates size from get.

7.6.1 Exploring Nuances with a Larger Lexicon

The Programmer’s Lexicon has been kept tiny for the sake of brevity and readability.
Our approach can easily be used to generate a much larger and more detailed lexicon
for the same corpus, allowing us to investigate more subtle nuances between names.
The only prerequisite is that the cardinality for each name, |n|C, must be large enough
for the analysis to be meaningful.

In such a case a printed lexicon might become unwieldy, but relationships can still
be investigated meaningfully using graphs. An example graph of dispose and related
words, taken from a lexicon generated with n = 200 candidate names and m = 100
chosen names (see Section 7.3.1), is shown in Figure 7.4. The corpus is the same that
was used to generate The Programmer’s Lexicon.

7.7 Related Work

The importance of names is well-understood by industry practitioners. In blogs and
articles, fairly sophisticated discussions of names are carried out for instance by Martin
Fowler, investigating the confusion caused by homonyms in source code3, and Steve
Yegge, complaining about the emphasis put on nouns over verbs in Java4.

Among researchers, names have primarily been analysed in the context of readabil-
ity and program comprehension. Deißenböck and Pizka [3] define precise rules for the
conciseness and consistency of names based on a manually constructed formal model.
Lawrie et al. [7] try to approximate the results achieved by Deißenböck and Pizka
while avoiding the need for an expert to create the formal model by considering only
the syntactic structure of identifiers.

A more thorough analysis of function identifiers is carried out by Caprile and
Tonella [1] who investigate the structure of function identifiers in C programs, build

3http://martinfowler.com/bliki/TypeInstanceHomonym.html
4http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

7.8. CONCLUSION 55

close

destroy

validate

stop

refresh

clear

dispose

flush

reset

Figure 7.4: Methods related to termination.

a dictionary of identifier fragments (“words”), and propose a grammar that describes
the roles of the fragments. The authors also apply concept analysis to perform a
classification of the words in the dictionary.

Our work departs significantly from other efforts in the attempt to ground the
semantics of names in attributes derived from the implementation. In trying to define
traceable attributes to correlate to names, we have been influenced by Gil and Maman’s
work on Micro Patterns [5].

7.8 Conclusion

We believe that the analysis of semantic relationships between names in computer
programs bears many low-hanging fruits, and that in generating The Programmer’s
Lexicon, we have picked but one.

Defining the meaning of names is useful because it leads to greater awareness and
might contribute to more precise use of names. It is easy to envisage a tool, for instance
an Eclipse plug-in, that could automatically check whether or not the initial verb of a
method name suits the implementation of the method, give warnings when imprecise
names are used, and so forth.

More radically, we could detach the action-oriented verbs from the rest of the
method names, and raise the verbs to the status of syntax in the language. Then
the programmer could write something like Person find PersonByID, and have the
compiler verify that the implementation is not in conflict with the action specified by
the name find.

The idea outlined above marks the beginning of a decomposition of the method

56 CHAPTER 7. PAPER 1: THE PROGRAMMER’S LEXICON

name into a more operative language, similar to keyword messages in Smalltalk [6].
In our present work, we have focused on the verbs that tend to form the beginning
of a method name. As Caprile and Tonella [1] have shown, these verbs form part of
a structure; a sentence. In the example above, if we were to identify By as a special
word, the logical next step would be to try to link the identifier fragments Person and
ID to types. The goal would be to generate a full lexicon for all the words that appear
in method names, and potentially type names as well.

Since methods tend to invoke other methods, understanding the content of a method
body is inherently a recursive problem. In our future work, a key challenge will be to
define a suitable model that allows us to define names in terms of other names, much
as is the case in natural language.

Acknowledgements

We thank Anders Moen Hagalisletto, Thor Kristoffersen and Gerardo Schneider for
comments on earlier drafts of this paper.

Bibliography

[1] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proceedings of the Sixth Working Conference on Reverse Engineering
(WCRE 1999), 6-8 October 1999, Atlanta, Georgia, USA, pages 112–122. IEEE
Computer Society, 1999.

[2] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. Wiley, 2nd edition, 2006.

[3] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proceedings of
the 13th IEEE International Workshop on Program Comprehension (IWPC 2005),
pages 97–106. IEEE Computer Society, 2005.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, 1995.

[5] J. Gil and I. Maman. Micro patterns in Java code. In R. E. Johnson and R. P.
Gabriel, editors, Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005),
October 16-20, 2005, San Diego, CA, USA, pages 97–116. ACM, 2005.

[6] W. LaLonde. I can read C++ and Java but I can’t read Smalltalk. Journal of
Object-Oriented Programming, pages 40–45, 2000.

[7] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier conciseness and consis-
tency. In Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2006), 27-29 September 2006, Philadelphia,
Pennsylvania, USA, pages 139–148. IEEE Computer Society, 2006.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Prentice Hall, 2nd edition, 1999.

[9] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
2006.

57

58 BIBLIOGRAPHY

Phrase Meaning
Always The attribute value is always 1.
Very often The name is in the high extreme quantile.
Often The name is in the high quantile.
Rarely The name is in the low quantile.
Very seldom The name is in the low extreme quantile.
Never The attribute value is always 0.

Table 7.5: Lexicon terminology.

7.A The Lexicon

Below we print The Programmer’s Lexicon, automatically generated from our analysis
of the most common names in the software corpus. In our context, a name is the
action-oriented initial part of a Java method name; typically a verb. Like a natural
language dictionary, the lexicon does not have to be read in full. Some entries we
have found interesting are check (throws exceptions), find (contains loops) and equals
(calls methods of the same name, and performs type-checking). Table 7.5 explains the
terminology used in the lexicon.

Lexicon entries

accept. Methods named accept very seldom read state. Furthermore, they rarely throw exceptions, call methods of the
same name, create objects, manipulate state, use local variables, have no parameters, perform type-checking or contain
loops. The name accept has a precise use. A similar name is visit. Generalisations of accept are handle and initialize.
Somewhat related names are set, end, is and insert.
action. Methods named action never call methods of the same name. Furthermore, they very often read state. Finally,
they often return void, and rarely throw exceptions, have no parameters or contain loops. The name action has a
precise use. Similar names are remove and add.
add. Among the most common method names. Methods named add often read state. Similar names are remove and
action.
check. Methods named check very often throw exceptions. Furthermore, they often create objects and contain loops,
and rarely call methods of the same name. Unfortunately, check is an imprecise name for a method.
clear. Methods named clear very often have no parameters. Furthermore, they often return void, call methods
of the same name and manipulate state, and rarely create objects, use local variables or perform type-checking. A
generalisation of clear is reset. A somewhat related name is close.
close. Methods named close often return void, call methods of the same name, manipulate state, read state and have
no parameters, and rarely create objects or perform type-checking. A generalisation of close is validate. A somewhat
related name is clear.
create. Among the most common method names. Methods named create very often create objects. Furthermore, they
rarely call methods of the same name, read state or contain loops.
do. Methods named do often throw exceptions and perform type-checking, and rarely call methods of the same name.
Unfortunately, do is an imprecise name for a method.
dump. Methods named dump never throw exceptions. Furthermore, they very often create objects and use local
variables, and very seldom read state. Finally, they often call methods of the same name and contain loops, and rarely
manipulate state. The name dump has a precise use.
end. Methods named end often return void, and rarely create objects, use local variables, read state or contain loops.
Generalisations of end are handle and initialize. A specialisation of end is insert. Somewhat related names are accept,
set, visit and write.
equals. Methods named equals never return void, throw exceptions, create objects, manipulate state or have no
parameters. Furthermore, they very often call methods of the same name and perform type-checking. Finally, they
often use local variables and read state. The name equals has a precise use.
find. Methods named find very often use local variables and contain loops. Furthermore, they often perform type-
checking, and rarely return void.
generate. Methods named generate often create objects, use local variables and contain loops, and rarely call methods
of the same name. Unfortunately, generate is an imprecise name for a method.
get. The most common method name. Methods named get often read state and have no parameters, and rarely return
void, call methods of the same name, manipulate state, use local variables or contain loops. A similar name is has.
Specialisations of get are is and size. A somewhat related name is hash.
handle. Methods named handle often read state, and rarely call methods of the same name. A similar name is
initialize. Specialisations of handle are accept, set, visit, end and insert.

7.A. THE LEXICON 59

has. Methods named has often have no parameters, and rarely return void, throw exceptions, create objects, manipulate
state, use local variables or perform type-checking. The name has has a precise use. A similar name is get. Specialisations
of has are is and size. A somewhat related name is hash.
hash. Methods named hash always have no parameters, and never return void, throw exceptions, create objects or
perform type-checking. Furthermore, they very often call methods of the same name. Finally, they often read state,
and rarely manipulate state or use local variables. The name hash has a precise use. Somewhat related names are has,
is, get and size.
init. Methods named init very often manipulate state. Furthermore, they often return void, create objects and have
no parameters, and rarely call methods of the same name.
initialize. Methods named initialize often return void and manipulate state, and rarely call methods of the same name
or read state. A similar name is handle. Specialisations of initialize are accept, set, visit, end and insert.
insert. Methods named insert often throw exceptions, and rarely create objects, read state, have no parameters or
contain loops. Generalisations of insert are handle, end and initialize. Somewhat related names are accept, set, visit
and write.
is. The third most common method name. Methods named is often have no parameters, and rarely return void, throw
exceptions, call methods of the same name, create objects, manipulate state, use local variables, perform type-checking
or contain loops. The name is has a precise use. Generalisations of is are has and get. Somewhat related names are
accept, visit, hash and size.
load. Methods named load very often use local variables. Furthermore, they often throw exceptions, create objects,
manipulate state, perform type-checking and contain loops. Unfortunately, load is an imprecise name for a method.
make. Methods named make very often create objects. Furthermore, they rarely return void, throw exceptions, call
methods of the same name or contain loops.
new. Methods named new never contain loops. Furthermore, they very seldom use local variables. Finally, they often
call methods of the same name and create objects, and rarely return void, manipulate state or read state.
next. Methods named next very often manipulate state and read state. Furthermore, they often throw exceptions and
have no parameters, and rarely return void.
parse. Among the most common method names. Methods named parse very often call methods of the same name,
read state and perform type-checking. Furthermore, they rarely use local variables. The name parse has a precise use.
print. Methods named print often call methods of the same name and contain loops, and rarely throw exceptions or
manipulate state.
process. Methods named process very often use local variables and contain loops. Furthermore, they often throw excep-
tions, create objects, read state and perform type-checking, and rarely call methods of the same name. Unfortunately,
process is an imprecise name for a method.
read. Methods named read often throw exceptions, call methods of the same name, create objects, manipulate state,
use local variables and contain loops. Unfortunately, read is an imprecise name for a method.
remove. Among the most common method names. Methods named remove often throw exceptions. Similar names
are add and action.
reset. Methods named reset very often manipulate state. Furthermore, they often return void and have no parameters,
and rarely create objects, use local variables or perform type-checking. A specialisation of reset is clear.
run. Among the most common method names. Methods named run very often read state. Furthermore, they often
have no parameters, and rarely call methods of the same name.
set. The second most common method name. Methods named set very often manipulate state, and very seldom use
local variables or read state. Furthermore, they often return void, and rarely call methods of the same name, create
objects, have no parameters, perform type-checking or contain loops. The name set has a precise use. Generalisations
of set are handle and initialize. Somewhat related names are accept, visit, end and insert.
size. Methods named size always have no parameters, and never return void, create objects, manipulate state, perform
type-checking or contain loops. Furthermore, they very seldom use local variables. Finally, they rarely read state. The
name size has a precise use. Generalisations of size are has and get. Somewhat related names are is and hash.
start. Methods named start often return void, manipulate state and read state.
to. Among the most common method names. Methods named to very often call methods of the same name and create
objects. Furthermore, they often have no parameters, and rarely return void, throw exceptions, manipulate state or
perform type-checking.
update. Methods named update often return void and read state.
validate. Methods named validate very often throw exceptions. Furthermore, they often create objects and have no
parameters, and rarely manipulate state. A specialisation of validate is close.
visit. Methods named visit rarely throw exceptions, use local variables, read state or have no parameters. A similar
name is accept. Generalisations of visit are handle and initialize. Somewhat related names are set, end, is and insert.
write. Among the most common method names. Methods named write often return void and call methods of the same
name, and rarely have no parameters. Somewhat related names are end and insert.

60 BIBLIOGRAPHY

Chapter 8

Paper 2: The Java Programmer’s
Phrase Book

Method names in Java are natural language phrases describing behaviour,
encoded to make them easy for machines to parse. Programmers rely on
the meaning encoded in method names to understand code. We know little
about the language used in this encoding, its rules and structure, leaving the
programmer without guidance in expressing her intent. Yet the meaning
of the method names — or phrases — is readily available in the body of
the methods they name. By correlating names and implementations, we
can figure out the meaning of the original phrases, and uncover the rules
of the phrase language as well. In this paper, we present an automatically
generated proof-of-concept phrase book for Java, based on a large software
corpus. The phrase book captures both the grammatical structure and the
meaning of method phrases as commonly used by Java programmers.

8.1 Introduction

Method identifiers play three roles in most programming languages. The first is a
technical one: method identifiers are unique labels within a class; strings of characters
that act as links, allowing us to unambiguously identify a piece of code. If we want to
invoke that piece of code, we refer to the label. The second role is mnemonic. While we
could, in theory, choose arbitrary labels for our methods, this would be cumbersome
when trying to remember the correct label for the method we want to invoke. Hence
methods are typically given labels that humans can remember, leading us to refer to
method identifiers also as method names. Finally, method identifiers play a semantic
role. Not only do we want labels we can remember; we want them to express meaning
or intent. This allows us to recall what the method actually does. Unfortunately, we
lack an established term for this role — identifiers are not just names. Rather, they are
structured expressions of intent, composed of one or more fragments. Indeed they are
method phrases, utterances in natural language, describing the behaviour of methods.

Consider the following example, defining the Java method findElementByID:

Element findElementByID(String id) {
for (Element e : this.elements) {
if (e.getID().equals(id)) {

61

62 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

return e;
}

}
return null;

}

We immediately observe that the form of the method phrase is somewhat warped
and mangled due to the hostile hosting environment. Since the phrase must double as
a unique label for the method, and to simplify parsing, the phrase must be represented
by a continuous strings of characters. But it is nevertheless a phrase, and we have no
problems identifying it as such. In a more friendly environment, we would unmangle the
phrase and simply write Find element by ID. For instance, in the programming language
Subtext1, the roles as links and names are completely decoupled: the names are mere
comments for the links. This leaves the programmer with much greater flexibility when
naming methods. Edwards argues that “names are too rich in meaning to waste on
talking to compilers” [6].

Looking at the implementation, we see that there are several aspects that conspire
to match the expectations given us by the phrase: the method returns a reference to
an object, accepts a parameter, contains a loop, and has two return points. We posit
that all meaningful method phrases can similarly be described, simply by noting the
distinguishing aspects of their implementations. Our goal is to automatically generate
such descriptions for the most common method phrases in Java.

Since the phrase and the implementation of a method should be in harmony, we
cannot arbitrarily change one without considering to change the other. We want the
phrase to remain a correct abstract description of the implementation of the method,
otherwise the programmer is lying! Therefore, if the implementation is changed, the
phrase should ideally be changed to describe the new behaviour2. Conversely, if the
phrase is changed, care should be taken to ensure that the implementation fulfills the
promise of the new phrase. Unfortunately, programmers have no guidance besides their
own intuition and experience to help make sure that their programs are truthful in this
sense. In particular, programmers lack the ability to assess the quality of method
phrases with regards to suitability, accuracy and consistency.

Realizing that method names are really phrases, that is, expressions in natural
language, allows us some philosophical insight into the relationship between the method
name and the method body or implementation. Frege distinguishes between the sign —
name, or combination of words —, the reference — the object to which the sign refers
— and the sense — our collective understanding of the reference [8]. Note that the
sense is distinct from what Frege calls the idea, which is the individual understanding
of the reference. Depending on the insight of the individual, the idea (of which there
are many) may be in various degrees of harmony or conflict with the sense (of which
there is only one).

In this light, the creation of a method is a way of expression where the programmer
provides both the sign (the method name) and a manifestation of the idea (the imple-
mentation). The tension between the individual idea and the sense is what motivates
our work: clearly it would be valuable to assist the programmer in minimizing that

1http://subtextual.org
2However, since phrases act as links, this is not always practical: changing phrases in public APIs

may break client code.

8.2. CONCEPTUAL OVERVIEW 63

tension. Understanding the language of method phrases is a first step towards provid-
ing non-trivial assistance to programmers in the task of naming. In the future, we will
implement such assistance in a tool.

We have previously shown how to create a semantics which captures our common
interpretation, or sense, of the action verbs in method names [10]. Building on this
work, we use an augmented model for the semantics, and expand from investigating
verbs to full method names, understood as natural language phrases.

The main contributions of this paper are as follows:

• A perspective on programming that treats method names formally as expressions
in a restricted natural language.

• The identification of a restricted natural language, Programmer English, used by
Java programmers when writing the names of methods (Section 8.2.1).

• An approach to encoding the semantics of methods (Section 8.3.2), expanding on
our previous work.

• An algorithm for creating a relevant and useful phrase book for Java programmers
(Section 8.4.2).

• A proof-of-concept phrase book for Java that shows the potential and practicality
of our approach (see Section 8.5 for excerpts).

8.2 Conceptual Overview

Our goal is to describe the meaning and structure of method names as found in “the real
world” of Java programming, and present the findings in a phrase book for programmers.
Our approach is to compare method names with method implementations in a large
number of Java applications. In doing so, we are inspired by Wittgenstein, who claimed
that “the meaning of a word is its use in the language” [18]. In other words, the meaning
of natural language expressions is established by pragmatically considering the contexts
in which the expressions are used.

8.2.1 Programmer English

Method names in Java are phrases written in a natural language that closely resembles
English. However, the language has important distinguishing characteristics stemming
from the context in which it is used, affecting both the grammar and the vocabulary
of the language.

The legacy of short names lingering from the days before support for automatic
name completion still influences programmers. This results in abbreviations and de-
generate names with little grammatical structure. While increasing focus on readability
might have improved the situation somewhat, Java is still haunted by this culture. A
recent example is the name method defined for enums, a language feature introduced
in Java 5.0. A more explicit name would be getName.

Futhermore, the vocabulary is filled with general computing terms, technology
acronyms, well-known abbreviations, generic programming terms and special object-
oriented terms. In addition, the vocabulary of any given application is extended with

64 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

domain terms, similar to the use of foreign words in regular English. This vocabu-
lary is mostly understandable to programmers, but largely incomprehensible to the
English-speaking layman.

We therefore use the term Programmer English to refer to the special dialect of En-
glish found in Java method names. Of course, Programmer English is really Java Pro-
grammer English, and other “Programmer Englishes” exist which might exhibit quite
different characteristics. For instance, Haskell Programmer English is likely to be rad-
ically different, whereas Ruby Programmer English probably shares some traits with
Java Programmer English, and C# Programmer English is likely to be near-identical.

8.2.2 Requirements for The Phrase Book

The main requirements for a phrase book is that it be relevant and useful. For the
phrase book to be relevant, it must stem from “the trenches” of programming. In other
words, it must be based on real-world data (i.e. programs), and be representative of
how typical Java programmers express themselves.

The usefulness requirement is somewhat more subtle: what does it mean to be
useful? Certainly, the phrase book should have a certain amount of content, and yet
be wieldy, easy to handle for the reader. Hence, we want to be able to adjust the
number of phrases included in the phrase book. In addition, each phrase must be
useful in itself. We propose the following three requirements to ensure the usefulness
of phrases: 1) each phrase must have a description that matches actual usage, 2) each
phrase must have a well-understood semantics, and 3) each phrase must be widely
applicable. These are requirements for validity, precision and ubiquity, respectively.

Since each Java application has its own specialized vocabulary, we must be able to
abstract away domain-specific words. The phrase book should therefore contain both
concrete phrases such as get-last-element and abstract ones such as find-[noun].
We prefer concrete phrases since they are more directly applicable, but need abstract
phrases to fill out the picture.

We also decide that the phrase book should be organized hierarchically, as a tree.
That way, the phrase book directly reflects and highlights the grammatical structure of
the phrases themselves. This also makes the phrase book easier to browse. The phrases
should therefore be organized as refinements of each other. Since a phrase represents a
set of methods, its refinements are a partitioning of the set. Note that the partitioning
is syntax-driven: we cannot choose freely which methods to group together. At any
given step, we can only choose refined phrases supported by the grammar implicitly
defined by the corpus.

8.2.3 Approach

Figure 8.1 provides an overview of our approach. The analysis consists of two major
phases: data preparation and phrase book generation.

In the preparation phase, we transform our corpus of Java applications into an
idealized corpus of methods. Each Java method is subject to two parallel analyses. On
one hand, we analyze the grammatical structure of the method name. This analysis
involves decomposing the name into individual words and the part-of-speech tagging
of those words. This allows us to abstract over the method names and create phrases
consisting of both concrete words and abstract categories of words. On the other hand,

8.2. CONCEPTUAL OVERVIEW 65

CodeName
Software
Corpus

Method
Corpus

Phrase
Book

Phrase

Corpus

SemanticsPhrase

Describe

Phrase

P
rep.

G
en.

semantic
abstraction

grammatical
analysis

refinequalifies?

Figure 8.1: Overview of the approach.

we analyze the bytecode instructions of the implementations, and derive an abstract
semantics. We can then investigate the semantics of the methods that share the same
phrase, and use this to characterize the phrase.

This is exactly what happens in the generation phase. We apply our recursive
phrase book generation algorithm on the corpus of methods. The algorithm works by
considering the semantics of gradually more refined phrases. The semantics of a phrase
is determined by the semantics of the individual methods with names that match the
phrase. If a phrase is found to be useful, it receives a description in the phrase book.
We generate a description by considering how the phrase semantics compares to that
of others. We then attempt to refine the phrase further. When a phrase is found to be
not useful, we terminate the algorithm for that branch of the tree.

8.2.4 Definitions

We need some formal definitions to be used in the analysis of methods (Sect. 8.3) and
when engineering the phrase book (Sect. 8.4). First, we define a set A of attributes
that each highlight some aspect of a method implementation. An attribute a ∈ A can
be evaluated to a binary value b ∈ {0, 1}, denoting absence or presence. A method m
has three features: a unique fingerprint u, a name n, and a list of values b1, . . . , bn for
each a ∈ A. These values are the semantics of the method. Unique fingerprints ensure
that a set made from arbitrary methods m1, . . . ,mk always has k elements. The name
n consists of one or more fragments f . Each fragment is annotated with a tag t.

A phrase p is an abstraction over a method name, consisting of one or more parts.
A part may be a fragment, a tag or a special wildcard symbol. The wildcard symbol,
written ∗, may only appear as the last part of a phrase. A phrase that consists solely
of fragments is concrete; all other phrases are abstract. A concrete phrase, then, is the
same as a method name.

A phrase captures a name if each individual part of the phrase captures each frag-
ment of the name. A fragment part captures a fragment if they are equal. A tag part

66 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

captures a fragment if it is equal to the fragment’s tag. A wildcard part captures any
remaining fragments in a name. A concrete phrase can only capture a single name,
whereas an abstract phrase can capture multiple names. For instance, the phrase
[verb]-valid-* captures names like is-valid, has-valid-signature and so forth. The
actual set of captured names is determined by the corpus.

A corpus C is a set of methods. Implicitly, C defines a set N , consisting of the
names of the methods m ∈ C. A name corpus Cn is a set of methods with the name
n. A phrase corpus Cp is a set of methods whose names are captured by the phrase p.
The relative frequency value ξa(C) for an attribute a given a corpus C is defined as:

ξa(C)
def
=

∑
m∈C ba(m)

|C| ,

where ba(m) is the binary value for the attribute a of method m. The semantics of
a corpus is defined as the list of frequency values for all a ∈ A, [ξa1(C), . . . , ξam(C)].
We write �p� for the semantics of a phrase, and define it as the semantics of the
corresponding phrase corpus.

If two methods m,m′ have the same values for all attributes we say that they are
attribute-value identical, denoted m � m′. Using relation � we can divide a corpus C
into a set of equivalence classes EC(C) = [m1]C, . . . , [mk]C, where [m]C is defined as:

[m]C
def
= {m′ ∈ C | m′ � m}.

We simplify the notation to [m] when there can be no confusion about the interpretation
of C. Now we apply some information-theoretical concepts related to entropy [5]. Let
the probability mass function p([m]) of corpus C be defined as:

p([m])
def
=

|[m]|
|C| , [m] ∈ EC(C).

We then define the entropy of corpus C as:

H(C)
def
= H

(
p([m1]

)
, . . . , p([mk])

)
.

Finally, we define the entropy of a phrase as the entropy of its phrase corpus.

8.3 Method Analysis

When programmers express themselves in Programmer English, they give both the
actual expression (the name) and their subjective interpretation of that expression
(the implementation). We therefore analyze each method in two ways: (a) a syntactic
analysis concerned with interpreting the name, and (b) a semantic analysis concerned
with interpreting the implementation. The input to the analyses is a Java method as
found in a Java class file, the output an idealized method as defined in Sect. 8.2.4,
consisting of fingerprint, name and semantics.

8.3.1 Syntactic Analysis of Method Names

Method names are not arbitrarily chosen; they have meaning and structure. In par-
ticular, names consist of one or more words (which we call fragments) put together

8.3. METHOD ANALYSIS 67

to form phrases in Programmer English. We apply natural language processing tech-
niques [14], in particular part-of-speech tagging, to reveal the grammatical structure of
these phrases.

8.3.1.1 Decomposition of Method Names.

Since whitespace is not allowed in identifiers, the Java convention is to use the tran-
sition from lower-case to upper-case letters as delimiter between fragments. For ex-
ample, a programmer expressing the phrase “get last element” would encode it as
getLastElement. Since we want to analyze the method names as natural language ex-
pressions, we reverse engineer this process to recover the original phrase. This involves
decomposing the Java method names into fragments.

Since we are focussed on the typical way of expression in Java, we discard names
that use any characters except letters and numbers. This includes names using un-
derscore rather than case transition as a delimiter between fragments. Since less than
3% of the methods in the original corpus contain underscores, this has minimal impact
on the results. That way, we avoid having to invent ad-hoc rules and heuristics such
as delimiter precedence for handling method names with underscores and case transi-
tion. For instance, programmers may mix delimiters when naming test methods (e.g.,
test handlesCornerCase), use underscores for private methods (e.g., findAccount)
or in other special cases (e.g., processDUP2 X2). Indeed, nearly half the names con-
taining underscores have an underscore as the first character.

8.3.1.2 Part-of-speech Tagging.

The decomposed method name is fed to our part-of-speech tagger (POS tagger), which
marks each fragment in the method name with a certain tag. Informally, part-of-speech
tagging means identifying the correct role of a word in a phrase or sentence.

Our POS tagger for method names is made simple, as the purpose is to provide a
proof-of-concept, rather than create the optimal POS tagger for method names in Java.
While there exist highly accurate POS taggers for regular English, their performance on
Programmer English is unknown. Manual inspection of 500 tagged names taken from a
variety of grammatical structures indicates that our POS tagger has an accuracy above
97%.

The POS tagger uses a primitive tag set: verb, noun, adjective, adverb, pro-
noun, preposition, conjunction, article, number, type and unknown. Examples
of unknown fragments are misspellings (”anonimous”), idiosyncracies (”xget”) and
composites not handled by our decomposer (”nocando”). Less than 2% of the frag-
ments in the corpus are unknown.

A fragment with a type tag has been identified as the name of a Java type. We
consider a Java type to be in scope for the method name if the type is used in the
method signature or body. This implies that the same method name can be interpreted
differently depending on context. For instance, the method name getInputStream will
be interpreted as the two fragments get-InputStream if InputStream is a Java type
in scope of the method name, and as the three fragments get-input-stream otherwise.
As illustrated by the example, we combine fragments to match composite type names.
Type name ambiguity is not a problem for us, since we only need to know that a
fragment refers to a type, not which one.

68 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

Tagged
Phrase

Ambiguous
Phrase

Untagged
Phrase

find
tags

select
tags

Figure 8.2: Overview of the POS tagging process.

The POS tagger operates in two steps, as shown in Fig. 8.2. First, we determine
the range of possible tags for the fragments in the phrase, then we select a tag for
each fragment. WordNet [7] is a core component of the first task. However, since
WordNet only handles the four word classes verbs, nouns, adjectives and adverbs, we
augment the results with a set of prepositions, pronouns, conjunctions and articles
as well. Also, since Programmer English has many technical and specialized terms
not found in regular English, we have built a dictionary of such terms. Examples
include “encoder” and “optimizer” (nouns) and “blit” and “refactor” (verbs). The
dictionary also contains expansions for many common abbreviations, such as “abbrev”
for “abbreviation”.

The second step of the POS tagging is selection, which is necessary to resolve
ambiguity. The tag selector is context-aware, in the sense that it takes into account a
fragment’s position in a phrase, as well as the possible tags of surrounding fragments.
For instance, the fragment default is tagged as adjective in the phrase get-default-
value, and as noun in the phrase get-default. Since we know that method names
tend to start with verbs, a fragment is somewhat more likely to be tagged verb if it
is the first fragment in the phrase. Also, some unlikely interpretation alternatives are
omitted because they are not common in programming. For instance, we ignore the
possibility of value being a verb.

8.3.2 Semantic Analysis of Method Implementations

The goal of the semantic analysis of the method implemenation is to derive a model of
the method’s behaviour. This model is an abstraction over the bytecode instructions in
the implementation. In Frege’s terms, we use the model to capture the programmer’s
idea of the method.

8.3.2.1 Attributes.

In Sect. 8.2.4, we defined the semantics of a method m as a list of binary attribute
values. The attributes are predicates, formally defined as conditions on Java bytecode.
We have hand-crafted the attributes to capture various aspects of the implementation.
In particular, we look at control flow, data flow and state manipulation, as well as the
method signature. In addition, we have created certain attributes that we believe are
significant, but that fall outside these categories.

The attributes are listen in Table 8.1. Each attribute is given a name and a short
description. The formal definitions of the attributes range in sophistication, from
checking for presence of certain bytecode instructions, to tracing the flow of parameter
and field values.

8.3. METHOD ANALYSIS 69

Table 8.1: Attributes.

Control Flow
Contains loop
There is a control flow path that causes the same basic block to be
entered more than once.
Contains branch
There is at least one jump or switch instruction in the bytecode.
Multiple return points
There is more than one return instruction in the bytecode.
Is recursive
The method calls itself recursively.
Same name call
The method calls a different method with the same name.
Throws exception
The bytecode contains an ATHROW instruction.

Data Flow
Writes parameter value to field
A parameter value may be written to a field.
Returns field value
The value of a field may be used as the return value.
Returns parameter value
A parameter value may be used as the return value.
Local assignment
Use of local variables.

State Manipulation
Reads field
The bytecode contains a GETFIELD or GETSTATIC instruction.
Writes field
The bytecode contains a PUTFIELD or PUTSTATIC instruction.

Method Signature
Returns void
The method has no return value.
No parameters
The method has no parameters.
Is static
The method is static.

Miscellaneous
Creates objects
The bytecode contains a NEW instruction.
Run-time type check
The bytecode contains a CHECKCAST or INSTANCEOF instruction.

70 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

Table 8.2: Attribute dependencies.

Contains loop =⇒ Contains branch
Writes parameter value to field =⇒ Writes field ∧ ¬No parameters
Returns field value =⇒ ¬Returns void ∧ ¬Reads field
Returns parameter value =⇒ ¬Returns void ∧ ¬No parameters

8.3.2.2 Attribute Dependencies.

In our previous work, we used strictly orthogonal attributes [10]. However, this some-
times forces us to choose between coarse and narrow attributes. As an example, we
would have to choose between common, but not so distinguishing Reads field at-
tribute, and the much more precise and semantically laden Returns field value. We
therefore allow non-orthogonal attributes in our current work.

Table 8.2 lists the dependencies between the attributes. We see that they are
straight-forward to understand. For instance, it should be obvious that all methods
that return a field value must (a) read a field and (b) return a value.

Note that there are more subtle interactions at work between the attributes as well.
For instance, Throws exception tends to imply Creates objects, since the exception
object must be created at some point. However, it is not an absolute dependency, as
rethrowing an exception does not mandate creating an object.

8.3.2.3 Critique.

We have constructed the set of attributes under two constraints: our own knowledge
of significant behaviour in Java methods and the relative simplicity of our program
analysis. While we believe that the attributes are adequate for demonstration, we have
no illusions that we have found the optimal set of attributes. A more sophisticated
program analysis might allow us to define or approximate interesting attributes such
as Pure function (signifying that the method has no side-effects). It is also not clear
that attributes are the best way to model the semantics of methods — for instance, the
structure of implementations is largely ignored. However, the simplicity of attributes
is also the strength of the approach, in that we are able to reduce the vast space of
possible implementations to a small set of values that seem to capture their essence.
This is important, as it facilitates comparing and contrasting the semantics of methods
described by different phrases.

8.3.3 Phrase Semantics

The semantics of a single method captures the programmer’s subjective idea of what
a method phrase means. When we gather many such ideas, we can approximate the
sense of the phrase, that is, its objective meaning. We can group ideas by their concrete
method phrases (names) such as compare-to, or by more abstract phrases containing
tags, such as find-[type]-by-[noun].

8.3.3.1 Phrase Characterization.

Just like other natural language expressions, a phrase in Programmer English is only
meaningful in contrast to other phrases. The English word light would be hard to

8.4. ENGINEERING THE PHRASE BOOK 71

Table 8.3: Percentile groups for attribute frequencies.

< 5% Low extreme
< 25% Low
25% - 75% Unlabelled
> 75% High
> 95% High extreme

grasp without the contrast of dark ; similarly, we understand a phrase like get-name
by virtue that it has different semantics from its opposite set-name, and also from all
other phrases, most of which are semantically unrelated, such as compare-to. Since
the semantics �p� of a phrase p is defined in terms of a list of attribute frequencies
(see Sect. 8.2.4), we can characterize p simply by noting how its individual frequencies
deviates from the average frequencies of the same kind.

For a given attribute a, the relative frequency ξa(Cn) for all names n ∈ N lies within
the boundaries 0 ≤ ξa(Cn) ≤ 1. We divide this distribution into five named groups, as
shown in Table 8.3. Each name is associated with a certain group for a, depending on
the value for ξa(n): the 5% of names with the lowest relative frequencies end up in the
“low extreme” group, and so forth. This is a convenient way of mapping continuous
values to discrete groups, greatly simplifying comparison.

Taken together, the group memberships for attributes ai, . . . , ak becomes an ab-
stract characterization of a phrase, which can be used to generate a description of
it.

8.3.4 Method Delegation

The use of method delegation in Java programs — invoking other methods instead
of defining the behaviour locally — is a challenge for our analysis. The reason is
that a method implementation that delegates directly to another method exposes no
behaviour of its own, and so it “waters down” the semantics of the method name.

There are two simple ways of handling delegation: inlining and exclusion. Inlining
essentially means copying the implementation of the called method into the imple-
mentation of the calling method. There are several problems with inlining. First, it
undermines the abstraction barrier between methods and violates the encapsulation of
behaviour. Second, it skews the analysis by causing the same implementation to be
analyzed more than once. We therefore prefer exclusion, which means that delegat-
ing methods are omitted from the analysis. However, what constitutes delegation is
fuzzy: should we ignore methods that calculate parameters passed to other methods,
or methods that delegate to a sequence of methods? For simplicity, we only identify
and omit single, direct delegation with an equal or reduced list of parameters.

8.4 Engineering the phrase book

This section describes the engineering efforts undertaken to produce the proof-of-
concept phrase book for Java programmers. In particular, we describe how we meet

72 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

the requirements outlined in Sect. 8.2.2, and take a closer look at the algorithm used
to generate the phrase book.

8.4.1 Meeting the Requirements

In Sect. 8.2.2, we mandated that the phrase book be relevant and useful.

8.4.1.1 Relevance

We fulfill the relevance requirement by using a large corpus of Java applications as
data for our analysis. This ensures that the results reflect actual real-world practice.
The corpus is the same set of applications we used in our previous work [10]. Since
many applications rely on third-party libraries, the corpus has been carefully pruned
to ensure that each library is analyzed only once. This is important to avoid skewing
of the results: otherwise, we cannot be certain that the semantics of a phrase reflects
the cross-section of many different implementations.

The corpus consists of 100 open-source applications and libraries from a variety of
domains: desktop applications, programmer tools, programming languages, language
tools, middleware and frameworks, servers, software development kits, XML tools and
various common utilities. Some well-known examples include the Eclipse integrated
development environment, the Java software development toolkit, the Spring appli-
cation framework, the JUnit testing framework, and the Azureus bittorrent client3.
Combined, the applications in the corpus contain more than one million methods.

8.4.1.2 Usefulness

In order to produce a phrase book that is as useful as possible, we want the phrase
book to be short, easy to read, and containing only the most useful phrases. Here,
we present our translation of the qualitative usefulness requirements into quantitative
ones.

• Validity. Each phrase must represent at least 100 methods.

• Precision. Intuitively, precision means how consistently a phrase refers to the
same semantics. Since entropy measures the independence of attributes, entropy
is an inverse measurement of precision. Each phrase representing a refinement
of another phrase must therefore lead to decreased entropy, corresponding to
increased precision.

• Ubiquity. Each phrase must be present in at least half of the applications in the
corpus.

Tweaking the actual numbers in these criteria allows us to control the size of the
phrase book. The values we have chosen yields a phrase book containing 364 phrases.
The ideal size of the phrase book is a matter of taste; we opt for a relatively small one
compared to natural-language dictionaries.

3Azureus is currently the most downloaded and actively developed application from Source-
Forge.net.

8.4. ENGINEERING THE PHRASE BOOK 73

refine(phrase):

for tag in tags:

t-phrase = phrase-append(phrase, tag)

if useful(t-phrase, phrase):

used-phrases = ()

for f-phrase in fragment-phrases(p, tag):

if useful(f-phrase, t-phrase):

used-phrases.add(f-phrase)

write-entry(f-phrase)

refine(f-phrase)

r-phrase = mark-special(t-phrase)

if useful(r-phrase, phrase):

write-entry(r-phrase)

refine(r-phrase)

Figure 8.3: Pseudo-code for the phrase book generation algorithm

8.4.2 Generation Algorithm

Below, we present and explain the pseudo-code (Fig. 8.3) for the algorithm that au-
tomatically generates the phrase book. Note that the pseudo-code glosses over many
details to highlight the essentials of the algorithm. For brevity, we omit definitions for
functions that are “self-explanatory”. The syntax is influenced by Python, meaning
that indentation is significant and used to group blocks.

The pseudo-code outlines a fairly simple recursive algorithm. The driving function
is refine, which generates a refinement of a phrase. Note that each phrase implicitly
defines a corpus of methods, so that a refinement of a phrase also means a narrowing
of the corpus.

First, we iterate over the tags in our tag set (see Sect. 8.3.1.2). For each tag, we
create a new phrase representing a refinement to only the methods whose names satisfy
the new tag. We demand that this refinement be useful, or we ignore the entire tag.
The refinement is useful if it meets the criteria of the useful function. This function
embodies the criteria discussed in Sects. 8.2.2 and 8.4.1.

If the refinement is useful, we try to find even more useful refinements using frag-
ments instead of the tag. Assume that we are calling expand on the phrase get-*.
We expand the phrase with the tag noun, yielding the new phrase get-[noun]-*.
Finding the new phrase to be useful, we generate more concrete refinements such as
get-name-* and get-customer-*. If they are useful, we call the write-entry function,
which generates a description that is included in the phrase book, and recurse, by call-
ing refine on the concrete refinement. Finally, we examine the properties of the corpus
of remnant methods; those that match the tag phrase, but are not included in any of
the useful concrete refinements. We say that these methods are captured by a special
phrase r-phrase. The r-phrase is equal to the t-phrase, except that it potentially cap-
tures fewer method names, and hence might represent a smaller corpus. For instance, if
get-name-* is useful and get-customer-* is not, then r-phrase captures the phrases
captured by get-[noun]-*, except those also captured by get-name-*. If r-phrase is
useful, it is included in the phrase book. Note that if no useful concrete refinements

74 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

Table 8.4: Phrase book terminology.

Phrase Meaning
Always The attribute value is always 1.
Very often Frequency in the high extreme per-

centile group.
Often Frequency in the high percentile group.
Rarely Frequency in the low percentile group.
Very rarely Frequency in the low extreme percentile

group.
Never The attribute value is always 0.

are found, r-phrase degenerates to t-phrase.

8.5 Results

While the phrase book has been designed for brevity, it is still much too large to
be included in this paper. We therefore present some excerpts highlighting different
aspects. The full version is available at http://phrasebook.nr.no. We also take a
look at the distribution of grammatical structures, and using the phrase book to guide
naming.

Terminology. Table 8.4 explains the basic terminology used in the phrase book.
In addition, we use the modifier comparatively to indicate that the frequency is low
despite being in the higher quantiles, or high despite being in the lower quantiles. For
instance, a phrase might denote methods that call themselves recursively more often
than average methods, even if the actual frequency might be as low as 0.1.

Example Entry. To illustrate how the data uncovered by our analysis is presented
in the phrase book, we show the entry for the phrase find-[type]. It is an interesting
example of a slightly abstract phrase with a clear meaning.

find-[type]. These methods very often contain loops, use local variables, have
branches and have multiple return points, and often throw exceptions, do runtime
type-checking or casting and are static. They rarely return void, write parameter
values to fields or call themselves recursively.

Each entry in the phrase book describes what signifies the corpus of methods cap-
tured by the phrase; that is, how it differs from the average (Sect. 8.3.3.1). We find
no surprises in the distinguishing features of find-[type]; in fact, it is a fairly accurate
description of a typical implementation such as:

Person findPerson(String ssn) {
Iterator itor = list.iterator();
while (itor.hasNext()) {
Person p = (Person) itor.next();
if (p.getSSN().equals(ssn)) {

return p;

8.5. RESULTS 75

Figure 8.4: The is-* branch of phrases.

}
}
return null;

}

We iterate over a collection of objects (Contains loop), cast each object to its
proper type (Run-time type check) and store it in a variable (Local assignment),
and terminate early if we find it (Multiple returns). A common variation would be
to throw an exception (Throws exception) instead of returning null if the object
could not be found.

Refinement. As explained in Sect. 8.4.1, the phrase book is engineered to yield useful
entries, understood as valid, precise and ubiquitous ones. The generation algorithm
has been designed to prefer concrete phrases over abstract ones, as long as the criteria
for usefulness are fulfilled.

One effect of this strategy is that the everyday “cliché” methods equals, hashCode
and toString defined on Object are not abstracted: they emerge as the concrete
phrases equals, hash-code and to-String. This is not surprising, as the names are
fixed and the semantics are well understood.

The algorithm’s ability to strike the right balance between concrete and abstract
phrases is further illustrated by the branch for the is-* phrase, shown in Fig. 8.4.

We see that the algorithm primarily generates abstract refinements for is-*; one
for each of the tags verb, noun, adjective and preposition. However, in the case of
adjective, two concrete instances are highlighted: is-empty-* and is-valid-*. This
matches nicely with our intuition that these represent common method names. We
write [/adjective] for the subsequent phrase to indicate that it captures adjectives
except the preceding “empty” and “valid”.

Grammar. We find that the vast majority of method phrases have quite degenerate
grammatical structures. By far the most common structure is [verb]-[noun]. Further-
more, compound nouns in Programmer English, as in regular English, are created by
juxtaposing nouns. The situation becomes even more extreme when we collapse these
nouns into one, and introduce the tag noun+ to represent a compound noun. The ten
most common grammatical structures are listed in Table 8.5.

76 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

Table 8.5: Distribution of grammatical structures.

Structure Instances Percent
[verb]-[noun+] 422546 39.45%
[verb] 162050 15.13%
[verb]-[type] 78632 7.34%
[verb]-[adjective]-[noun+] 74277 6.93%
[verb]-[adjective] 28397 2.65%
[noun+] 26592 2.48%
[verb]-[noun+]-[type] 18118 1.69%
[adjective]-[noun+] 15907 1.48%
[noun+]-[verb] 14435 1.34%
[preposition]-[type] 13639 1.27%

Guidance. Perhaps the greatest promise of the phrase book is that it can be used as
guidance when creating and naming new methods. Each description could be translated
to a set of rules for a given phrase. An interactive tool, e.g., an Eclipse plug-in, could
use these rules to give warnings when a developer breaches them.

As an example, consider the phrase equals, which the phrase book describes as
follows:

equals. These methods very often have parameters, call other methods with
the same name, do runtime type-checking or casting, have branches and have
multiple return points, and often use local variables. They never return field
values or return parameter values, and very rarely return void, write to fields,
write parameter values to fields or call themselves recursively, and rarely create
objects or throw exceptions. The phrase appears in most applications.

The extreme clauses are most interesting, because they represent the clearest char-
acteristics for the phrase. For instance, no programmer contributing to the corpus has
ever let an equals method return a value stored in a field — a strong suggestion that
you might not want to do so either! However, we note that the phrase book reflects the
actual use of phrases, not the ideal use. This means that the description might cap-
ture systematic implementation problems; i.e., common malpractice for a given phrase.
We might look for clues in the negative clauses, indicating rare — even suspicious —
behaviour. For instance, we see that there are equals methods that create objects
and throw exceptions, which might be considered dubious. More severely, recursion in
an equals method sounds like a possible bug. Indeed, inspection reveals an infinite
recursive loop bug in an equals method in version 1.0 of Groovy4.

We conclude that the rules uncovered by the phrase book appear to be useful as
input to a naming-assistance tool. However, the rules might need to be tightened some-
what, to compensate for fallible implementations in the corpus. After all, the corpus
reflects the current state of affairs for naming, and the aim of a naming-assistance tool
would be to improve it.

4http://groovy.codehaus.org/

8.6. RELATED WORK 77

8.6 Related Work

We build on our previous work [10], which defined semantics for action verbs, the initial
fragment of method names. We summarized the findings in The Programmer’s Lexicon,
an automatically generated description of the most common verbs in a large corpus of
Java applications. The distinguishing characteristic of our work, is that we compare
the names and semantics of methods in a large corpus of Java applications.

Other researchers have analyzed Java applications in order to describe typical
Java programmer practice. Collberg et al. [4] present a large set of low-level usage
statistics for a huge corpus of Java programs. Examples of statistics included are the
number of subclasses per class, the most common method signatures and bytecode
frequencies. Baxter et al. [2] have similar goals, in using statistics to describe the
anatomy of real-world Java programs. In particular, they investigate the claim that
many important relationships between software artifacts follow a “power-law” distri-
bution. However, none of these statistics are linked to names.

There have also been various kinds of investigations into identifiers, traditionally
in the context of program comprehension. Lawrie et al. [12] study how the quality of
identifiers affect the understanding of source code. Caprile and Tonella [3] investigate
the structure of function identifiers as found in C programs. They build a dictionary
of identifier fragments and propose a grammar for identifiers, but make no attempt
at defining identifier semantics. Antoniol et al. [1] find that the names used in pro-
gramming evolve more slowly than the structures they represent. They argue that the
discrepancy is due to lack of tool support for name refactoring. In this work, names
are linked to structures, but not the semantics of the structures.

Lately, more interest can be seen in investigating and exploiting name semantics.
Singer et al. [17] share our ambition in ascribing semantics to names based on how they
are used. They analyze a corpus of real-world Java applications, and find evidence
of correlation between type name suffixes (nouns) and some of the micro patterns
described by Gil and Maman [9]. Micro patterns are formal, traceable conditions
defined on Java types.

Pollock et al. [15] investigate various ways of utilizing “natural language clues”
to guide program analysis. Shepherd et al. [16] apply method name analysis to aid in
aspect mining. In particular, they investigate the relationships between verbs (actions)
and nouns (types) in programs. The scattering of the same verb throughout a program
is taken as a hint of a possible cross-cutting concern. Finally, Ma et al. [13] use identifier
fragments to index software repositories, to assist in querying for reusable components.
These works involve exploiting implicit name semantics, in that relationships between
names are taken to be meaningful. However, what the semantics are remains unknown.
Our work is different, in that we want to explicitly model and describe the semantics
of each name.

8.7 Conclusion

The names and implementations of methods are mutually dependent on each other.
The phrase book contains descriptions that captures the objective sense of the phrases,
that is, the common understanding among Java programmers of what the phrases
mean. We arrived at the sense by correlating over a million method names and im-

78 CHAPTER 8. PAPER 2: THE JAVA PROGRAMMER’S PHRASE BOOK

plementations in a large corpus of Java applications. By using attributes, defined as
predicates on Java bytecode, we modeled the semantics of individual methods. By
aggregating methods by the phrases that describe them, we derived the semantics of
the phrases themselves. From the semantics, we generated the textual descriptions
gathered in the phrase book.

We believe that further investigation into the relationship between names and im-
plementations can yield more valuable insight and contribute to improved naming.
Currently, we are refining our model of the semantics of methods, in order to make
it more sophisticated and precise. This will allow us to more accurately describe the
meaning of the phrases. An obvious enhancement is to use a state-of-the-art static
analysis tool to provide a richer, more descriptive set of attributes. We are also con-
sidering developing a model for the semantics that better captures the structure of
the implementations. At an abstract level, it might be possible to identify machine-
traceable patterns for method implementations. Inspired by Singer et al. [17], then, we
might look for correlation between names and these patterns.

While we have shown that names do have grammatical structure, we believe that
the potential for natural language expression in names is under-utilized. Indeed, by
far the most common structure is the simple [verb]-[noun] structure. Longer, more
complex names gives the possibility of much more precise descriptions of the behaviour
of methods. Improved tool support for verifying name quality might motivate pro-
grammers to exploit this possibility to a greater extent than at the present.

We are working on transforming the results presented in this paper into a practical
tool, supporting a much richer set of naming conventions than adherence to simple
syntactic rules such as the camel case convention. The tool will warn against dissonance
between name and implementation, and suggest two paths to resolution: 1) select a
more appropriate name from a list proposed by the tool, or 2) perform one or more
proposed changes to the implementation.

In a somewhat longer timeframe, the tool could be extended to support grammatical
conventions as well. An example would be to warn against mixing verbose and succinct
naming styles. One might debate whether it is better to explicitly mention types in
method names (e.g., Customer findCustomerByOrder(Order)) or not (e.g., Customer
find(Order)), but to mix both styles in the same application is definitely confusing.
Tool support could help achieve grammatical consistency within the application.

Bibliography

[1] G. Antonial, Y.-G. Guéhéneuc, E. Merlo, and P. Tonella. Mining the lexicon used
by programmers during sofware [sic] evolution. Proceedings of the 23rd Interna-
tional Conference on Software Maintenance (ICSM 2007), pages 14–23, October
2007.

[2] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and
E. Tempero. Understanding the shape of Java software. In Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2006), October 22-26, 2006, Portland,
Oregon, USA, pages 397–412. ACM, 2006.

[3] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proceedings of the Sixth Working Conference on Reverse Engineering
(WCRE 1999), 6-8 October 1999, Atlanta, Georgia, USA, pages 112–122. IEEE
Computer Society, 1999.

[4] C. Collberg, G. Myles, and M. Stepp. An empirical study of Java bytecode pro-
grams. Software Practice and Experience, 37(6):581–641, 2007.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. Wiley, 2nd edition, 2006.

[6] J. Edwards. Subtext: Uncovering the simplicity of programming. In Johnson and
Gabriel [11], pages 505–518.

[7] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[8] G. Frege. On sense and reference. In P. Geach and M. Black, editors, Translations
from the Philosophical Writings of Gottlob Frege, pages 56–78. Blackwell, 1952.

[9] J. Gil and I. Maman. Micro patterns in Java code. In Johnson and Gabriel [11],
pages 97–116.

[10] E. W. Høst and B. M. Østvold. The programmer’s lexicon, volume I: The verbs.
In Proceedings of the Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 193–202, Paris, France,
2007. IEEE Computer Society.

[11] R. E. Johnson and R. P. Gabriel, editors. Proceedings of the 20th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2005), October 16-20, 2005, San Diego, CA, USA. ACM, 2005.

79

80 BIBLIOGRAPHY

[12] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study
of identifiers. In Proceedings of the 14th International Conference on Program
Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages 3–12. IEEE
Computer Society, 2006.

[13] H. Ma, R. Amor, and E. D. Tempero. Indexing the Java API using source code.
In Proceedings of the 19th Australian Software Engineering Conference (ASWEC
2008), March 25-28, 2008, Perth, Australia, pages 451–460. IEEE Computer So-
ciety, 2008.

[14] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[15] L. L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and K. Maloor.
Introducing natural language program analysis. In M. Das and D. Grossman,
editors, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2007), San Diego, Califor-
nia, USA, June 13-14, 2007, pages 15–16. ACM, 2007.

[16] D. Shepherd, L. L. Pollock, and K. Vijay-Shanker. Towards supporting on-demand
virtual remodularization using program graphs. In R. E. Filman, editor, Proceed-
ings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), Bonn, Germany, March 20-24, 2006, pages 3–14. ACM, 2006.

[17] J. Singer and C. Kirkham. Exploiting the correspondence between micro patterns
and class names. In Proceedings of the 8th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2008), pages 67–76, Beijing,
China, 2008. IEEE Computer Society.

[18] L. Wittgenstein. Philosophical Investigations. Prentice Hall, 1973.

Chapter 9

Paper 3: Debugging Method Names

Meaningful method names are crucial for the readability and maintain-
ability of software. Existing naming conventions focus on syntactic details,
leaving programmers with little or no support in assuring meaningful names.
In this paper, we show that naming conventions can go much further: we
can mechanically check whether or not a method name and implementation
are likely to be good matches for each other. The vast amount of software
written in Java defines an implicit convention for pairing names and im-
plementations. We exploit this to extract rules for method names, which
are used to identify “naming bugs” in well-known Java applications. We
also present an approach for automatic suggestion of more suitable names
in the presence of mismatch between name and implementation.

9.1 Introduction

It is well-known that maintenance costs dominate — if not the budget — then the true
cost of software [7]. It is also known that code readability is a vital factor for mainte-
nance [5]: unintelligible software is necessarily hard to modify and extend. Finally, it
has been demonstrated that the quality of identifiers has a profound effect on program
comprehension [14]. We conclude that identifier quality affects the cost of software!
Hence, we would expect programmers to have powerful analyses and tools available to
help assure that identifier quality is high.

The reality is quite different. While the importance of good names is undisputed
among leading voices in the industry [2, 18, 19], the analyses and tools are lacking.
Programmer guidance is limited to naming convention documents such as those pro-
vided by Sun Microsystems for Java. The following quote is typical for the kind of
advice given by such documents: “Except for variables, all instance, class, and class
constants are in mixed case with a lowercase first letter”1. In other words, the docu-
ments mandate a certain uniformity of lexical syntax. Since such uniformity is easily
checked mechanically, there are tools available to check for violations against these
rules. While this is certainly useful, it does little to ensure meaningful identifiers. (Ar-
guably, syntactic uniformity helps reduce the cost of “human parsing” of identifiers,
but not the interpretation.) Since identifiers clearly must be meaningful to be of high
quality, current tool-support must be considered unsatisfactory.

1http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

81

82 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

This begs the question what meaningful identifiers really are. Consider what an
identifier is used for: it represents some program entity, and allows us to refer to that
entity by means of the identifier alone. In other words, the identifier is an abstraction,
and the meaning relates to the program entity it represents. The identifier is meaningful
if the programmer can interpret it to gain an understanding of the program entity
without looking at the entity itself. Intuitively, we also demand that the abstraction
be sound: we must agree that the identifier is a suitable replacement for the entity.
Hence, what we really require are identifiers that are both meaningful and appropriate.

In this work, we consider only method names. Methods are the smallest named
units of aggregated behaviour in most conventional programming languages, and hence
a cornerstone of abstraction. A method name is meaningful and appropriate if it ad-
equately describes the implementation of the method. Naming is non-trivial because
there is a potential for conflict between names and implementations: we might choose
an inappropriate name for an implementation, or provide an inappropriate implemen-
tation for a name. The label appropriate is not really a binary decision: there is a
sliding scale from the highly appropriate to the utterly inappropriate. Inappropriate
or even meaningless identifiers are obviously bad, but subtle mistakes in naming can be
as confusing or worse. Since the programmer is less likely to note the subtle mistake,
a misconception of the code’s behaviour can be carried for a long time.

Consider the following example, taken from AspectJ 1.5.3, where the method name
has been replaced by underscores:

/**
* @return field object with given name, or null
*/
public Field ___(String name) {
for (Iterator e = this.field_vec.iterator(); e.hasNext();) {
Field f = (Field) e.next();
if (f.getName().equals(name))

return f;
}
return null;

}

Most Java programmers will find it easy to come up with a name for this method:
clearly, this is a find method! More precisely, we would probably name this method
findField; a suitable description for a method that indeed tries to find a Field. The
name used in AspectJ, however, is containsField. We consider this to be a naming
bug, since the name indicates a question to the object warranting a boolean reply (“Do
you contain a field with this name?”) rather than an instruction to return an object
(“Find me the field with this name!”). In this paper, we show how to derive rules for
implementations of contains methods, find methods and other methods with common
names, allowing us to identify this naming bug and many others. We also present an
approach for automatic correction of faulty names that successfully suggests using the
verb find rather than contains for the code above.

It is useful to speak of method names in slightly abstract terms; for instance,
we speak of find methods, encompassing concrete method names like findField and
findElementByID. We have previously introduced the term method phrase for this
perspective [12]. Typically, the rules uncovered by our analysis will refer to method
phrases rather than concrete method names. This is because method phrases allow

9.2. MOTIVATION 83

us to focus on essential similarities between method names, while ignoring arbitrary
differences.

The main contributions of this paper are as follows:

• A formal definition of a naming bug (Sect. 9.3.1).

• An approach for encoding the semantics of methods (Sect. 9.3.3), building on our
previous work [12, 11].

• An approach for extracting name-specific implementation rules for methods from
a corpus (Sect. 9.3.4).

• An automatically generated “rule book” containing implementation rules for the
most common method names used in Java programming (Sect. 9.3.4).

• An approach for automatic suggestion of a more suitable name in the case of
mismatch between the name and implementation of a method (Sect. 9.3.6).

We demonstrate the usefulness of our analysis by finding genuine naming bugs in
well-known Java applications (Sect. 9.5.2).

9.2 Motivation

Our goal is to exploit the vast amount of software written in Java to derive name-
specific implementation rules for methods. Our approach is to compare the names and
implementations of methods in a large corpus of well-known open-source Java applica-
tions. In this section, we motivate our approach, based on philosophical considerations
about the meaning of natural language expressions.

9.2.1 The Java Language Game

We have previously argued that method identifiers act as hosts for expressions in a
natural language we named Programmer English [12]. Inspired by Wittgenstein and
Frege, we take a pragmatic view of how meaning is constructed in natural language.
According to Wittgenstein, “the meaning of a word is its use in the language” [27]. In
other words, the meaning is simply the sum of all the uses we find of the word — there
is no “objective” definition apart from this sum. It follows that meaning is not static,
since new examples of use will skew the meaning in their own direction. Also, any
attempt at providing a definition for a word (for instance in a dictionary, or our own
phrase book for Java [12]) is necessarily an imperfect approximation of the meaning.

Wittgenstein used the term language game (Sprachspiel) to designate simple forms
of language, “consisting of language and the actions into which it is woven” [27]. Intu-
itively, a language game should be understood as interplay between natural language
expressions and behaviours. Hence, our object of inquiry is really the Java language
game, where the language expressions are encoded in method identifiers and the actions
are encoded in method bodies.

In discussing the meaning of symbolic language expressions, Frege [9] introduces
the terms sign, reference and sense. The sign is the name itself, or a combination
of words. The reference is the object to which the sign refers. The sense is our

84 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

CodeName Phrase

Corpus

SemanticsPhrase
Derive

Rules

Prepare Generate

semantic
abstraction

grammatical
analysis refinequalifies?

Identify

SemanticsPhrase

Rules

lookup check

Software
Corpus

Method
Corpus

Rule
Book

Naming
Bugs

Figure 9.1: Overview of the approach.

collective understanding of the reference. In the context of Java programming, we take
the sign to be the method phrase, the reference to be the “true meaning” indicated
by that phrase (that Wittgenstein would claim is illusory), and the sense to be the
Java community’s collective understanding of what the phrase means. Of course, the
collective understanding is really unavailable to us: we are left with our own subjective
and imperfect understanding of the sign. This is what Frege refers to as the individual’s
idea. Depending on our level of insight, that idea may be in various degrees of harmony
or conflict with the actual sense.

Interestingly, when analysing Java methods, we do have direct access to a manifes-
tation of the programmer’s idea of the method name’s sense: the method body. By
collecting and analysing a large number of such ideas, we can approximate the sense of
the name. This, in turn, allows us to identify naming bugs: ideas that are in conflict
with the approximated sense.

9.3 Analysis of Methods

We turn our understanding of how meaning is constructed into a practical approach for
approximating the meaning of method names in Java. This approximation is then used
to create rules for method implementations. Finally, these rules help us identify naming
bugs. Fig. 9.1 provides an overview of the approach. The analysis consists of three
major phases: data preparation, mining of implementation rules, and identification of
naming bugs.

In the data preparation phase, we transform our corpus of Java applications into an
idealised corpus of methods. The transformation entails analysing each Java method
in two ways. On the one hand, we perform a natural language analysis on the method
name (Sect. 9.3.2). This involves decomposing the name into individual words and
performing part-of-speech tagging of those words. The tags allow us to form abstract
phrases from the concrete method names. On the other hand, we analyse the signature
and Java bytecode of the method implementation, deriving a semantic profile for each
implementation (Sect. 9.3.3).

This sets us up to investigate the semantics of methods that share the same ab-
stract phrase. We start with very abstract phrases that we gradually refine into more
concrete phrases, more closely matching the actual method names. If a given phrase

9.3. ANALYSIS OF METHODS 85

Phrase Name

Method

Rule Set
Semantic

Profile

belongs to

has aapplies to

is in corpus of

is associated with

checks

captures

refines

Figure 9.2: Conceptual model of phrase terms.

fulfils certain criteria pertaining to prevalence, we derive a corresponding set of im-
plementation rules (Sect. 9.3.4) that all methods whose names match the phrase must
obey. Failure to obey an implementation rule is considered a naming bug (Sects. 9.3.5
and 9.3.6).

9.3.1 Definitions

In the following, please refer to Fig. 9.2 for an overview of the relationships between
the introduced terms.

We define a method m as a tuple consisting of a unique fingerprint u, a name n, and
a semantic profile �m�. The unique fingerprints prevent set elements from collapsing
into one; hence, a set made from arbitrary methods m1, . . . ,mk will always have k
elements. The name n is a non-empty list of fragments f . Each fragment is annotated
with a tag t.

The semantic profile �m� for a method m is defined in terms of attributes. We
define a set A of attributes {a1, . . . , ak}, and let a denote an attribute from A. Given a
method m and an attribute a, the expression check(m, a) is a binary value b ∈ {0, 1}.
Intuitively, check determines whether or not m fulfils the predicate defined by a. We
then define �m� as the list [check(m, a1), . . . , check(m, ak)]. It follows that there are at
most 2|A| distinct semantic profiles. The rank of a semantic profile in a corpus is the
proportion of methods that have that semantic profile.

A phrase p is a non-empty list of parts ρ; its purpose is to abstract over method
names. A part ρ may be a fragment f , a tag t, or a special wildcard symbol ∗. The
wildcard symbol may only appear as the last part of a phrase. A phrase that consists
solely of fragments is concrete; all other phrases are abstract.

A phrase captures a name if each individual part of the phrase captures each frag-
ment of the name, in order from first to last. A fragment part captures a fragment if
they are equal. A tag part captures a fragment if it is equal to the fragment’s tag. A
wildcard part captures any remaining fragments in a name, including zero fragments.
A concrete phrase can only capture a single name, whereas an abstract phrase can
capture multiple names. For instance, the abstract phrase is-〈adjective〉-* captures

86 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

names like is-empty, is-valid-signature and so forth.
A corpus C is a set of methods. Implicitly, C defines a set N , consisting of the

names of the methods m ∈ C. A name corpus Cn is the subset of C with the name
n. Similarly, a phrase corpus Cp is the subset of C whose names are captured by the
phrase p. The frequency value ξa(C) for an attribute a given a corpus C is defined as:

ξa(C)
def
=

∑
m∈C check(m, a)

|C|
The semantics of a corpus C is defined as the list [ξa1(C), . . . , ξak

(C)]. We write �p�C for
the semantics of a phrase in corpus C, and define it as the semantics of the corresponding
phrase corpus. The subscript will be omitted when there can be no confusion as to
which corpus we refer to.

We introduce a subset Ao ⊂ A of orthogonal attributes. Two attributes a1 and a2

are considered orthogonal if check(m, a1) does not determine check(m, a2) or vice versa
for any method m. We define the semantic distance d(p1, p2) between two phrases p1

and p2 as the vector distance

d(p1, p2)
def
=

∑
a∈Ao

(
ξa(Cp1) − ξa(Cp2)

)2

A rule r is a tuple consisting of an attribute a, a trigger condition c and a severity
s. The trigger condition c is a binary value, indicating whether the rule is triggered
when the function check evaluates to 0 or to 1. The severity s is defined as s ∈
{forbidden, inappropriate, reconsider}.

For example, the rule r = (areads field , 1, inappropriate) indicates that it is considered
inappropriate for the reads field attribute to evaluate to 1. Applied to a method
implementation, the rule states that the implementation should not read field values.
In practice, rules are relevant for specific phrases. Hence, we associate with each phrase
p a set of rules Rp that apply to the methods m ∈ Cp.

Finally, we define a boolean function bug(r,m)
def
= check(m, a) = c that evaluates

to true when the rule r = (a, c, s) is triggered by method m.

9.3.2 Analysing Method Names

Far from being arbitrary labels, method names act as hosts for meaningful phrases.
This is the premise we rely on when we state that it is possible to define name-specific
rules for the implementation of methods. According to Liblit [15], “[method] names
exhibit regularities derived from the grammars of natural languages, allowing them to
combine together to form larger pseudo-grammatical phrases that convey additional
meaning about the code”. To reconstruct these phrases, we decompose the method
names into individual fragments, and apply a natural language processing technique
called part-of-speech tagging [17] to identify their grammatical structure.

9.3.2.1 Decomposition.

By convention, Java programmers use “camel case” when forming method names that
consist of multiple fragments (“words”). A camel case method name uses capitalised
fragments to compensate for the lack of whitespace in identifiers. For instance, instead

9.3. ANALYSIS OF METHODS 87

Ambiguous
Tagged
Phrase

WordNet
+

Extension

Finder

Untagged
Phrase

Generic
Word Class
Recognizer

Hand-made
Computing
Dictionary

Selector
Tagged
Phrase

Figure 9.3: Part-of-speech tagging for method phrases.

of writing create new instance (which would be illegal), Java programmers write
createNewInstance. To recover the individual fragments, we reverse the process,
using capital characters as an indicator to split the name, with special treatment of
uppercase acronyms. For instance, we decompose parseXMLNode into parse XML node

as one would expect. Some programmers use underscore as delimiter instead of case-
switching; however, we have previously noted that this is quite rare [12]. For simplicity,
we therefore choose to omit such methods from the analysis.

9.3.2.2 Part-of-speech Tagging.

Informally, part-of-speech tagging refers to the process of tagging each word in a natural
language expression with information about its the grammatical role in the expression.
In our scenario, this translates to tagging each fragment in the decomposed method
name. We consider a decomposed method name to be an untagged method phrase.

An overview of the tagging process is shown in Fig. 9.3. First, we use the tags verb,
noun, adjective, adverb, pronoun, preposition, conjunction, article, number,
type and unknown to tag each fragment in the phrase. In other words, apart from
the special tags number, type and unknown, we use the basic word classes. The
number tag is used for numeric fragments like 1. The type tag is used when we
identify a fragment as the name of a type in scope of the method. Fragments that we
fail to tag default to the unknown tag.

We make three attempts at finding suitable tags for a fragment. First, we use
WordNet [8], a large lexical database of English, to find verbs, nouns, adjectives and
adverbs. We augment the results given by WordNet with lists of pronouns, prepositions,
conjunctions and articles. If we fail to find any tags, we use a mechanism for identifying
invented words. Programmers sometimes derive nouns and adjectives from verbs (for
instance, handler from handle and foldable from fold), or verbs from nouns (for
instance, tokenize from token). If we can discover such derivations, we tag the
fragment accordingly. Finally, we resort to a manual list of tags for commonly used
programming terms.

Since a fragment may receive multiple tags (for instance, WordNet considers ob-
ject to be both a noun and a verb), the initial tagging leads to an ambiguously tagged

88 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

is-* is-<adjective>-* is-empty-* is-empty<verb>-**

Figure 9.4: The refinements leading to is-empty.

phrase. We then perform a selection of tags that takes into account both the frag-
ment’s position in the phrase, and the tags of surrounding fragments. This yields
an unambiguously tagged phrase. We have previously estimated the accuracy of the
part-of-speech tagger to be approximately 97% [12].

9.3.2.3 Method Phrases and Refinement.

The decomposed, tagged method names are concrete method phrases. The tags allow us
to form abstract phrases as well; phrases where concrete fragments have been replaced
by tags. Phrases are written like this: get-〈noun〉-*, where the individual parts are
separated by hyphens, fragments are written straightforwardly: get, tags are written
in angle brackets: 〈noun〉, and the * symbol indicates that the phrase can be further
refined.

Refinement involves reducing the corresponding phrase corpus to a subset. In gen-
eral, there are three kinds of refinement:

1. Introduce tag: p-* ⇒ p-〈t〉-*.
For instance, the phrase is-* may be refined to is-〈adjective〉-*. The former
phrase would capture a name like isObject, the latter would not.

2. Remove wildcard: p-* ⇒ p.
For instance, the phrase is-〈adjective〉-* may be refined to is-〈adjective〉. The
former phrase would capture a name like isValidSignature, the latter would
not.

3. Replace tag with fragment: p-〈t〉-* ⇒ p-f-*.
For instance, the phrase is-〈adjective〉-* may be refined to is-empty-*. The
former phrase would capture a name like isValid, the latter would not.

Fig. 9.4 shows the refinement steps leading from the completely abstract phrase *,
to the concrete phrase is-empty. When we reach a concrete phrase, we attempt a final
step of further refinement to annotate the concrete phrase with information about the
types of return value and parameters. Hence we can form signature-like phrases like
boolean is-empty(). This step is not included in the figure, nor in the list above.

9.3.3 Analysing Method Semantics

In any data mining task, the outcome of the analysis depends on the domain knowledge
of the analyst [26]. Hence, we must rely on our knowledge of Java programming when
modelling the semantics of methods. In particular, we consider some aspects of the
implementation to be important clues as to the behaviour of methods, whereas others
are considered insignificant.

9.3. ANALYSIS OF METHODS 89

Table 9.1: Attributes. Orthogonal attributes marked with an asterisk.

Signature
Returns void* Returns reference
Returns int Returns boolean
Returns string No parameters*
Return type in name Parameter type in name

Data Flow
Reads field* Writes field*
Writes parameter value to field Returns field value
Returns created object Runtime type check*

Object Creation
Creates regular objects* Creates string objects
Creates custom objects Creates own type objects

Control Flow
Contains loop* Contains branch
Multiple return points*

Exception Handling
Throws exceptions* Catches exceptions*
Exposes checked exceptions

Method Call
Recursive call* Same name call*
Same verb call* Method call on field value
Method call on parameter value Parameter value passed to method call

on field value

A methodm has some basic behaviours pertaining to data flow and control flow that
we would like to capture: 1) read or write fields, 2) create new objects, 3) return a value
to the caller, 4) call methods, 5) branch and/or repeat iteration, and 6) catch and/or
throw exceptions. We concretise the basic behaviours by means of a list of machine-
traceable attributes, formally defined as predicates on Java bytecode. In addition to
the attributes stemming from the basic behaviours, called instruction attributes, we
define a list of signature attributes. Table 9.1 lists all the attributes, coarsely sorted
in groups. Note that some attributes, such as returns created object really belong
to more than one group. Attributes marked with an asterisk belong to the subset of
orthogonal attributes.

Most of the attributes should be fairly self-explanatory; however, the attributes
pertaining to object creation warrant further explanation. A regular object is an ob-
ject that does not inherit from the type java.lang.Throwable, a string object is an
instance of the type java.lang.String, and a custom object is one that does not be-
long to either of the namespaces java.* and javax.*. Finally, the attribute creates
own type objects indicates that the method creates an instance of the class on which
the method is defined.

90 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Reads field

0 0.2 0.4 0.6 0.8 1

(b) Returns void

Figure 9.5: Distribution of frequency values for two attributes.

9.3.4 Deriving Phrase-Specific Implementation Rules

We derive a set of implementation rules for method phrases that are prevalent in a
large corpus of Java applications. A phrase is considered prevalent if it fulfils a simple
heuristic: it must occur in at least half of the applications in the corpus, and it must
cover at least 100 method instances. While somewhat arbitrary, this heuristic guards
against idiosyncratic naming in any single application, and ensures a fairly broad basis
for the semantics of the phrase. Each prevalent phrase is included in a conceptual “rule
book” derived from the corpus, along with a corresponding set of rules. Intuitively, all
methods captured by a certain phrase must obey its implementation rules.

We define the implementation rules on the level of individual attributes. To do so,
we consider the frequency values of the attributes for different phrase corpora. The
intuition is that for a given phrase corpus, the frequency value for an attribute indicates
the probability for the attribute’s predicate to be fulfilled for methods in that corpus.
For each attribute a ∈ A, we find that the the frequency value ξa(Cn) is distributed
within the boundaries 0 ≤ ξa(Cn) ≤ 1. We assume that method names therefore can
be used to predict whether or not an attribute will evaluate to 1: different names lead
to different frequency values. Fig. 9.5 shows example distributions for the attributes
reads field and returns void for some corpus. We see that the two distributions
are quite different. Both attributes distinguish between names, but returns void is
clearly the most polarising of the two for the corpus in question.

A frequency value close to 0 indicates that it is rare for methods in the corresponding
corpus to fulfil the predicate defined by the attribute; a value close to 1 indicates the
opposite. We exploit this to define rules. Any method that deviates from the norm set
by the phrase corpus to which it belongs is suspect. If the norm is polarised (close to
0 or 1), we induce a rule stating that the attribute should indeed evaluate to only the
most common value. Breaking a rule constitutes a naming bug. Note that there are
two kinds of naming bugs, that we call inclusion bugs and omission bugs. The former
refers to methods that fulfil the predicate of an attribute it should not, the latter
to methods that fail to fulfil a predicate it should. We expect inclusion bugs to be
more common (and arguably more severe) than omission bugs. For instance, it might
be reasonable to refrain from doing anything at all (an empty method) regardless of
name, whereas throwing an exception from a seemingly innocent hasChildren method
is more dubious.

Specifically, we induce rules by defining percentiles on the distribution of frequency

9.3. ANALYSIS OF METHODS 91

Table 9.2: Percentile groups for frequency values.

Percentiles (%) Severity
0.0 Forbidden (if included)
0.0 − 2.5 Inappropriate (if included)
2.5 − 5.0 Reconsider (if included)
5.0 − 95.0 No violation
95.0 − 97.5 Reconsider (if omitted)
97.5 − 100.0 Inappropriate (if omitted)
100.0 Forbidden (if omitted)

values for each attribute a ∈ A. The percentiles are 0.0%, 2.5%, 5.0%, 95.0%, 97.5%
and 100.0%, and are associated to a degree of severity when the corresponding rules are
violated (see Table 9.3.4). The intuition is that the percentiles classify the frequency
values of different phrases relative to each other. Assume, for instance, that we have
a corpus C and a phrase p with a corresponding corpus Cp ⊂ C of methods yielding a
frequency value ξa(Cp) for a certain attribute a ∈ A. Now assume that the frequency
value belongs to the lower 2.5% when compared to that of other phrases in C. Then
we deem it inappropriate for a method m ∈ Cp to fulfil the predicate defined by a.

9.3.5 Finding Naming Bugs

Once a set of rules has been obtained for each prevalent phrase in the corpus, finding
naming bugs is trivial. For each of the methods we want to check, we attempt to
find the rule set for the most concrete capturing phrase (see Fig. 9.2). In a few cases,
the capturing phrase may be fully concrete, so that it perfectly matches the method
name. This is likely to be the case for certain ubiquitous method names and signatures
such as String toString() and int size(), for instance. In most other cases, we
expect the phrase to be more abstract. For instance, for the method name Element

findElement(), the most concrete capturing phrase might be something like ref find-
〈type〉. Failure to find any capturing phrase at all could be considered a special kind
of naming bug; that the name itself is rather odd.

When we have found the most concrete capturing phrase p, we obtain the corre-
sponding rule set Rp that applies to the method. For each rule in the rule set, we
pass the rule and the method to the function bug. Whenever bug returns true, we have
a rule violation, and hence a naming bug. Note that a single method might violate
several implementation rules, yielding multiple naming bugs.

9.3.6 Fixing Naming Bugs

Naming bugs manifest themselves as violations of phrase-specific implementation rules.
A rule violation indicates a conflict between the name and the implementation of a
method. There are two ways to resolve the conflict: either we assume that the name
is correct and the implementation is broken, or vice versa. The former must be fixed
by removing offending or adding missing behaviour. While it is certainly possible to
attempt to automate this procedure, it is likely to yield unsatisfactory or even wrong

92 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

results. The programmer should therefore attend to this manually, based on warnings
from the analysis.

We are more likely to succeed, at least partially, in automating the latter. We pro-
pose the following approach to find a suitable replacement name for an implementation
that is assumed to be correct. The implementation is represented by a certain semantic
profile. Every prevalent phrase that has been used for that profile is considered a rele-
vant phrase for replacement. Some of the relevant phrases may be unsuitable, however,
because they have rules that are in conflict with the semantic profile. We therefore
filter the relevant phrases for rule violations against the semantic profile. The resulting
list of phrases are candidates for replacement. Note that, in some cases, the list may
be empty. If so, we deem the semantic profile to be unnameable.

Finding the best candidate for replacement is a matter of sorting the candidate
list according to some criterion. We consider three relevant factors: 1) the rank of
the semantic profile in the candidate phrase corpus, 2) the semantic distance from
the inappropriate phrase to the candidate phrase, and 3) the number of syntactic
changes we must apply to the inappropriate phrase to reach the candidate phrase. We
assume that the optimal sorting function would take all three factors — and possibly
others — into consideration. As a first approximation to solving the problem, however,
we suggest simply sorting the list according to profile rank and semantic distances
separately, and letting the programmer choose the most appropriate of the two.

9.4 The Corpus

The main requirements for the corpus are as follows:

• It must be representative of real-world Java programming.

• It must cover a variety of applications and domains.

• It must include most well-known and influential applications.

• It must be large enough to be credible as establishing “canonical” use of method
names.

Table 9.3 lists the 100 Java applications, frameworks and libraries that constitute
our corpus. Building and cleaning a large corpus is time-consuming labour; hence we
use the same corpus that we have used in our previous work [12, 11]. The corpus was
constructed to cover a wide range of application domains and has been carefully pruned
for duplicate code. The only alteration we have made in retrospect is to remove a large
number of near-identical code-generated parse methods from XBeans and Geronimo.
The code clones resulted in visibly skewed results for the parse-* phrase, and proves
that code generation is a real problem for corpus-based data mining.

Some basic numbers about the pruned corpus are listed in Table 9.4. We omit
methods flagged as synthetic (generated by the compiler) as well as methods with
“non-standard names”. We consider a standard name be at least two characters long,
start with a lowercase letter, and not contain any dollar signs or underscores.

9.4. THE CORPUS 93

Table 9.3: The corpus of Java applications and libraries.

Desktop applications
ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools
Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools
ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits
AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases
DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools
Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries
Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities
Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

Table 9.4: Basic numbers about the corpus.

JAR files 1003
Class files 189941
Candidate methods 1226611
Included methods 1090982

94 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

9.5 Results

Here we present results from applying the extracted implementation rules on the cor-
pus, as well as a small set of additional Java applications. In general, the rules can
be applied to any Java application or library. For reasons of practicality and scale,
however, we focus primarily on bugs in the corpus itself. We explain in detail how the
analysis automatically identifies and reports a naming bug, and proceeds to suggest a
replacement phrase to use for the method. We then investigate four rather different
kinds of naming bugs revealed by the analysis. Finally, we present some overall naming
bug statistics, and discuss the validity of the results.

9.5.1 Name Debugging in Practice

We revisit the example method from the introduction, and explain how the analysis
helps us debug it.

public Field containsField(String name) {
for (Iterator e = this.field_vec.iterator(); e.hasNext();) {
Field f = (Field) e.next();
if (f.getName().equals(name))

return f;
}
return null;

}

Recall that we manually identified this as a naming bug, since we expect contains-
* methods to return boolean values. Intuition tells us that find would be a more
appropriate verb to use.

Finding the Bug. The analysis successfully identifies this as a naming bug, in the
following way. First, we analyse the method. The name is decomposed into the frag-
ments “contains” and “Field”, which are tagged as verb and type, respectively. From
the implementation, we extract a semantic profile that has the following attributes from
Table 9.1 evaluated to 1, denoting presence: return type in name, reads field, run-
time type-check, contains loop, has branches, multiple returns, method call
on field. The rest of the attributes are evaluated to 0, denoting absence. We see that
the attributes conspire to form an abstract description of the salient features of the
implementation.

The most suitable phrase in our automatically generated rule book corresponding
to the concrete phrase contains-Field is the abstract phrase contains-*. The rule
set for contains-* is listed in Table 9.5, along with the violations for the semantic
profile. The mismatch between the name and implementation in this case manifests
itself as three naming bugs. A contains-* should not return a reference type (much
less echo the name of that type in the name of the method); rather, it should return a
boolean value.

Fixing the Bug. There are two ways to fix a naming bug; either by changing the
implementation, i.e., by returning a boolean value if the Field is found (rather than

9.5. RESULTS 95

Table 9.5: Rules for contains-* methods.

Attribute Condition Severity Violation
Returns void 1 Forbidden No
Returns boolean 0 Inappropriate Yes
Returns string 1 Inappropriate No
Returns reference 1 Reconsider Yes
Return type in name 1 Inappropriate Yes
Parameter type in name 1 Reconsider No
Writes field 1 Reconsider No
Returns created object 1 Forbidden No
Creates own class objects 1 Inappropriate No

Table 9.6: Candidate replacement phrases.

Phrase Distance Rank Sum
find-〈type〉 4 3 7
find-* 2 5 7
ref find-〈type〉 7 1 8
find-〈type〉-* 5 4 9
find-〈adjective〉-* 3 6 9
ref find-〈type〉-* 8 2 10
find-〈noun〉-* 1 9 10
get-〈type〉-*(String...) 6 8 14
ref get-〈type〉-*(String...) 9 7 16
ref get-〈type〉-* 10 10 20

96 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

the Field itself), or by changing the name. In Sect. 9.3.6 we describe the approach for
automatic suggestion of bug-free method names, to assist in the latter scenario.

Consider the top ten candidate replacement phrases listed in Table 9.6. An im-
mediate reaction is that the candidates are fairly similar, and that all of them seem
more appropriate than the original. Here we have sorted the list according to the sum
of the orders given by the two ordering metrics semantic distance and profile rank ; in
cases of equal sum, we have arbitrarily given precedence to the phrase with the highest
rank. In this particular example, we see that a rank ordering gives the better result,
by choosing ref find-〈type〉 over the more generic find-〈noun〉-*.

9.5.2 Notable Naming Bugs

To illustrate the diversity of naming bugs the phrase-specific implementation rules help
us find, we explore a few additional examples of naming bugs found in the corpus. The
four methods shown in Fig. 9.6 exhibit rather different naming bugs. Note that since
both strategies for choosing replacement phrases yield similar results, we have included
only the top candidate according to profile rank in the figure.

The first example, taken from Ant 1.7.0, is representative of a fairly common nam-
ing bug: the inappropriately named “boolean setter”. While both Java convention and
the JavaBean specification2 indicate that the verb set should be used for all methods
for writing properties (including boolean ones), programmers sometimes use an inap-
propriate is-* form instead. This mirrors convention in some other languages such as
Objective-C, but yields the wrong expectation when programming Java. The problem
is, of course, that isCaching reads like a question: “is it true that you are caching?”.
We expect the question to be answered. The analysis indicates three rule violations
for the method, and suggests using the phrase set-〈adjective〉-* instead.

The second example, taken from the class Value in JXTA 2.4.1, shows a broken
implementation of an equals method. According to Sun’s documentation, “The equals
method implements an equivalence relation on non-null object references”3: it should
be reflexive, symmetric, transitive and consistent. It turns out that this is notoriously
hard to implement correctly. An influential book on Java devotes much attention to
the details of fulfilling this contract [3]. The problem with the implementation from
JXTA is that it is not symmetric, and the symptom is the creation of an instance
of the type that defines the method. Assume that we have a Value instance v. The
last instruction returns true whenever the parameter can be serialised to a String that
in turn is used to create a Value object that is equal to v. For instance, we can get
a true return value if we pass in a suitable String object s. However, if we pass v
to the equals method of s, we will get false. Interestingly, we find no appropriate
replacement phrase for this method. This is good news, since it makes little sense to
rename a broken equals method.

The third example, an iterator method from the class Registry in Java 5 Enter-
prise Edition, illustrates the problem of overloading and redefining a well-established
method name. The heavily implemented Iterable<T> interface defines a method sig-
nature Iterator<T> iterator(). Since the signature does not include any checked
exceptions, the expectation naturally becomes that iterator methods in general do
not expose any checked exceptions — indeed, the compiler will stop implementors of

2http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
3http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

9.5. RESULTS 97

�������	
�������

�������	
���	������	�����	���������	��	����	

�������
�����
��
���������	��������

�������	
���	���������	��	������	

�������	��������	�������������	��	�������	

���������	��	�����	�������������	��	������	

// Ant 1.7.0

public void isCaching(boolean value) {

 this.caching = value;

}
�����	�����
�������	

������������
��� !	

�������	
�������

�������	��������	�������	�"����#��$�	%��	

�����#���		&�������	��������	'������	�������	

��������	'������	������	��������	'������	�(�	

�����	��������)���	����	�����	&��#�	����	��	

���������	

�������
�����
��
� ����
�!����"# ��	�$%

'������	�(�	�����	��������	���������	��	������	

// JXTA 2.4.1

public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj instanceof Value)

 return equals((Value)obj);

 return equals(new Value(obj.toString()));

}
�����	�����
�������	

���	*���	���	

�������	
�������

�������	����������	*�	�����������	������	�"��	

��	�����	�������	������	�������	'������	�������	

��������	'������	������	��������	+,�����	�#��$�	

�,��������	

�������
�����
��
����
�������"%&

+,�����	�#��$�	�,���������	*����"	��	������	

// Java 5 EE SDK

public Iterator iterator()

throws DomainRegistryException {

 return new RegistryIterator(this, this);

}
�����	�����
�������	

���������������
���������!	

�������	
�������

�������	����������	����	�����	�������	������	

�������	%��	�����#���	'������	�������	��������	

+,�����	�#��$�	�,���������	&��#�	����	��	����	

�������
�����
��
����������	�������&

�������	������	�������	�������������	��	������	

// DB Derby 10.2.2.0

public OutputStream setBinaryStream(long val)

throws SQLException {

 checkValidity();

 synchronized (this.agent_.connection_) {

 // Logging code removed.

 BlobOutputStream result = new

 BlobOutputStream(this, val);

 // Logging code removed.

 return result;

 }

}

�����	�����
�������	

������ !	

	

Figure 9.6: Four notable naming bugs from the corpus.

98 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

Iterable<T> if they try. However, Registry does not implement Iterable<T>, it sim-
ply uses a similar signature. But it is a bad idea to do so, since violating expectations
is bound to cause confusion. It is particularly troublesome that the implementation
exposes a checked exception, since this is something iterator methods practically never
do. Note that the replacement phrase makes perfect sense since the method acts as a
factory that creates new objects.

The final example is a bizarrely named method from DB Derby 10.2.2.0: clearly
this is no setter ! The semantic profile of the method is complicated a bit by the
synchronisation and logging code, but for all intents and purposes, this is a factory
method of sorts. The essential behaviour is that an object is created and returned
to the caller. Creating and returning objects is inappropriate behaviour for methods
that match the phrase set-〈adjective〉-*’; hence we get a rule violation. The suggested
replacement phrase, open-*, is not completely unreasonable, and certainly better than
the original.

9.5.3 Naming Bug Statistics

We now consider the more general prevalence of naming bugs. Table 9.7 presents
naming bug statistics for all the applications in the corpus, as well as a small number
of additional applications. The additional applications are placed beneath a horizontal
line near the bottom of the table. For each application, we list the number of methods,
the percentage of those methods covered by implementation rules, and the percentage
of covered methods violating an implementation rule. We see that the naming bug
rates are fairly similar for applications in and outside the corpus, suggesting that the
rules can meaningfully be applied to any Java application. It is worth noting that the
largest applications (for instance, Java, Eclipse and NetBeans) to some extent have
the power to dictate what is common usage. At the same time, such applications are
developed by many different programmers over a long period of time, making diversity
more likely.

It is important to remember that the numbers really indicate how canonical the
method implementations are with respect to the names used. Herein lies an element of
conformity as well. The downside is that some applications might be punished for being
too “opinionated” about naming. For instance, JUnit 4.2 is written by programmers
who are known to care about naming, yet the reported naming bug rate, 3.50%, is
fairly high. We believe this is due to the tension between maintaining the status quo
and trying to improve it.

Where to draw the line between appropriate and inappropriate usage of names is a
pragmatic choice, and a trade-off between false positives and false negatives. A narrow
range for appropriate usage increases the number of false positives, a broad range
increases the number of false negatives. We are not too concerned with false negatives,
since our focus is on demonstrating the existence of naming bugs, rather than finding
them all. False positives, on the other hand, could pose a threat to the usefulness of
our results.

False positives, i.e., that the analysis reports a naming bug that we intuitively
disagree with, might occur for the following reasons:

• The corpus may contain noise that leads to rules that are not in harmony with
the intuitions of Java programmers.

9.5. RESULTS 99

Table 9.7: Naming bug statistics.
Application Methods Covered Buggy Application Methods Covered Buggy
ANTLR 2.7.6 1641 61.66% 1.18% ASM 2.2.3 724 45.30% 0.30%
AXIS 1.4 4290 91.35% 1.65% Ant 1.7.0 7562 89.35% 0.85%
ArgoUML 0.24 13312 81.17% 0.85% AspectJ 1.5.3 24976 74.41% 1.24%
Avalon 4.1.5 280 82.14% 2.17% Azureus 2.5.0 14276 78.32% 1.30%
Batik 1.6 9304 85.90% 0.76% BSF 2.4.0 274 77.37% 0.00%
BeanShell 2.0 Beta 907 74.97% 0.73% BlueJ 2.1.3 3369 82.13% 1.48%
BluePrints UI 1.4 662 89.57% 0.67% C3P0 0.9.1 2374 83.06% 1.52%
CGLib 2.1.03 675 80.29% 1.66% Cactus 1.7.2 3004 87.61% 1.36%
Castor 1.1 5094 91.44% 0.88% Checkstyle 4.3 1350 76.07% 0.09%
Cobertura 1.8 328 82.92% 1.47% Commons Codec 1.3 153 79.08% 0.00%
Commons Collections 3.2 2914 77.93% 1.14% Commons DBCP 1.2.1 823 88.69% 1.09%
Commons Digester 1.8 371 79.24% 0.34% Commons Discovery 0.4 195 92.30% 0.00%
Commons EL 1.0 277 59.20% 4.87% Commons FileUpload 1.2 123 91.86% 0.88%
Commons HttpClient 3.0.1 1071 88.98% 1.46% Commons IO 1.3.1 357 81.23% 5.17%
Commons Lang 2.3 1627 82.72% 1.93% Commons Modeler 2.0 376 93.35% 1.42%
Commons Net 1.4.1 726 69.69% 1.58% Commons Pool 1.3 218 71.55% 0.00%
Commons Validator 1.3.1 443 88.03% 1.02% CruiseControl 2.6 5479 87.18% 0.85%
DB Derby 10.2.2.0 15470 80.08% 2.09% Dom4J 1.6.1 1645 92.15% 0.39%
Eclipse 3.2.1 110904 81.65% 1.03% Emma 2.0.5312 1105 82.62% 0.65%
FitNesse 2819 74.49% 2.14% Ganymed ssh build 209 424 76.65% 1.23%
Genericra 454 86.78% 0.50% Geronimo 1.1.1 26753 85.28% 0.71%
Google WT 1.3.3 4129 73.40% 1.78% Groovy 1.0 10237 76.14% 1.01%
HOWL 1.0.2 173 81.50% 1.41% HSQLDB 3267 86.16% 2.98%
Hibernate 3.2.1 11354 80.47% 2.00% J5EE SDK 148701 83.56% 1.17%
JBoss 4.0.5 34965 84.69% 0.95% JDOM 1.0 144 80.55% 0.86%
JEdit 4.3 3330 80.36% 1.30% JGroups 2.2.8 4165 77.52% 2.04%
JOnAS 4.8.4 30405 81.88% 1.16% JRuby 0.9.2 7748 76.69% 1.27%
JUnit 4.2 365 62.46% 3.50% JXTA 2.4.1 5210 86.96% 1.30%
JacORB 2.3.0 8007 71.01% 1.16% James 2.3.0 2382 79.21% 1.85%
Jar Jar Links 0.7 442 53.84% 0.42% Java 6 SDK 80292 81.03% 1.16%
JavaCC 4.0 370 77.02% 2.80% Javassist 3.4 1842 84.03% 1.42%
Jetty 6.1.1 15177 73.54% 1.06% Jini 2.1 8835 80.00% 1.38%
Jython 2.2b1 3612 72.09% 1.65% Kawa 1.9.1 6309 65.36% 2.01%
Livewire 4.12.11 12212 81.96% 1.15% Log4J 1.2.14 1138 83.39% 0.63%
MJC 1.3.2 4957 73.77% 1.72% MOF 28 100.00% 0.00%
MX4J 3.0.2 1671 85.33% 1.26% Maven 2.0.4 3686 84.69% 0.86%
Mule 1.3.3 4725 86.79% 1.09% NetBeans 5.5 113355 87.60% 0.85%
OGNL 2.6.9 502 88.24% 0.45% OpenJMS 0.7.7 Alpha 3624 85.89% 0.70%
OpenSAML 1.0.1 306 92.48% 1.76% Piccolo 1.04 559 77.10% 0.46%
PicoContainer 1.3 435 67.81% 1.35% Polyglot 2.1.0 3521 67.33% 1.64%
Poseidon CE 5.0.1 25739 77.73% 1.19% Rhino 1.6r5 2238 77.56% 1.67%
Saxon 8.8 6596 73.12% 1.22% Shale Remoting 1.0.3 96 72.91% 0.00%
Spring 2.0.2 8349 88.05% 1.52% Struts 2.0.1 6106 88.97% 1.06%
Sun Wireless Toolkit 2.5 20538 80.37% 1.59% Tapestry 4.0.2 3481 78.71% 0.87%
Tomcat 6.0.7 Beta 5726 88.31% 0.90% TranQL 1.3 1639 77.85% 1.17%
Trove 1.1b4 3164 82.01% 0.23% Velocity 1.4 3635 81.62% 0.67%
WSDL4J 1.6.2 651 94.16% 0.00% XBean 2.0.0 7000 81.10% 1.33%
XML Security 1.3.0 819 86.56% 1.55% XOM 1.1 1399 77.05% 1.85%
XPP 1.1.3.4 426 84.50% 1.38% XStream 1.2.1 916 77.83% 0.84%
Xalan-J 2.7.0 14643 81.38% 1.21% Xerces-J 2.9.0 590 89.15% 0.19%
FindBugs 1.3.6 7688 72.78% 1.42% iText 2.1.4 4643 85.18% 1.54%
Lucene 2.4.0 2965 74.16% 1.50% Mockito 1.6 1408 68.32% 1.35%
ProGuard 4.3 4148 45.34% 2.65% Stripes 1.5 1600 89.31% 2.09%

100 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

• Some legitimate sub-use of a commonly used phrase may be deemed inappropriate
because the sub-use is drowned by the majority. (Arguably a new phrase should
be invented to cover the sub-use.)

• The percentiles used to classify attribute fraction rank (Sect. 9.3.4) can be skewed.

Whether or not something classifies as a naming bug is subjective. What is not
subjective, is the fact that all reported issues will be rare, and therefore worthy of
reconsideration. To discern false positives from genuine naming bugs, we must rely on
our on best judgement. To get an idea of the severity of the problem, we manually
investigated 50 reported naming bugs chosen at random. We found that 30% of the
reported naming bugs in the sample were false positives, suggesting that the approach
holds promise (even though, due to the limited size of the sample, the true false pos-
itive rate might be significantly higher or lower). The false positives were primarily
getters that were slightly complex, but not inappropriately so in our eyes, and methods
containing logging code.

9.5.4 Threats to Validity

There are three major threats to the validity of our results:

• Does the pragmatic view of how meaning is constructed apply to Java program-
ming?

• Is the corpus representative of real-world Java programming?

• Is the attribute model a suitable approximation of the actual semantics of a
method?

Our basic assumption is that canonical usage of a method name is also meaningful
and appropriate usage; this relates to the pragmatic view that meaning stems from
actual use. We establish the meaning of phrases using a crude democratic process of
voting. This approach is not without problems. First, it is possible for individual
idiosyncratic applications to skew the election. In particular, code generation can lead
to problems, since it enables the proliferation of near-identical clones. While we can
spot gross examples of this (see Sect. 9.4), code generation on a smaller scale is hard
to detect, and can affect the results for individual phrases. This in turn can corrupt
our notion of canonical usage, leading to corrupt rules and incorrect reports of naming
bugs. Second, there might be individual applications that use a language that is both
richer, more consistent and precise than the one used by the majority. However, the
relative uniformity in the distribution of naming bugs seems to indicate that neither
of these problems are too severe. Despite these problems, therefore, we believe that
the pragmatic view of meaning applies well to Java programming. It is certainly more
reasonable to use the aggregated ideas of many as an approximation of meaning than
to make an arbitrary choice of a single application’s idea.

When aggregating ideas, however, we must assume that the ideas we aggregate are
representative. The business journalist Surowiecki argues that diversity of opinion,
independence, decentralisation and an aggregation mechanism are the prime prerequi-
sites to make good group decisions [25]. The corpus we use was carefully constructed
to contain a wide variety of applications and libraries of various sizes and from many

9.6. RELATED WORK 101

domains. We therefore believe it to fulfil Surowiecki’s prerequisites and be reasonably
representative of real-world Java programming.

Finally, we consider the suitability of the model for method semantics, which is a
coarse approximation based on our knowledge of Java programming. Using attributes
to characterise methods has several benefits, in particular that it reduces the practi-
cally endless number of possible implementations to a finite set of semantic profiles.
Furthermore, the validation of a useful model must come in the form of useful results.
As we have seen, the model has helped us identify real naming bugs with what appears
to be a relatively low rate of false positives. We therefore believe that the model is
adequate for the task at hand.

9.6 Related Work

Micro patterns, introduced by Gil and Maman [10], are a central source of inspiration
for our work. Micro patterns are machine-traceable patterns on the level of Java classes.
A pattern is machine-traceable if it can be expressed as a simple formal condition on
some aspect of a software module. The presented micro patterns are hand-crafted by
the authors to capture their knowledge of Java programming.

In our work, we use hand-crafted machine-traceable attributes to model the seman-
tics of methods rather than classes. The attributes are similar to fingerprints, a notion
used by the Sourcerer code search engine [1]. According to the Sourcerer website4,
the engine supports three kinds of fingerprint-based search, utilising control flow, Java
type and micro pattern information respectively. Ma et al. [16] provide a different take
on the task of searching for a suitable software artefact. They share our assumption
that programmers usually choose appropriate names for their implementations, and
therefore use identifier information to index the Java API for efficient queries.

Overall, there seems to be a growing interest in harnessing the knowledge embedded
in identifiers. Pollock et al. [20] introduce the term Natural Language Program Analysis
(NLPA) to signify program analysis that exploits natural language clues. The analysis
has been used to develop tools for program navigation and aspect mining [23, 22].
The tools exploit the relationship between natural language expressions in source code
(identifiers and comments) and information about the structure of the code.

Singer and Kirkham [24] investigate which type names are used for instances of
micro patterns in a large corpus of Java applications. More precisely, the suffixes of
the actual type names are used (the last fragment of the name in our terminology). The
empirical results indicate that type name suffixes are indeed correlated to the presence
of micro patterns in the code.

Caprile and Tonella [4] analyse the structure of function identifiers in C programs.
The identifiers are decomposed into fragments that are then classified into seven lexical
categories. The structure of the function identifiers are further described by a hand-
crafted grammar.

Lawrie et al. [13] study the quality of identifiers in a large corpus of applications
written in several languages. An identifier is assumed to be of high quality if it can be
composed of words from a dictionary and well-known abbreviations. This is a better
quality indicator than mere uniformity of lexical syntax, but does not address the issue
of appropriateness. Deißenböck and Pizka [6] develop a formal model for identifier

4http://sourcerer.ics.uci.edu/

102 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

quality, based on consistency and conciseness. Unfortunately, this model requires an
expert to perform manual mapping between identifiers and domain concepts.

Reiss [21] proposes an automatic approach for finding unusual code. The assump-
tion is that unusual code is potentially problematic code. The approach works by
mining common syntactic code patterns from a corpus of applications. Unusual code
is code that is not covered by such patterns. Hence we see that there are similarities
to our work, both in the assumption and the approach. A main difference is that we
define unusual code in the context of a given method phrase.

9.7 Conclusion

Natural language expressions get their meaning from how and when they are used in
practice. Deviation from normal use of words and phrases leads to misunderstanding
and confusion. In the context of software this is particularly bad, since precise under-
standing of the code is paramount for successful development and maintenance. We
have therefore coined the term naming bug to describe unusual aspects of implementa-
tions for a given method name. We have presented a practical approach to debugging
method names, by offering assistance both in finding and fixing naming bugs. To find
naming bugs, we use name-specific implementation rules mined from a large corpus of
Java applications. Naming bugs can be fixed either by changing the implementation or
by using a different method name; for the latter task, we have also shown an approach
to provide automatic assistance. To demonstrate that method name debugging is use-
ful, we have applied the rules to uncover naming bugs both in the corpus itself and in
other applications.

In this and previous work, we have exploited the fact that there is a shared vo-
cabulary of terms and phrases, Java Programmer English [12], that programmers use
in method names. In the future, we would like to investigate the adequacy of that
vocabulary. In particular, there might be terms or phrases that are superfluous, while
others are missing, at least from the common vocabulary of Java programmers. We
know that there exists verbs (for instance create and new) that seem to be used almost
interchangeably in method names. Our results reveal hints of this, by finding a shorter
semantic distance between phrases that use such verbs. By analysing the correspond-
ing method implementations, we could find out whether there are subtle differences in
meaning that warrant the existence of both verbs in Java Programmer English. If not,
it would be beneficial for Java programmers to choose one and eliminate or redefine
the other. There are also verbs (and phrases) that are imprecise, in that they are used
to represent many different kinds of implementations. For instance, the ubiquitous
getter is much less homogenous than one might expect [11], indicating that it has a
wide variety of implementations. It would be interesting to see if the verbs are simply
used as easy resorts when labelling more or less random chunks of code, or if there are
legitimate, identifiable sub-uses that would warrant the invention of new verbs. Or it
might be that a minority of the Java community already has invented the proper verbs,
and that they should be more widely adopted to establish a richer, more expressive
language for all Java programmers to use.

Acknowledgements. We thank Jørn Inge Vestg̊arden, Wolfgang Leister and Truls
Fretland for useful comments and discussions, and the anonymous reviewers for their

9.7. CONCLUSION 103

thoughtful remarks.

104 CHAPTER 9. PAPER 3: DEBUGGING METHOD NAMES

Bibliography

[1] S. K. Bajracharya, T. C. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. V.
Lopes. Sourcerer: A search engine for open source code supporting structure-based
search. In P. L. Tarr and W. R. Cook, editors, Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages
681–682. ACM, 2006.

[2] K. Beck. Implementation Patterns. Addison-Wesley Professional, 2007.

[3] J. Bloch. Effective Java. Prentice Hall, 2008.

[4] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proceedings of the Sixth Working Conference on Reverse Engineering
(WCRE 1999), 6-8 October 1999, Atlanta, Georgia, USA, pages 112–122. IEEE
Computer Society, 1999.

[5] E. Collar and R. Valerdi. Role of software readability on software development
cost. In Proceedings of the 21st Forum on COCOMO and Software Cost Modeling,
October 2006, Herndon, VA., 2006.

[6] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proceedings of
the 13th IEEE International Workshop on Program Comprehension (IWPC 2005),
pages 97–106. IEEE Computer Society, 2005.

[7] M. A. Eierman and M. T. Dishaw. The process of software maintenance: A com-
parison of object-oriented and third-generation development languages. Journal of
Software Maintenance and Evolution: Research and Practice, 19(1):33–47, 2007.

[8] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[9] G. Frege. On sense and reference. In P. Geach and M. Black, editors, Translations
from the Philosophical Writings of Gottlob Frege, pages 56–78. Blackwell, 1952.

[10] J. Gil and I. Maman. Micro patterns in Java code. In R. E. Johnson and R. P.
Gabriel, editors, Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005),
October 16-20, 2005, San Diego, CA, USA, pages 97–116. ACM, 2005.

[11] E. W. Høst and B. M. Østvold. The programmer’s lexicon, volume I: The verbs.
In Proceedings of the Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 193–202, Paris, France,
2007. IEEE Computer Society.

105

106 BIBLIOGRAPHY

[12] E. W. Høst and B. M. Østvold. The Java programmer’s phrase book. In Proceed-
ings of the 1st International Conference on Software Language Engineering (SLE
2008). Springer, 2008.

[13] D. Lawrie, H. Feild, and D. Binkley. Quantifying identifier quality: An analysis of
trends. Journal of Empirical Software Engineering, 12(4):359–388, August 2007.

[14] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study
of identifiers. In Proceedings of the 14th International Conference on Program
Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages 3–12. IEEE
Computer Society, 2006.

[15] B. Liblit, A. Begel, and E. Sweeser. Cognitive perspectives on the role of naming in
computer programs. In Proceedings of the 18th Annual Psychology of Programming
Workshop, Sussex, United Kingdom, September 2006. Psychology of Programming
Interest Group.

[16] H. Ma, R. Amor, and E. D. Tempero. Indexing the Java API using source code.
In Proceedings of the 19th Australian Software Engineering Conference (ASWEC
2008), March 25-28, 2008, Perth, Australia, pages 451–460. IEEE Computer So-
ciety, 2008.

[17] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[18] R. C. Martin. Clean Code. Prentice Hall, 2008.

[19] S. McConnell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, 2nd edition, 2004.

[20] L. L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and K. Maloor.
Introducing natural language program analysis. In M. Das and D. Grossman,
editors, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2007), San Diego, Califor-
nia, USA, June 13-14, 2007, pages 15–16. ACM, 2007.

[21] S. P. Reiss. Finding unusual code. In Proceedings of the 23rd IEEE International
Conference of Software Maintenance (ICSM 2007), pages 34–43. IEEE Computer
Society, 2007.

[22] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns. In
Proceedings of the 6th international conference on Aspect-oriented software devel-
opment (AOSD 2007), pages 212–224, New York, NY, USA, 2007. ACM.

[23] D. Shepherd, L. L. Pollock, and K. Vijay-Shanker. Towards supporting on-demand
virtual remodularization using program graphs. In R. E. Filman, editor, Proceed-
ings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), Bonn, Germany, March 20-24, 2006, pages 3–14. ACM, 2006.

BIBLIOGRAPHY 107

[24] J. Singer and C. Kirkham. Exploiting the correspondence between micro patterns
and class names. In Proceedings of the 8th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2008), pages 67–76, Beijing,
China, 2008. IEEE Computer Society.

[25] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[26] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2nd edition, 2005.

[27] L. Wittgenstein. Philosophical Investigations. Prentice Hall, 1973.

108 BIBLIOGRAPHY

Chapter 10

Paper 4: Canonical Method Names
For Java

Programmers rely on the conventional meanings of method names when
writing programs. However, these conventional meanings are implicit and
vague, leading to various forms of ambiguity. This is problematic since it
hurts the readability and maintainability of programs. Java programmers
would benefit greatly from a more well-defined vocabulary. Identifying syn-
onyms in the vocabulary of verbs used in method names is a step towards
this goal. By rooting the meaning of verbs in the semantics of a large num-
ber of methods taken from real-world Java applications, we find that such
synonyms can readily be identified. To support our claims, we demonstrate
automatic identification of synonym candidates. This could be used as a
starting point for a manual canonicalisation process, where redundant verbs
are eliminated from the vocabulary.

10.1 Introduction

Abelson and Sussman [1] contend that “programs must be written for people to read,
and only incidentally for machines to execute”. This is sound advice backed by the
hard reality of economics: maintainability drives the cost of software systems [7], and
readability drives the cost of maintenance [3, 23]. Studies indicate some factors that
influence readability, such as the presence or absence of abbreviations in identifiers [14].
Voices in the industry would have programmers using “good names” [16, 2], typically
meaning very explicit names. A different approach with the same goal is spartan
programming1. “Geared at achieving the programming equivalent of laconic speech”,
spartan programming suggests conventions and practical techniques to reduce the com-
plexity of program texts.

We contend that both approaches attempt to fight ambiguity. The natural language
dimension of program texts, that is, the expressions encoded in the identifiers of the
program, is inherently ambiguous. There are no enforced rules regarding the meaning of
the identifiers, and hence we get ambiguity in the form of synonyms (several words are
used for a single meaning) and polysemes (a single word has multiple meanings). This
ambiguity could be reduced if we managed to establish a more well-defined vocabulary

1http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan programming

109

110 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

for programmers to use.
We restrict our attention to the first lexical token found in method names. For

simplicity, we refer to all these tokens as “verbs”, though they need not actually be
verbs in English: to and size are two examples of this. We focus on verbs because
they form a central, stable part of the vocabulary of programmers; whereas nouns tend
to vary greatly by the domain of the program, the core set of verbs stays more or less
intact.

We have shown before [10, 11, 12] that the meaning of verbs in method names can
be modelled by abstracting over the bytecode of the method implementations. This
allows us to 1) identify what is typical of implementations that share the same verb,
and 2) compare the set of implementations for different verbs. In this paper, we aim at
improving the core vocabulary of verbs for Java programmers by identifying potential
synonyms that could be unified.

The contributions of this paper are:

• The introduction of nominal entropy as a way to measure how “nameable” a
method is (Section 10.3.1).

• A technique to identify methods with “unnameable semantics” based on nominal
entropy (Section 10.4.3).

• A technique to mechanically identify likely instances of code generation in a
corpus of methods (Section 10.4.1).

• A formula to guide the identification of synonymous verbs in method names
(Section 10.3.3).

• A mechanically generated graph showing synonym candidates for the most com-
monly used verbs in Java (Section 10.5.1).

• A mechanically generated list of suggestions for canonicalisation of verbs through
unsupervised synonym elimination (Section 10.5.2).

10.2 Problem description

To help the readability and learnability of the scripting language PowerShell, Microsoft
has defined a standardised set of verbs to use. The verbs and their definitions can
be found online2, and PowerShell programmers are strongly encouraged to follow the
conventions. The benefits to readability and learnability are obvious.

By contrast, the set of verbs used in method names in Java has emerged organically,
as a mixture of verbs inherited from similar preceding languages, emulation of verbs
used in the Java API, and so forth. A similar organic process occurs in natural lan-
guages. Steels argues that language “can be viewed as a complex adaptive system that
adapts to exploit the available physiological and cognitive resources of its community
of users in order to handle their communicative challenges” [22].

We have seen before that Java programmers have a fairly homogenous, shared
understanding of many of the most prevalent verbs used in Java programs [10]. Yet
the organic evolution of conventional verb meaning has some obvious limitations:

2http://msdn.microsoft.com/en-us/library/ms714428%28VS.85%29.aspx

10.3. ANALYSIS OF METHODS 111

• Redundancy. There are concepts that evolution has not selected a single verb
to represent. This leads to superfluous synonymous verbs for the programmer to
learn. Even worse, some programmers may use what are conventional synonyms
in subtly different meanings.

• Coarseness. It is hard to organically grow verbs with precise meanings. To
make sure that a verb is understood, it may be tempting to default to a very
general and coarse verb. This results in “bagging” of different meanings into a
small set of polysemous verbs.

• Vagueness. Evolution in Java has produced some common verbs that are almost
devoid of meaning (such as process or handle), yet are lent a sense of legitimacy
simply because they are common and shared among programmers.

Redundancy is the problem of synonyms, and can be addressed by identifying verbs
with near-identical uses, and choosing a single, canonical verb among them. Coarseness
is the problem of polysemes, and could be addressed by using data mining to identify
common polysemous uses of a verb, and coming up with more precise names for these
uses. Vagueness is hard to combat directly, as it is a result of the combination of a lack
of a well-defined vocabulary with the programmer’s lacking ability or will to create a
clear, unambiguous and nameable abstraction. In this paper, we primarily address the
problem of redundancy.

10.3 Analysis of methods

The meaning of verbs in method names stems from the implementations they repre-
sent. That is, the meaning of a verb is simply the collection of observed uses of that
verb (Section 10.3.1). Further, we hold that the verbs become more meaningful when
they are consistently used to represent similar implementations. To make it easier
to compare method implementations, we employ a coarse-grained semantic model for
methods, based on predicates defined on Java bytecode (Section 10.3.2). We apply
entropy considerations to measure both how consistently methods with the same verb
are implemented, and how consistently the same implementation is named. We refer
to this as semantic and nominal entropy, respectively. These two metrics are combined
in a formula that we use to identify synonymous verbs (Section 10.3.3). Figure 10.1
presents an overview of the approach.

10.3.1 Definitions

We define a method m as a tuple consisting of three components: a unique fingerprint
u, a name n, and a semantics s. Intuitively m is an idealised method, a model of
a real method in Java bytecode. The unique fingerprints are a technicality that pre-
vents set elements from collapsing into one; hence, a set made from arbitrary methods
{m1, . . . ,mk} will always have k elements.3 Often, we elide u from method tuples,
writing just m = (n, s).

3The fingerprints models the mechanisms that the run-time system has for identifying distinct
callable methods.

112 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

CodeName

SemanticsVerb

Filter Prepare

semantic
abstraction

nominal
abstraction

Input

Output

Identify

s#1v#1

Software
Corpus

Purified
Corpus

Method
Corpus

Synonym
Candidates

codegen

synthetic

unnameable

esoteric

s#2v#2

merge

for each pair of verbs:

synonym?

s'v'

measure

Figure 10.1: Overview of the approach.

We need two kinds of languages to reason about methods and their semantics.
First, a concrete language where the semantics of a method is simply the string of Java
bytecodes in m’s implementation. Thus, bytecode is the canonical concrete language,
denoted as LJava. For convenience, we define a labelling function fMD5 that maps from
the bytecode to the MD5 digest of the opcodes in the bytecode. This allows us to
easily apply uniform labels to the various implementations.

Second, we need an abstract language consisting of bit-vectors [b1, . . . , bk] where
each bi represents the result of evaluating a logical predicate qi on a method’s imple-
mentation. In the context of a concrete method m and its implementation, we refer to
the vector [b1, . . . , bk] as profile of m. Different choices of predicates q1, . . . , qk, leads
to different abstract languages. Note that with the concrete language there is no limit
on the size of a method’s semantics; hence there is in principle an unlimited number
of semantic objects. With an abstract language there is a fixed number of semantic
objects, since s is a k-bit vector for some fixed number k, regardless of the choice of
predicates.

A corpus C is a finite set of methods. We use the notation C/n to denote the set of
methods in C that have name n, but where the semantics generally differs; and similarly
C/s denotes the subcorpus of C where all methods have semantics s irrespective of their
name. C/n is called a nominal corpus, C/s a semantic corpus.

Let x denote either a name component n or a semantics component s of some
method. If x1, . . . , xk are all values occurring in C for a component, then we can view
C as factored into disjoint subcorpora based on these values,

C = C/x1 ∪ · · · ∪ C/xk. (10.1)

10.3.1.1 Corpus semantics and entropy

We repeat some information-theoretical concepts [5]. A probability mass function p(x)
is such that a) for all i = 1, . . . , k it holds that 0 ≤ p(xi) ≤ 1; and b)

∑k
i=1 p(xi) = 1.

Then p(x1), . . . , p(xk) is a probability distribution. From Equation (10.1) we observe

10.3. ANALYSIS OF METHODS 113

that the following defines a probability mass function:

p(C/x) def
=

|C/x|
|C|

We write pN for the nominal probability mass function based on name factoring C/n
and Equation (10.1), and pS for the semantic version.

We define the semantics �C� of a corpus C in terms of the distribution defined by
pS:

�C�
def
= p(C/s1) . . . pn(C/sk)

where we assume that s1, . . . , sk are all possible semantic objects in C as in Equa-
tion (10.1). Of particular interest is the semantics of a nominal corpus; we therefore
write �n� as a shorthand for �C/n� when C is obvious from the context. This is what
we intuitively refer to as “the meaning of n”.

Using the probability mass function, we introduce a notion of entropy for corpora—
similar to Shannon entropy [5].

H(C)
def
= −

∑
x∈χ

p(C/x) log2 p(C/x)

where we assume 0 log2 0 = 0. We write HN(C) for the nominal entropy of C, in which
case χ denotes the set of all names in C; and HS(C) for semantic entropy of C, where
χ denotes the set of all semantics. The entropy HS(C) is a measure of the semantic
diversity of C: High entropy means high diversity, low entropy means few different
method implementations. Entropy HN(C) has the dual interpretation.

Entropy is particularly interesting on subcorpora of C. The nominal entropy of a
semantic subcorpus, HN(C/s), measures the consistency in the naming methods with
profile s in C. The semantic entropy of a nominal subcorpus, HS(C/n) measures the
consistency in the implementation of name n. The nominal entropy of a nominal
subcorpus is not interesting as it is always 0. The same holds for the dual concept.
When there can be no confusion about C, we speak of the nominal entropy of a profile
s,

HN(s)
def
= HN(C/s)

and similarly for the dual concept HS(n).

Nominal entropy can be used to compare profiles. A profile with comparatively low
nominal entropy indicates an implementation that tends to be consistently named. A
profile with comparatively high nominal entropy indicates an ambiguous implementa-
tion. An obvious example of the latter is the empty method.

We can also compare the semantic entropy of names. A name with comparatively
low semantic entropy implies that methods with that name tend to be implemented
using a few, well-understood “cliches”. A name with comparatively high semantic
entropy implies that programmers cannot agree on what to call such method imple-
mentations (or that the semantics are particularly ill-suited at capturing the nature of
the name).

114 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

We define aggregated entropy of corpus C as follows.

Hagg(C)
def
=

∑
x∈χ |C/x|H(C/x)

|C|

again leading to nominal and semantic notions of aggregated entropy, HN
agg(C) and

HS
agg(C). These notions lets us quantify the overall entropy of subcorpora in C, weighing

the entropy of each subcorpus by its size.

10.3.1.2 Semantic cliches

When a method semantics is frequent in a corpus we call the semantics a semantic
cliche, or simply a cliche, for that corpus. When a cliche has many different names we
call it an unnameable cliche. Formally, a method semantics s is a semantic cliche for
a corpus C if the prevalence of s in C is above some threshold value φcl ,

|C/s|
|C| > φcl . (10.2)

Furthermore, s is an unnameable semantic cliche if it satisfies the above, and in addition
the nominal entropy of corpus C/s is above some threshold value HN

cl , H
N(C/s) > HN

cl .

10.3.2 Semantic model

There are many ways of modelling the semantics of Java methods. For the purpose
of comparing method names to implementations, we note one desirable property in
particular. While the set of possible method implementations is practically unlimited,
the set of different semantics in the model should both be finite and treat implemen-
tations that are essentially the same as having the same semantics. This is important,
since each C/s should be large enough so that it is meaningful to speak of consistent
or inconsistent naming of the methods in C/s. This ensures that we can judge whether
or not methods with semantics s are consistently named.

Some candidates for modelling method semantics are opcode sequences, abstract
syntax trees and execution trace sets. However, we find these to be ill suited for our
analysis: they do not provide a radical enough abstraction over the implementation.
Therefore, we choose to model method semantics using an abstract language of bit
vectors, as defined in Section 10.3.1.

Attributes. The abstract language relies on a set of predicates defined on Java byte-
code. We refer to such predicates as attributes of the method implementation. Here
we select and discuss the attributes we use, which yield a particular abstract language.

Individual attributes cannot distinguish perfectly between verbs. Rather, we expect
to see trends when considering the probability that methods in each nominal corpus
C/n satisfy each attribute. Furthermore, we note that 1) there might be names that
are practically indistinguishable using bytecode predicates alone, and 2) some names
are synonyms, and so should be indistinguishable.

10.3. ANALYSIS OF METHODS 115

Returns void Returns field value
Returns boolean Returns created object
Returns string Runtime type check
No parameters Creates custom objectsa

Reads field Contains loop
Writes field Method call
Writes parameter value to field Returns call result
Throws exceptions Same verb call
Parameter value passed to method call on field value
a A custom object is an instance of a type not in the
java.* or javax.* namespaces.

Table 10.1: Attributes.

Useful attributes. Intuitively, an attribute is useful if it helps distinguish between
verbs. In Section 10.3.1, we noted that a verb might influence the probability that
the predicate of an attribute is satisfied. Useful attributes have the property that this
influence is significant. Attributes can be broad or narrow in scope. A broad attribute
lets us identify larger groups of verbs that are aligned according to the attribute. A
narrow attribute lets us identify smaller groups of verbs (sometimes consisting of a
single verb). Both can be useful. The goal is to find a collection of attributes that
together provides a good distinction between verbs.

Chosen attributes. We hand-craft a list of attributes for the abstract method se-
mantics. An alternative would be to generate all possible simple predicates on bytecode
instructions, and provide a selection mechanism to choose the “best” attributes accord-
ing to some criterion. However, we find it useful to define predicates that involve a
combination of bytecodes, for instance to describe control flow or subtleties in object
creation. We deem it impractical to attempt a brute force search to find such combina-
tions, and therefore resort to subjective judgement in defining attributes. To ensure a
reasonable span of attributes, we pick attributes from the following categories: method
signature, object creation, data flow, control flow, exception handling and method calls.
The resulting attributes are listed in Table 10.1.

Probability distribution. The probability distribution for an attribute indicates if
and how an attribute distinguishes between verbs. To illustrate, Figure 10.2 shows the
probability distribution for two attributes: Returns void and Writes parameter
value to field. Each dot represents the pv for a given verb v, where v is a “common
verb”, as defined in Section 10.4.2. Returns void is a broad attribute, that distin-
guishes well between larger groups of verbs. However, there are also verbs that are
ambiguous with respect to the attribute. By contrast, Writes parameter value to
field is a narrow attribute. Most verbs have a very low probability for this attribute,
but there is a single verb which stands out with a fairly high probability: this verb is
set, which is rather unsurprising.

Critique. We have chosen a set of attributes for the semantic model based on our
knowledge of commonly used method verbs in Java and how they are implemented.

116 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

(a) Broad attribute:
Returns void.

(b) Narrow attribute:
Writes parameter value to
field.

Figure 10.2: Probability distribution for some attributes.

While all the attributes in the set are useful in the sense outlined above, we have no
evidence that our set is “optimal” for the task at hand. There are two main problems
with this.

First, we might have created an “unbalanced” set of attributes, meaning that we can
have too many attributes capturing some kind of behaviour, such as object creation,
and too few attributes capturing some other behaviour, such as exception handling.
There might even be relevant behaviours that we have omitted altogether.

Second, we can construct many other attributes that could be used to distinguish
between names; Inverted method call4 and Recursive call are two candidates that
we considered but rejected. The former is a narrow attribute that would help charac-
terise visit methods, for instance. However, it turns out that visit is not ubiquitous
enough to be included in our analysis (see Section 10.4.2); hence the attribute does not
help in practice. The latter is simply too rarely satisfied to be very helpful.

The underlying problem is that there is no obvious metric by which to measure the
quality of our attribute set. Arguably, the quality — or lack thereof — reveals itself in
the results of our analysis.

10.3.3 Identifying synonyms

Intuitively, a verb n1 is redundant if there exists another, more prevalent verb n2 with
the same meaning. It is somewhat fuzzy what “the same meaning” means. We define
the meaning �n� of a verb n as the distribution of profiles in C/n (see Section 10.3.1).
It is unlikely that the distributions for two verbs will be identical; however, some will
be more similar than others. Hence we say that n1 and n2 have the same meaning if
they are associated with sufficiently similar profile distributions.

We identify synonyms by investigating what happens when we merge the nominal
corpora of two verbs. In other words, we attempt to eliminate one of the verbs, and

4By “inverted method call”, we mean that the calling object is passed as a parameter to the method
call.

10.4. SOFTWARE CORPUS 117

investigate the effects on nominal and semantic entropy. If the effects are beneficial,
we have identified a possible synonym.

The effects of synonym elimination. Elimination has two observable effects.
First, there is a likely reduction in the aggregated nominal entropy HN

agg of seman-
tic corpora. The reason is that the nominal entropy of an individual semantic corpus
is either unaffected by the elimination (if the eliminated verb is not used for any of
the methods in the corpus), or it is lowered. Second, there is a likely increase in the
aggregated semantic entropy HS

agg of the nominal corpora — except for the unlikely
event that the distribution of profiles is identical for the original corpora C/n1 and
C/n2. How much HS

agg increases depends on how semantically similar or different the
eliminated verb is from the replacement verb. The increase in semantic entropy for the
combined nominal corpus will be much lower for synonyms than for non-synonyms.

Optimisation strategy. When identifying synonyms, we must balance the positive
effect on nominal entropy with the negative effect on semantic entropy. If we were to
ignore the effect on semantic entropy, we would not be considering synonyms at all:
simply to combine the two largest nominal corpora would yield the best effect. If we
were to ignore the effect on nominal entropy, we would lose sight of the number of
methods that are renamed. To combine a very large nominal corpus with a very small
one would yield the best effect.

With this in mind, we devise a formula to guide us when identifying synonyms.
A naive approach would be to demand that the positive effect on nominal entropy
should simply be larger than the negative effect on semantic entropy. From practical
experiments, we have found it necessary to emphasise semantic entropy over nominal
entropy. That way, we avoid falsely identifying verbs with very large nominal corpora
as synonyms. We therefore employ the following optimisation formula, which empha-
sises balance and avoids extremes, yet is particularly sensitive to increases in semantic
entropy:

opt(C)
def
=

√
4HS

agg(C)2 +HN
agg(C)2

10.4 Software corpus

We have gathered a corpus of Java programs of all sizes, from a wide variety of domains.
We assume that the corpus is large and varied enough for the code to be representative
of Java programming in general. Table 10.2 lists the 100 Java applications, frameworks
and libraries that constitute our corpus.

We filter the corpus in various ways to “purify” it:

• Omit compiler-generated methods (marked as synthetic in the bytecode).

• Omit methods that appear to have been code-generated.

• Omit methods without a common verb-name.

• Omit methods with unnameable semantics.

118 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

Desktop applications
ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools
Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools
ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits
AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases
DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools
Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries
Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities
Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

Table 10.2: The corpus of Java applications and libraries.

Total methods 1.226.611
Non-synthetic 1.090.982
Hand-written 1.050.707
Common-verb name 818.503
Nameable semantics 778.715

Table 10.3: The effects of corpus filtering.

10.4. SOFTWARE CORPUS 119

The purpose of the filtering is to reduce the amount of noise affecting our analysis.
Table 10.3 presents some numbers indicating the size of the corpus and the impact of
each filtering step.

10.4.1 Source code generation

Generation of source code represents a challenge for our analysis, since it can lead to
a skewed impression of the semantics of a verb. In our context, the problem is this: a
single application may contain a large number of near-identical methods, with identical
verb and identical profile. The result is that the nominal corpus corresponding to the
verb in question is “flooded” by methods with a specific profile, skewing the semantics
of that corpus. Conversely, the semantic corpus corresponding to the profile in question
is also “flooded” by methods with a specific verb, giving us a wrong impression of how
methods with that profile are named.

To diminish the influence of code generation, we impose limits on the number of
method instances contributed by a single application. By comparing the contribution
from individual applications to that of all others, we can calculate an expected contri-
bution for the application. We compare this with the actual contribution, and truncate
the contribution if the ratio between the two numbers is unreasonable.

If the actual contribution is above some threshold T , then we truncate it to:

max(T,min(
|Ca/v|
|C/v| , L

|C/v| − |Ca/v|
|C| − |Ca|))

where L acts as a constraint on how much the contribution may exceed expectations.

Determining T and L is a subjective judgement, since we have no way of identifying
false positives or false negatives among the method instances we eliminate. Our goal
is to diminish the influence of code generation on our analysis rather than eliminate it.
Therefore, we opt to be fairly lax, erring more on the side of false negatives than false
positives. In our analysis, T = 50 and L = 25; that is, if some application contains
more than 50 identical methods (n, s), we check that the number of identical methods
does not exceed 25 times that of the average application. This nevertheless captures
quite a few instances of evident code generation.

10.4.2 Common verbs

Some verbs are common, such as get and set, whereas others are esoteric, such as
unproxy and scavenge. In this paper, we focus on the former and ignore the lat-
ter. There are several possible interpretations of common; two obvious candidates are
ubiquity (percentage of applications) and volume (number of methods).

We choose ubiquity as our interpretation of common. Rudimentary grouping of
verbs according to ubiquity is shown in Table 10.4. Since we are interested in the
shared vocabulary of programmers, we restrict our analysis to the top three groups:
essential, core and extended. The 102 verbs in these three groups cover nearly 77%
of all methods (after filtering of generated code). Figure 10.3 shows a “word cloud”
visualisation5 of the common verbs.

5Generated by Wordle.net.

120 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

Vocabulary % Apps Verbs Methods Example verbs
essential 〈 90, 100] 7 50.73% get, set, create
core 〈 75, 90] 21 13.26% find, equals, parse
extended 〈 50, 75] 74 13.92% handle, match, save
specific 〈 25, 50] 220 11.72% sort, visit, refresh
narrow 〈 10, 25] 555 5.95% render, shift, purge
marginal 〈 0, 10] 5722 4.43% squeeze, unhook, animate

Table 10.4: Vocabularies.

Figure 10.3: The 102 most common verbs.

10.5. ADDRESSING SYNONYMS 121

10.4.3 Unnameable cliches

Unnameable cliches, that is, method implementations that are common, yet inherently
ambiguous, constitute noise for our analysis. We aim to reduce the impact of this noise
by omitting methods whose implementations are unnameable cliches. The rationale
is that the semantics of each verb will be more distinct without the noise, making it
easier to compare and contrast the verbs.

In some cases, an implementation cliche may appear to be unnameable without
being inherently ambiguous: rather, no generally accepted name for it has emerged.
By applying canonicalisation through synonym elimination, the naming ambiguity can
be reduced to normal levels. We must therefore distinguish between cliches that are
seemingly and genuinely unnameable.

To identify implementation cliches, we use the concrete language LJava (see Sec-
tion 10.3.1). Table 10.5 shows unnameable cliches identified using Equation (10.2),
with φcl = 500 and HN

cl = 1.75. We also include a reverse engineered example in a
stylized Java source code-like syntax for each cliche.

To label the method implementations we apply fMD5, which yields the MD5 digest
of the opcodes for each implementation. Note that we include only the opcodes in
the digest. We omit the operands to avoid distinguishing between implementations
based on constants, text strings, the names of types and methods, and so forth. Hence
fMD5 does abstract over the implementation somewhat. As a consequence, we cannot
distinguish between, say, this.m(p) and p.m(this): these are considered instances
of the same cliche. Also, some cliches may yield the same example, since there are
opcode sequences that cannot be distinguished when written as stylized source code.

Most of the cliches in Table 10.5 seem genuinely unnameable. Unsurprisingly, vari-
ations over delegation to other methods dominate. We cannot reasonably provide a
name for such methods without considering the names of the methods being delegated
to. There are also some examples of “unimplemented” methods; for instance { throw

new E(); } or the empty method { }. We believe that in many cases, the presence of
these methods will be required by the compiler (for instance to satisfy some interface),
but in practice, they will never be invoked.

Table 10.5 also contains three cliches that we deem only seemingly unnameable.
This is based on a subjective judgement that they could be relatively consistently
named, given a more well-defined vocabulary. These have been marked as being re-
tained, meaning they are included in the analysis. The others are omitted.

10.5 Addressing synonyms

To address the problem of synonyms, we employ the formula opt from Section 10.3.3.
We use opt to mechanically identify likely synonyms in the corpus described in Sec-
tion 10.4, and then to attempt unsupervised elimination of synonyms.

10.5.1 Identifying synonyms

Compared to each of the common verbs in the corpus, the other verbs will range from
synonyms or “semantic siblings” to the opposite or unrelated. To find the verbs that
are semantically most similar to each verb, we calculate the value for opt when merging

122 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

Cliche # Methods HN Retain Top names
{ super.m(); } 539 3.50 remove [10.6%], set [8.7%], insert [6.5%]
{ } 14566 3.40 set [18.1%], initialize [8.4%], end [7.8%]
{ this.m(); } 794 3.22 set [18.5%], close [7.2%], do [6.2%]
{ this.f .m(); } 2007 2.94 clear [20.7%], close [13.2%], run [11.7%]
{ return p; } 532 2.94 get [34.4%], convert [7.1%], create [4.7%]
{ super.m(p); } 742 2.69 set [32.2%], end [12.0%], add [9.4%]
{ throw new E(); } 3511 2.68 get [25.4%], remove [17.2%], set [14.8%]
{ this.f .m(); } 900 2.65 clear [28.2%], remove [16.1%], close [9.9%]
{ throw new E(s); } 5666 2.59 get [25.9%], set [22.3%], create [10.7%]
{ this.f .m(p); } 1062 2.48 set [39.2%], add [14.8%], remove [12.0%]
{ this.m(p); } 1476 2.45 set [24.4%], end [21.7%], add [14.2%]
{ return this.f .m(p); } 954 2.38 contains [25.9%], is [20.8%], equals [11.1%]
{ this.f .m(p1, p2); } 522 2.34 set [33.0%], add [17.2%], remove [13.0%]
{ return this.f .m(p); } 929 2.14 contains [28.3%], is [25.0%], get [11.1%]
{ return this.m(p); } 618 2.14 get [52.8%], post [8.4%], create [6.3%]
{ this.f = true; } 631 2.08 � set [48.5%], mark [12.8%], start [6.7%]
{ C.m(this.f); } 544 1.96 run [46.9%], handle [14.3%], insert [9.9%]
{ this.f .m(p); } 3906 1.92 set [36.8%], add [29.7%], remove [16.8%]
{ return new C(this); } 1540 1.87 � create [34.6%], get [25.7%], new [11.9%]
{ return this.m(); } 520 1.83 get [45.0%], is [20.0%], has [12.5%]
{ return false; } 6322 1.83 � is [52.8%], get [20.1%], has [7.3%]

Table 10.5: Semantic cliches with unstable naming.

the nominal corpus of each verb with the nominal corpus of each of the other verbs.
The verbs that yield the lowest value for opt are considered synonym candidates.

It is more likely that two verbs are genuine synonyms if they reciprocally hold each
other to be synonym candidates. When we identify such pairs of synonym candidates,
we find that clusters emerge among the verbs, as shown in Figure 10.4.

Several of the clusters could be labelled, for instance as questions, initialisers, fac-
tories, runners, checkers and terminators. This suggests that these clusters have a
“topic”. It does not imply that all the verbs in each cluster could be replaced by a
single verb, however. For instance, note that in the factory cluster, create and make

are indicated as synonym candidates, as are create and new, but new and make are
not. An explanation could be that create has a broader use than new and make.

We also see that there are two large clusters that appear to have more than one
topic. We offer two possible explanations. First, polysemous verbs will tie together
otherwise unrelated topics (see Section 10.2). In the largest cluster, for instance, we
find a mix of verbs associated with I/O and verbs that handle collections. In this case,
append is an example of a polysemous verb used in both contexts. Second, we may
lack attributes to distinguish appropriately between the verbs.

10.5.2 Eliminating synonyms

To eliminate synonyms, we iterate over the collection of verbs. We greedily select the
elimination that yields the best immediate benefit for opt in each iteration. We assume
that beneficial eliminations will occur eventually, and that the order of eliminations
is not important. We only label a synonym candidate as “genuine” if the value for
opt decreases; the iteration stops when no more genuine candidates can be found. For

10.5. ADDRESSING SYNONYMS 123

contains

has

iscan

matches

test

run

verify

check

size

hash

release close

clear

stopflush

reset

make

create

new

setup

initialize

init

start

begin process

handle

notify

saveupdate

post

store

end

add

append put

warning fataldebug

log

write

print

fill

send push

remove

register

Factories Initialisers Questions

Terminators

Runners Checkers

Figure 10.4: Clusters of synonym candidates. Clusters with a single topic are labelled.

124 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

comparison, we also perform manual elimination of synonyms, based on a hand-crafted
list of synonym candidates.

The results of mechanical synonym elimination are shown in Table 10.6. Note that
the input to the elimination algorithm is the output given by the preceding run of the
algorithm. For the first run, the input is the original “purified” corpus described in
Section 10.4, whereas for the second, the verb has has been eliminated, and the original
nominal corpora for has and is have been merged.

The elimination of has is interesting: it is considered the most beneficial elimina-
tion by opt, yet as Java programmers, we would hesitate to eliminate it. The subtle
differences in meaning between all “boolean queries” (is, has, can, supports and so
forth) are hard to discern at the implementation level. Indeed, we would often accept
method names with different verbs for the same implementation: hasChildren and
isParent could be equally valid names. This kind of nominal flexibility is arguably
beneficial for the readability of code.

It is easier to see that either init or initialize should be eliminated: there is no
reason for the duplication. Eliminating make and using create as a canonical verb for
factory methods also seems reasonable. Similarly, the suggestion to use write instead
of log is understandable — however, one could argue that log is useful because it is
more precise than the generic write.

There seems to be quite a few verbs for “termination code”; some of these verbs
might be redundant. The unsupervised elimination process identifies flush, stop

and close as candidates for synonym elimination. However, we find it unacceptable:
certainly, flush and close cannot always be used interchangeably. In our coarse-
grained semantic model, we lack the “semantic clues” to distinguish between these
related, yet distinct verbs.

The suggestion to combine add and remove is also problematic, again showing that
the approach has some limitations. Both add and remove typically involve collections of
items, perhaps including iteration (which is captured by theContains loop attribute).
The crucial distinction between the two operations will often be hidden inside a call to
a method in the Java API. Even if we were to observe the actual adding or removing
of an item, this might involve incrementing or decrementing a counter, which is not
captured by our model.

Table 10.7 shows the result of the manual elimination of synonyms. We note that
only the elimination of initialize yields a decreased value for opt — apparently, we
are not very good at manual synonym identification! However, it may be that the
requirement that opt should decrease is too strict. Indeed, we find that many of our
candidates are present in the clusters shown in Figure 10.4. This indicates that there
is no deep conflict between our suggestions and the underlying data.

10.5.3 Canonicalisation

Overall, we note that our approach succeeds in finding relevant candidates for syn-
onym elimination. However, it is also clear that the elimination must be supervised by
a programmer. We therefore suggest using Figure 10.4 as a starting point for manual
canonicalisation of verbs in method names. Canonicalisation should entail both elim-
inating synonyms and providing a precise definition, rationale and use cases for each
verb.

10.6. RELATED WORK 125

Run Canonical (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

1 is has+is 49041 6820+42221 0.00269 -0.02270 -0.01152
2 is can+is 51649 2608+49041 0.00178 -0.01148 -0.00409
3 add remove+add 43241 16172+27069 0.00667 -0.03004 -0.00237
4 init initialize+init 11026 3568+7458 0.00149 -0.00743 -0.00126
5 close stop+close 5025 1810+3215 0.00074 -0.00348 -0.00040
6 create make+create 38140 4940+33200 0.00363 -0.01525 -0.00021
7 close flush+close 5936 911+5025 0.00061 -0.00266 -0.00014
8 reset clear+reset 5849 2901+2948 0.00100 -0.00421 -0.00007
9 write log+write 13659 1775+11884 0.00131 -0.00547 -0.00004

Table 10.6: Mechanical elimination of synonyms.

Canonical (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

clone clone+copy 4732 2595+2137 0.00271 -0.00147 0.00979
execute execute+invoke 4947 2997+1950 0.00197 -0.00229 0.00589
verify check+verify 8550 7440+1110 0.00126 -0.00298 0.00223
stop stop+end 4814 1810+3004 0.00126 -0.00283 0.00242
write write+log+dump 15987 11884+1775+2328 0.00420 -0.01109 0.00635
start start+begin 5485 4735+750 0.00081 -0.00200 0.00135
init init+initialize 11026 7458+3568 0.00149 -0.00743 -0.00126
error error+fatal 1531 1116+415 0.00027 -0.00088 0.00023
create create+new+make 45565 33200+7425+4940 0.00901 -0.03588 0.00152

Table 10.7: Manual elimination of synonyms.

10.6 Related Work

Gil and Maman [9] introduce the notion of machine-traceable patterns, in order to iden-
tify so-called micro patterns; machine-traceable implementation patterns at the class
level. When we model the semantics of method implementations using hand-crafted
bytecode predicates, we could in principle discern “nano patterns” at the method im-
plementation level. According to Gamma et al. [8], however, a pattern has four essential
elements: name, problem, solution and consequences. Though we do identify some very
commonly used implementation cliches, we do not attempt to interpret and structure
these cliches. Still, Singer et al. [20] present their own expanded set of bytecode pred-
icates under the label “fundamental nano patterns”, where the term “pattern” must
be understood in a broader, more colloquial sense.

Collberg et al. [4] present a large set of low-level statistics from a corpus of Java
applications, similar in size to ours. Most interesting to us are the statistics showing
k-grams of opcodes, highlighting the most commonly found opcode sequences. This is
similar to the implementation cliches we find in our work. Unfortunately, the k-grams
are not considered as logical entities, so a common 2-gram will often appear as part of
a common 3-gram as well.

Similar in spirit to our work, Singer and Kirkham [21] find a correlation between
certain commonly used type name suffixes and some of Gil and Maman’s micro pat-
terns. Pollock et al. [17] propose using “natural language program analysis”, where
natural language clues found in comments and identifiers are used to augment and
guide program analyses. Tools for program navigation and aspect mining have been
developed [19, 18] based on this idea. Ma et al. [15] exploit the fact that programmers

126 CHAPTER 10. PAPER 4: CANONICAL METHOD NAMES FOR JAVA

usually choose appropriate names in their code to guide searches for software artefacts.
The quality of identifiers is widely recognised as important. Deißenböck and Pizka [6]

seek to formalise two quality metrics, conciseness and consistency, based on a bijec-
tive mapping between identifers and concepts. Unfortunately, the mapping must be
constructed by a human expert. Lawrie et al. [13] seek to overcome this problem by
deriving syntactic rules for conciseness and consistency from the identifiers themselves.
This makes the approach much more applicable, but introduces the potential for false
positives and negatives.

10.7 Conclusion and further work

The ambiguous vocabulary of verbs used in method names makes Java programs less
readable than they could be. We have identified redundancy, coarseness and vagueness
as the problems to address. In this paper, we focussed on redundancy, where more than
one verb is used in the same meaning. We looked at the identification and elimination
of synonymous verbs as a means towards this goal.

We found that we were indeed able to identify reasonable synonym candidates for
many verbs. To select the genuine synonyms among the candidates without human
supervision is more problematic. The abstract semantics we use for method implemen-
tations is sometimes insufficient to capture important nuances between verbs. A more
sophisticated model that takes into account invoked methods, either semantically (by
interprocedural analysis of bytecode) or nominally (by noting the names of the invoked
methods) might overcome some of these problems. Realistically, however, the perspec-
tive of a programmer will probably still be needed. A more fruitful way forward may
be to use the identified synonym candidates as a starting point for a manual process
where a canonical set of verbs is given precise definitions, and the rest are discouraged
from use.

Addressing the problem of coarseness is a natural counterpart to the topic of this
paper. Coarseness manifests itself in polysemous verbs, that is, verbs that have more
than a single meaning. Polysemous verbs could be addressed by investigating the se-
mantics of the methods that constitute a nominal corpus C/n. The intuition is that
polysemous uses of n will reveal itself as clusters of semantically similar methods. Stan-
dard data clustering techniques could be applied to identify such polysemous clusters.
If a nominal corpus were found to contain polysemous clusters, we could investigate the
effect of renaming the methods in one of the clusters. This would entail splitting the
original nominal corpus C/n in two, C/n and C/n′. The effect of splitting the corpus
could be measured, for instance by applying the formula opt from Section 10.3.3.

Bibliography

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams - 2nd Edition (MIT Electrical Engineering and Computer Science). The
MIT Press, 2 edition, July 1996.

[2] K. Beck. Implementation Patterns. Addison-Wesley Professional, 2007.

[3] E. Collar and R. Valerdi. Role of software readability on software development
cost. In Proceedings of the 21st Forum on COCOMO and Software Cost Modeling,
October 2006, Herndon, VA., 2006.

[4] C. Collberg, G. Myles, and M. Stepp. An empirical study of Java bytecode pro-
grams. Software Practice and Experience, 37(6):581–641, 2007.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. Wiley, 2nd edition, 2006.

[6] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proceedings of
the 13th IEEE International Workshop on Program Comprehension (IWPC 2005),
pages 97–106. IEEE Computer Society, 2005.

[7] M. A. Eierman and M. T. Dishaw. The process of software maintenance: A com-
parison of object-oriented and third-generation development languages. Journal of
Software Maintenance and Evolution: Research and Practice, 19(1):33–47, 2007.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, 1995.

[9] J. Gil and I. Maman. Micro patterns in Java code. In R. E. Johnson and R. P.
Gabriel, editors, Proceedings of the 20th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005),
October 16-20, 2005, San Diego, CA, USA, pages 97–116. ACM, 2005.

[10] E. W. Høst and B. M. Østvold. The programmer’s lexicon, volume I: The verbs.
In Proceedings of the Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 193–202, Paris, France,
2007. IEEE Computer Society.

[11] E. W. Høst and B. M. Østvold. The Java programmer’s phrase book. In Proceed-
ings of the 1st International Conference on Software Language Engineering (SLE
2008). Springer, 2008.

127

128 BIBLIOGRAPHY

[12] E. W. Høst and B. M. Østvold. Debugging method names. In S. Drossopoulou,
editor, Proceedings of the 23rd European Conference on Object-Oriented Program-
ming (ECOOP 2009), volume 5653 of Lecture Notes in Computer Science, pages
219–317. Springer, 2009.

[13] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier conciseness and consis-
tency. In Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2006), 27-29 September 2006, Philadelphia,
Pennsylvania, USA, pages 139–148. IEEE Computer Society, 2006.

[14] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Effective identifier names for
comprehension and memory. Innovations in Systems and Software Engineering,
3(4):303–318, 2007.

[15] H. Ma, R. Amor, and E. D. Tempero. Indexing the Java API using source code.
In Proceedings of the 19th Australian Software Engineering Conference (ASWEC
2008), March 25-28, 2008, Perth, Australia, pages 451–460. IEEE Computer So-
ciety, 2008.

[16] R. C. Martin. Clean Code. Prentice Hall, 2008.

[17] L. L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and K. Maloor.
Introducing natural language program analysis. In M. Das and D. Grossman,
editors, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2007), San Diego, Califor-
nia, USA, June 13-14, 2007, pages 15–16. ACM, 2007.

[18] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns. In
Proceedings of the 6th international conference on Aspect-oriented software devel-
opment (AOSD 2007), pages 212–224, New York, NY, USA, 2007. ACM.

[19] D. Shepherd, L. L. Pollock, and K. Vijay-Shanker. Towards supporting on-demand
virtual remodularization using program graphs. In R. E. Filman, editor, Proceed-
ings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), Bonn, Germany, March 20-24, 2006, pages 3–14. ACM, 2006.

[20] J. Singer, G. Brown, M. Lujan, A. Pocock, and P. Yiapanis. Fundamental nano-
patterns to characterize and classify Java methods. In Proceedings of the 9th
Workshop on Language Descriptions, Tools and Applications (LDTA 2009), pages
204–218, 2009.

[21] J. Singer and C. Kirkham. Exploiting the correspondence between micro patterns
and class names. In Proceedings of the 8th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2008), pages 67–76, Beijing,
China, 2008. IEEE Computer Society.

[22] L. Steels. The recruitment theory of language origins. In C. Lyon, C. L. Nehaniv,
and A. Cangelosi, editors, Emergence of Language and Communication, pages
129–151. Springer, 2007.

BIBLIOGRAPHY 129

[23] A. von Mayrhauser and A. M. Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press_rg'] [Based on 'Press Quality_ikke fargekonvertering'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

