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Abstract  

Previous landslides can be important indicators for where to expect future landslide activity and 

under which conditions. Unfortunately, information concerning previous landslides is often 

insufficient and landslide databases are incomplete. Only a subset of landslides is registered, in 

most cases those who interact or affect human life and infrastructure. However, landslides often 

appear in remote areas, and several landslides, therefore, remain unknown and unnoticed.  

This study proposes the use of free accessible optical satellite data, produced by moderate 

resolution sensors in combination with vegetation indices to map and detect previous landslides. 

The focus is change detection analysis using images from the Sentinel 2 and Landsat 8 optical 

satellites, which are post-processed to calculate various vegetation indices. Primarily two 

vegetation indices are used, Atmospherically Resistant Vegetation Index (ARVI) and 

Normalized Difference Vegetation Index (NDVI). The mapping of landslides is performed in 

ArcMap, where two different mapping approaches are undertaken. First, a manual mapping 

where the difference between pre-and post-image is studied. Secondly, a semi-automatic 

mapping approach in the Raster Calculator. These mapping approaches are applied to Jølster 

municipality for detecting landslides after the Jølster landslide event in 2019.  

After the event, 18 landslides were defined within Jølster municipality and registered in the 

NVEs landslide database. In this study, a total of 108 landslides were identified. A comparative 

analysis in ArcMap, between ARVI and NDVI, reveals that ARVI detected changes caused by 

landslides better than NDVI. To verify the method, it has been applied to a second study site; 

Oso located in the state of Washington, USA. At this case site as well, ARVI maps more 

accurately than NDVI for landslide recognition.  

This study suggests that moderate resolution, optical satellite images used in the study of 

detecting previous landslides increases the number of detected landslides. Further, the 

vegetation index ARVI should be used when detecting landslides in humid climates. 

Throughout the research conducted, this study contributes to an improved understanding of the 

Jølster event, as well as a comparison of different methods for remote landslide detection. The 

research contributes supplementary landslide information to the database of already known 

landslides. Furthermore, testing and comparison of methods contribute towards an 

understanding of best-practice.  
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1 Introduction  

1.1 Motivation and Aim 

Landslides are growing problems. The risk associated is accelerating due to climate change, 

growing populations, and land-use change (Zhong et al., 2020). Landslides occur globally, in 

different climate conditions and terrains, complicating the effort of predicting accurately when 

and where landslides will occur (Highland & Bobrowsky, 2008; Zhong et al., 2020). The 

diversity of triggering mechanisms causes a broad area of potential landslide exposure, and the 

severity of the damage is often unpredictable. This especially regards fast-moving landslide 

types such as debris flows. This type of landslide is one of the most destructive and often no 

warnings are available in advance. Based on the abovementioned, it is difficult to prepare for 

such events and warning mitigation also struggles with fast-moving landslides (Highland & 

Bobrowsky, 2008).  

Previous landslides can be a good indicator of where to expect landslide activity in the future 

(Shahabi et al., 2013), and landslides are often proven to be repetitive (Malamud et al., 2004). 

The work of mapping areas already affected by landslides is therefore crucial for the 

understanding of where to expect landslide activity in the future. This study aims to develop a 

user-friendly approach to identify landslides in a cost-effective way.  

1.2 Research Needs  

Historical data about previous landslides are limited and improvement of landslide statistical 

databases is needed (Mondini et al., 2019; Van Westen et al., 2008). This master thesis suggests 

that this improvement can be done using free accessible, optical satellite images, in combination 

with Geographical Information Systems (GIS). Further, undertake a change detection where the 

goal is to identify-rainfall induced landslides by interpreting different vegetation indices. To 

test this, the approach will be applied to two test sites.   

1.3 Objectives 

The objectives of this study are to test the efficacy of change detection analysis using optical 

satellite images that are post-processed to calculate various vegetation indices. The underlying 

hypothesis is thereby that landslides destroy vegetation and become thus detectable through 

vegetation loss. Variables to be assessed are image sources providing various resolutions, and 
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the vegetation indices Atmospherically Resistant Vegetation Index (ARVI) and Normalized 

Difference Vegetation Index (NDVI). The comparative analysis is to be carried out in a GIS 

framework. Moreover, the study will specifically focus on evaluating the applicability of 

satellite data produced by moderate resolution sensors and a simplified GIS workflow to 

provide landslide detection over large areas and regions.  

Sentinel 2 and Landsat 8 data are chosen as data sources to study the use of free accessible 

satellite data, and whether the moderate resolution is good enough for landslide detecting after 

a heavy-rainfall event. Further, vegetation indices are widely used in the study of detecting 

changes. NDVI is the most commonly used vegetation index (Bannari et al., 1995). Both study 

areas introduced in this thesis have a humid climate that is highly affected by clouds, air 

humidity, and high precipitation amounts, which often influence the satellite images, and can 

potentially invalidate the result (SafeLand D4.5, 2011). ARVI corrects NDVI for atmospheric 

effects (Kaufman & Tanre, 1992), and is therefore calculated to study if the resistance of the 

index to such effects can improve the results in humid regions.  

Finally, to summarize the four research questions to be addressed are:  

 Can optical satellite data be used to identify landslides and expand landslide inventories 

after heavy-rainfall events, and is this a recommended approach?  

 Is moderate resolution good enough for detecting and recognize landslides?  

 Does landslide size and location affect the quality of the method?  

 Through a subset of six known indices, which index is most appropriate to use for 

identifying previous landslides?  

1.4 Background 

This subject is directly connected to Klima 2050 which “is a Centre for Research-based 

Innovation (SFI)”. The aim of Klima 2050 is to “reduce the societal risk associated with climate 

changes” (Klima 2050, n.d.). The Jølster landslide event in 2019 has been a focus, and detecting 

landslides from this specific event is the main focus in this thesis.  

The work of Ph.D. Candidate Erin Lindsay is especially important. As part of her Ph.D. study, 

Lindsay contributes to collecting landslide data from Jølster after the event 30th of July 2019, 

with the use of remote sensing images. In similarity to this master thesis, she utilizes the free 

accessible Sentinel 2 data, in addition to the vegetation indices NDVI for detecting landslides.  

bases her method of calculating the change between images from before and after the event, 
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and assumes a change in land surface cover from vegetation to bare soil, utilizing the vegetation 

index NDVI.  

Lindsay (2021) uses both Sentinel 1 and Sentinel 2 data, for utilizing both optical and radar 

data. Her results show that Sentinel 1 is negatively affected by topography, and of 120 

landslides detected with Sentinel 2, only 3 were easily detectable with Sentinel 1, 6 were 

detectible given prior knowledge and 111 was not detectable. Further, she collected data with 

higher resolution than Sentinel 2 and argue that other optical sources with higher resolution 

have limited potential for improved detail mapping. However, she concludes that other types 

of data may still be useful like data collected by drones which can give better information about 

where the landslide initiated.  

If possible, the results of this thesis will be compared to the results obtained in the Ph.D. study 

of Lindsay (2021). A comparative analysis between NDVI and ARVI will be accounted for.  

1.5 Outline  

This master thesis is organized as follows:  

Chapter 1 (this section) presents a general introduction containing research objectives and 

background, defining the content of the thesis.  

Chapter 2 presents a general introduction to landslide hazard as a problem, including the 

principal application area. Hereunder key problems like climate, population, and 

collection of historical landslide information are described.  

Chapter 3 provides the theoretical background needed for the study, divided into an 

overview of remote sensing, opportunities and limitations of using moderate-

resolution optical satellite data, and change detection algorithms.  

Chapter 4 introduces the two project areas, Jølster and Oso, in addition to previous work 

done at these case sites.  

Chapter 5 describes the method used in this study, presenting data collection, software 

used, and analytical approaches.   

Chapter 6 presents the results obtained from the method, categorized by type of data used, 

different approaches, and location.  

Chapter 7 contains the discussion of the results and approaches, in addition to a comparison 

between results from different studies. 
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Chapter 8 presents the conclusions, framed in the context of the research questions. Faults, 

errors, and weaknesses in the study are presented in addition to recommended 

further research.  

Chapter 9 presents the references used in this thesis, listing the background theory for this 

work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2 Landslide hazards 

2.1 Increase in Landslide hazards  

Every year, landslides impact both the built environment and the natural environment. They 

may cause damage to buildings, transport routes, economic disruption, and take human lives. 

The wildlife on land, in lakes, and at sea may also be affected (Highland & Bobrowsky, 2008). 

In Norway, several landslides get triggered every year. In 2019, twenty-eight events regarding 

floods and landslides were documented (NVE, 2020a), and respectively in 2020, nineteen 

events were documented (NVE, 2021). Both years, the landslides caused human death and 

damage to infrastructure. In Norway, landslide warnings are categorized in different levels 

represented by colors. This classification is based on the probability of occurrence and the 

extent of damage and danger to the population. There are a total of four danger levels: Green 

level indicates safe conditions, a yellow level representing a challenging situation where local 

damage may occur, orange level representing a serious situation where serious damage can 

occur, and last, red level indicates an extreme situation which can cause severe damage (NVE, 

n.d.). During the last years, there has been an increasing trend in the frequency of landslide 

warnings. In 2019, landslide warnings were given on 49 days, 44 at a yellow level and five at 

an orange level. In 2020, 66 days had landslide warnings, 64 with yellow level and two with 

orange level (NVE, 2020a, 2021). Figure 1 shows statistics of how many days’ landslide 

warnings were alerted in the period between 2013 and 2020. Warnings regarding heavy 

precipitation are given from 2016 until 2020. Before 2016, warnings of heavy precipitation 

were given by the Norwegian Meteorological Institute (MET), separately (Devoli, Colleuille, 

et al., 2020).  

 

Figure 1: Statistics of how many days’ landslide warnings were given in Norway from 2013 until 2020. The 

numbers of landslide warning are indicated with the colors yellow, orange and red, based on their danger level, 

and further, days of heavy precipitation is indicated with a blue color. During the last five years, the trend of 

warnings has increased. Figure from NVE (2021). 
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In the future, researchers expect the frequency of landslides will increase due to change in 

climate conditions (Agersten et al., 2019). The Intergovernmental Panel on Climate Change 

(IPCC) has shown that over the last 150 years the temperature on Earth’s surface has risen 

(Smith, 2013). According to the Norwegian Meteorological Institute (MET), the average 

temperature in 2020 was the highest recorded average temperature in 120 years, indicating an 

increasing trend (NVE, 2021). In addition, values at most meteorological measuring stations in 

Norway reports that during the past 50 years the highest daily precipitation has increased, and 

there is a positive trend for frequency and intensity of heavy rain lasting from 10 to 60 minutes. 

Due to this, we can expect more variations in climate conditions during the year, and 

consequently, these fluctuations and rapid changes in weather conditions can potentially cause 

severe damage (Agersten et al., 2019).  

At the end of July 2019, Jølster municipality, located in the western part of Norway, 

experienced such an increase in heavy precipitation. The precipitation was more intense than 

initially expected and caused the trigger of several landslides. Consequences of the landslides 

included destruction of buildings, destruction of roads, and one human death. Even though 

warnings were sent out, they were underestimated, according to MET (Agersten et al., 2019). 

This event is referred to as the Jølster event. Figure 2 shows that especially the western part of 

Norway has a high number of landslide warnings when precipitation and heavy rain are the 

cause.  

 

Figure 2: The map contains landslide warnings caused by precipitation and heavy rain in Norway from 2013 until 

2021. The map indicates an especially high number of landslide warnings in the western part of Norway. Source: 

DSB (n.d.). 
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2.2 Landslide Classification 

A landslide can be defined as a mass moving down-slope under the force of gravity. Size and 

velocity vary, depending on the topography and which types of material the landslide consists 

of. It can consist of various types of surface material and is classified according to this (Smith, 

2013). There are several ways to categorize different types of landslides, looking at e.g. material 

composition, water content, movement, velocity, and volume (Hungr et al., 2001). The 

landslide classification system by Varnes is well-developed and widely used by scientists. In a 

new version, the classification proposes 32 types of landslides which are categorized by type 

of movement and type of material, distinguishing between rock and soil (Figure 3) (Hungr et 

al., 2014). In Norway, landslides are categorized into three groups by type of material, rock, 

soil, and snow (NGU, 2014; NVE, 2020c).  

 

Figure 3: The updated version of Varnes classification system by Hungr et al. (2014). The table contains 32 

different natural hazards divided into types of movement, rock, and soil. 

The most common triggering factors for landslides are natural processes like heavy rain, rapid 

snowmelt, earthquakes, and in some cases, human activity (Smith, 2013; Zhong et al., 2020). 

Triggering mechanisms varies for different types of landslides, e.g. heavy precipitation and 

rapid snowmelt are common triggering mechanisms for debris flow and slides in general. These 

factors often lead to saturation of slope, in addition to an increase in groundwater level within 

the mass. Intense surface water may also erode soil or rock which can lead to failure (Highland 
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& Bobrowsky, 2008). The gradient of the slope is an important factor for where different types 

of landslides initiate and how they spread downhill. For instance, debris flow usually gets 

triggered in channels where the slope gradient is between 25 and 45 degrees (NVE, 2020b). 

Rockfalls, on the other hand, get triggered more commonly by weathering processes like frost-

thaw activity or intense vibration, and the slope gradient is usually above 45 degrees (Dorren, 

2003). Rock fall can also be a triggering mechanism to other landslides such as debris flow if 

the rocks cause disturbance in saturated soil (NVE, 2020b).  

However, natural processes are by far the only reason why landslides get triggered. Human 

activity plays a large role in the occurrence of many landslides, etc. excavation and undercutting 

of slopes during building processes or maintenance in addition to loading on top of the slope, 

changing of the drainage system and leaking pipes, in addition to removal of vegetation 

(Highland & Bobrowsky, 2008). Moreover, the combination of human activity and climate 

change can also potentially cause instability and failure.  

As the human population grows, there will be a need to inhabit areas that are uninhabited today.  

In Norway, regulations for land-use change are strict, and in areas where new real estate 

development is planned, regulations on technical requirements, as well as risk assessments, 

apply. These regulations intend to maintain safety and prevent new buildings from being 

negatively impacted regarding stability and safety in the future. These regulations take 

geographic differences and climate conditions into account, but a future change in climate and 

adoption yields great uncertainty (DSB, 2015; Plan- og bygningsloven, 2015). For instance, 

slope stability can change in the future due to changes in climate conditions. As a result of this, 

areas that previously were considered sufficiently safe for development, no longer meet the 

requirements for safety in the Planning and Building Act and other building regulations (DSB, 

2015).  

2.3 Historical data inventories need improvement 

Historical landslide inventories provide useful information about the spatial distribution of 

landslides from the past (Shahabi et al., 2013). Landslide inventories can be categorized based 

on what information the map represents, e.g., inventories that represent landslides after one 

specific event or inventories representing one type of mass movement. Typical information to 

find in landslide inventories is; location, date, size, type of mass movement, triggering factors 

and in some cases additional information like deposits and erosion features (Guzzetti et al., 

2012).  
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Much of the research regarding landslide mapping and detection is based on the well-known 

saying; “The past and present are keys to the future” (Carrara et al., 1991; Varnes, 1984). The 

importance of this saying can be recognized in landslide inventory mapping being of great 

importance in landslide hazard and risk assessment (Behling et al., 2014), in addition, it is the 

first step in the risk identification process (Andersson-Sköld et al., 2013). Moreover, the 

observed landslides in inventory maps are of great importance for creating susceptibility models 

and are used as input for validating and calibrating them (Chang et al., 2007; Guzzetti et al., 

2006; Rossi et al., 2010). These maps are ordinary based on historical information of past 

landslides, analysis of aerial photographs and field investigations (Guzzetti et al., 2012; 

Malamud et al., 2004; Soeters & Van Westen, 1996). The different approaches vary for different 

inventory types and the map scales (Guzzetti et al., 2012).  

There are still many regions in the world where inventories do not exist and those that do are 

limited. The quality and accuracy of the inventory map depend on the completeness, and 

consequently, the databases used represent only a subset of landslides: those that are registered 

and recorded (Guzzetti et al., 2012). Much of the previously recorded data is based on statistical 

approaches, either quantitative or qualitative, but where everything relying on known landslides 

(Cruden, 2018). This is predominantly underestimated for unpopulated areas and where human 

structures such as roads and railways are lacking (Carrara et al., 2003). However, landslides 

often appear in landscapes where it is difficult or impossible for humans to inspect from the 

ground. Many landslides, therefore, remain unknown and unnoticed, unless they interact or 

affect human life (Mondini et al., 2019).  

Moreover, the temporal update rate for inventories is a source of error as it is often limited to 

several years (Behling et al., 2016). Every year, several landslides trigger and cause damage to 

buildings and the natural environment (Highland & Bobrowsky, 2008), and without a 

continuous update of inventory maps, important information is lost and predictions for future 

landslides get less precise and reliable.  

Inventory- and susceptibility maps are important elements in Early Warning Systems (EWS) in 

Norway. Norwegian Water Resources and Energy Directorate (NVE) has the main 

responsibility of landslide detection in Norway which began in 2013. For many of the registered 

landslides in the national landslide database, important information is missing. Several of the 

issues, including spatial bias and missing information like the number of incidents, size, and 

triggering factors, remaining for EWS, could be solved with better landslide inventories 

(Devoli, Jarsve, et al., 2020). Moreover, no single organization has the overall responsibility 
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for landslide registration in remote areas. Consequently, landslides occurring in remote areas 

are reported randomly and in heterogeneous format. The ad-hoc reports and the heterogeneous 

nature of the reports limit the overall accuracy for landslide inventories (Lindsay, 2017). New 

methods for systematic change detection should be introduced to address this problem.  

2.4 Remote sensing as a landslide analysis tool  

In recent years, different remote sensing (RS) techniques are developing rapidly (SafeLand 

D4.1, 2012). RS enables detection and monitoring of large areas from distance, and remote 

detection of landslide exposure is a great advantage since many landslides are triggered in 

inaccessible, remote areas (Hölbling et al., 2015). Remote sensors measure reflected and 

emitted radiation and are typically installed on satellites or aircraft (USGS, n.d.-d). Both 

spaceborne and airborne RS methods play an important role in gathering information 

concerning environmental phenomena (SafeLand D4.5, 2011), such as geology and 

geomorphology, land cover use, and landscape changes, all important to understand and 

observe landslide activity (Zhong et al., 2020). Satellites cover a wider area than aerial 

photographs and the revisiting time can be up to a few days. The revisiting time for aerial 

photography is more limited and irregular (A. Mondini et al., 2011). Ongoing missions have 

proven that almost every spaceborne and airborne technique gathers reliable information for 

detecting and mapping (SafeLand D4.5, 2011).  

There are two primary types of RS instruments, passive and active. Passive sensors detect and 

measure reflected or emitted radiation. The instruments are weather-dependent and rely on 

illumination from the sun. Active sensors, on the other hand, measure reflected or backscattered 

radiation from signals transmitted from the sensor. For instance, radar and SAR can collect data 

in all weather conditions both day and night. The contribution of both instrument types, passive 

and active, has proven to be a powerful method in landslide mapping and detection in addition 

to hazard analysis (SafeLand D4.5, 2011).  

Further, the most common data used for post-failure mapping is optical RS data retrieved from 

passive sensors (Behling et al., 2014). Modern optical satellites record and provide images with 

a high temporal and spatial resolution (SafeLand D4.5, 2011). These images are convenient for 

monitoring changes in the landscape, including changes caused by landslide activity (Rau et 

al., 2007). Some of the images, depending on which satellite it is collected, are available for 

free download which simplifies the collection of relevant data. Each image is signed with a 

date, which gives an approximate date to previous events by comparing satellite images before 
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and after, looking for changes. By comparing pre- and post-imagines a relationship between 

geomorphological conditions and land cover changes, before and after an event, can be 

established (Shahabi & Hashim, 2015). This bi-temporal approach is widely used for post-

failure mapping (Cheng et al., 2004; Lacroix et al., 2013).  

The information collected from optical satellite images is important for understanding when to 

expect high frequency for landslides during the year and by comparing the date with 

meteorological data, triggering factors can be discovered. The availability of high- and very-

high resolution satellite images is increasing and contributing to research into and development 

of automatic and semi-automatic methods for mapping and detect landslides (Guzzetti et al., 

2012). With an increase in diversity, it has been observed that there also is an increase in the 

effectiveness and reliability of RS techniques related to mapping and detecting landslides 

(SafeLand D4.5, 2011).  

Preliminary studies using RS data on the Jølster events indicate that this area is promising as a 

test case for mapping and detection of recent landslides (Lindsay, 2017). After the event of 30th 

July 2019, 13 landslides in Vestland county in Norway were documented at Varsom, which is 

a platform for landslide warnings. By looking at RS data, traces of several other landslides 

appear, especially in remote areas.  
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3 Theoretical Background 

3.1 Overview: Remote sensing  

Remote sensing has a long tradition, going back to 1858, when images were taken from a 

balloon over Paris, France (Blaschke et al., 2014). RS images taken from aircraft were first used 

in the 1920s for geological purposes and became a common approach in the 1930s (Watson, 

1994). Approximately 40 years later, spaceborne RS came on the market due to the launch of 

Landsat-1 in 1972 (Blaschke et al., 2014). Over the years, satellite images have increasingly 

replaced aerial photographs in the study of landslide mapping and detection (A. Mondini et al., 

2011).  

The majority of earth observation satellites in orbit carry passive sensors such as Sentinel 2 and 

Landsat 8 (SafeLand D4.1, 2012). The Sentinel 2 constellation consists of two identical 

satellites where Sentinel 2A was launched in 2015 and Sentinel 2B was launched in 2017. These 

satellites are 180 degrees apart in node longitude, in the same sun-synchronous 786 km orbit. 

They provide optimal coverage of all land surfaces on Earth, with a revisiting time of 5 days 

(10 days for one). Sentinel 2 carries a multispectral imager (MSI) which provides a wide swath 

width of 290 km and a large band set of 13 multispectral bands in the visible and Near Infra-

Red (NIR) spectrum (ESA, n.d.-e). Their mission and aim are to provide data continuity to the 

Landsat, SPOT, and ASTER missions, among others (Van der Meer et al., 2014). Figure 4 

shows the Sentinel 2 orbital configuration.  

 

Figure 4: Overview of the orbital configuration of Sentinel 2. To the left, the configuration is shown from the view 

on the North Pole, and to the right, the view on the Equator. Figure from ESA (n.d.-c). 
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Landsat 8 was developed by the National Aeronautics and Space Administration (NASA) and 

U.S. Geological Survey (USGS) and launched in 2013. Landsat 8 consists of two instruments, 

the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which provide 

global coverage of the earth’s surface (NASA, n.d.). It has an altitude of 705 km in a sun-

synchronous, near-polar orbit, with a swath width of 185 km. The revisit time is 16 days. 

Landsat 8 is improved in many ways compared to previous Landsat sensors. The radiometric 

resolution is better and the number of images taken each day has significantly increased due to 

an improved duty cycle (Roy et al., 2014). OLI provides two new spectral bands for observing 

costal aerosols (Band 1) and detect cirrus clouds (Band 9). TIRS also provides two new spectral 

bands in the thermal region. These bands were for previous Landsat sensors covered by one 

wider band. Altogether, Landsat 8 provides 11 bands, both multispectral and thermal, in 

addition to panchromatic bands (NASA, n.d.).  

Both Sentinel 2 and Landsat 8 have a medium resolution compared to other high- and very 

high-resolution satellites like Quickbird and Ikonos (Deilami & Hashim, 2011). Figure 5 shows 

Landsat 8 and Sentinel 2 and their instruments.  

 

Figure 5: Overview of both the Landsat 8 and the Sentinel 2 satellite and their instruments. The figure of Landsat 

8 is collected from NASA (n.d.) and the figure of Sentinel 2 is from ESA (2015). 

Until now, few studies have used different optical datasets and compared the mapping results. 

More studies comparing and evaluating uncertainties among landslide inventories developed 

from the results from different sensors are needed (SafeLand D4.5, 2011).  
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Guzzetti et al. (2012) and Li et al. (2016), classify previous methods in landslide mapping using 

optical RS images in two groups; pixel-based and object-based. Usually, the smallest entity in 

an RS image is a pixel (Blaschke et al., 2004), while an object is a group of pixels where the 

pixels have similar values (Hay et al., 2001). The pixel-based method is rather simple to apply 

and gives the best results in areas where surface changes predominantly are caused by landslide 

activity. In situations, where other factors such as deforestation cause changes, the accuracy is 

limited (SafeLand D4.5, 2011). The method is sensitive to noise and if the spectral information 

is limited, it may fail (Lu et al., 2019).  

Since 1972, the majority of methods developed for image processing are pixel-based (Blaschke 

et al., 2014), but since around the year 2000, this approach has been criticized (Burnett & 

Blaschke, 2003; Fisher, 1997). The first commercial software for analyzing objects in RS 

images was then developed (Blaschke et al., 2014), to widen the investigation of contextual and 

spatial features of landslides (Martha et al., 2010; Martha et al., 2012). The object-based 

approach is usually applied when using very high-resolution satellite images (Blaschke et al., 

2014), and can in principal achieve better accuracy than the pixel-based (Lu et al., 2019). By 

using an object-based approach, clustering pixels to objects of varying sizes can give 

meaningful and detailed information about the characteristics in the different image objects and 

has a great potential for accurate landslide change detection. These characteristics can further 

be used in semi-automatic landslide detection and mapping (Hölbling et al., 2015). A limitation 

to the object-based approach is that it can be more general compared to pixel-based methods. It 

is important to provide appropriate criteria’s when using an object-based approach, which may 

be more time-consuming, and expertise is often needed (Mondini et al., 2011).  

3.2 Data sets – availability and limitations  

Compared to other satellites with free access, Sentinel 2 has the great advantage of 10-meter 

resolution in 4 bands; red, green, blue, and near-infrared (NIR) (Lacroix et al., 2018; Yang et 

al., 2019). The remaining bands have a resolution of 20- and 60-meter. Landsat 8, which also 

is free accessible provides a spatial resolution of 30-meter for visible, NIR, and SWIR, 100 

meters for the thermal bands, and 15-meter for the panchromatic band (NASA, n.d.). An 

overview of the bands provided from Sentinel 2 and Landsat 8 can be found in table 1 and table 

2. Overall, the spectral bands of Sentinel 2 and Landsat 8 are very similar, except Landsat 8 

provides thermal bands (Figure 6) (USGS, n.d.-c). The difference between level 1 (L1) and 

level 2 (L2) is similar for Sentinel 2 and Landsat 8 (USGS, n.d.-b). Level-1 data is radiometric 

and geometric corrected, in addition, includes spatial registration and orthorectification (ESA, 



15 

 

n.d.-a). Where else, Level-2 data includes atmospheric corrections and a scene classification 

(ESA, n.d.-b).  

Table 1: Sentinel 2 band combination. Information reconstructed from (ESA, n.d.-d). 

 

Table 2: Landsat 8 band combination. Information reconstructed  from USGS (n.d.-a). 
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Figure 6: Band combination of Landsat 7, Landsat 8, and Sentinel 2. Table from USGS (n.d.-c). 

The medium resolution of both Landsat 8 and Sentinel 2, makes it hard to detect smaller 

landslides. Landsat is preferred for regional coverage, typically thousands of square kilometers 

and problems regarding mapping landslides occur if the landslide is less than a few hundred 

square meters (SafeLand D4.4, 2011). Earlier attempts explain that landslide mapping with 

Landsat suffers from coarse resolution (SafeLand D4.1, 2012). For Sentinel 2, landslides 

smaller than 10x10 cannot be captured. Difficulties also occur when detecting only a few 

centimeters of slope displacement with 10-meter spatial resolution, compared with Synthetic 

Aperture Radar (SAR) techniques. However, Sentinel 2 is appropriate for detecting fast-moving 

ground motions, like debris flow (Yang et al., 2019). Overall, spaceborne techniques provide a 

wide area coverage and thereby usually coarser spatial resolution and poorer accuracy level 

(SafeLand D4.4, 2011). Therefore, many studies still rely on aerial photographs with higher 

resolution (SafeLand D4.1, 2012).  

Change in vegetation is often used as an indicator of landslide activity using optical satellite 

images. Optical RS methods can therefore be an important supplement to methods using SAR 

technology, especially in vegetated areas. Vegetation signals are often seen as noise using SAR 

techniques, which limit the method, especially over areas with a high percentage of dense 

vegetation (Yang et al., 2019). However, changes in vegetation can also cause trouble for 

optical RS techniques. The spectral, spatial, and temporal characteristics of a landslide are not 

unique and landslides can be covered by other land covers. Moreover, the landslide surface 

material and features are affected by many factors including geological, geomorphological, and 

hydrological ones which can vary greatly, in addition to weather conditions (Zhong et al., 2020). 
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Over the years, landslide masses will change, especially due to revegetation and erosion, and 

the signs of them will decrease. Temporal resolution is in this case very important and when to 

collect post-event images has to be taken into consideration (Behling et al., 2016). Limitations 

for accurate detecting and mapping of landslides also occur where the area of interest both 

contains fresh and old landslides (Hölbling et al., 2015). Several regions experience recurring 

landslides (Malamud et al., 2004), and if an area contains landslide material, a new landslide 

will not necessarily make a distinguished change that can be caught by the satellite sensor. This 

cluster of landslides can result in landslides being connected to the wrong event, in addition to 

not separating the landslides correctly, which can reduce the accuracy of the correct number of 

landslides after an event (Hölbling et al., 2015).   

In the study of change detection, the perfect scenario is collecting images with no cloud cover.  

However, this is almost impossible as the globe is covered by close to 70% of clouds (Altaweel, 

2017). Clouds and cloud shadows in optical satellite images will affect the results of change 

detection analysis. They distort the signal captured by the satellite sensor and corrupt the images 

(Mill et al., 2014). Based on this, it is crucial to remove all pixels representing clouds to detect 

the true surface change and get reliable results (Mill et al., 2014; Yang et al., 2019). Removal 

of clouds is therefore one of the first steps in data processing of optical RS images (Gómez-

Chova et al., 2017). The algorithm used to remove clouds depends on which spectral bands are 

available (Hagolle et al., 2010). For instance, clouds are typically colder than the earth’s surface 

and thermal IR bands can be used to detect this (Ackerman et al., 1998; Hunt, 1973; Saunders 

& Kriebel, 1988). The blue band is of good use for detecting low clouds if the surface is not too 

bright like snow-covered (Bréon & Colzy, 1999). Further, snow and clouds can look similar in 

optical RS images. SWIR bands can distinguish between snow and clouds because the 

reflectance range between these targets is greater in SWIR than for Visible and NIR (Dozier, 

1989).  

There are several approaches to remove clouds and shadows from optical satellite images. One 

method is to replace the areas that are covered by clouds, with a cloud-free image, by clipping 

the area. With this approach, seasonal variation among other things, that can differentiate the 

two overlapping images, is a problem (Altaweel, 2017). The cloud-free image taking on another 

date may also not show the changes of interest. Moreover, pixel sorting where multiple images 

that are not too dark or bright are used, due to shadows and clouds, is a more common approach. 

With rapid computation and machine learning, the images can seamlessly be merged. Images 

from different sensors can also be used, which is a great advantage (Sharma et al., 2017). 
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Google Earth is used similarly today (Altaweel, 2017). Automated cloud detection is another 

alternative. Here, pixels representing clouds in the optical satellite image can be masked and 

removed from the dataset. Clouds are identified by looking at variance in reflectance, using 

time series data, where a rapid change in reflectance is interpreted as clouds. These areas can 

again be merged with no-cloud cover images. Multi-Temporal Cloud Detection is a method that 

looks for an increase in reflectance in the blue wavelengths, and an abrupt increase can be 

automatically identified as clouds, using linear correlation (Hagolle et al., 2010). Further, cloud 

masking or data to merge and remove the clouds can be added (Altaweel, 2017).  

3.3 Change detection algorithms  

Vegetation indices are of good use in the interpretation process of satellite images and 

contribute as a useful method for land cover change detection. Several vegetation indices have 

been developed for both qualitatively and quantitatively evaluating the vegetation cover. 

Calculations of vegetation indices are a processing technique that combines the various 

frequency bands embedded in an image to produce a composite image where certain 

characteristics are highlighted or suppressed in the images. For example, a vegetation index 

would cause typical vegetative features in the image to appear more strongly (brighter) than 

non-vegetative features (Bannari et al., 1995).   

Compared to individual spectral bands, the use of vegetation indices results in a better 

sensitivity for green vegetation (Bannari et al., 1995). Research has shown that especially the 

spectral response of the red and NIR channels are good for this study. The red band correlates 

with chlorophyll concentration and the NIR band is controlled by the density of green 

vegetation in addition to leaf area index (Major et al., 1990). 

Change detection is done by comparing images taken at different times to identify features that 

appear, disappear or move over time. By applying the combination of indices and change 

detection, features of interest can first be highlighted which will improve the subsequent change 

detection calculation. Once the data is in a GIS framework, various raster calculations and 

subsequent change detection analyses can be easily made on those data sets. 

Hundreds of vegetation indices are developed for different purposes, but the perfect vegetation 

index does not exist (Major et al., 1990). Several factors can affect vegetation indices, both 

biological and physical. Researchers have therefore tried to combine different channels in many 

ways to eliminate these disturbance factors (Bannari et al., 1995).  
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Normalized Difference Vegetation Index (NDVI) is a commonly used by-product for optical 

images collected by satellites and is used for identifying landslides in the form of surface 

changes (Yang et al., 2017; Zhang et al., 2018). The results are often better in tropical and 

equatorial areas where landslide activity causes distinct land cover changes due to the great 

presence of dense vegetation (Guzzetti et al., 2012). The formula of NDVI utilizes the red and 

NIR band, proven to be useful in the study of landslide change detection (Major et al., 1990). 

As previously mentioned, shadow-affected areas can be a problem in mapping and detecting 

landslides using optical satellite images. Fiorucci et al. (2019) argue that the use of this 

vegetation index can lessen the impact of shadow, and confirms that the use of NDVI improves 

the result of mapping and visual recognize landslides in shadow-affected areas. Until now, only 

a few studies have tried combining NDVI with Sentinel 2 data to examine the NDVI potential 

to identify and recognize landslide change processes (Qu et al., 2021). NDVI is still the most 

used vegetation index and is often used as a reference, evaluating new other indices (Bannari 

et al., 1995). In this thesis, NDVI will be used to evaluate the vegetation index ARVI.  

Atmospheric effects in addition to absorption and scattering cause difficulties for interpreting 

changes at the Earth’s surface using optical RS images. Especially the Red- and NIR bands are 

influenced by these variations (Kaufman, 1988; Slater, 1980). Based on this, Kaufman and 

Tanre (1992) developed the Atmospherically Resistant Vegetation Index (ARVI), an index that 

is self-corrected for atmospheric effects. Originally, ARVI was developed to be used by the 

MODIS sensor, but can also be used for other sensors (Kaufman & Tanre, 1992). A new 

combination, a red-blue channel, given by the difference in radiation between the two, can 

reduce atmospheric scattering effects in the red channel (Bannari et al., 1995). The 

improvements that ARVI contributes, work better for vegetated areas compared to soil, it also 

works better for small aerosols particles than for larger (Kaufman & Tanre, 1992). ARVI can 

be seen as a new redefinition version of NDVI, and the dynamic range is similar (Bannari et 

al., 1995). This vegetation index uses the same bands as NDVI, in addition to the blue band. 

Moreover, ARVI is still responsive to changes in green vegetation, and in addition, resistant to 

atmospheric effects. To achieve this, the focus is on reducing the atmospheric effect on the red 

band. This is because the red band is more sensitive to atmospheric effects than NIR. However, 

the fact that NDVI is normalized reduces several factors including atmospheric effects. Still, by 

comparing the two indices, ARVI is four times less sensitive than NDVI to atmospheric effects 

(Kaufman & Tanre, 1992). 
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4 Study areas and previous work 

4.1 Jølster, Norway  

The main study area is Jølster municipality located in the western part of Norway, 

approximately 200 km south of Ålesund (Figure 7). Jølster became a part of Sunnfjord 

municipality in January 2020, but for this work, the original Jølster municipality is used. Jølster 

has an area of 670 km2 and the altitude range between 208 masl (Jøstervatnet) and 1827 masl 

(Snønipa). The landscape is mountainous with both steep slope gradients and other places where 

there are less steep mountain sides covered with vegetation (Hefre et al., 2019). The most 

common surface material is moraine material (Figure 8). The landslides that most frequently 

occur in Jølster, especially around Jølstervatnet, are debris- and slush flows (Hefre et al., 2019). 

In figure 8, potential landslide activity is shown as part of the soil map. The map indicates that 

Jølster is prone to landslides to a large extent, and in the future, climate changes in this area are 

expected to increase the frequency of events with heavy rainfall, which can lead to more floods 

and landslides (Norsk Klimaservicesenter, 2016). 

 

Figure 7: Overview of the main project area, Jølster municipality in Norway. Jølster municipality is marked as a 

red polygon in the figure where maps are showing the location of Jølster in both Norway and Vestland county. 
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Figure 8: Soil- and slope map over Jølster municipality. The soil map reveals the most common surface material 

in Jølster municipality, and the soil map shows that several of the valleys in Jølster municipality has a gradient 

from 30 degrees and above, which is typical slope degrees of where landslides get triggered. The slope map is 

made from a 10 m resolution DTM and the soil-map is a WMS layer extracted from Geonorge.no. Potential 

landslide activity is displayed on top of the soil map.  

A catastrophic landslide event occurred 30th of July, 2019. Several landslides were triggered 

after a period of heavy rainfall in Vestland County in Norway. The main types of triggering 

slope failures were shallow debris slides which caused the destruction of buildings, roads and 

took one human life. The previous day, MET in corporation with NVE sent out a warning that 

especially Vestland should expect heavy rain and thunderstorm in addition to strong wind. The 

intensity and precipitation were bigger than first expected (Agersten et al., 2019). The rain 

showers were local and at Vassenden in Jølster, 33 mm/hour were registered. There has likely 

been even more precipitation in the mountains in this area, but no measuring stations are 

installed here. The strongest wind registered in this area was 20-25 m/s, and was registered at 

the measure station “Jølster-Kvamsfjellet” which is located at 980 masl (Agersten et al., 2019). 

Table 3 gives an overview of the reported landslides and affected areas and reveals that Jølster 

municipality was one of the most affected areas by this event.  
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Table 3: Overview of the places affected by natural hazards 30. July 2019, in Vestland County. Table modified 

from NVE (2019). 

 

All Klima 2050 partners including Norwegian Geotechnical Institute (NGI), Norwegian Water 

Resources and Energy Directorate (NVE), Norwegian Meteorological Institute (MET), and 

Norwegian University of Science and Technology (NTNU), in addition to the Geological 

Survey of Norway (NGU) and Western Norway University of Applied Science (HVL) have 

contributed with research linked to the Jølster event. Data retrieved is collected by GPS 

measurements, helicopter, geological field survey, drones, and satellites (Strout & Devoli, 

2020).  

Both NGI and HVL have worked together on estimating landslide volumes. They have used 

drones and have available data for most of the landslides in the area. DTMs can be extracted 

from this data and can further be used to estimate volumes of the landslides. Field surveys and 

observations were done in Jølster where especially erosion in earlier landslide areas has been 

studied. With today’s models, it is not possible to define a classic triggering point, in addition, 

it is in general difficult to model events that started as a flow, water bringing rocks, and further 

land masses (Strout & Devoli, 2020).  

Moreover, several bachelor studies, master studies, and Ph.D. study has analyzed the Jølster 

event. Especially Ph.D. Candidate Erin Lindsay’s work is important for this thesis. Lindsay’s 

work is described under section 1.3 Background, as part of the Introduction.   

This master thesis will focus on landslides triggered by heavy rainfall and the Jølster event will 

be used to investigate the use of optical RS data and vegetation indices. To make sure the quality 

of the method does not get affected by the location or size of the landslide, a second study area 

is introduced.  
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4.2 Oso, Washington  

The second location introduced in this master thesis is Oso located in Washington, USA (Figure 

9). Oso is a part of Snohomish County and has an area of 9.6 km2. The climate is humid, similar 

to the climate in Jølster. Northeast of Oso, a terrace slope that has experienced several landslides 

is located (Aaron et al., 2017). The terrace slope has different plateaus, with the Whitman bench 

at the top approximately 270 masl, and the Ancient Landslide Bench, at an altitude of 180 masl. 

The terrace stratigraphy from the bottom up consists of sands and gravels, glaciolacustrine silt 

and clay, advanced outwash sand, and till at the top which is periodically covered by recessional 

outwash of sand (Figure 10) (Stark et al., 2017).  

Figure 9: Overview of the second project area, Oso located in Washington, USA. The red star indicates the location 

of Oso, and the black star indicates the location of the Oso landslide event in 2014, northeast of Oso. 



24 

 

 

Figure 10: Slope cross-section showing the stratigraphy of the terrace northeast of Oso. The blue line indicates the 

ground water table. Figure retrieved from Stark et al. (2017). 

On 22nd of March, 2014, a catastrophic landslide event occurred northeast of Oso. A terrace 

slope failed and caused 43 fatalities, road destruction, and damaging civilian property (Aaron 

et al., 2017). Steelhead Haven Community was destroyed (suffered from extreme damage), and 

the landslide buried the Washington State Route 530 (Stark et al., 2017). The landslide also 

crossed the North Fork Stillaguamish River and dammed it (Wartman et al., 2016). This area 

has a history of landslide events, but the 2014 event had a different failure behavior and traveled 

nearly 1.4 km, on a runout surface close to horizontal, acting like a flow slide (Aaron et al., 

2017). According to Wartman et al. (2016), the landslide would be classified as a debris flow 

slide by using the updated landslide classification, originally by Varnes (Figure 3). Unlike most 

other known failures in this terrace slope, this landslide initiated at the top plateau, the Whitman 

Bench  (Aaron et al., 2017), and had this large spatial extent in runout due to the higher elevation 

(Stark et al., 2017). The total volume of the landslide was estimated to be near 8.3 million m3 

(Stark et al., 2017; Wartman et al., 2016). In the days before the event, the precipitation was 

unusually intense, and according to precipitation gauges in the area, this period of rainfall was 

significantly higher than the average. The rainfall in March leading up to the landslide event is 

proven to be the wettest time period in 86 years, according to historical meteorological data 

(Stark et al., 2017). The event in 2014, is known to be the most deadly event the continental 

Unites States has experienced (Wartman et al., 2016). This event will hereby be referred to as 

the Oso event.  

With the same triggering mechanism and climate, this event is well suited to be used as a 

validation site for the method applied to the Jølster event.  
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Several studies have analyzed the Oso event in 2014, and it is well documented through 

obtaining high-resolution topographic LiDAR data, aerial photo imagery, and field surveys. 

Earlier events on the case site are also investigated, and the data source most commonly used 

to reconstruct the landslides deposits morphology is LiDAR pre- and post-topographic data 

(Aaron et al., 2017). LiDAR can be used to generate topographic relief images with high 

resolution, useful for revealing historical landslides (Haugerud, 2014; Stark et al., 2017). 

According to the LiDAR data, there have been several repeating landslides in the area of the 

Oso event in 2014 (Haugerud, 2014; Stark et al., 2017; Wartman et al., 2016). These historic 

events are varying in size, both large, similar to the 2014 event which initiated in the upper part 

of the terrace, and smaller landslides in the lower part of the slope usually caused by river 

erosion and precipitation (Stark et al., 2017). LiDAR surveys were conducted for the area in 

2003 and 2013, in addition to 2014 after the 2014 event (Aaron et al., 2017), and by looking at 

the difference in slope topography between these images, accumulation zones and extent could 

be revealed (Stark et al., 2017). Through information retrieved from LiDAR data, it was found 

that pervious landslides between 1937 and 2006 initiated at a lower part of the terrace slope. 

Changes in the Stillaguamish river were also detectable, which revealed important information 

about return periods of landslides at this case site by looking at areas where the river had caused 

a reduction in the landslide bench, and erosion on the landslide masses (Stark et al., 2017).   

Aerial photographs have also been used to study the Whitman Bench plateau (Stark et al., 2017; 

Wartman et al., 2016), and showed that the terrace slope had been stable for approximately 100 

years (Stark et al., 2017). Results from aerial photographs show that most of the previous 

landslides only involved glaciolacustrine deposits, indicating that they initiated in the lower 

part of the terrace. Some of the Ancient Landslide bench was removed by these landslides, but 

the bench still supported the Whitman bench until the landslide in 2006. These previous 

landslides also moved the still river, and after the landslide in 2006, the river channel was 

moved far south of the slope, which indicates that river erosion did not initiate the Oso event in 

2014 (Stark et al., 2017).  

Several field investigations have also been carried out, where especially information from 

boreholes has been of great importance for finding information about the terraces stratigraphy 

(Aaron et al., 2017).  Moreover, a meteorological overview of the conditions before the event 

in addition to information about historic events on the site, and geomorphology conditions were 

given by Wartman et al. (2016). They interpreted the failure mechanism by analyzing seismic 



26 

 

signals from the slide in combination with field observations, concluding that the landslide had 

two movement phases. 

The study of Sun et al. (2015), has proven that also interferometric synthetic aperture radar 

(InSAR) is useful for landslide detection, for landslides such as the Oso event in 2014, 

analyzing movements in the terrace slope before the event. Deformation maps derived from 

InSAR data indicated that the slope where the Oso slide in 2014 occurred was active between 

2007 and 2011 (Sun et al., 2015).  

In summary, several approaches are used to collect information about landslide events in the 

terrace north-east of Oso. To my best knowledge, throughout a broad spectrum of literature, no 

earlier studies have focused on optical satellite sensors and vegetation indices for mapping the 

Oso landslide in 2014.  
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5 Method  

5.1 Data collection  

In this study, pre- and post-event 12 bit Sentinel 2A images acquired 2019.07.28 and 

2019.08.27, in addition to a second post-event Sentinel 2B image acquired 2019.08.02 

(YYYY.MM.DD) were used for the landslide mapping in Jølster municipality in Norway, and 

comparison between different vegetation indices. The 10-meter multispectral bands were 

utilized for this study. Both Sentinel 2 level 1 (L1) and Sentinel 2 level 2 (L2) were acquired to 

compare the two levels released to users.  

Landsat 8 pre- and post-images were also acquired for both Jølster and Oso, to compare the use 

of two different optical satellites on the Jølster event, in addition, to analyze the Oso event with 

optical satellite data. Sentinel 2 data was not yet available at the time of the Oso event. Landsat 

8 images from the dates 2019.07.11 and 2019.08.03 were acquired for the Jølster event and 

2014.01.18 and 2014.04.01 (YYYY.MM.DD) for the Oso mudslide in Washington. Only L1 

data from Landsat 8 is acquired, and the 30-meter multispectral bands were utilized.  

Satellite images from the Sentinel 2 constellation were downloaded from the Copernicus Open 

Access Hub. Copernicus Open Access Hub is developed by the European Space Agency (ESA) 

and provides a complete database of satellite images from Sentinel 1, Sentinel 2, and Sentinel 

3. The website provides an easy-to-use, open, and free access platform for collecting satellite 

images. In the Advanced Search, there are two alternative settings where the dates of interest 

can be chosen, namely the sensing period and the ingestion period. The sensing period 

represents the time when the image was taken from the sensor while the ingestion period 

represents the time when the image was available online. The sensing period was set one month 

before the event and one month after the event. The satellite platform chosen was S2A_* and 

S2B_*, and the product type was set to be S2MSI1C for L1 data, and S2MSI2A for L2 data. 

Further, a polygon was drawn around the area of interest which is Jølster municipality. This 

was done to limit the results and the program searched for images that only cover the polygon. 

The chosen images were based on those with the smallest percent of cloud cover among the 

alternative images in the search. Sentinel 2A pre-image was not affected by clouds, but both 

the post-images were to some degree affected by clouds.  

Landsat 8 images were downloaded from USGS Earth Explorer. A polygon was drawn around 

Jølster in addition to Oso, in two different steps, to limit the extent. In the dataset folder, Landsat 

8 OLI/TIRS C1 Level-1 was chosen. No additional criteria were set. The chosen images were 
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based on those having the smallest percentage of cloud cover. The satellite images produced by 

Landsat 8 retrieved for this study had no cloud cover in the area of interest.  

5.2 Software  

The software package ArcMap was used in this thesis to visualize data, spatial analysis and 

create maps and datasets. ArcMap is a part of the traditional ArcGIS Desktop, developed by the 

Environmental Systems Research Institute (ESRI), for the purpose of creating maps, spatial 

analysis, and geographic data management (ESRI, 2020). Further descriptions of how ArcMap 

is used in this study for calculating vegetation indices and mapping landslides can be found in 

Section 5.3.  All the maps without further references are created by this paper’s author in 

ArcMap.  

ArcGIS Pro is a new version of ArcGIS desktop and was used to remove clouds from the 

satellite images.  

In addition, Microsoft Excel is used for simple statistical analysis and sorting of data. All the 

tables in the thesis are created in Excel.  

5.3 Analytical approach  

After downloading the Sentinel 2 and Landsat 8 satellite images, they were imported to ArcMap 

for visualization. Since the area of interest is a historical municipality, a WMS layer from 

Geonorge showing historical municipalities was added to the GIS project to draw a polygon 

around Jølster. Once the polygon of Jølster was produced, the satellite images were clipped to 

the area of interest.  

A subset of vegetation indices found in literature was calculated by using the tool Raster 

Calculator. The vegetation indices calculated for observing changes in vegetation were 

Normalized Difference Vegetation Index (NDVI), Green Normalized Vegetation Index 

(GNDVI), Enhanced Vegetation Index (EVI), and Atmospherically Resistant Vegetation Index 

(ARVI).  

The vegetation indices calculated in this study were chosen based on the limitations of NDVI. 

In Kaufman (1988) and Slater (1980), it is explained that the Red and NIR bands used in NDVI 

suffer from atmospheric effects. Both ARVI and EVI correct the NDVI for atmospheric 

influence and were therefore calculated. Further, since the detection of landslides with smaller 

areas is a limitation both for Sentinel 2 and Landsat 8, GNDVI was calculated and Hölbling et 
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al. (2015) argue that this vegetation index improved the detection of small-scale changes that 

NDVI does not capture.  

The vegetation indices and their equations are as follows:  

Normalized Difference Vegetation Index: 

𝑁𝐷𝑉𝐼 =
(NIR − Red)

(NIR + Red)
 

 

Green Normalized Vegetation Index:  

𝐺𝑁𝐷𝑉𝐼 =
(NIR − Green)

(NIR + Green)
 

 

Enhanced Vegetation Index:  

𝐸𝑉𝐼 = 2.5 ∗
(NIR − Red)

(NIR + (C1 ∗ Red) − (C2 ∗ Blue) + L)
 

Where C1 and C2 coefficients for correcting aerosol scattering, and L adjusts for canopy 

background (EOS, 2019). The same value for these three factors as used for MODIS-EO can 

also be used for Sentinel 2 and Landsat 8, which are C1 = 6, C2 = 7.5, and L = 1.  

 

Atmospherically Resistant Vegetation Index:  

𝐴𝑅𝑉𝐼 =
(NIR − Red − y ∗ (Red − Blue))

(NIR + Red − y ∗ (Red − Blue))
 

In this study y = 1 is used, as shown in Kaufman and Tanre (1992) to be the optimum value for 

RS applications, especially when information about aerosol type is missing.  
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In addition to vegetation indices, two water indices were calculated: the Normalized Difference 

Water Index (NDWI) and the Land Surface Water Index (LSWI). These were calculated 

because debris flows often follow rivers and contain a large amount of water (NVE, 2020b).  

The water indices and their equations are as follows:  

Normalized Difference Water Index:  

𝑁𝐷𝑊𝐼 =
(Green − NIR)

(Green + NIR)
 

 

Land Surface Water Index:  

𝐿𝑆𝑊𝐼 =
(NIR − SWIR)

(NIR + SWIR)
 

 

For Sentinel 2, Near Infra-Red (NIR) corresponds to band 8, Red to band 4, Green to band 3, 

Blue to band 2, and SWIR to band 11. Band 12 is also in the SWIR range, but band 11 is chosen 

because it has a closer spectral location to the other bands in the formula (Table 1). For Landsat 

8 the red, green, and blue correspond to the same bands as for Sentinel 2, while NIR corresponds 

to band 5 and SWIR corresponds to band 6 (Table 2).  

The indices were calculated for both the pre- and post-image. By subtracting pre from post with 

the tool MINUS the difference was calculated and the total change was discovered. The result 

from ARVI and NDVI calculation for a given pixel always ranges between +1 and -1, where 

numbers close to +1 represent a high presence of green leaves, and a value of zero indicates no 

vegetation. In other words, after subtracting pre- from post-images, negative values represent 

areas that have undergone changes and a more positive value represents an area with the same 

condition in the pre-and post-image. The difference in vegetation indices between the pre- and 

post-image will herby be referred to as (for example) dNDVI.  

All the six indices introduced were applied to the Jølster case site for initial evaluation. dNDVI 

and dARVI gave landslide values with the greatest contrast to the surroundings compared to 

the other vegetation indices calculated. Therefore, it was decided to continue with dNDVI and 

dARVI for further analysis for landslide change detection and mapping. dNDVI and dARVI 
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were then calculated for the Oso case site, to conduct a comparative evaluation in an additional 

area.  

An overview of the workflow in Model Builder for calculating the difference in the vegetation 

indices is shown in figure 11.  

 

 

Figure 11: Overview of the workflow for calculating NDVI and dNDVI. The same workflow is used for all 

vegetation indices and both levels of data, in addition to Landsat 8 data. With Landsat 8 data, band 8 is switched 

with band 5 for calculating NDVI, which is the red band for Landsat 8. 

With the use of dNDVI and dARVI, both a manual and a semi-automatic approach to identify 

landslides were undertaken in Jølster municipality. These approaches will be described in the 

two following subsections. For the Oso event, only the comparative evaluation of dNDVI and 

dARVI’s ability to recognize changes caused by the landslide in 2014 was conducted.   

5.3.1 Manual Landslide Mapping  

A manual recognition of landslides in Jølster municipality was done by systematically looking 

at areas with a low pixel value in dARVI calculated with Sentinel 2, L2 data. The intention 

behind the manual mapping was to provide the number of landslides dARVI contributed to 

identifying. Large negative values indicate change between pre-and post-image, which is 

expected for areas affected by landslides. The color range to display the indices goes from green 

(no change in vegetation = positive value) to red (change in vegetation = negative value). 
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Elongated clusters of red pixels, which could potentially indicate a strip of removed vegetation, 

were evaluated.  

With the use of two post-event images, the manual mapping was done in two rounds. First, with 

Sentinel 2A post-image, then with Sentinel 2B post-image. The two images were not affected 

by clouds in the same area. The use of both the post-images in the manual mapping allowed a 

more precise mapping.    

Several areas showed low dARVI pixel value. The areas showing low value, but still not 

distinguishable as a landslide were evaluated by looking at natural color image composites. If 

the RGB image presented evidence for debris accumulation, it was marked as a landslide. For 

instance, rivers were some of the objects showing low values, with the same shape as expected 

for landslides. Only those parts that exhibited an increase in sediments in the river, and where 

the sediments took a new path than the original river path, were mapped as landslides. The 

landslides were mapped by producing a polygon around the outline of these areas which 

represented a change.  

In the attribute table of the mapped landslides, information was added for further statistical 

analysis. The landslide areas were calculated. In addition, it was noted if the landslides were 

either following a river, crossing a river, or had their origin in, or at the end of the river. This 

was done by studying a topographic map used as a background map, combined with a shapefile 

containing rivers was downloaded from “nedlastning.nve.no”.  

Moreover, to add supplementary information about elevation and slope, digital terrain model 

(DTM) with a 1-meter resolution, were downloaded from hoydedata.no. These DTMs, where 

each covered parts of Jølster municipality, were first resampled in ArcMap to 10 meters, and 

afterward merged by using the tool “Mosaic To New Raster”. The best resolution of the satellite 

images is 10 meters, and for this study, it was concluded not necessary to have a DTM with a 

higher resolution. A DTM with a higher resolution is also more time-consuming to work with. 

Further, the tool “Slope” was used on the DTM to make a slope map. Both the slope map and 

the DTM were clipped to the polygon of Jølster municipality. Further, the “Identify” tool in 

ArcMap was used to collect information concerning the elevation and slope from which the 

landslides were initiated, as well as the slope runout. Elevation was extracted from the DTM, 

and the slope was extracted from the slope map.  

For a comparison between dARVI and dNDVI, the mapped landslide polygons were displayed 

on top of dNDVI also calculated with Sentinel 2 L2 data, to see if there was any difference in 
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where low values clustered, if dNDVI mapped different landslides, or if the mapped landslides 

had another spatial distribution. To compare pixel values of both dARVI and dNDVI inside the 

landslide polygons, the tool “Zonal Statistics as Table” was used to summarize the values, and 

further, the tables were converted to Excel. The attribute table for the landslide polygons was 

also transferred to Excel. The tool “Zonal Statistics as Table” was also used to extract the pixel 

values of dARVI and dNDVI in the landslide triggered by the Oso landslide event in 2014. This 

was done to evaluate the difference in how dARVI and dNDVI maps change at a second 

location.  

Further, in Excel, different combinations of the data were put together, trying to discover the 

difference in mapping between dARVI and dNDVI. For comparing dARVI and dNDVI, 

([dARVI mean value] – [dNDVI mean value]) was calculated for all identified landslides. By 

subtracting the mean value of dNDVI from the mean value of dARVI, a comparison of the 

landslide evaluation by the two indices was enabled. In the case of a positive difference between 

the two mean values, dNDVI contains the lowest value. In the case of a negative difference 

between the two mean values, dARVI has the lowest value.  

Moreover, the landslide polygons were also displayed over dARVI calculated with Landsat 8 

data, and the same comparison as between dARVI and dNDVI calculated with Sentinel 2 data 

was undertaken; does dARVI calculated with Landsat 8 data map the same landslides as dARVI 

calculated with Sentinel 2, and is the spatial extent the same?  

The manually mapped landslides were lastly compared to the landslides registered in NVEs 

landslide database from after the Jølster event in 2019. By downloading the landslide database 

from “nedlastning.nve.no”, the landslides from this specific event were selected by looking at 

the date, and further, they were displayed on top of the landslides mapped in this study.  

5.3.2 Landslide mapping in Raster Calculator  

An attempt to semi-automate the approach for mapping landslides was done in Raster 

Calculator. The RS images, produced by Sentinel 2, collected for this study were affected by 

clouds, so in advance of a more automated attempt for mapping landslides, these had to be 

removed.  

Several approaches to remove the clouds were tried, and in this study, two different methods 

are used. First, Pixel Editor in ArcGIS Pro was used to remove clouds in Sentinel 2A post-

image. With this approach, the cloud-affected area can be replaced with a cloud-free image 

taken at another time. In this case, both Sentinel 2B and Landsat 8 post-image can be used due 
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to no cloud cover in the same area that Sentinel 2A post-image is affected. However, the spatial 

resolution and bandwidths must be the same to seamlessly merge the cloud-free image into the 

base map, and Sentinel 2B is therefore utilized. With the use of Pixel Editor, a polygon was 

drawn around the area affected by clouds and further chose the cloud-free image as the source 

layer and replace it. Further, the color of the base map and reference map was matched. 

The second approach for the removal of clouds was done in Raster Calculator, where logical 

operators were used to excluding pixel values representing clouds. This approach was applied 

to the difference image between Sentinel 2A pre-image and Sentinel 2B post-image. The pixel 

values representing clouds were identified by utilizing the identification tool. Band 2 (blue), 

which gave the largest contrast between the cloud and the surroundings, was used. The clouds 

present in the Sentinel 2B post-image had a distinct outline and the pixels representing clouds 

were much brighter than the other elements in the scene. Only pixels representing clouds had a 

pixel value greater than 3000 and this was added to the final equation in Raster Calculator for 

landslide mapping in Jølster municipality.  

With cloud-free Sentinel 2A post-image, dARVI was again calculated with the same approach 

as in figure 11, but this time, with the new cloud-free image used as post-image. Keeping in 

mind that a distinct change in dARVI- or dNDVI-value does not necessarily represent 

landslides, but the overall change between pre-and post-image, several assumptions had to be 

made to extract only landslide information. Logic operators in Raster Calculator were therefore 

used to define what is a landslide and what are other changes caught by the remote sensor. The 

values inside the landslide polygons had a wide range, revealed by the “Identify” tool. It was 

therefore decided to use values extracted from the table showing dARVI values inside the 

landslide polygons, previously developed by “Zonal Statistics as Table”. This was done 

assuming that the dARVI values inside the landslide polygons were sufficiently representative 

of the typical conditions.  

In Raster Calculator two equations were run to detect landslides. The first equation included 

dARVI value as the difference between ARVI calculated with Sentinel 2A pre-and post-image, 

and the second equation included dARVI value as the difference between ARVI calculated with 

sentinel 2A pre-image and Sentinel 2B post-image. The dARVI values inside the landslide 

polygon ranged from +0.9 to -1. From the values in Excel, it was decided to use -0.2 as the 

highest dARVI value that would be detected. The average mean value to the landslides with the 

use of both Sentinel 2A- and Sentinel 2B post-images was below -0.2, in addition, most of the 
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landslides had a min value below -0.2. With the use of dARVI < -0-2 in the Raster Calculator, 

most of the landslides would be represented.  

Further, from the landslide attribute table, it was found that the max slope where the landslides 

initiated was 54.25 degrees. Slope < 54.25 was therefore added to the equation, excluding all 

areas steeper than this. Moreover, from the landslides attribute table, all landslides appear under 

1336 m, and DTM < 1336 was supplemented to the equation. Because shadow was still present 

in the result, band 2 was used to remove these areas by applying Band 2 > 500. Furthermore, 

rivers were some of the objects having similar values to landslides, and the water index NDWI 

was therefore used to exclude rivers, but not landslides, by applying dNDWI > 0.3 to the 

equation. 

Moreover, there was still an overrepresentation of false positives, i.e., information in the result 

which did not represent landslides. With the use of Sentinel 2A post-image, especially crop 

fields and landslides had the same range of values. To separate them, Slope > 15 degrees was 

used as most of the crop fields had a slope beneath this. This was only added to the equation 

where the Sentinel 2A post-image was used. For the calculation where the Sentinel 2B was used 

as post-image, Band 2 < 3000 was added to the equation due to the removal of clouds.  

The final equations used in Raster Calculator are as follows:  

 Equation 1: (S2A_dARVI < - 0.2) & (Slope < 54.25) & (Slope > 15) & (DTM10m < 

1336) & (Band 2 > 500) & (dNDWI > 0.3).  

 Equation 2: (S2B_dARVI < - 0.2) & (Slope < 54.25) & (DTM10m < 1336) & (Band 2 

> 500) & (Band 2 < 3000) & (dNDWI > 0.3).  
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6 Results  

In this section, the results will be presented. This includes results of the difference in the 

vegetation indices NDVI and ARVI at both case sites, with the use of both different processing 

levels of data and different satellite sensors. Further, the results from the manual mapping and 

the mapping done in Raster Calculator will be presented.  

6.1 Vegetation indices - Jølster  

6.1.1 ARVI and NDVI differences calculated with Sentinel 2 

In the initial inspection of the dARVI display in figure 12, some differences are detected 

between the use of L1 data and L2 data. L1 data highlight more objects, like water and shadows. 

Water with L2 data is also marked as a great contrast to the surroundings, but most of the water 

has pixel values closer to zero compared to L1 data. There are two clouds present in the scene, 

one in the southeast end of the lake Jølstervatnet, and another further northeast. Both clouds are 

visible in both displays as a cluster of pixels with negative values. The cloud northeast of the 

lake is harder to detect in the display of L1 data where it is surrounded by shadows also with 

similar negative pixel values. Moreover, only L1 maps the cloud shadows. Both levels map 

crop fields with negative values, where L1 is noisier than L2.  

 

Figure 12: Calculation of dARVI with Sentinel 2A L1- and Sentinel 2A L2 data. The vegetation index is displayed 

for Jølster municipality, and its location is shown in the overview map in the upper left corner. The dynamic range 

for dARVI is 1 to -1. 
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The results of the dNDVI calculation with both L1 and L2 data are displayed in figure 13. The 

result is similar to the results from dARVI (figure 12). Both levels map the clouds, but only L1 

maps the cloud shadows. In addition, L1 maps more shadows in the mountainsides around the 

lake, similar to the results from dARVI. Crop fields stand out with negative pixel values. In 

contrast to the calculation of dARVI, L1 does not highlight water with negative values, but L2 

does. Both levels also get a higher value for water compared to dARVI, in L1 approximately a 

value of zero and even positive value in L2. In addition, the calculation of dNDVI maps more 

of the ice and snow along the east side of the polygon compared to dARVI.  

 

Figure 13: Calculation of dNDVI with Sentinel 2A L1 - and Sentinel 2A L2 data. The vegetation index is displayed 

only for Jølster municipality, and its location is shown in the overview map in the upper left corner. The dynamic 

range for dNDVI is 1 to -1. 

6.1.2 ARVI and NDVI differences calculated with Landsat 8 

The calculation of dARVI with the use of Landsat 8 data is displayed in figure 14, and figure 

15 displays the calculation of dNDVI calculated with Landsat 8 data. In contrast to the 

calculations done with Sentinel 2A data, more areas in Jølster municipality show greater 

positive pixel values presented in green color. These areas mainly represent crop fields that had 

a strong negative value in Sentinel 2 index differences. In general, both dARVI and dNDVI 

with the use of Landsat 8 data show fewer areas with strong negative values. Shadow is present 
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along hillsides, but the results are remarkably less affected by shadow compared to index 

differences with Sentinel 2A L1 data. Moreover, there is less difference between dARVI and 

dNDVI calculated with Landsat 8, L1 data than between dARVI and dNDVI calculated with 

Sentinel 2A, L1 data.  

 

Figure 14: Displays dARVI calculated with Landsat 8 data. The vegetation index is displayed only for Jølster 

municipality, and its location is shown in the overview map in the upper left corner. The dynamic range for dARVI 

is 1 to -1. 

 

Figure 15: Displays dNDVI calculated with Landsat 8 data. The vegetation index is displayed only for Jølster 

municipality, and its location is shown in the overview map in the upper left corner. The dynamic range for dNDVI 

is 1 to -1. 
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6.2 Landslides and other elements of interest  

Both dARVI (L1 and L2) and dNDVI (L1 and L2) calculated with Sentinel 2 and Landsat 8, 

highlights landslides. However, there are differences in the required size of the landslide for the 

vegetation indices to give a distinct signal of change. Figure 16 contains four maps where 

dARVI and dNDVI calculated with Sentinel 2A, L1 and L2 data, are displayed. The four maps 

in figure 16, represent a comparison of an enlarged section of the mountainside above 

Vassenden in Jølster municipality, where several landslides got triggered as part of the event 

30. July 2019. In all four maps, the largest landslide is easily detected, where map B (dARVI, 

L2 data) gives the lowest value inside the landslide, creating the largest contrast between the 

landslide and the surroundings. Besides this landslide, there are several smaller landslides 

further south along the mountainside. Map B (dARVI, L2 data), C (dNDVI L1 data), and D 

(dNDVI L2 data) show clear traces of these smaller landslides, while in map A (dARVI L1 

data), they are more difficult to recognize. In summary, all the different combinations of dARVI 

and dNDVI with different levels of data, show a distinct disruption in vegetation, but for smaller 

areas (only a few pixels), dARVI (L2) showed the strongest change to the surroundings.  

 

Figure 16: An enlarged section of Jølster municipality is shown in A, B, C, and D, displayed with dARVI and 

dNDVI calculated with Sentinel 2 data. The section is from a mountainside above Vassenden, in Jølster 

municipality, marked as a red star in the overview map in the upper left corner. Map A and B display the vegetation 

index dARVI, and map C and D displays dNDVI. L1 data is used in map A and C, while L2 data is used in map 

B and D. 
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Moreover, calculation of dARVI and dNDVI with the use of Landsat 8 data also maps 

landslides, but slightly poorer than the calculation with Sentinel 2 data. Figure 17 shows the 

same enlarged section of Jølster municipality as in figure 16. The largest landslide in Vassenden 

is still easily recognizable, but the smaller landslides, further east, are not. There are several 

places with scattered low pixel values, but not distinct elongated clusters.  

 

Figure 17: Displays dARVI and dNDVI calculated with Landsat 8 data for an enlarged section of Jølster 

municipality. The section is from a mountainside above Vassenden, marked as a red star in the overview map in 

the upper left corner.  

Except for the poorer resolution, two of the main differences using Landsat 8 data instead of 

Sentinel 2A is that Landsat 8 images retrieved for this study have a shorter revisiting time 

between pre-and post-image, and do not contain clouds in the same area as Sentinel 2A.  

In figure 18 an enlarged visual presentation of the location containing clouds in Sentinel 2A is 

displayed with both dARVI and dNDVI calculated with Landsat 8 data, in two different maps. 

There is a limited difference between the two displays and several places with low pixel values 

but it is noisy. By comparing those areas with low values for the index differences with an RGB 

image, any potential landslide in this location would be detected. No landslides were mapped 

here.  
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Figure 18: dARVI and dNDVI calculated with Landsat 8 data displayed over the cloud-affected area in Sentinel 

2A.  

In figure 19, an enlarged section of the western part of Jølster municipality is displayed using 

dARVI calculated with both Sentinel 2A L1 and L2 data, and Landsat 8 L1 data. Two 

differences between mapping with Sentinel 2 data and Landsat 8 data is the mapping of water 

and crop fields in opposite ways. When using Sentinel 2 data, both L1 and L2, water is presented 

with positive value while mapping with Landsat 8 data water is presented with negative values. 

However, this is the opposite for the lake Jølstervatnet, present in figure 12 and 14, where 

Sentinel 2 data mapped the lake with negative values while Landsat 8 data mapped the lake 

with more positive values. Moreover, Sentinel 2 maps crop fields with negative values, while 

Landsat 8 maps them with positive values. Further, the results indicate that Landsat 8 is less 

affected by shadows when Sentinel 2 also shows the presence of haze in the same area. There 

are major differences in how landslides are mapped. Level 2 data map significantly more 

accurate than level 1 data, by giving the landslides more coherence in negative values. 

Especially by providing increasingly strong contrast from landslides and their surroundings. 

Moreover, dARVI calculated with Sentinel 2 L1 highlights landslides better than dARVI 

calculated with Landsat 8 L1.  
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Figure 19: Displays dARVI calculated with Sentinel 2A L2, Sentinel 2A L1, and Landsat 8 L1. Different elements 

like crop fields, landslides, water, and shadow are marked in the maps. This enlarged section is in the western part 

of Jølster municipality.  

6.3 Vegetation Indices - Oso 

For the Oso event, both dARVI and dNDVI recognize the change in vegetation caused by the 

landslide in 2014. Figure 20 shows the calculation of dARVI, and figure 21 shows the 

calculation of dNDVI. Both figures are showing a great change in vegetation where the Oso 

landslide is located. However, parts of the landslide contain pixel values close to zero. As a 

comparison, the landslides mapped in Jølster consisted of more coherent negative values.  
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Figure 20: Calculation of dARVI with Landsat 8 data over the Oso study area in Washington. Oso is marked as a 

red star and the overview map in the upper left corner shows its location in Washington, USA. Southeast of Oso, 

an area is enlarged. This area is the site of the Oso landslide triggered in 2014. The dynamic range for dARVI is 

1 to -1. 

 

Figure 21: Calculation of dNDVI with Landsat 8 data over the Oso study area in Washington. Oso is marked as a 

red star and the overview map in the upper left corner shows its location in Washington, USA. Southeast of Oso, 

an area is enlarged. This area is the site of the Oso landslide triggered in 2014. The dynamic range for dNDVI is 

1 to -1. 
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There is not much difference between how dARVI and dNDVI map the Oso landslide. 

dARVI has a slightly better coherence in negative values. The differences between the mean 

values of dARVI and dNDVI can be found in Table 4. Table 4 shows the mean value from 

both dARVI and dNDVI inside the landslide in Oso. The difference between them reveals that 

dARVI gives the landslide slightly more negative values than dNDVI.  

Table 4: Values from both dARVI and dNDVI within the landslide polygon drawn around the landslide in Oso in 

2014. 

 

 

6.4 Additional Vegetation Indices  

In addition to ARVI and NDVI, the vegetation indices GNDVI and EVI, and the water indices 

NDWI and LSWI, were calculated. Figure 22 displays the difference in all the six indices 

between the pre-and post-image, where Sentinel 2A is used as post-image. The indices are 

displayed over the largest landslide in Jølster municipality after the landslide event in 2019. 

This is the same landslide present in figure 16 and 17, located at Vassenden.   

Figure 22 depicts that the greatest contrast of the landslide to the surroundings is identified 

using dARVI. The use of dNDVI and dEVI also highlights the landslide with great contrast to 

the surroundings, but yields less strong negative values. dEVI is, however, noisier than 

dARVI and some of the smaller landslides further north-south in the display are not detected.    

Further, dGNDVI gives weaker signals to the landslides compared to the other vegetation 

indices but is less noisy than dEVI.  

The differences in the two water indices also map the landslide with great contrast to the 

surroundings. dNDWI maps the landslide extent similar to the vegetation indices, while 

dLSWI maps the top of the landslide comparatively poor. 
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Figure 22: Overview of all the indices calculated in this study with the use of Sentinel 2 L2 data. The indices are 

displayed over an enlarged section of Jølster municipality above Vassenden. In this figure NDVIdiff = dNDVI.    

6.5 Landslide detection – Manual Mapping 

In the manual mapping approach of landslides in Jølster municipality, 108 landslides were 

recognized through a systematic screening of areas with clusters of negative pixel values using 

dARVI calculated with Sentinel 2, L2 data (Figure 23). A large portion of the identified 

landslides is located in the western part of Jølster municipality. The landslides varied in size. 

The largest landslide had an area of 92986 m2 and the smallest had an area of 146 m2. From 

literature, it is known that debris flows usually initiate at a slope between 25 and 45 (NVE, 

2020b). Of the 108 Jølster landslides, 48 of the identified landslides were initiated outside this 

threshold. Specifically, 13 initiated over 45 degrees and 35 initiated under 25, where the highest 

degree a landslide initiated was 54 degrees and the lowest 9 degrees. Further, 16 of the mapped 

landslides had a runout beneath 5 degrees. All of these 16 landslides followed a river.  
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Figure 23: Landslides mapped manually using dARVI. 104 of the landslides were mapped in the western part of 

Jølster municipality (purple rectangle), 3 in the north (orange rectangle), and 1 further east in the project area 

(green rectangle). The background map is the post-image captured by Sentinel 2A. 

Both dARVI and dNDVI gave strong signals in the same landslides with the same spatial extent, 

and the 108 landslides recognized by dARVI, were also recognized by dNDVI. Further, no 

additional landslides were found with dNDVI.  

Through a mean value comparison of dARVI and dNDVI in the table created using “Zonal 

Statistics as Table” where Sentinel 2A is used as post-image, dNDVI proved to recognize 20 of 

the 108 landslides better than dARVI, i.e., landslides included pixels with stronger negative 

values inside the landslide polygons. When using Sentinel 2B as post-image, dNDVI only 

depicted 11 of the 108 landslides stronger than dARVI. Tables 5 and 6 contain the mean value 

of the 20 and 11 landslides mapped better with dNDVI than with dARVI presented as a positive 

difference between dARVI and dNDVI due to subtracting dNDVI from dARVI.  
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Table 5: Statistics derived from Zonal Statistics of the 20 cases where dNDVI was better than dARVI to map 

landslides in Jølster, with the use of Sentinel 2A as post-image.  

 

 

Table 6: Statistics derived from Zonal Statistics of the 11 cases where dNDVI was better than dARVI to map 

landslides in Jølster, with the use of Sentinel 2B as post-image.  

 

 



48 

 

Moreover, even if the landslides were better recognized by dNDVI in respectively 20 cases for 

Sentinel 2A, and 11 cases for Sentinel 2B, table 5 and 6 reveals that the difference between 

dNDVI and dARVI is not significant. An overview of the 20 and 11 scenarios where dARVI 

performed relatively best is given in table 7 and 8. Here the difference is greater. 

Table 7: Statistics derived from Zonal Statistics of the 20 best cases where dARVI was better than dNDVI to map 

landslides in Jølster, with the use of Sentinel 2A as post-image. 

 

Table 8: Statistics derived from Zonal Statistics of the 11 best cases where dARVI was better than dNDVI to map 

landslides in Jølster, with the use of Sentinel 2B as post-image. 
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Further, 43 of the 108 Jølster landslides were recognized with Landsat 8 data (Figure 24). The 

spatial extent of the 43 landslides identified by Landsat 8 had in most cases a smaller area than 

those recognized by Sentinel 2. Figure 24 displays manual mapped landslides, by both Landsat 

8 (blue color) and Sentinel 2 (red color).  In most cases, landslides with the greatest area were 

recognized by Landsat 8, but the smaller landslides were not. Even if Landsat 8 did not suffer 

from cloud cover, no additional landslides were recognized. Landsat 8 only recognized 

landslides in the western part of the municipality.   

 

Figure 24: Display of both landslides manual mapped with Sentinel 2 data and Landsat 8 data. All of the landslides 

recognized by using dARVI calculated with Landsat 8 data were mapped in the western part of Jølster, with no 

recognition of landslide elsewhere in the project area. In the upper left corner of the figure, there are drawn three 

rectangles in Jølster municipality, and a comparison between how many landslides are registered by Landsat 8 

data vs Sentinel 2 data is given.  

Further, figure 25 shows the mapping result from both Sentinel 2 and Landsat 8 together with 

the landslides registered in the NVEs landslide database, marked as yellow stars. All of the 18 

landslides present in the NVEs landslide database were detected in this study with the use of 

Sentinel 2 data. 13 of the 18 landslides in the existing database were detected by Landsat 8 data. 
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Figure 25: Displays landslides mapped with the use of both Sentinel 2 and Landsat 8, in addition to the location 

of landslides in NVEs existing landslide database. 

6.6 Landslide detection in Raster Calculator  

The equations used in Raster Calculator are introduced in the method chapter 5.3.2. In Equation 

1, dARVI values as the difference between Sentinel 2A pre- and post-image is used. With this 

equation, 51 of the 108 Jølster landslides were recognized with at least one pixel (Figure 26). 

Respectively, 56 of the 108 Jølster landslides were recognized with the use of Equation 2 which 

includes dARVI values as the difference between Sentinel 2A pre-image and Sentinel 2B post-

image (Figure 27). In the results of both equations, only a few pixels inside the landslide 

polygon were detected.  

In figure 26 and 27, the results from the two equations used in Raster Calculator is displayed in 

the western part of Jølster municipality. Several pixels in the result are located outside the 

mapped landslide polygons. In figure 26 these pixels represented elements such as haze, crop 

fields, and rivers. In figure 27, the pixels outside the landslide polygons represent rivers. In 

most cases, Equation 2 maps landslides more precisely than Equation 1 by mapping more of 

the landslides and less of other false positive elements. Neither of the two equations detected 

additional landslides to the landslides that were mapped manually.  
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Figure 26: The results from the landslide mapping in the Raster Calculator using Equation 1. Pixels represented in 

yellow indicate those areas which were true for the equation. The pixel outside a landslide polygon is classified as 

either haze, crop field, or river. 

 

Figure 27: The result from the landslide mapping in the Raster Calculator using Equation 2. Pixels represented in 

yellow indicate those areas which were true for the equation. The pixel outside a landslide polygon is classified as 

a river. 
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7 Discussion  

This section will discuss and interpret the results, including the validity of the results and 

methods used. The discussion section will be organized as follows: First, topics concerning 

data collection and visualization, including locations analyzed, methods used for data 

collection and processing, and visualization techniques. Second, the methodologies used for 

analyzing the data to map landslides. Third, difficulties are associated with comparing the 

results and findings of this study with the ongoing Ph.D. research by Lindsay (Ph.D. 

candidate, NTNU).  

7.1 Data collection and visualization  

7.1.1 Study areas 

The two study areas chosen for this study have similar climatic challenges. Both Jølster 

municipality located in the western part of Norway and Oso located in Washington, USA 

have humid climates which are highly affected by clouds, air humidity, and high precipitation 

amounts. These are factors that influence optical satellite data, and may potentially impact the 

validity and reliability of the results (SafeLand D4.5, 2011). The high presence of dense 

vegetation at both case sites facilitates the use of vegetation indices, and the topography is 

well suited for the use of optical satellite data.  

The atmospheric resistant vegetation index ARVI may superior to the widely used vegetation 

index NDVI under these conditions, and to assess this both indices were used in the analyses 

and results compared. However, if the study areas had less vegetation, the approach would be 

limited due to results of NDVI is better in areas with a great presence of dense vegetation 

(Guzzetti et al., 2012), and the improvement of ARVI is much better for vegetated surfaces 

than for soil (Kaufman & Tanre, 1992).   

A key difference between the Jølster and Oso events is the nature of the occurrence of the 

landslides. At Jølster numerous landslides occurred during (following) a single period of heavy 

precipitation, whereas at Oso only one landslide occurred during the recent precipitation event. 

However, at Oso, there is evidence of several historical landslide events. The Oso event was 

known and well documented (Aaron et al., 2017; Stark et al., 2017; Wartman et al., 2016), 

whereas at Jølster only a small number of the landslides were identified and registered in the 

NVEs landslide database: 18 of a total of 108 landslides were registered in the database (Devoli, 

2021). No further mapping was therefore undertaken at the Oso case site. This case site was 

used to evaluate the replicability of the method.  
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7.1.2 Data collection and pre-processing  

Optical satellite data were retrieved for this study, and the optical data used consisted of images 

from the Sentinel 2 mission and the Landsat 8 mission.  

A cluster of landslides is more difficult to separate with the use of optical data, hence limiting 

the reliability of mapping the correct number of landslides (Hölbling et al., 2015). If several 

landslides are triggered at the same location, optical satellite data would treat this as only one. 

The landslides mapped at both case sites using optical satellite data only presents changes due 

to the specific events and contains no additional information caused by previous landslides.  

Radar data was considered, however, the topography in Jølster limits the use of radar 

approaches described in e.g., Yang et al. (2019). Lindsay (2021) also argues that the use of 

optical satellite data is more appropriate than the use of radar for the Jølster case site. In 

Lindsay’s Ph.D. study, 120 landslides were identified using Sentinel 2 data, only 9 landslides 

were mapped with the use of Sentinel 1 data (Lindsay, 2021). Previous studies on the Oso site 

have used LiDAR and InSAR techniques which enables distinguishing between old and new 

landslides at the same site (Stark et al., 2017; Sun et al., 2015). Methods based on radar imaging 

are suitable for Oso but are of limited use in Jølster.  

Two factors are important when choosing optical satellite images to use for change detection: 

timing of the images in relation to the landslide event of interest, and the presence of cloud 

cover in an individual image. Optimally images are selected just before, and just after the event 

for the highest fidelity in the landslide imaging (Hölbling et al., 2015). However, problems with 

cloud cover in the images may limit the usability of the most optimal images (Mill et al., 2014). 

Complicating this is the differing acquisition schedules for the two platforms. For Jølster, the 

Sentinel 2 constellation provides both Sentinel 2A pre- and post-image and Sentinel 2B post-

image data sets. The post-image retrieved from Sentinel 2A had a bigger time gap between the 

landslide event and when the image was taken compared to the post-image collected by Sentinel 

2B. Sentinel 2A post-image was taken 29 days after the event while the Sentinel 2B post-image 

was taken only 3 days after the event.  

Landslide scars may diminish over time due to different factors that the landslide masses are 

exposed to (Behling et al., 2016). Moreover, seasonal changes may also affect the land cover 

features and cause unwanted changes like a difference in vegetation and snow- and ice 

conditions. Furthermore, these changes affect the corresponding spectral features in the optical 
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satellite data (Tehrani et al., 2021). Choosing post-images several months after a landslide event 

can result in landslides not being detected.  

Where a cloud is present in an optical satellite image, some form of cloud removal process is 

necessary before the underlying terrain can be analyzed for landslide detection (Mill et al., 

2014). The Landsat 8 images collected for this study had no cloud cover, in addition to the 

Sentinel 2 pre-image. However, both the Sentinel 2 post-images were affected by clouds. 

Removal of clouds is often one of the first things to do in the image processing (Gómez-Chova 

et al., 2017), but with the use of two post-images, the manual mapping had to be done in a two-

step process, which allowed for a manual search in the entire areas without primary cloud-

removal. The cloud removal was therefore performed prior to the semi-automatic mapping 

approach in the Raster calculator.  

The Sentinel 2A post-image was affected by two bigger clouds, while the Sentinel 2B post-

image was affected several places by smaller clouds. This difference in cloud cover complicated 

the removal of clouds, and two different cloud-removal processes had to be applied to the 

Sentinel 2 post-images.  

The clouds present in the Sentinel 2A post-image were removed using Pixel editor in ArcGIS 

Pro. This approach relies on available cloud-free images which can be challenging to collect. 

Moreover, the cloud-free image should be as close as possible in time taken due to the effect of 

sessional differences. This cloud-removal process with the use of Pixel Editor in ArcGIS Pro 

would have been much more time-consuming with the Sentinel 2B post-image as several more 

areas would have to be replaced.  

Further, the clouds present in the Sentinel 2B post-image were removed using the Raster 

calculator. Band 2, gave the biggest contrast for clouds relative to the surroundings and was 

selected for analysis over the other bands. The use of band 2 is also recommended by Bréon 

and Colzy (1999). This approach relies on the clouds having a distinct change in pixel values 

compared to other elements. The density of the clouds in the Sentinel 2A post-image varied, 

and especially near the edges, the cloud were thin and transparent. The pixel values in these 

areas were similar to those representing landslides. By applying the approach of cloud removal 

in Raster Calculator to the Sentinel 2A post-image, either too much information not concerning 

clouds was excluded, or pixels representing cloud were still present. Removing clouds in the 

Sentinel 2A post-image in Raster Calculator without compromising landslide information was 

therefore not possible.  
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Due to the difference in time between the two Sentinel 2 post-images and the difference in cloud 

cover, it was necessary to include both post-images for a more precise landslide mapping. 

Timing supported the use of the Sentinel 2B post-image, taken only 3 days after the Jølster 

event. In fact, dARVI calculated with the use of Sentinel 2B post-image yields stronger negative 

pixel values to the landslides compared to the pixel values in dARVI calculated with the use of 

Sentinel 2A post-image. This may be a consequence of the difference in the time the post-event 

satellite images were taken, and supports the statement in Tehrani et al. (2021) that time can 

affect the spectral features. However, the Sentinel 2A post-image was less affected by clouds, 

which supported the use of the Sentinel 2A post-image.  

7.1.3 Vegetation indices and Water indices 

In this study, the vegetation indices NDVI, ARVI, EVI, and GNDVI, were calculated. In 

addition to two water indices GNDWI and LSWI. Further, the difference between the indices 

calculated for two images separated by time was compared. E.g. dNDVI = NDVI post-image – 

NDVI pre-image. This was done to see how the different indices corresponded to the total 

change from before and after the landslide events. This bi-temporal approach is widely used for 

post-failure mapping (Cheng et al., 2004; Lacroix et al., 2013).  

NDVI is the most commonly used vegetation index in landslide mapping (Bannari et al., 1995). 

This vegetation index was utilized by Ph.D. candidate Erin Lindsay, and for comparison, it was 

chosen for this study as well. NDVI is in addition often used as a reference to evaluate other 

indices (Bannari et al., 1995), and in this study, it is used to evaluate especially the vegetation 

index dARVI. With the use of dNDVI all the 108 landslides detected in this study were 

highlighted as elongated clusters of pixels with negative values.   

ARVI is another index with high potential in this setting, which corrects NDVI for atmospheric 

effects (Kaufman & Tanre, 1992). dARVI was the index that gave landslides the lowest 

negative pixel values, independent of which satellite images were used, and thereby giving 

landslides pixel values with great contrast to the surroundings. dARVI was therefore chosen to 

be used in both the manual mapping and the semi-automatic mapping approach in the Raster 

calculator.  

The calculation of ARVI is more demanding than for NDVI. With the use of ARVI, location 

plays an important role due to different types of aerosols which have to be taken into 

consideration when calculating this index. Choosing an appropriate y-value in the ARVI 

equation is crucial for the result as explained by Kaufman and Tanre (1992). They argue that 
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the y-value of 1 gives the best results in most RS applications. Supporting Kaufman and Tanre 

(1992), the value of 1 has proven to be the optimum value, giving the best result. For 

comparison, y-values of both 0.5 and 2 were tried, where the use of both values underestimated 

the changes caused by landslides.  

Moreover, ARVI was created for MODIS, and band 8A was therefore tested in the formula 

instead of band 8 because 8A has a closer spectral location to band 8 for MODIS. The result 

from using band 8A gave landslide-affected areas a less distinct contrast to the surroundings, 

in addition, the spatial extent of these areas was smaller due to more pixels with values closer 

to zero. The resolution of the bands differs where band 8A has a resolution of 20 meters while 

Band 8 has a 10-meter resolution. In other studies combining Sentinel 2 and ARVI, band 8 is 

used (Kobayashi et al., 2020).  

From the results, it is proven that the vegetation index dEVI also highlights landslides with 

great contrast to the surroundings. However, it is important to notice that dEVI is noisier than 

dARVI and does not map smaller landslides as well as dARVI and dNDVI. Several of the 

landslides mapped in Jølster municipality, linked to the event on 30th of July 2019, had small 

areas, and the use of dEVI in further landslide mapping could have excluded several landslides. 

Moreover, the fact that dEVI gives landslides lower negative values than dNDVI, supports the 

idea that atmospheric resistance improves the landslide detection in humid climates, but only 

for landslides of a certain size. For this study, it was not necessary to use two vegetation indices 

that correct NDVI for the same elements, in this case, atmospheric effects (Matsushita et al., 

2007).  

Hölbling et al. (2015) argue that GNDVI can improve the detection of landslides with smaller 

areas, not captured by NDVI. This study does not support this statement when the results did 

not reveal that the use of dGNDVI mapped landslides with smaller areas better than dNDVI. 

Especially not with the use of L2 data which was utilized in the mapping process. Further, 

dGNDVI did neither map smaller landslides better than dARVI.  

Both water indices calculated highlighted rivers and water, also rivers where landslides were 

mapped in addition to landslides not following rivers. This was expected due to the water 

content of landslides triggered as a consequence of heavy rainfall events. dNDWI highlighted 

these objects slightly better than dLSWI. This may be due to both bands in the calculation of 

dNDWI having a 10-meter resolution, while the SWIR band used in the calculation of dLSWI 

has a 20-meter resolution. The water indices were neither utilized in the manual mapping when 
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the difference between rivers with and without soil accumulation was similar. Further, dNDWI 

was utilized in the semi-automated landslide mapping in Raster Calculator since rivers were 

some of the objects that had to be excluded.  

In summary, dARVI and dNDVI gave better results in recognizing landslides by giving pixel 

values that represented landslides, a greater contrast to the surroundings, independent of size. 

The other indices calculated in this study were therefore not utilized.  

The dARVI and dNDVI highlighted the same number of landslides in Jølster municipality and 

both showed a significant change in vegetation at the Oso case site as well. However, the results 

indicate that dARVI maps better than dNDVI, revealed by the mean pixel values inside the 

landslide polygons. This was true in all except 20 landslides mapped in Jølster linked to the 

Jølster event in 2019, with the use of Sentinel 2A post-image, and 11 landslides mapped in 

Jølster with the use of Sentinel 2B post-image.  

The tables in the result listing the 20 and 11 landslides mapped better with dNDVI reveals that 

even if these landslides gained a stronger negative pixel value with the use of dNDVI, the 

difference in how dARVI mapped these landslides was minimal. In fact, by looking at the tables 

listing the 20 and 11 landslides mapped best with the use of dARVI, the difference is bigger.  

Further, by comparing the 20 landslides and 11 landslides that were mapped best with dNDVI, 

only 5 of these are present in both cases. This means that 15 of the 20 landslides mapped best 

with dNDVI with the use of Sentinel 2A post-image were mapped best with dARVI with the 

use of Sentinel 2B post-image. Respectively, 6 of the 11 landslides mapped best with dNDVI 

with the use of Sentinel 2B were mapped best with dARVI with the use of Sentinel 2A.  

It was challenging to find an explanatory factor for why some of the landslides were mapped 

better with the use of dNDVI. For the 11 landslides, it seems like dNDVI mapped landslides 

better than dARVI if the mean values were closer to zero. This discovery is more diffuse for 

the 20 landslides where the mean values are more negative.  

Further, for finding explanatory factors for why dNDVI mapped landslides better in some cases, 

the attribute table for the manually mapped landslides was used. For instance, the 20 landslides 

mapped best with the use of dNDVI calculated with the Sentinel 2A post-image, had an area 

under 7000 m2. The mean area of all the 108 landslides was 8090 m2 and it was tested to see if 

dNDVI mainly mapped smaller landslides better than dARVI. Out of all the 108 landslides, 

mapped manually in this study, 89 landslides had an area under 7000 m2. Out of the 89 
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landslides, only 20 mapped better with dNDVI than dARVI revealing that there are no 

combinations with dNDVI mapping landslides under a certain area better than dARVI. The 

same observation was made for the 11 landslides mapped better with dNDVI calculated with 

the Sentinel 2B post-image. Further, there was neither a combination between these landslides 

mapped best with dNDVI and initiating slope, runout, or that they followed a river.  

It is argued that ARVI is four times less sensitive to atmospheric effects than NDVI (Kaufman 

& Tanre, 1992). This improvement of resistance to atmospheric effects may be the reason for 

the better results with the use of dARVI compared to dNDVI.  

7.2 Landslide Mapping 

Due to the moderate resolution of the optical satellite data retrieved for this study, an object-

based method for mapping landslides is not used. Several of the landslides detected in this study 

are only a few pixels wide, at least in one dimension. This does not lead to well-defined objects.  

Two types of methods for mapping landslides were tested. First, a manual landslide mapping 

method, and secondly, a semi-automatic method. The results from these landslide mapping 

approaches reveal that the results are highly influenced by the different types of data and the 

approaches used to identify landslides.  

7.2.1 Manual mapping 

The manual mapping was performed for getting an overview of how many landslides the 

different data collected for this study, contributed with finding. During the manual mapping, it 

was discovered whether two satellite sensors with different resolutions detected the same 

landslides, how L1 data recognize landslides compared to L2 data, and which vegetation indices 

contributed the best with detecting landslides.  

The manual mapping with the use of Sentinel 2 data was conducted in a two-step process 

including images from both Sentinel 2A and Sentinel 2B. The entire study area was then 

searched two times for mapping the landslides. This was necessary to overcome the presence 

of clouds in the Sentinel 2 post-images. This two-step process, however, resulted in an 

increasingly complex manual interference in the data, hence weakening the process efficiency. 

The manual mapping with the use of Landsat 8 data was done by comparing the landslides 

mapped by the Sentinel 2 data and further study where elongated clusters of negative pixel 

values were present in the Landsat 8 image.  
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Both Sentinel 2 and Landsat 8 contributed to identifying a significantly greater number of 

landslides inside Jølster municipality, caused by the Jølster event in 2019, than the number of 

landslides registered in NVEs landslide database. From before, only 18 landslides were 

registered in the landslide database linked to the Jølster event in 2019 (Devoli, 2021). The 

Sentinel 2 data recognized these 18 landslides in addition to 90 landslides, whereas Landsat 8 

detected 13 of the 18 landslides and contributing to finding 30 additional landslides.  

In the manual mapping, the use of the Sentinel 2 data resulted in identifying 65 more landslides 

than the Landsat 8 data. Moreover, in many cases, Landsat 8 only mapped parts of the landslides 

detected by the Sentinel 2 data. One explanation for this can be due to the coarser resolution of 

Landsat 8. In previous research, Landsat 8 is described as more suitable for regional mapping 

and has difficulties recognizing smaller landslides, specifically less than a few hundred square 

meters (SafeLand D4.4, 2011). In this study, landslides with small areas were not identified 

when using Landsat 8 data.  

Further, only L1 data was retrieved for Landsat 8. The comparison between Landsat 8 L1, 

Sentinel 2 L1, and Sentinel 2 L2 data in the result indicated that smaller landslides were harder 

to detect with L1 data. Moreover, there was a significant difference between L1 and L2 in how 

great the landslides contrast were to the surroundings. Both in dARVI and dNDVI, L1 data 

revealed a weaker negative pixel value for landslides than L2 data. The search for landslides 

was based on elongated clusters of pixels with negative values with the use of dARVI and 

dNDVI. Due to this, there may have been landslides with more diffuse pixel values which were 

not detected. The combination of coarser resolution for the Landsat 8 data in addition to only 

retrieving L1 data for Landsat 8 may be the reason for the different amount of landslides 

detected with the two satellite sensors.  

However, the total number of landslides detected with the Sentinel 2 data may be wrong. 

Several of the smaller landslides detected with Sentinel 2 data, had their location in an area of 

dense forest. These small landslides can potentially be a part of a larger landslide or be changes 

caused by deforestation. Further, there may also be smaller landslides not detected with Sentinel 

2 data. Previous research has found that Sentinel 2 is unable to detect landslides smaller than 

100 m2 (Yang et al., 2019). This study was unable to identify any landslides beneath 146 m2, 

thus supporting the previous findings.  

Moreover, shadows were present along most hillsides. In these areas, interpreting landslides 

with certainty proved to be a difficult task due to similar pixel values for shadows and 
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landslides. Fiorucci et al. (2019) argue that the use of NDVI can improve landslide mapping in 

shadow-affected areas. In this study, dNDVI did not provide a more accurate result in the 

mapping of landslides in shadow-affected areas compared to dARVI. In addition, with the use 

of the Sentinel 2A post-image, these areas were often influenced by haze. The presence of haze 

may counteract the dNDVI performance of detecting landslides in areas with shadows due to 

larger areas covered by negative pixel values. Potential landslides in shadow-affected areas 

were not detected in this study.  

7.2.2 Landslide mapping in Raster calculator  

Two equations were implemented in the Raster Calculator to detect landslides in Jølster 

municipality linked to the Jølster landslide event in 2019.  

The final equations used in Raster Calculator was as follows: 

 Equation 1; “(S2A_dARVI <  - 0.2) & (Slope < 54.25) & (Slope > 15) & (DTM10m < 

1336) & (Band 2 > 500) & (dNDWI > 0.3)”  

 Equation 2; “(S2B_dARVI < - 0.2) & (Slope < 54.25) & (DTM10m < 1336) & (Band 

2 > 500) & (Band 2 < 3000) & (dNDWI  > 0.3)” 

In the final result, Equation 2 mapped 5 landslides more than Equation 1. Equation 1 recognized 

a total of 51 landslides, and Equation 2 recognized a total of 56 landslides.  

In Raster Calculator, the mapping was based on values from the manual mapping. Choosing a 

pixel value for the dARVI representing landslides was difficult due to other elements with 

similar values. No values were unique for only landslides. Inside the landslide polygons, the 

values varied as well, and not every pixel inside the polygons had a strong negative value. 

dARVI calculated with Sentinel 2 L2 data, mapped landslides the best in most cases, due to a 

bigger contrast to the surroundings. It was therefore decided that values from this index were 

to be used in the calculation in Raster Calculator.  

The value of -0.2 was chosen to be used in both the calculation, excluding every pixel with a 

value greater than this. With the use of -0.2 in Equation 1, a total of 5 landslides was fully 

excluded due to having a min value greater than -0.2. Respectively, 103 landslides were ensured 

getting mapped with at least one pixel dimension. With the use of -0.2 as dARVI pixel value in 

Equation 2, a total of 17 landslides was fully excluded by having a min value greater than this. 

Further, 91 landslides were ensured to get mapped with at least one pixel dimension. This 

information is extracted from the Excel table created by the results of “Zonal Statistics as 
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Table”. Moreover, the results reveal that even if the dARVI pixel value of -0.2 excludes more 

landslides in Equation 2 than in Equation 1, Equation 2 maps more landslides in addition to 

mapping the landslides with a greater pixel dimension. This may be due to stronger negative 

pixel values with the use of the Sentinel 2B post-image, in addition to other exclusions in the 

equation.   

The values inside the landslide polygons highly depended on the area in which there is great 

uncertainty, especially due to the difficulty of placing the initiating point. 68 out of 108 

landslides followed rivers. Only the part of the rivers where soil accumulation was visible, was 

mapped as a landslide. The initiating point may likely have been further up in the river, and due 

to this, it is likely that the area is greater than presumed. An example is that 24 out of the 68 

landslides that followed a river, had a slope max beneath 25 degrees, and debris flows usually 

initiate above this slope (NVE, 2020b). 

Further in the equation, slope and elevation were used to exclude areas not representative of 

landslides. The uncertainty of the initiating point influences this and limits the reliability of 

slope and elevation the landslides occurred at. The max slope and elevation values used in the 

equations may have excluded landslides, and for instance, landslides could have been present 

in the higher terrain.  

Band 2 was applied to both the equations for excluding shadow-affected areas. This band is 

used, as it gives the largest contrast between shadow-affected areas and other elements present 

in the scene. The shadow-affected areas had similar values in both post-images and the same 

value was therefore applied to both equations.  

Areas affected by haze were also present in the Sentinel 2A post-images. The exclusion by 

applying band 2 reduced the haze as well, but haze was still an element present in the result, 

true for the equation, but not related to landslides. Haze is a common factor influencing optical 

satellite images and is often hard to discover due to its transparency (Makarau et al., 2014). 

Several approaches have been developed to remove haze, where most of them rely on haze-free 

images (Makarau et al., 2014), similar to the approach for cloud detection in ArcGIS Pro with 

the use of Pixel Editor. With the Sentinel 2B post-image available, some of the areas where 

haze was present could have been removed. However, the Sentinel 2B post-image was 

influenced by clouds in several places where haze was present in the Sentinel 2A post-image 

and it was decided not to remove the haze, due to the haze present in the same area as landslides. 
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This negatively affected the results of Equation 1, by having false-positive pixels present in the 

result as a consequence of haze.   

Moreover, the water index dNDWI was used to separate rivers from landslides. The difference 

between rivers with and without soil accumulation was similar with the use of both post-images, 

and a value of 0.3 was therefore used in both equations. The value of 0.3 was chosen when 

greater and lower pixel values either excluded rivers where landslides were present or included 

rivers where landslides were not present.  

However, some parts of rivers without soil accumulation, not registered as landslides, were still 

detected by both Equation 1 and Equation 2 in Raster Calculator. Rivers were the only elements 

mapped other than landslides with Equation 2. For the manual mapping only those parts of 

rivers showing accumulation in soil, in the RGB image, were mapped as landslides. This 

excluded other changes, for example, changes caused by greater water flow, which also is a 

consequence of periods of heavy rain and precipitation. Several parts of rivers mapped by 

Raster Calculator did not show evidence of soil accumulation, and the change is most likely 

due to higher water flow. The higher water flow in the rivers highlighted in the results of the 

Raster Calculator with the use of Equation 1, does not necessarily have anything to do with the 

event of interest, due to the 30 days’ time delay.  

Two parts of the equations differ from one another. This is due to the removal of crop fields 

and the removal of clouds. Crop fields were some of the features remaining in the result with 

the use of Equation 1. With the use of the Sentinel 2A pre- and post-image, crop fields were 

given negative values, close to those representing landslides. Since the Sentinel 2A post-image 

was retrieved 30 days after the event, in the middle of the summer, the reason for negative 

values on crop fields may be due to harvesting. Harvesting is a common problem in detecting 

landslides in populated areas, and an approach to reducing the effects of crop fields is to remove 

urban areas where they are present. This is done in Mondini et al. (2011). A limitation due to 

this approach is that no landslide will be detected in such areas.  

Moreover, separating the crop fields from landslides in this study, all areas with a slope less 

than 15 degrees were excluded in Equation 1 to remove crop fields. This lead to 39 of the 

landslides being at least partially excluded. The partially excluded landslides had a runout 

beneath 15 degrees slope. Furthermore, three landslides were initiated in slopes below 15 

degrees slope, hence was fully excluded. Lowering the slope limit was tested in an attempt to 

include more landslide information, but resulted in a vast increase in crop fields being included 
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in the detection. In fact, throughout the “Identify” tool in ArcMap, parts of crop fields with a 

slope as high as 23 degrees were identified. The slope value of 23 would exclude 30 landslides 

and was therefore unusable in Raster Calculator.  

For equation 2, removal of clouds in Raster Calculator was applied by the use of Band 2. This 

was only applied to Equation 2 since an earlier cloud removal process in ArcGIS Pro was done 

for the Sentinel 2A post-images.  

The two parts of the equations that were unique, and not included in both equations, may also 

be the reason why Equation 2 mapped more landslides than Equation 1. The removal of crop 

fields excluded several landslides and parts of landslides, while the removal of clouds in 

Equation 2 did not affect the search for landslides.  

By the use of the approach in the Raster Calculator, almost half of the landslides mapped 

manually were not detected. No additional landslides were mapped. Overall, with the 

calculation in Raster Calculator, either too much information in the context of information not 

concerning landslide was present in the scene, or a great amount of landslide information got 

lost.  

7.3 Comparison to previous work by Lindsay (2021)  

The background of this study introduces previous work detecting landslides in the Jølster area 

after the Jølster landslide event in 2019, performed by Ph.D. candidate Erin Lindsay. A 

comparative analysis of the differences and similarities between the method and results of this 

master thesis and the Ph.D. thesis by Lindsay was supposed to be accounted for. Because of 

limited access to the method and results of the previous study, a comparison was not possible 

to conduct.   

7.4 Implications of this study 

This study proves its importance through its contribution with new and more accurate 

information to the existing landslide database. In addition, it contributes to a bigger 

understanding of the extent and consequences after the Jølster landslide event in 2019.  

Until now, only a few studies have tried combining NDVI with Sentinel 2 data to examine the 

NDVI potential to identify and recognize landslide change processes (Qu et al., 2021). During 

this study, the combination of Sentinel 2 and NDVI has proven to have a great potential in 

recognizing landslides. Further, the combination of Sentinel 2 and other vegetation indices such 



64 

 

as ARVI has also provided great results in identifying landslides. This discovery may improve 

landslide mapping methodology in humid regions.  
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8 Conclusions 

This study set out to enhance the understanding of change detection analysis using optical 

satellite images that are post-processed to calculate various vegetation indices. More 

specifically, the study evaluates the applicability of satellite data produced by moderate 

resolution sensors and a simplified GIS workflow to provide landslide detection over large areas 

and regions. Four research questions were approached:   

 Can optical satellite data be used to identify landslides and producing landslide 

inventories after heavy-rainfall events, and is this a recommended approach? 

 Is moderate resolution good enough for detecting and recognize landslides? 

 Does landslide size and location affect the quality of the method?  

 Through a subset of six known indices, which index is most appropriate/effective to use 

for identifying previous landslides?  

8.1 Main findings  

Optical satellite data has throughout this study proven a significant contribution to detecting 

and recognizing landslides. 108 landslides were identified with the use of optical satellite 

images produced by moderate resolution sensors, vastly outperforming the previous mapping 

of landslides currently recorded in NVEs landslide database. In fact, 90 additional landslides to 

those already listed in the NVEs landslides database, after the Jølster event in 2019, were 

discovered. The results in this study thereby suggest the use of optical satellite data to be a 

recommended approach for identifying landslides and supplementing landslide inventories after 

heavy-rainfall events.  

Further, significantly better results in the mapping and recognition of landslides were 

discovered with the use of Sentinel 2 data, compared to Landsat 8 data. The utilization of a 10-

meter resolution allowed a more precise mapping of landslides, and is concluded to be more 

appropriate for the work of mapping and detecting landslides than 30-meter resolution, thus 

indicating to be more appropriate for mapping and detecting landslides. However, with a 30-

meter resolution, Landsat 8 still contributing with recognize 30 additional landslides to those 

already registered, and therefore still improving the landslide inventories currently stored. 

Moderate resolution proved to be appropriate to use for detecting and recognizing the landslides 

in the tested study areas.  

This study also identified big differences in the quality of the mapping between L1 and L2 data. 

In most cases, especially due to small-scale changes, L2 data were better at recognizing 
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landslides than L1 data. The size of the landslides may therefore affect the method, and the 

approach is recommended for detecting changes larger than 100 square meters.  

From the results in this study, dARVI is concluded to be the recommended index to use for 

landslide detection in humid regions. Only a total of 5 landslides were mapped slightly better 

with dNDVI. With the use of ARVI, the location may affect the method due to finding an 

appropriate y-value for the specific area. Differences in atmospheric conditions affect this 

value.  

8.2 Weaknesses 

This study experienced difficulties finding an optimal Sentinel 2 post-image. Due to this, two 

post-images were implemented. A weakness for the manual mapping with the use of two post-

images was that the mapping process became more time-consuming. To overcome this an 

automated cloud detection was also tried for the satellite images retrieved by the Sentinel 2 

constellation. S2cloudless is a script available online, developed for Sentinel 2 images. The 

script was directly transferred to ArcGIS Pro where it was specified to the satellite images used 

in this study. This approach did not give good results, and with limited experience with python 

and machine learning, it was concluded not to further investigate this approach by removing 

clouds. Modern technology such as machine learning has the potential to supporting efficient 

satellite image analysis. More research should focus on automating the mapping process.  

Moreover, the moderate resolution of the satellite images used in this study, made it difficult to 

place an exact initiating point in the manual mapping. This further affected the semi-automatic 

mapping of landslides in the Raster Calculator. The two equations used relied on information 

from the manual mapping. Without a precise initiating point, values regarding slope and 

elevation were inflicted. This may have excluded some potential landslides in the study area.  

Another weakness due to the moderate resolution is that small-scale changes under 100 square 

meter were impossible to detect.  

8.3 Recommendations for further work  

This study found that ARVI outperformed NDVI in studying Sentinel 2 L2 data in a humid 

climate. Researchers should test the use of ARVI at other locations and compare ARVI and 

NDVI to find more explanatory factors for why and when ARVI maps better than NDVI.  

Due to some of the weaknesses of this study, it would be recommended for future studies to 

combine optical satellite images and images taken by for example drones, with higher 
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resolution, for placing a more certain initiating point. Moreover, smaller landslides would also 

be easier to recognize with a higher resolution.  

Moreover, in this study, it was not possible to compare the results and methods with previous 

work by Ph.D. candidate Erin. Future work should consider undertaking such comparisons as 

they would contribute to developing the best approach for identifying rainfall-induced 

landslides in humid climates. Such comparisons should identify the strengths and weaknesses 

of the methods used.   
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