UNIVERSITY OF OSLO
Department of Informatics

Delay In
camera-to-display
systems

Master thesis

Steffan Gullichsen

Delay in camera-to-display systems

Steffan Gullichsen

In memory of my beloved sister who was brutally taken from
us during my work with this thesis

Linn Sandtrgen
1980 — 2010

Contents

List of abbreviations Xiii
Preface XV
Acknowledgements XVii
1 Introduction 1
1.1 Background and Motivation Lo 1
1.2 Problem Statement 2
1.3 Related Work e 2
1.4 Contributions e 3
1.5 Outline s, 3
2 Technology and Constraints 5
2.1 DigitalCameras e 5
2.1.1 IMagesSensorS v i e e e 6

2.1.2 Theelectronicshutter. 8

2.1.3 Webcameras 9

2.1.4 Industry machinevisioncameras 12

2.2 MONItOIS 15

2.21 CRTmMonitors. e 15

2.22 LCDMONItOIS o 17
2.3 SumMmMary ... e e e 20
Feedback Loop Measurement System 21

3.1 Control Theory —the Feedback Control 21
3.2 PhaselLockedLoop 23
3.3 Measuring Delay in a Controlled FeedbackLoop 24

3.4 SUuMMaAry e e 25

Design 27

4.1 Delay Measurement System — Introduction 27

4.2 WhatTimetoMeasure i, 29
4.3 ImplementationDesign e e 31
4.3.1 Platformandtools 32
4.3.2 MainControlloop 33
4.3.3 Calibration 34
4.3.4 Taking measurements — Generating and identifyingtsve. 38
4.4 Acquiring Accurate Time StampsinLinux 39
4.5 SuccessCriteria 42
4.6 SUMMANY o e e e e e e 42
Implementation 43
5.1 ApplicationOverview e 43
5.1.1 Tasksofetup() 44

5.1.2

5.1.3

5.2 Handling the USB Web Camera

Tasksofipdate()

Tasksoflraw()

5.3 Handling the Machine VisionCamera

5.4 Matching the Frame Rate of the Camera to the Refresh Rate bfchior

5.5 Matching the Phase of the Display to the Camera ExposuiedPe

5.6 Program Control Loop and Speed Management

5.7 Taking Measurements

5.8 Summary e

Tests and Results

6.1 TestSetup e

6.2 ReSUltS.

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

Evaluating thetimestamps
Transmissiondelays
Validationtests
Delays using the web camera and the CRT monitor
Delays using the machine vision camera and the CRT oronit . . .
Delays using the web camera and the LCD monitor

Delays using the machine vision camera and the LCD wonit . . .

6.3 Phase Matching Accuracy

6.4 Control Loop TIMINGS o o i

6.5 Evaluation of the System Design and Measurement Approac

6.6 Summary e e

49

51

54

56

57

59

99

60

61

63

65

65

70

73

75

79

7 Conclusion
7.1 Summary .
7.2 Conclusion

7.3 Future Work

A Appendix

Bibliography

viii

83

83

84

84

87

89

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

5.1

6.1

CCD image sensor principledesign 6
CMOS image sensor principledesign 7

Distortions caused by a rolling shutter (Images fromigélia, Rolling shutter

(accessed 2011-01-19)) o 10
Functional overview of a Cathode Ray Tube 16
Concept of LCD designwithsub pixels 18
Centrifugal governor 22
Feedbackloop 23
The Phase Locked Loop (PLL) i 24
The difference of the clocks is the end-to-end delayénstystem 28
End to end delay, from an eventuntildisplay 30
Division of the total end-to-enddelay 31

Warping the image means to change the perspective ofageito a different

coordinate space e e 35
Phase of display and camera exposure isoutofsync. 36
Systeminphase e 51
Actions within monitor and the camera (Timings are ndale) 62

iX

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Output from the oscilloscope e 66
Total end to end delay for the web camera and CRT monitogacation . . . 66

An event displayed on the screen frame at the start of posexe may be
captured by the previousvideoimage 67

Total end to end delay for the Ethernet camera and CRT prasoh guration . 71

The camera do not exposure constantly, thus an eveneh@agpon a screen
frame that overlap the start of an exposure are not captyréaketprevious imagerl

Total end to end delay for the USB camera and LCD monitorgewation . . 73
Total end to end delay for the Ethernet camera and LCD wiocdin guration 76

End-to-end delay as measured by our tool without thegphuasng algorithm . 79

List of Tables

6.1 Meanvalues for the validationtest 65
6.2 Mean delays for web camera and CRT monitorsetup 67

6.3 Mean delays values for web camera and CRT monitor setinoutithe “pre-
mature” observations L 68

6.4 Mean delay values for the maximum delay constellatiothe web camera and
CRTmonitorsetup o 69

6.5 Mean delay values for the lower constellation of reaslifuy the web camera
and CRTmonitorsetup o o i 69

6.6 Mean values for the Ethernet camera and CRT monitorsetup 72

6.7 Mean values for the maximum delay constellation for ttreeEhet camera and
CRTmonitorsetup o o 72

6.8 Mean values for the USB web camera and LCD monitorsetup 74

6.9 Mean values for the maximum delay constellation for tls8Wveb camera and
LCDmonitorsetup e e e e T4

6.10 Mean delay values for the lowest constellation of tssiair the web camera
and LCD monitorsetup e 75

6.11 Mean delay values for the Ethernet camera and LCD magetop 76

6.12 Mean values for the maximum delay constellation forEtleernet camera and
LCD monitorsetup e e e T

6.13 Mean values for the control loop when using the Ethezagetera 80

Xi

6.14 Mean values for the control loop when using the USB camer

Xii

List of abbreviations

API

CCD

CFS

CMOS

CRT

CTW

FPS

LCD

LED

NTP

NTSC

PAL

PID

PIT

PLL

RTC

TSC

USB

Application Programming Interface
Charge-coupled device

Completely Fair Scheduler
Complementary metal—oxide—semiconductor
Cathode Ray Tube

Cascading Timer Wheel

frames per second

Liquid Crystal Display

Light Emitting Diode

Network Time Protocol

National Television System Committee
Phase Alternate Line

Proportional Integral Derivative
Programmable Interval Timer

Phase Locked Loop

Real Time Clock

Time Stamp Counter

Universal Serial Bus

Xiii

uvcC USB Video Device Class
V4L2 Video4Linux2

VCO Voltage Controlled Oscillator

Xiv

Preface

Today we see an increasing number of time dependent visughwai@r systems, ranging from
interactive video installations, via high de nition telmaferencing to the high performance
computer vision disciplines for example in industry andatids. Common for all of these
are the requirement for low and predictable delays from yiséesn itself and its components.

In this thesis, we look into the delay of camera-to-displasnputer systems to understand the
properties of their delay components, as well as how the mara display devices contribute
to this delay, in order to nd a method to measure the delaymaments of the system without
using external tools.

We have successfully designed and developed a measurewoktitdt is able to measure the
true delays of a camera-to-display computer system fromimvthe system itself, and to help
the user understand the delay properties of the system.

XV

XVi

Acknowledgements

| would like to express my gratitude to my advisors AlexanBmhhorn and Carsten Griwodz
for their good guidance and valuable feedback during thekwth this thesis. A big thank
you to Brendan Johan Lee and Kjetil Endal who has contributiéid pvoof reading as well as
good advice, discussions and valuable thoughts for my work.

Also, | would like to thank the lively people at the Simula d¢mt lab for their support and
patience, as well as the intense discussions and liberdistigictions.

A special thanks to my advisors, the people at Simula and g#gaBment of Informatics, Uni-
versity of Oslo for their invaluable support and understagdiuring a dif cult time, and to my
family and my lovely girlfriend Victoria for never loosingith in me.

Oslo, February 1. 2011
Steffan Gullichsen

XVii

XVili

Chapter 1

Introduction

1.1 Background and Motivation

With the evolving technology of digital video and commurtioca, come new demands and new
ways to utilize the technology. We see an increasing numiseial/or video based computer
systems in several areas, such as interactive video mstal$, teleprecense systems as well as
in industry. Common for all of these systems are the requinemmidlow delays.

Within this picture arise projects like The World Opefd. [The World Opera want to create a
mixed reality scene where performers in different locatioan interact with each other on their
local stage, and the audience in each location can see ihe @aly, both their local performers
in real life mixed together with the virtual world from alléhother stages merged together. A
project like this stretch the limits even further and newusiohs have to be made, where the
requirement for lower delays are ever more strict.

To meet these challenges, new research on the time prapeftiedeo systems have to be done
to fully realize the ideas behind such a project. This formlihsis for the Verdion&] project,
which is a large scale collaborative research project le®dioyula Research laboratory and
funded by the Norwegian Research Council. Verdione aims teldpwobust video processing
and dependable networking support for the world-wide misesality stage at the World Opera.
The work with this thesis is done in conjunction with the Meree project.

Some of the tasks of the Verdione project is to develop systérat use several cameras in
cooperation with each other, and systems that calibratbs@mtrols those cameras. The delays
in such a systems is important to understand in order to sgnte the system. One important

1

aspect of this is to understand how the cameras and the ylidplaces themselves contribute
to the delay.

1.2 Problem Statement

In this thesis, we want to investigate the true delays of cart@-display systems, by designing
and implementing an inexpensive and robust method to meé#sese delays. The measurement
system should be able to measure the delays from within thiersyitself, and to provide an
insight into the properties of this delay. Our method shdwédable to produce reliable and
accurate results, and to be able to isolate the latenciesdinted by the camera and display
devices.

By inexpensive we mean that the method should

» not depend on any extra or specialized equipment
» work with standard and readily available cameras such asbecamera

* use software that runs on top of a stock Linux kernel

1.3 Related Work

There has been done little work in the eld of measuring dslegthin vision or video based
systems themselves. Boyaci et &) ¢lid a similar approach with their vDelay tool for measur-
ing delay in peer to peer video chat applications, but theyatoattempt to isolate the delay
of the hardware components. They concentrate on measinengnid to end delay of network
video chat applications, by use of embedded barcodes ietwitteo stream. Our approach
do not measure the performance of video applications, lmttaimeasure the delay in the
hardware components themselves. Also we aim to eliminatertainties by synchronize the
exposure phase of the camera to the refresh rate of the serbieh Boyaci et al do not.

Baldi and Ofek #] did a comprehensive analysis of end to end delay of videi@cencing over
networks, but this work focus on the networking delays amtt@iformat processing, and not
on the end device latency as we do here.

1.4 Contributions

We provide an easy and inexpensive way of measuring the slefegy camera-to-display com-
puter system without the use of external measuring tools tdbl can be valuable in evaluating
the performance of a camera and display setup, and to gawml&dge on how the components
contribute to the overall delay. Our results are This is futlp developers of camera-to-display
systems, to help them understand the delay and latencyntiespef their setup.

1.5 Outline

This thesis is organized as follows:

In chapter 2 we present and discuss the camera and mongartebhnology and properties.
The chapter provide an insight into how these component& awod to what we can expect
from them. In chapter 3 we brie y present the control thedrgttforms the basis and idea of
the system design, and in chapter 4 the design of the measnotegstem is explained. Here we
also go through important aspects of timekeeping both forapplication and how the Linux
kernel affects this. Chapter 5 describes our implementatidhe measurement system and we
discuss how the different parts of our calibration pipelvark. In chapter 6 we present and
discuss the results and nally the thesis is concluded irptdrar.

Chapter 2

Technology and Constraints

2.1 Digital Cameras

With the introduction of the digital camera, several new svajusing video and photography
became possible. As the concept of the digital camera iesltite storage of the image data in
a digital format, it made it possible to use this technolaggrocess image data with computers,
without being dependent on a lengthy chemical developmefmand following digitization
using image scanners. For example, this introduced newlldsss for the industry by using
video or image based automated control integrated into greduction lines. However, the
most evident impact of the digital camera for most of us mayhieenew found availability of
both photography and video devices caused by the low coseséttechnologies, and of course
the possibilities of editing our own images ourself by us;wg computers and sharing our
images with each other over computer networks. Photogragghde nitely no longer con ned
to photo albums.

In recent years, as digital cameras have become readilfableaifor all of us and in many
different variants, also video communication has becomenancon way of utilizing the po-
tential of technology, both for use with mobile telephorteeconferencing systems and today
most commonly over the Internet, using easily availablérsrte such as Skype™ or Microsoft
Live™,

HyEyEyEyErE
r e 1 1p 12 | P |
Pixels , , , , , ,
> |2 12 12 |2 | p]
Charge
> | 1% 1 » | » [P | ampiifier
p | !,! b1 b1/
Analog
Shift register - - - > output

Figure 2.1: CCD sensor principle design. The CCD transfer eaalgehcell by cell, and
converts the charges to voltage on output.

2.1.1 Image sensors

Digital cameras use the same principles of optics as corait Im cameras, however the
light is exposed onto a photoelectritnage sensor, essentially a type of photo-diode, instead
of a chemical Im, and then the image is read out of the sensdrsiored to memory. Two
main technologies are in use today for these image sensoesgé&houpled deviceCCD)

and Complementary metal—-oxide—semicondud@QS), however none of these technologies
really have anything to do with the actual photoelectriccess of the sensor, but rather how the
charge gathered by it is handled.

The CCD is an analog device, constructed to shift charge from onlet@ghe next. When
used in an imaging sensor ti&CD is accumulating electrical charge from the light in a set
of cells organized in rows. When an image is exposed, the seshsits each charge out of
the image array cell by cell through a charge ampli er whidmeerts the charge into voltage.
This is shown in gure 2.1 There are several different ways of designing @€D image
sensor depending on how the charges are shifted within apdioitom the sensor. The typical
interline transfelCCD sensor shifts the charges accumulated by the light expgsickly over

to a second set of cells which is shielded from light, and ftbere it is shifted out of the image
array as explained above. In a different circuit outsidestéresor, the voltages are then sampled
and stored as bits in memory. As no processing is done witl@€B chip, this grants the
camera designer a great deal of freedom in how to design thereaand it's functions. The
downside to this is that the complexity and cost of such a caméigher because the sampling
and digitization of the analog output from the sensor mugidelled by an additional circuit.

1The photoelectric effect is described as the emission aftrales from matter that is exposed to light. The
electrons in the matter absorbs the energy of the photonmapdy this be ejected causing an electrical currgnt [

6

Sensor
control

Digital

<F

output

—m 0 -~ =0 <

T S o e
S e s

S o 00

ADC

Pixel area

e e e il
B | S
I e e
R e

Charge
L [amplifier

’{ Horizontal scan

Figure 2.2: CMOS image sensor principle design. The CMOS basade sensor do the
charge ampli cation within each cell, and analog to digitahversions on-chip to produce a
digital output.

The CMOSimaging sensor provides a different approach to of oadimg photo-diode charge
from the image sensor. The CMOS technology allows implemgrsi lot of logic on small
areas. In these imaging sensor designs a lot of the electpoocessing is moved closer to the
photo-diodes (pixels) resulting in a much faster readobe Basic design of @MOSimaging
sensor is a charge to voltage converter alongside eachwixeh in turn of oads row by row
to an analog to digital converter and then output from the €lgure 2.2). This technology
has the advantage of using much less power tha@@ie because it does not need to move the
charges as the CCD does. By doing the analog to digital conversio-chip theCMOS sensor
allows for a simple and compact design of both the sensortedamera, which again means
that the cost of the CMOS based cameras may be considerablydepared to thECD based
cameras, and the faster of oad from the image sensor meang th much easier to construct
live video devices with high resolution and a very small fdewtor.

When comparing the two technologies, it is evident that batehstrengths and weaknesses
compared to each other. CMOS image sensors have become ypertgpdue to their low power
consumption, easy implementation, and low cost. The pilisgito make the CMOS sensors
in very small sizes also opened up a completely new marketfaging devices. However, the
physical space required for the electronics in each pixkleces the possible size of the area for
gathering light for each pixel. It has been argued that #8sér surface area causes@OS
sensors to produce an inferior image quality compared t&€®PB sensors where almost all of
the pixel area may be used to capture light. Some argue ashaethe CCD are a much more

7

mature technology than the CMOS, however the image qualihalpein CMOS sensors has
been reduced over the recent years, and may now very muchieated.

2.1.2 The electronic shutter

The electronic image sensors introduce another new comutgpthe cameras, the electronic
shutter that in many cases replaces the traditional meclsstiutter technologies. The conven-
tional mechanical shutters used in cameras use many diffeo&cept designs, but we explain
two for our purpose: Thglobal shutterand therotary disk shutter The global shutter is usu-
ally a set of plastic or metal leaves that slide quickly asidd expose the entire light sensitive
surface virtually at once. This type of shutter is widelydigspecially in still picture cameras.
The next concept is the rotary disc shutt@rthat use a disc with a sector opening rotating in
front of the light sensitive surface. This causes each gdaheimage to be exposed at slightly
different times as the opening advances over. The rotaryshsatter was commonly used in
motion picture cameras using Im.

While chemical Im cameras need protection for the Im by ploaly restricting light from it
to avoid damage, electronic image sensors do not need thtesgbion. This opens up new ways
of controlling the exposure of an image. With the introdostof smaller and low cost digital
camera devices, adding a mechanical shutter both addsreqsire space for installation as
well as adding complexity, making the use of another exposontrol desirable. For these
reasons many digital camera devices control the exposectaehically.

Two common concepts of the electronic shutter is widely usdey, the global and the rolling
electronic shutter. These resemble the mechanical shatptained above in how they work.

The global electronic shutter discharges all cells or gis#inultaneously, making them ready
to accept light exposure. The interline CCD sensor is desifpretiis purpose, as it moves all
the charges in the exposed cells to protected cells sinadtasly, gaining both the protection
of the exposed image frame while reading it out, and makieg#posed cells ready for a new
frame at the same time. This allows for a continuously exposmited only by the time the
CCD of oads the previous image.

A CMOS image sensor applies a control current to the pixelssicharge them, and depending

20ne evidence in this matter is that two well known digital eaanproducers, Nikoh{tp://www.nikon.
com) and Canort{ttp://www.canon.com), now use CMOS sensors in their top models: Canon eos-1ds mar
IIl and Nikon D3x (Data collected 2011-01-12)

http://www.nikon.com
http://www.nikon.com
http://www.canon.com

on the CMOS design regarding control and readout circuitig, ¢an be applied to all pixels
at once achieving a similar effect as the interline CCD. Many GVi@age sensors however,
do employ a much simpler design where signals are only sqarts of the sensor at a time,
typically row by row. This is known as the electronic rollisgutter, resembling the behavior of
the rotary disk shutter. The CMOS applies an erase signakicn eow consecutively, usually
from top to bottom of the image making the cells ready for gepg light. Then it reads out the
pixel values for this row after the set exposure time hasqzhsEhis means that each row in the
image is exposed at a slight difference in time just as forthary disk shutter Im cameras.
Almost all compact consumer market CMOS image devices suchoddle phones equipped
with cameras, web cameras and low end compact cameras earpidgctronic rolling shutter.

Because the rolling shutter exposes each line in the imadiglatiy different times, the result-

ing images may suffer from artifacts. Particularly whentyimg moving objects or when the
camera is moving fast while the image are exposed, we getgeimtigtorted by motion. Often
this is a skewing effect, due to the object have moved ndilgdeom one part of the image was
exposed until the next. This is illustrated by gu3(a)and 2.3(b) Another issue one might
experience is a tearing effect in the image caused by rapliiynging light conditions during
the exposure as shown in gurg.3(c)

2.1.3 Web cameras

The web camera (webcam) is de ned by Wikipedia as a camergrms to be directly con-
nected to a computer or a network and supply it's video feeel diver this link.] A web
camera usually does not have storage memory of its own,ssopération is dependent on this
link being present.

The rst well known use of a camera in the way as intended fob wameras was the Trojan
Room coffee pot§] at the computer laboratory in the University of Cambridgagind. In
1991 they connected a video camera through a capture carskirver and published an image
feed of the coffee pot on to the local network, so that the eyg#s could see if there was
coffee ready for them.

Today the most common understanding of the term web caméha isw cost compact video
cameras that either connects to a personal computer viztsaivSerial BuslSB) or Firewire,

or are embedded in common personal computer hardwareatlypiconitors or laptops. These
web cameras are most commonly used today as personal conationidevices for video chat

9

(a) The turning rotor blades appear twisted (b) A fast moving car appear skewed backwards

(c) Changing light condition may produce tearing

Figure 2.3: Distortions caused by a rolling shutter (Imafyjeen Wikipedia, Rolling shutter
(accessed 2011-01-19))

10

over the Internet, however their compact design, low codtease of use make them usable in
many different applications.

For this project we use a typicbISB webcamera, the Logitech QuickCam pro 9000, and in the
next section we explain how these commonly used types of weieras work.

2.1.3.1 Physical properties of USB web cameras

The typicalUSB web camera today is a compact device usually employing d $onad factor
CMOSimage sensor and an electronic shutter. While some may ema@owple optical focus
control, most use xed focus optics. The absence of movingspnd the fact that all complex
electronics are included in the CMOS chip, make it possibleotustruct small devices with a
wide range of use.

Most consumer market web cameras, as the Logitech QuickCara(Qff0, employ a CMOS
chip with an electronic rolling shutter, making them prooete distortions shown in gure
2.3 However, because of the simple design, the low cost of tiiegees and the relatively high
quality of the modern CMOS sensors, this as accepted. Thdseaveeras are also primarily
designed to be used in a computer user environment wheremoestment is relatively slow.

Most of the web cameras do not implement any physical usdralsron the camera itself as

is the case for most hand held cameras. Instead they imptarmencontrols such as exposure
settings, resolution and other image processing settimgoftware, making them available

through the device driver on the computer.

Unfortunately we do not know exactly what hardware is use@viich controls the camera
supports, as we have been unable to obtain any documentiatiariogitech on the technical
properties of the Logitech QuickCam pro 9000 camera apart aemall list of features listed
on the Logitech web pade

Carl Zeiss® optics with auto focus

Native 2-megapixel HD sensor

High-de nition video (up to 1600 X 1200)

720p wide screen mode with recommended system

Shttp://www.logitech.com/en-us/38/6333 (accessed 2011-01-15)

11

» Up to 8-megapixel photos (enhanced from native 2 MP sensor)
» Up to 30-frames-per-second video

» Hi-Speed USB 2.0 certi ed

This camera is compliant to the USB Video Device Cla$¥C) standard 9], which speci es
the common interface adSB video devices in terms of both operation and control. Thikesa
it much easier to determine the capabilities of the camexd darring the course of this project
we have learned a lot of how this camera works which have b#ereisting because of the lack
of documentation. The most important features we found h@slbility to control the exposure
quite closely, and that the sensor does not seem to have lenyne inbetween the exposure
of each frame, meaning that the camera starts a new exposectydafter nishing a frame,
providing it is not limited by the de ned maximum frame ratgghin the camera.

2.1.3.2 Delays introduced by USB web-cameras

For our project the most important aspect of the camera désigow it contributes to the delay
of our system. We know from the information we have, that theera supports a frame rate
of up to 30 frames per secondRS. We assume that this frame rate may be controlled in some
way, either by a direct interval setting, by resolutionisettor by setting a static exposure time.
Either way, this means that the latency introduced by theecaras a whole may be controlled.

Looking at the technology in itself, we see that the time $§fgnthe camera consists of the
exposure time (the time each pixel gathers light), the tipens on readout from the sensor,
the time spent on image processing, and then nally the tiniakies to send the image data
over the link to the computer. We assume that by controllregexposure statically, turning off
all automatic image processing controls, and selectingrergé format with a xed data size,
the latency from the camera is static and measurable, ewgn tiothe processing step of the
electronics, as the exposure is known and the data transfettteUSB link may be calculated.

2.1.4 Industry machine vision cameras

Industry machine vision cameras are intended to be used memdronment where perfor-
mance, reliability and robustness is important. Commonsacéapplication include quality
assurance, sorting and calibration of robots for mategaablting [LO]. This type of cameras are

12

usually connected to networks or computers because vidmegsing of some kind is almost
always a necessary part of their task. This actually wouldhb de nition in 2.1.3 make them
web cameras, however they are never regarded as such agdffermance, quality and price
tag, as well as their use is very different from the common eaheras.

There are many types of the machine vision cameras availabnlging from highly specialized
cameras such as a 1-dimensional line scan camera that emplogle array of pixel sensors,
often used for capturing a continuous stream for exampleaomeeyor belt, to more traditional
2-dimensional image designs for various applications.

Common for all of them is that their performance is their mogiortant feature, but the metrics
of performance varies from task to task. This may be, but imotdd to, optimizations for
capturing at high speed, sensitivity for special light andy be optimized for precision.

We are be using the Pilot piA1900-32gc camera from Basler AGhis project. This is a high
guality industry machine vision camera, with a small footpand a vast range of available
con guration controls for the system designer, making thigery versatile camera.

2.1.4.1 Physical properties of the Basler Pilot camera

The industry machine vision camera Basler Pilot piA1900e32gploys an interlin€CD im-
age sensor capable of full 1080p High De nition resolutid®20 * 1080) at a frame rate of 32
FPSin full resolution. The exposure control is handled by afidime global electronic shutter,
which does not make this camera prone to the distortions shiowgure 2.3 A C-mount is
provided for third party lenses, providing the possibifity using different optics for different
use cases.

The communication interface of the Pilot is a gigabit Etle¢rronnection, making it possible
to attach the camera either directly to an Ethernet interaca computer, or on to a local area
network. This Ethernet connection is used both for videa feansfer and camera control,
making the control and image acquisition from these camegzas exible as it is reachable
from the whole network it is attached to.

The Pilot implement a second physical control interface ai as the Ethernet connection,
which are used for external hardware control of the camehna i$ for example used in settings
where an absolute control of the timing of the image exposireecessary. This hardware
trigger control would be very useful as well in our settingend we need to synchronize the

13

camera to an event source as we describe in sedi@nbut this is not used here since it is
outside our de ned scope for the project.

As already mentioned, the Pilot camera offers a wide rangetihgs and tunable parameters,
but the most important for us is the possibility to turn oft@aatic processing controls in the
camera to avoid variable delays, and to set a static franmeedgrate and exposure time to be
able to control the speed of the exposure to data transmisgieration cycle.

2.1.4.2 Delays introduced by industry vision Ethernet cameas

The basic conceptual design is similar for all cameras, ingathat the Basler Pilot camera
contributes to the delay in the same way as the Logitech @aok as basically the same
things happens in the process of capturing, processingiapdtdhing an image. However we
do expect the times to be different.

With the Pilot we should have a more precise control of theosuype time and frame delivery
rates, because the camera offer a speci ¢ control for bathikel the Logitech web camera,
which only offers the exposure control. In addition to thiee Pilot also has support for reading
out the true numbers for these controls so we know which gahatually are used by the
camera.

On the other side, the Ethernet connection of the Pilot carlnehaves differently than théSB
does. ThaJSB offers a guaranteed bandwidth for devices operating inhismswus mode, a
streaming mode de ned by USB, like video cameras, ensuriegidta ow from the camera.
When connected to an Ethernet network, the video throughpytla affected by other traf c,
as well as various network conditions restricting conwégti The Basler Pilot camera uses the
GigE protocol set, specialized for machine vision camendsch operate on top of the UDP
and IP protocols. The delays introduced by the network maselere, but in a local connection
this is unlikely to be a problem.

In line with the network standards the data from the camerstmlgo be divided into several
packets that pass through the network stack in the camera tedssembled again on the re-
ceiver side before the image can be delivered to the apjlicalhe delay introduced by this
remains dependent on the kernel timings for the networkfete interrupts in addition to the
timings for data delivering from the kernel space to the gpearce.

14

2.2 Monitors

The display device or monitor is the device that produceblesmages of input from a com-
puter, and is of course an important part of any visual coempsystem. In this project, the
monitor is used for displaying events that is captured byraera. In the following we de ne

the monitor as the device that process the input from the computer ardlpes images to be
drawn on the screen, and thereeras the physical device that the images are drawn on, making
them visible.

A few different monitor technologies exist on the marketagdand we use the two most com-
mon technologies in this project. These are presented indkesections.

2.2.1 CRT monitors

The Cathode Ray Tub&€RT) monitor is an analog display technology dating back to dméye
20th century. 11] The technology has seen a lot of improvements over the yessslting in
high performance display devices with excellent color espntation and low latencies.

The core of the technology is a cathode ray (an electron bedhih a vacuum tube that sweeps
across a uorescent phosphor target which then lights ug Gdam is focused and controlled
by magnetic or electromagnetic elds, making it sweep astbs target phosphor repeatedly in
a xed pattern. This makes a visible and identi able imagghli up from the phosphor. Figure

2 4illustrates the function of €RT.

The beam of electrons does only translate into light intgneithe phosphor, but it does not

carry color information. The color is decided by the uorestphosphor used, so usually the
color CRT monitors uses different phosphors for the colors red, gasehblue, and often one

dedicated cathode ray for each of the three colors. The pblosphors are laid out in a speci ¢

grid, where often one dot for each color de ne a pixel.

Because of the space the electron beam needs to be de ectadretmcover a larger screen
area,CRT monitors are quite large devices. Combined with the need édheavy materials,
especially the high security glass needed for the vacuur, ttiliese monitors became very
heavy and dif cult to handle for larger screen sizes.

TheCRT was the dominant technology for computer monitors untitejcecently, but is loosing
the competition against the much lighter and smaller devafenew monitor technologies, as

15

Figure 2.4: Functional overview of a Cathode Ray Tube (ImagmftWikimedia Commons,
Cathode ray tube (accessed 2011-01-19))

the monitor of choice for personal use.

For this project we are using a Dell P9@RT monitor.

2.2.1.1 Physical properties

In being a completely analog device, tBRT does not need to process or decode any signals.
Any input within the input boundaries is sent through theuwitry to the cathode unit. Usually

a modern CRT monitor is capable of a very high dynamic range tla@oretically very wide
color range in that the cathode rays may be have any intefosigny of the red, green and blue
colors.

Also the rate of which the cathode rays covers the entireescfie refresh rate) has a very
high theoretical range as it is limited only of how quicklyettie ection coils (gure 2.4) used
is capable of changing the direction of the ray.

In practice though, there are many factors reducing therdtieal ranges of the CRT, including
the choice of materials in the production of the monitors, tieness of the color pixel grid of
the screen and the capabilities of the digital to analog edav on the graphics card. Also, as
in the nature of the analog device most of these elementsoamgected, meaning that tuning
each parameter could have an impact on the range of the others

16

One of the most important tunable values for the users isefiesh rate of the screen. If the
refresh rate is too slow the image appears to icker. CRT nowsisupport a refresh rate ranging
from 60 Hz to about 85 Hz depending on resolution and colottdepth the high end monitors
achieving up to 100 Hz or 120 Hz.

2.2.1.2 Delays introduced by CRT monitors

As the CRT monitor accept only analog input and does not do any praogsse expect it to
introduce a negligible processing latency, on top of thegmaission- and propagation delays
of the signal through the circuitry and the cathode ray tedim. The response time of the
uorescent phosphor we also assume to be negligible.

Because the monitor is driven directly by the input signal,assume that the latency of the
CRT monitor is negligible.

2.2.2 LCD monitors

The Liquid Crystal Display KCD) computer monitors, often called at panel displays, was
introduced in the late 1990s and has quickly gained popuyldtie to rapidly falling prices and

a vast selection of products. TodB¢D monitors have more or less completely conquered the
market for personal computer monitors.

The LCD monitor is fundamentally different from th€RT monitor. They utilize a special
liquid crystal which by applying an electric eld may chant orientation of its molecules to
restrict various amounts of light, effectively meaning tohling the light intensity. The liquid
crystals in aLCD is organized into small cells, called sub-pixels, betweelanzing Iters
with individual electrodes controlled by transistors. Rgeken and blue Iters are put in front,
making each cell output a speci ¢ color of light in variousensities according to the voltage
supplied. The basic concept of design is shown in g@.é.

An important feature of theCD technology is that the devices do not suffer from ickerirgy a
the CRT monitors do. This causes less eye-strain which make the L@Wartable to use over
time. Together with the compact and light display devicésnadd by the technology design,
are the key factors of their success. This success is in gpttee fact that the.CD monitors
actually are inferior to th€RT devices in terms of image quality and dynamics. We discuss
this in the next section.

17

Figure 2.5: Concept of LCD design with sub pixels (Image fronkiiedia Commons, LCD
RGB subpixel (accessed 2011-01-19))

We are using the ViewSonic VX20a0CD monitor for this project as a representative for the
typical LCD monitor. This monitor has a response time of 25ms, which mé&amtime a pixel
cell needs to change from one value to another and then baak, &y speci cation from white

to black to white, depicting in the maximum time a cell needitange. Typically manufacturers
of LCDs use a time for the pixel transition from a shade of gray tolkoéand back again, yielding
a lower number representing the response time. We have mod fine exact semantics of this
number from ViewSonic, so we assume it represents the arlkition white to black to white.
Below is a list of the speci cations for this monitor:

Screen size: 20.1"
Response time: 25 ms
Brightness: 280 cd/m2
Contrast ratio: 600

Pixel pitch: 0.255
Resolution: 1600x1200
Panel type: MVA
Vertical fequency: 60-85 Hz

Horizontal frequency: 30-82 kHz

18

2.2.2.1 Physical properties

LCD monitors use an active and individual control of each ligengstal cell, making it hold
its state once the electric eld is set. This is a big diffeverirom CRT monitors which have
to redraw the complete image on the screen many times a sesothe uorescent phosphor
looses its luminance quickly after the electron beam hasguhsThis individual cell control and
the persistence in the cell state, make the image shown ascteen of theeCD completely
static, as it only changes when the state of the cell contaokistor changes. For this reason,
LCDs do not have a refresh rate as such. The technology does &oameploy the concept of
a refresh rate but with a slight different semantics from@RT: the rate of which it collects
new image data from the graphics card and updates the imagereaen. By design, this is
commonly set by the manufacturers to 60 or 75 Hz.

As mentioned, the digital nature of th€ D monitors has introduced some limitations. Due to
the xed bit width in the representation of for example ca@nd light intensities, the dynamic
range and color depth of the device is limited compared tanafog device. These ranges may
of course be extended, but this adds complexity and mighease the processing time in the
display unit considerably.

The properties of the crystal liquid itself also play an imrtpat role in how the display performs.
Even though a change in the electric eld for a cell may hapgeickly, the crystals do need
some time to reorient their molecules. This is commonlyref#to as theesponse timef
the LCD panel. In the earlyCD display devices this time was considerable, making e
unsuited for watching content with rapid movement. Thistheome much better, and in recent
models this does not seem to be a concern for most users.

2.2.2.2 Delays introduced by LCD monitors

As we have seen,CD monitor can introduce a delay to the system. The digital neabd the
monitor means it needs time for processing the input sigiiais is known as thénput lag
of the LCD monitor. Next the crystal itself needs time to reacthe change, making the new
image visible on screen.

By designLCD monitors only update the pixels that change for the new sdreene. Depend-
ing on the control implementation, this may introduce aalale delay as the image detail on
screen changes.

19

2.3 Summary

In this chapter we introduced the peripheral hardware teldgy important to this project, and
we discussed the properties of cameras and monitors we ngd)aav we expected them to
contribute to the delay we measured. In the next chaptemir@duce the control theory which
form the inspiration and the basis for our system designsidea

20

Chapter 3

Feedback Loop Measurement System

3.1 Control Theory — the Feedback Control

The feedback control is the mechanism that different systeatitize to achieve a form of bal-

ance. Thisis a principle widely used or described in manggr@cluding in biology, economic

theory and in electrical and mechanical systems. For examgbiology the feedback control

is described for the process of regulating body temperdtungarm blooded animals, and also
the long term feedback that allows the evolution of speaeatescribed by Charles Darwihd].

The feedback control mechanism monitors de ned variablessystem and compares these to
desired target values in order to adapt the system to acthieséarget. When this monitoring
happens repeatedly we have an automated feedback looplceygtem. Several such systems
are in use in our daily lives, for example a thermometer ciletl heater, or a cruise control
system in a car.

This kind of self monitoring and adjusting systems are nahgention of our time. The ancient
Greeks designed and used such systems, for example therinvéter clocks. In their attempt

to establish an accurate notion of passed time, a oat régulaas invented that controlled a
lling valve to keep the Il level in a water tank constant. B¢ |l level being constant, they

achieved a constant water pressure at the bottom of therassning the water ow rate from

a hole near the bottom of the tank was constant and could bsurezh

As the industrial revolution introduced more machines, encontrol systems for these were
designed alongside them. Examples include the presswre f@l a steam engine kettle, and
several different speed regulating devices for the steagimeroutput.

21

Figure 3.1: Centrifugal governor
(Image from Wikipedia, Centrifugal governor (accessed 201-24))

The rst formal theoretical description of the stabilizimgntrol theory and the feedback loop
was made by the Scottish scientist James Maxwell in his sbfidyachine regulating devices
including the centrifugal governor constructed for cohitng the speed of rotary steam engines
[13]. This governor as seen in gure3.1 used the speed of the steam engine wheel to rotate
two pivoted metal balls which were slung upwards by the deigial forces. These were in turn
connected to a steam ow valve, reducing the steam ow whenialls were forced high.

We may abstract the control feedback loop of the controlrthtma system as shown in gure
3.2, where the system or process accepts an input signal andga®an output signal that
is monitored by a sensor. The controller of the system reseifie error of the output signal
based on a reference, and may adjust the input signal to shensyo match it to the reference.
Commonly the monitored system output is calledPnecess Variableand the reference signal,
or target value is known as tlsetpoint

Common to these control systems, when they are engineerpdrpras the ability to control
the system towards a de ned stable state. The one importapepy of the feedback loop
control systems is the ability to adapt to any unforeseemgésito the process' environment
always working towards this state. However achieving $itghg not necessarily trivial. For
example in a blast furnace, you want to have a stable temperatVhen the system is started

22

Measured System
Reference + error input System output

»| Controller p——3p1 System >

Measured output

Sensor |«

Figure 3.2: Feedback loop(Image from Wikipedia, Controbtlygaccessed 2011-01-24))

up, the control system of course applies the power, but tladlestge is to decide when to
increase, reduce, stop or start the supply. If too much pasvapplied and it stops too late,
the furnace may continue heating up and overheat due todstéorergy in the material. If the
power then is stopped for too long, the temperature may adropriuch. Such oscillations in a
control system of course depends on the system under caaichimany different factors must
be considered when designing a controller algorithm.

There are many different controller designs de ned for saldifferent sets of feedback loop
systems, where probably the most used generalized thesdrd@sign is the Proportional In-
tegral Derivative PID) controller. This control algorithm takes into accounteiardifferent
calculations on the process variable error according tetibased on the current state of the
process for the proportional part, the accumulated errer tine in the integral part, and the
predicted error in the Derivative part. This makes BiB controller highly adaptive and suit-
able for many control designs, also where there is limiteolkadge of the dynamical model
of the process to be controlledl4].

3.2 Phase Locked Loop

The Phase Locked LoopP[L) is a special case of an automated feedback control system,
where the phase of an incoming electrical signal is shifeethatch a reference signal. The
basic concept design of thLL is very similar to that of the general control system. Thescor
of the control loop in th&LL is the Voltage Controlled Oscillato¥CO). This device is a signal
generator which are adjustable by applying voltage. The felh generates a signal from the
VCO based on the incoming signal and a reference signal: The sigral is multiplied with a
reference signal, obtaining a signal which is a functionhef phase difference. This is ltered
and used as a regulator signal for the Voltage Controlledli@swi (VCO). When the regulator
voltage to the VCO is zero, the phase of the input and outputtsgare synchronized. (See

23

Input signal Output signal

S Phase d_et_e ctor Loop filter VCO S
A z (multiplier) -

\ 4

\'4

Negative feedback

Figure 3.3: The Phase Locked Loop (PLL)

gure 3.3 [15].

ThePLL is used in a wide variety of electrical and electronic systeamd it is a vital part of
communication systems where it is used for example for@assinchronization, demodulation,
and frequency multiplication and division.

3.3 Measuring Delay in a Controlled Feedback Loop

The feedback loop has the inherent advantage that it feedsyloar output carrying informa-

tion you may utilize as it returns to the controller. Consia@éasic feedback loop control system
similar to the one in gure 3.2 We have an actuator in the process that produces some kind
of a continuous base signal, a sensor that detects the sigddeeds it back into the control.
The time from the actuator emits the signal to the sensorcteieis greater than zero. It is
not trivial to identify speci ¢ parts of the signal from thest by observing a continuous analog
signal . A sinus wave is the same for every part of the sigmalylsich part of the signal was
emitted from the process actuator at what time?

To be able to distinguish parts of the signal we may modulaecand signal on top of the base
signal from the actuator. Then the controller knows whendatteator emitted the modulated
signal and observe when it is received back via the sensasuniag the delay inbetween.

The second problem is the synchronization of the system. Bw@tlprocess actuator and the
sensor operate in their own frequency patterns. If the sessonly sampling the signal at
given intervals, it may miss the modulated signal all togeth the case that the actuator have
a comparable higher frequency. Even if the duration of tigeadisampling in the sensor is
long compared long to the actuator frequency, the sensorini@gduce an extra delay in the
measurement which is not part of the system as such. In sisels tlae system must utilize the
principle of thePLL to lock the frequency and phase of the modulated signal tphiase of the

24

sensor sampling rate so that the modulated signal arrivibee atensor just as the sensor starts
the sampling.

If the system is in a stable state, it can accurately meassiraternal delay by recording the
time difference from the emission of the modulated sign#héoreception of the captured signal
from the sensor.

This idea of time control is indeed important in control €yss today. Looking at our example
above with the blast furnace, in order to avoid dangerouasdns the control system must have
an idea about how long it takes from the supply is changedeaeimperature starts to change,
and then again how long it takes until a new stable state shexh Often these mechanisms,
accounting for delay, are set by design of the control sydtegic according to models of
oscillation damping for the speci ¢ system.

3.4 Summary

In this chapter we have breie y presented the concepts ottimerol theory,the feedback loop
andPLL concepts, and thBID control. We have also seen how it can be possible to measure
delays in a controlled system from within using the concepthe control theory. In the next
chapter we discuss how we may use these principles in ordmptement the self measurement

of delays in a vision based controlled system.

25

26

Chapter 4

Design

4.1 Delay Measurement System — Introduction

Our main goal is to be able to measure the delays and latesf@esamera-to-display-computer-
system, without the use of external measuring tools. Bgraera-to-display-computer-system
we mean a setup where a video stream from a camera is disgaygdonitor by an intercon-

necting computer system. The computer system may be agyfttim a single computer, to a
network of autonomous systems that provides function#diyispatch the video stream.

The concept of measuring the delay of the system is this: ¥iows clock on the screen of a
computer monitor. If you capture this by a video camera asgldy the video back on to the
screen, the two clocks will show different times as showngdnre 4.1 This difference is the
end-to-end delay we want to measure.

However, recognizing a clock like this programmatic is diilt, so we need another way to do
this. Boyaci et al. 3] used barcodes for this purpose in their vDelay tool, butiar use case
this is not desirable because to encode and decode the inmageerpret the barcode can be
computational intensive.

We solve this instead by ashing a white square on the scrBegause we know the time the
square was displayed we can measure how long it takes beéoreogive the image containing
the square from the camera. The concept of the square, wealjeaeas arevent

To be able to measure this accurately our system needs tolibeated to address several
sources of uncertainties. The delay in the processing [pdhteosystem, meaning what hap-

27

Figure 4.1: The difference of the clocks is the end-to-eridydim the system

pens inside the computer is measurable by collecting tengss, so this we consider known.
The delays introduced outside of the computer, after thptgea card start sending data and
before the camera driver receives the image, is anotheemakhe delays introduced in the

connection links, meaning the graphics link and the camenaection, can be calculated, but
from there we initially know very little about when an evestdisplayed on the screen com-
pared to when the camera captures it. If we do not addressthisneasurement would include
an uncertainty minimum of the full exposure period of the eearplus the time for drawing a

frame on the screen. If the camera operate a@tR8and the screen at 60 Hz, this would lead
to almost 117 ms of uncertainty, a very high amount of timengarable to a complete round
trip in the system.

So the most important task in this respect is learning whelisiglay an event so that it matches
as close as possible to when the camera start the exposue ifoage.

This is the phase synchronization of the system, and the impsirtant part of our calibration
pipeline. The core concept of the idea for this phase symtpation is to utilize the fact that
the frequency of the monitor is several times higher tharctpeure rate from the camera. The
difference in operational rate is the key to synchronizettwebecause the screen draw several
frames during the exposure time of the camera. This meansvih@an see these frames in
the image, and if the information in the screen frames arindigishable, we can say when a
particular screen frame was drawn compared to the expogarte s

28

The design of our measurement system is based on the cedtfekdbackloop, where the
analysis of the image stream from the camera decides whigdbnadhe system should take.
Our design is in function based on tReD control design. The integral control function is
taking decisions based on a number of previous collectedesydor example in adjusting the
speed of the camera, a decision is made according to thegavaraval speed of a number of
previous images. The proportional control function takeislens based on the current video
image and is used for example in our phase synchronizatioe d€rivative concept of tHelD

is not utilized here.

The implementation of the phase synchronization is basedeoprinciple of thdPLL feedback
loop. We de ne a virtual display period of a number of idemtble screen frames that matches
the length of the exposure period in the camera. When we eegivmage from the camera
the PLL takes a decision based on the number and position of theliisplay period in the
image, and skews the point of where the display period start.

In the following we use the phrasereen frames the image drawn in one draw cycle in the
monitor. At a 60 Hz refresh rate, the monitor draw 60 screamés per second, and the duration
of one screen frame is 1/60 s (16.67 ms).

4.2 What Time to Measure

Our rst objective is to measure the end-to-end delay of ty&tesn. We de ne this delay to
be the time from an event occurs in front of the camera, fomgta turning on a light, until
the video image of this event is displayed on the monitor (gg4.2). By an event we de ne
a happening in the real world that may be captured by a canfmraxample a lamp being
switched on. Controlling the time of when this event occuismsajor part of this thesis, and is
covered in the following sections.

Looking at the setup in gure4.2 we see that there is no possibility to include the delay of
the monitor in measurement without the use of external tddisvever we can adjust the setup
slightly to be able to include this as well, by pointing thengaa at the screen as shown in gure
4.3 This way we can generate and display an event on screen phae# by the camera, thus
including the hole delay chain in our measurements.

To understand the end-to-end delay a camera-to-displstgrsy we need to break the delay we
measure into its components, evaluating each part acgptdiour system. This tells us how

29

_/\/

0 End to end delay t

Figure 4.2: End to end delay, from an event until display

these delays work and how the different parts of a setup ibomgss to the overall performance
of the system. Our main interest is how the closed systenescdimeras and the monitors,
contribute to the delay.

Here we de ne a few points in time that de ne the separate tooeponents that represent
more or less independent parts of the total delay. Thesesiamps are shown in guré.3.

to Preparation of the event start in the application loop

ty; The application issues the command to display the eventreeisc
t, The graphics card sends the rst pixel onto the display link

ts The monitor receives the last pixel of the image

ts The event becomes visible on screen

ts The camera opens its shutter

ts The camera closes its shutter

t; First pixel is sent by the camera

tg Last pixel is received by the low level device driver

to The full image is available to the receiving application

Looking at these de ned points we see that some are knowne s@n be theoretically calcu-
lated, and there are some assumptions we can make.

The measurable time instances arétand t which are time stamps directly from our software,
ts which may be collected from the camera handler, and nallykwew the differenceg ts
as this is the static exposure time we set for the camera.

It should be safe to assume that the propagation delay oigiieffom the screen to the camera
is negligible as we are working with short distances in thigjgrt. In this part of the system we
have a high uncertainty of when the event is displayed duhegxposure of the camera. This
is an important question we are answering in the followingisas.

30

t5 t6

t4
t7

t3

2 t8

t1
t0 9

Figure 4.3: Division of the total end-to-end delay

The calculations we would have to make is the theoreticaktrassion delay over the link from
the graphics card to the display (b t3), and the transmission delay over the link from the
camera to the computer @ tg). These delays are important to include as they are a negessa
factor in order to isolate the delays of the screen and theecam

This leaves us the processing latency in the displato(t;) and in the cameragdto t;), which
remain unknown.

There are some challenges in collecting these timestamesnifgt ensure only to measure the
true delays of our system components without externalfertence. Most importantly, we must
be able to control the event in such a way that we can recogmnizeéhe video stream, and to
be able to measure when it actually is displayed on the screen

4.3 Implementation Design

The feedback loop based measurement system should be lgalatiag and self adjusting to

the environment to be able to measure the delays of the sydgnsetting up the system as
shown in gure 4.3 we can display our event on the screen and because we knotwweha
display, we can detect our event in the video stream fromageca. We also then know when
we issued the draw command, so the difference in time whemppécation returns to that

point after the event is detected in the camera stream, gitleeutotal end to end delay.

Here we describe our design for the measurement system, a@radlavess the control system

31

structure and challenges, and the properties of the cabbrpipeline.

4.3.1 Platform and tools

For this project we are using a personal computer runnind.itiex operating system kernel

version 2.6.35. We have chosen the Linux platform for oujgmtobecause of its open source
nature, which allow us to gain a precise knowledge of how #r@&l handles timing and how

it interacts with the rest of the system.

The performance speed of the hardware is not so much a coimc#ris project since we do
not utilize the processing power of the system to a high éxtdore important is the hardware
ability to provide a stable environment for our softwarej &ow precise timings it can provide.

Connected to our computer we use two different monitord, @& monitor ViewSonic VX2000
and theCRT monitor Dell P992, and two cameras, the web camera Logitagbk@am pro
9000 and the industry machine vision camera Basler Pilot 08132gc. These are presented
in chapter 2.

We have chosen to implement this project using the openkwanks [16] toolkit as our de-
velopment base. The openFrameworks toolkit is an open sdtire- framework intended for
artistic and interactive programming and provide for easyqiyping.

The strength of openFrameworks is that it provides a cleansanple interface to the under-
lying frameworks, hiding all the “ugly” details necessaoynhake a graphics based application
run. The user may start an openFrameworks application bglgideclaring a main function
that makes two framework callefSetupOpenGL() with properties of the desired window
as arguments, amafRunApp() with a pointer to an application class instance. The applica
tion class needs only to de ne the three methedtip() , update() anddraw() , and it
will run [17]. This makes it particularly easy to draw graphical elersdatthe screen, as any
necessary setup is done for you.

OpenFrameworks uses Open Graphics Library (Open@GB8) &s its graphics engine. One
feature of openGL that is important for us, is that openGLlvles a low level control of the
hardware graphics card, and through this Application Roagning InterfaceAPI) we are able
to synchronize our application to the Vblank pulse, or “isattsync” signa.

1The vertical sync signal, the retrace signal, was originaé ned as a signal from th€RT monitor to the
computer when the monitor was nished drawing an image tosttreen and had its cathode ray turned off for

32

One alternative to using openFrameworks is to use OpenCcttiir This should give a closer
control with the graphics system, but it also means a higheyuat of initial work to get to a
working prototype state where we can investigate algosthm

4.3.2 Main Control loop

The main control loop of our measurement system is what otenthe drawing of screen
frames, receives the video feed and makes decisions bas#ttamages we receive. We
are using the openFrameworks environment which basictateits a repeated callback loop
consisting of theupdate() function that is intended to handle processing anddifasv()
function that controls drawing to screen. One completebeak loop processes the available
data and prepares a new frame for the screen.

The measurement software must perform a few simple prihsipps to establish a loop that is
measurable:

1. Calibrate the system

2. Generate a recognizable event

3. Display the event on the screen

4. Receive the video stream from the camera

5. Recognize the event in the stream

6. Collect and record timestamps

7. Calculate delays
We divide these steps into a pipeline of stages, which niffulapend on one another. For

example in the calibration of the system, the identi catadfrthe screen in the captured image
must be done before we can use this information to identi#yitages we display.

The implementation of these stages must be sequential aedi loa state variables. For each
run through the code inpdate() anddraw() we must make decisions based on the col-
lected information and completed stages in our pipeline.

repositioning it to the top left for starting next frame. MwdLCD monitors still provide this signal although they
do not need to reposition in the same way. See se@i@2.1

33

The challenge in this design is how the system should cadibtself. It is important that the
steps above are stable in terms of timing in order to gaialkdimeasurements. By stable we
mean that we should be able to have consistent result foy eneasurement when using the
same con gurations.

Instability in the timings and external additions to theayesl are introduced in several parts of
the system. For example by high system load or a variableepsiieg delay in the camera. This
may be caused by automatic adjustments according to theoenvent in order to optimize
image quality. The most important external factors for theasured delay in our system is that
we do not know when an event was displayed on the screen dinertgne the camera exposes
an image.

In order to have a measurement system that is able to prodooeste and reliable delay mea-
surements, the timing requirement of the control loopfitsrist be strict. By this we mean that
the loop should always be able to produce the desired ouwmareen on time.

4.3.3 Calibration

The calibration of our measurement system consist of skparés in order to achieve the
desired stability. We de ne calibration as the process oiirtg every part of the system to
cooperate or behave in a way that eliminates all unneceskdays or processing that can
interfere with our measurements. The quality of our catibrelargely determines the reliability
of our measurements and the feasibility of our approach asoréeng these delays.

In the following paragraphs we present and discuss thera#ilim steps of our pipeline.

4.3.3.1 lIdentifying the screen in the captured image

Firstin our calibration pipeline we must identify the saree the images from the camera. This
is important to be able to locate events displayed and tindisish between locations on the
screen. To be able to do this we must calibrate the cameralioabe space to the screen to
establish a point-to-point correlation between the twoisT& a mapping from a location on
screen to the corresponding location in the image.

To do this we use the OpenCYV library as it already contains ¢ieeled algorithms. If we draw a
chess board pattern on the screen with known screen cotedjrigpenCV can detect this from
the image stream and return the corresponding coordinatéise chessboard in the image.

34

Screen

Image Image

Figure 4.4: Warping the image means to change the perspeaftian image to a different
coordinate set. The gure illustrates an image of a screeichvis warped to match the screen
coordinate space.

The two sets of coordinates can then be used to establismatpgpoint correlation between
the two, a set of parameters that describe the relation leetvaepoint on the screen to the
corresponding point in the image. This relationship matadled a homography matrix, may
in turn be used to warp the image so that each pixel can be ssitten a 1:1 relationship
between screen and image. The term warp means to changeripe@ee and scale of the
image to match a de ned tartet perspective. This means tleay goixel on the screen have the
same coordinate in the captured image. This warp operaitinstrated in gure 4.4.

4.3.3.2 Controlling the camera

The digital cameras we use have many different image prigesapabilities designed to opti-
mize the image quality of the video in varying light conditsoand so on. All of these automatic
adjustments and image processing can add a variable piogestay in the camera and in most
cases the introduced delays are not possible to predicaitimee from the application receiving
the images. For our purpose it is required that we stabitieedelay introduced by the camera
in such a way that the exposure happens at regular inteeaatb, exposure results in an image
and all images are delivered to the computer at regulanalgr

Most cameras intended for use with computers offer an ierfor controlling the exposure,
focus, and processing steps. The proprietary device doaekage for the Basler Pilot camera
offers full access to these controls trough the dri&®d. For handling this camera there has
already, in conjunction with another part of the Verdiongjgct, been made a user space camera
driver that wraps these controls, so we are reusing this here

35

Exposure

’"'”"'"”'"”'"””‘;”’""’""’""‘3""’""’"’”"’”"’”""’""’""’""”"""’"""””"""””""”> Time
T1 T2

bbb sereen

Figure 4.5: Phase of display and camera exposure is out of dy@n event appears on the

screen at T1, we must wait until T2 before the camera starptuce it

For controllingUVC compliant cameras like the Logitech web camera, there aeraleuser
space drivers available, however not all of these makesdh&als we need available to the
users. For this reason we found it necessary to write our @@ngpace camera handling driver
on top of the Video4Linux2\{4L2) and uvcvideo kernel drivers for our web camera. These
kernel modules allow direct communication with the hardwdevice drivers and the camera
through theioctl() Linux system call. Our driver tries to turn off all automatontrols

in the camera, particularly the auto exposure control aedtito focus which tends to be the
most signi cant contributers to a variable delay from a caané he exposure and focus of the
camera has to be set explicitly.

The implementation of this driver is discussed in sectog

4.3.3.3 Matching the speed and phase of the display to the camae

Because of the long exposure time of a camera compared todbegsing speed of the system,
it is important to match the appearance of the event on treesdo the start of the camera's
exposure. In gure4.5 we see that if our event happens right after the camera hasctits
shutter, we have to wait for the next exposure before the mmeable to capture it. For most
conventional cameras this add several milliseconds to @asored delay, a noticeable amount
in this setting.

One important note about this issue is that it is not posstontrol or shift the actual phase
timing of either the screen or the camera, as both are céedrbly the internal clocks of the
hardware. That is why the difference in the refresh rate efstreen and the exposure period
is crucial, since this decides how close we can tune thealispll an event to the start of the
cameras exposure. Our application must therefore andigzienages from the camera in order
to determine when to display the event so that no unnecesisagyis lost in waiting for the
camera.

36

In order to perform this synchronization we again need td& kmothe control theory presented
in chapter 3. Because the screen refresh rate is static, we can de newalitisplay period
as our process variable, consisting of a number of screamegamatching the exposure period
of the camera. This is actually modulating a signal on tophefliase frame rate of the screen
that may be detected and identi ed via our sensor, the caniénes display period, using the
principles of thePLL may be skewed based on analysis of the camera images, to thate®d
from the camera by making sure the identi ed display peridrfes do not span images. We
can do this because we de ned our virtual display period tedpgal to one exposure period in
the camera.

Before we can attempt to match the phase in this way, we mustnadéch the speed of the
camera, meaning the length of its exposure period, to a phelltif the screen refresh rate to
minimize drift in the phase tuning scheme. Although we canhaomtrol or skew the actual

phase timings of the exposure period of the camera, we carottime length of it by using the

absolute exposure time setting in the cameras, or by adguie frame interval settings. Using
the feedback loop we can monitor the rate of the receivedovided from the camera, and
adjust the settings to achieve the intended match. By doisgyi are making the assumption
that the exposure period of the camera is equal to the irgardrinterval, meaning that the time
between the reception of each image from the camera showddqumd to the time between the
start of each exposure. As we by this should know the expdsueeof the camera from the

value we set, matching the frame rate should not be very lesaome.

In a scenario where we would have the possibility to skew tresps of either the screen or the
camera, we might use the intensity of the display period &swme see in the image to determine
if the edges, the rst or the last visible frame in the imaga&svonly partially exposed to the
camera. If for example the intensity for the rst visible fin@ indicates it was only exposed for
half the amount of time it was visible, we may derive that tamera started its exposure in the
middle of that particular screen frame, and skew the phasardingly.

By using visual information to tune these parameters, it issafe to assume we may match

the phase of our virtual display period to the exposure plesidhe camera perfectly so that we

completely avoid drift. For this reason we must repeatedgck and adjust the phase using the
PLL.

37

4.3.3.4 Correcting for ambient light

In order to use the pixel intensity as a detection method, aedrto calculate the ambient

light intensity for all pixels as a base line for detectingaobes. We keep the screen black
while we record intensity values for all pixels in the canseraage for a prede ned number

of images. Then the average intensity value for every pietored in an ambient image.

By subtracting the ambient value from a collected pixel value can easily detect if there is

something displayed on that position of the screen.

By choosing this method, we make the assumption that the mezasat tool is not run under
such conditions that make it impossible for the camera insagesor to distinguish between the
screen background and the white areas displayed on it. Vilevbahe limit for this method
depend on several different factors, including the lighecton properties of the screen sur-
face, the brightness and contrast level of the screen anchdracteristics of the ambient light
conditions. For example a direct light source and a highlgatéere screen surface would be
much worse than a matte screen surface and a possibly brigtiesct light.

4.3.4 Taking measurements — Generating and identifying events

Once the system is calibrated, we start collecting time gtafor our measurements. First we
must generate and display an event on screen that is easdgnmeed in the image stream,
preferably without extensive image processing as this naalize our strict timing require-
ment for producing images on the screen. The event couldydkiag, as long as it is positively
identi able. Displaying a bright spot in a known location ardark background on the screen
is suf cient, as the big increase in pixel intensity are etsgetect. This method does not re-
quire any encoding or decoding of the event, neither doegjitire image processing apart from
warping the coordinate spaces and querying the pixel iftter@3nce the image containing the
displayed event is recognized in the video feed, we can [zfca total end-to-end delay.

The time stamps we collect on the way in this event pipelipet; tand ¢, is de ned in sec-
tion 4.2 As we have discussed in this chapter, we also have a timedtart.

By assuming that openGL synchronizes our application wghblank pulse from the graphics
driver, the graphics card should immediately start sentfinglata onto the display link once the
graphics buffers are swapped. This means that the grapdmidsake the buffer which contain
the screen frame data we generated indtav() function, available to the monitor just as it

38

is about to read out the pixel data. By this, the time diffeeefiom t, to t, only consists of the
time from our application exits th@raw() function until openGL reacts to the Vblank pulse.

This time stamp of when the buffer swap occur, is not directlifectible from our application
as openFrameworks hides these details. We get around tlakdmng the openFrameworks
code, getting access to the time for our time stagnp t

4.4 Acquiring Accurate Time Stamps in Linux

Most computer architectures today have several differerd sources available for their time-
keeping:

Real Time Clock (RTC)
TheRTCis a hardware clock which is battery powered and hence ggseeaen when the
computer is powered off. The clock usually employs a cryssaillator to keep track of
time, like common quartz wrist watches. To query the harévadock is considered ex-
pensive and is usually only done by the operating systenadtgt or with long intervals,
to acquire a notion of the wall clock time.

Programmable Interval Timer (PIT)
ThePIT is maintained in software by the operating system, and ibdisés for the legacy
software clock in the system. The software clock is initiedl at system startup to the cur-
rent time of theRTC, and maintained by counting interrupts from . The frequency
of the hardware timer is set by the operating system on gtatypically in the range of
100 to 1000 Hz, and the time delta of each interrupt is calfezsj The software clock
is prone to drift caused by jitter, frequency error of thedirohip, and missed interrupts.

CPU Time Stamp Counter (TSC) register
Most CPUs maintain aSCregister that is incremented by every CPU clock cycle. This
theoretically provides a timer resolution of the processoeed. These registers may
differ between cores in multi-core architectures causitbgrjin readings, and they may
also be prone to changes in tick rate due to power savingitmatity in processors.

High Precision Event Timer (HPET)
In recent years most new personal computer chipsets alkmlana High Precision Event
Timer (HPET) which provide a much higher resolution thanRKE up to 100MHz. High

39

performance hardware such as new memory technologiesmelyecHPET resolution to
operate. Now operating systems also have started to utiligéor their high resolution
timers.

The Linux kernel utilizes these features in many differeays; providing programmers with
different purpose clocks and timers. The legacy funcgettimeofday() , In common use
for acquiring time in applications, returns an estimatehef actual wall time expressed in sec-
onds and microseconds since the Egodrhis estimation is done based on the software clock
as described above, and an interpolation of time betweenrugts using thdSC, however
only based on a boot-time calibration of th8Ctick rate and truncated to a microsecond res-
olution® [19] [20]. The software clock resolution is determined by the jifeand in the most
recent Linux kernels this is 4 ms determined by the defaultpdzameter value of 250. From
the POSIX.1-2008 speci catior2p], the gettimeofday() function is marked as obsolete.

Since kernel version 2.6.21, Linux has native support fghinesolution timers and time sources
by utilizing modern hardware and changing the handlingroktfrom the earlier jif es bound
approach in the previous Linux kernels, known as CascadimgiTiWheel CTW)®. The kernel
still maintains theCTW for legacy support as many kernel functions and user agitastill
rely on this. The new high resolution timer ARA4] (hrtimers) provides several different ways
of interacting with time through a few different high restdm clocks, including:

CLOCK_REALTIME
CLOCK_MONOTONIC
CLOCK_MONOTONIC_RAW

CLOCK_REALTIMEHs required by the POSIX standards and represents wall tingescribed
above for the jif es bound system clockKLOCK_MONOTONHMDes not represent the time as

2The Unix Epoch is de ned as the exact point in time of 197061100:00:00 +0000 (UTC). The purpose of
this was to serve as a base point for representation of tirdaix systems, with the de nition of Unix time as the

number of seconds elapsed since the Epoch.
3From quite recently, the implementation géttimeofday/() in the Linux kernel, was changed to use a

high resolution timer instead of the jif es based clockhaltigh it still only provides microsecond resolution.
4Jif es are in Linux de ned as the duration between each handtimer interrupt. This timer frequency is set

by the kernel on startup, usually in the range of 100 to 1000Ixthe newer Linux kernels (from 2.6.13) this is a

compile time con guration paramete2]]
SThe further algorithms of the traditional timer implemeita the Linux kernel, including th€TW, and their

performance, limitations and shortcomings, is very weplained by the Linux kernel developer Ingo Molnar
in [23]

40

such, but ticks monotonically forward from an unspeci edmrent in time, usually at system
startup. WhileCLOCK_REALTIMHEnay appear to jump backwards or forwards on system time
adjustments, th€LOCK_MONOTONI&ock is guaranteed to strictly tick forward. However
it may be prone to slight changes in tick rate on Network Timetétol (NTP) adjustments.

To address this, Linux has recently included @ieOCK_MONOTONIC _RAWhch is created

to read the raw noNTPfrequency corrected monotonic system time. This is a speloek
designed to provide the actual time frequency of the hardwamd is not supported for use in
system timers such as sleep commands.

The resolution of these clocks are determined by the uniderlyardware, and is usually 1 ns
for modern computers. With the new hrtimers framework, tlmik kernel now allows for very
accurate timestamps and high precision timing for userespgplications as well as for high
priority kernel tasks. The most important interface for aghe high resolution timers is the
following POSIX.1-2001 de ned functions:

clock _gettime()
clock _nanosleep()

clock_gettime() takes one of the clocks as argument and returns a time angotali
the given clock with nanosecond resolutiotlock _nanosleep() can in addition to the
reference timer clock parameter, sleep for either a spddime interval or to a absolute time
as measured by the speci ed clock. By sleeping to an absaluie twe avoid some of the
problems relative sleeping have with oversleep, for exardpk to preemption in between time
calculation and the sleep call.

The high resolution timer framework of the recent Linux kedsprovides us with high precision
time stamps and timings. Because we are only interested melfigve time in this project, the
CLOCK_MONOTONI®&ovide us with the guarantees and functionality we needd&dh our
sleep control and time stamps. TGEOCK_MONOTONIC_RAuld seem even better suited
for our time stamps because of its guaranteed tick rate, éxduse it does not support sleep
timers we have to chooSeLOCK_MONOTONI@stead. The reason for this is that the two
clocks may have a very different value, especially if thetayshas been running for some
time, as the static error of the hardware time source fregueaturally accumulate over time.
Mixing the two time sources may therefore yield wrong timnegults.

41

4.5 Success Criteria

We look at the different parts of this project independetulgvaluate our results. How well we
do the calibration steps is important, as this determinestakility of our measurements. We
look speci cally at how close we are able to do the phase wioithe screen and the camera.
Also the stability of our delay measurements are an impogeaiuation criteria, and how well
we are able to isolate the latencies of the camera and digmaythe rest of the end to end
delay we measure.

4.6 Summary

In this chapter we have showed that the main goal for thiseayss to be able to measure
the delays and latencies of a camera to display computezrayisy measuring time internally
and by analyzing the video stream captured of a display sareecontrol. It is necessary to
match the speeds of the camera and screen as close to a enaftgdch other as possible to
minimize the error and jitter of our measurements. We haea $gat Linux provides us with

a high resolution timer framework to enable us to do the measents with high precision.

In the next chapter we show how we implemented this systendaadiss the challenges we
encountered in the process.

42

Chapter 5

Implementation

5.1 Application Overview

The system was implemented on the Linux platform, using ttea@€ C++ programming lan-
guages. Our main program loop was implemented in the operdwarks toolkit and consists
of the following main structure:

setup() This is called once when the program starts and initializedada structures and
toolkit libraries that are used globally in this applicatio

update() The update function is registered as a callback functioménunderlying frame-
work and are called once for every loop of the program. Thiwhere all the image
processing is done and where the control feedback loop isdiandled

draw() The draw function is registered as a callback function inuthderlying framework
as well, and together with update() consists of the main naragloop. For each call
this draws any elements for the screen frame into the graghitfer of the underlying
OpenGL.

Most of the image processing is handled using the OpenCV tatetgres and some of their
library functions, as we found this more convenient thangighe openFrameworks wrapper of
the same library.

Due to limitations and performance considerations in avéé user space camera handling
libraries such as unicap, openCV or openFrameworks, we dioos@te our own user space
driver. We discuss this in sectioh.2

43

5.1.1 Tasks ofsetup()

As mentioned, thesetup() function is called once when the application start. It isdus®e
initialize any data structures or variables that is needdtie application. Due to the callback
loop nature of this framework, every data structure need®tdeclared in a class global scope
and initialized here. This includes the image and utilitjedstructures, the camera handler and
state variables to control the behavior of the program loop.

5.1.2 Tasks ofupdate()

Update handles the complete ow of our application, receiaed processes the video feed, and
controls the calibration pipeline and the measurements.cg@hbration is implemented through
the following steps:

Calibrate the coordinate spaces of screen and camera
The rstvision based step in our calibration is to detect asshboard pattern in the image
stream that has been drawn on the screen. The OpenCV libratgriments algorithms to
do this speci c task, so a call to tleyFindChessboardCorners() function returns
the coordinates of each corner of the chess board in the iniksgeg the matching corner
coordinates recorded when we made the chess board pattéradraw() part of the
program, OpenCV nds the the point-to-point correlation riiagyraphy matrix) with a
call tocvFindHomography() . This homography matrix are used to warp the image
as shown in gure4.4using thecvWarpPerspective() call. When the homography
matrix has been found, we update the state to indicate thisreove on to the next step
in the calibration process.

We found that, given the large difference in resolution @f $kesreen and the image, using
these pixel coordinates as they are, introduced a few cigkerelating to translation
between them and also some increased processing delays.olved shis by scaling
down the coordinate space of the screen to match the resolotithe image. This way
we could warp the image without having to resize anything] @ae can just use the
downscaled screen coordinates directly in the warped irtagddress any pixel.

Find the ambient light intensity
We are using the pixel intensity in the image converted tygpale to be able to dis-
tinguish the elements we show on the screen. By warping thgaraa described above

44

and displaying bright spots on a dark background this idyastognizable. However
we need to cancel out the ambient light conditions in ordetddhis. We capture the
average intensity for every pixel in the image over a numlbdrammes to establish our
base image matrix. We then de ne that any rise in pixel intgrfer a given pixel over

a prede ned threshold, indicate that something is thereceCthe ambient pixel values
have been calculated, the state is updateduguate() can move on to the next step.

Match the frame rate of the camera to the screen refresh rate
This monitors the frame rate received from the camera, ajudiai to match a multiple
to the screen refresh rate. We discuss this in sechign

Match the phase of the display of events and the camera exposar
This is the most important and also the most challenginggfatie calibration process.
This is discussed in sectioh.5.

When the calibration of the system is done, we go on to the bdalay measurements, which
we do by displaying an image on screen which we may recogniteei video stream from the
camera, recording timestamps for each step. We discussHi®vg tdone in sectiorb.7.

5.1.3 Tasks ofdraw()

This part of our application draws to the graphics bufferdoasn the state set hypdate()

Here we mostly use the openFrameworks draw calls to perfbaset actions. First we start
by creating a chessboard pattern on the screen and stoengpther coordinates for use by
update() . Once the calibration of the coordinate spaces is con rnvesl keep the screen
black until the ambient pixel intensity calculations haeeb done.

To calibrate the phase and frame rate of the screen, we digpliie squares on a black back-
ground, that move to a different prede ned position on theesn on every frame we display.
How these are interpreted is discussedbib.

When running a measurement, th@w() function is only responsible for drawing the event
into the graphics buffer and record the time. It is kept \esitn the screen until it is con rmed
detected.

45

5.2 Handling the USB Web Camera

We rst implemented this project by using the Unicatf] library for handling theUSB web
camera and the image stream from it. We soon found that théstea@limiting in terms of
camera control since we did not have access to the low levehgement of the camera. By
investigating the issues we had with Unicap, we decided ¢t best to implement a limited user
space handler or driver for USB cameras on top'4l£2 and uvcvideo ourself to gain complete
control of the camera. The capture example provided invie2 APl [26] was chosen as a
basis for our implementation.

The API is quite simple and limited as most settings are hard codedeardriver to provide
a stable as possible video stream. We provide an initiafizection camdriver_init()

or camdriver_init_exp() which accept an initial value for the exposure control, ashu
down functioncamdriver_ stop() that stops the capture and clears structures, and nally
a grab functionsamdriver_grab_frame() for the application to poll for new frames.

Apart from these basic interaction functions, we also mewvaccess to the exposure control
of the camera witltamdriver_adjustExposure() which accept a positive or negative
difference in the exposure value and returns the new expasiting.

The internal structure of the driver is also quite simplee Tlamera device is represented by a
Linux le descriptor, and all interaction with the cameradene using theéoctl() system
call. The process starts by initializing the camera for gegtthen entering a capture loop
controlled by theselect() system call. The capture loop is run in a dedicated threadl, an
with real-time priority if run with root privileges.

As mentioned earlier, we require that the camera providestaat, or at least close to constant,
exposure times and frame delivery rates to be able to usé¢heiway we intended. To achieve
this we must disable any control or processing in the cantexigrevents this and set static
values where we can. For our Logitech QuickCam pro 9000 thesnsisetting the following
controls inV4L2 during the initialization of the device:

User controls:
V4L2_CID_AUTO _WHITE_BALANCE =0

Extended controls:
V4L2 _CID_EXPOSURE_AUTO = V4L2_EXPOSURE_MANUAL
V4L2_CID_EXPOSURE_AUTO_PRIORITY = 0

46

V4L2_CID_EXPOSURE_ABSOLUTE := 160
0xa046d04 (private focus ctrl) := 100

This turns off the automatic white balance and exposurerotstand set a static value for the
exposure time and the focus. In addition we seMAe2_CID_POWER_LINE_ FREQUENCY
Iter to 50Hz to match the main power line frequency to reduckering. The capture format
is initialized to a relatively small image size of 176 x 144eds to minimize data transfer de-
lays, and the pixel color space is set to YUV2 to avoid vaggiiocessing for compression in
the camera. The QuickCam pro 9000 camera has an optical axe &ecording to its lim-
ited documentation, however we found that it does not sugperstandar®/4L2 controls for
auto focus. Our tests show no indication, though, that thte éocus control introduce any
variable delays indicating it might adjust its focus of ifieom the capture process. We felt
safer however, to set the focus to a static value in the onvatprfocus control the camera does
provide.

The value of thev4L2_CID_EXPOSURE_ABSOLUTEontrol is in theUVC speci cationt
and theV4L2 API is de ned to be in units of 100s, so our value of 160 would according to
speci cation mean an exposure time of 16ms. However, theeatilogitech devices interpret
this value in a different and inverted way. We have been untbind an of cial speci cation

of this control by Logitech, but the Logitech maintained €uGam Team websitesuggest that
the control in relation to &JVC exposure property value @n [s] is interpreted ad=n [s].
This means that our value of 160 (0.016s according to spatioa) should be interpreted as
an exposure time of 1/16s (62.5ms). This seems consistémtid behavior of our Logitech
QuickCam 9000 pro.

We also initialize the low level device driver for capturéarshared memory buffers using the
mmap() system call to map the address spaces. This gives us a pmitierbuffers where the
device driver actually receives the image data from the canad enables us to monitor the
arrival of bits into the buffer. This provides us with the gretamp for when the rst part of the
image is received.

When we implemented the camera handler, we noticed a sigmti gher in the inter frame
arrival times. With our camera settings we expected a sfadnee rate of 19-PS(in this case
limited by anUSB 1.1 hub) from the camera, meaning= 66:67ms per frame. However
our own time stamps taken with tii OCK_MONOTONIighenselect() returns on a new

http://www.usb.org/developers/devclass_docs/USBeWidClass 1_1.zip
2http://www.quickcamteam.net

a7

frame event, resulted in an inter frame arrival time patt@rn ~ 63:98ms per frame for 11
frames, then 9598ms for 1 frame. The reasons for this turned out to be thas#iect()
system call is still using the old jif es based timer systesed section4.4) when waiting for
the data ready signal. In our case, the kernel HZ settingasdtehe default 250, giving a timer
interrupt every 4 ms. This means that when the kernel semacsource of 1%PS it wakes
up at = 64ms intervals (16 jif es) until it can skew its pattern to matchet requested rate
of = 66:67ms by waiting a bit longer. For the 11 frames with the low rate ‘thacklog” is
(66:6/ms 64ms) 11 = 29:37ms, so for the 12th frame it adds 32 ms which is the closest
number of jif es (8 jif es), resulting in a frame arrival tirmof = 96ms for this frame, exactly
matching the = 66:67ms for this frame plus the “backlog” time. The average arriaérover
12 frames is then = 66:67ms (15.0FPS.

For most consumer video demands, we would believe this t&ég io the sense that this is not
usually detectable for the user, at least it is presumakliyanooying. However for our project
this jitter represents a concern because it introduces eertainty regarding the frame arrival
times which again affects our total delay measurements.

The uvcvideo driver does however provide a time stamp fordoeption of the rst byte of
each frame which is not dependent on select() call. However according to speci cation
it usesgettimeofday() . This is still the case on our Linux kernel 2.6.32, on which th
uvcvideo driver time stamps yields exactly the same intemf time pattern as above. In
Linux kernel 2.6.35 the uvcvideo driver is updated with echaddressing this issue, changing
the time source for the frame time stamps to the jif es indegeEnt CLOCK_MONOTONIC
This is a huge improvement, with much less jitter in the appearrival rate. However it still
does not appear to be stable. With the same settings as abevgw get frame timings of
60:00ms and 64:00ms in the ratio of about 2 to 3 frames.

Although the new uvcvideo time stamps provide more accuratestamps for each frame,
the jitter in the actual frame delivery rate causedskyect() and other kernel sleep based
primitives, does not change. To change this we would haved¢ompile our kernel with a
different setting of the HZ parameter, making the lengthhefjif es compatible to our frame
rate. The Linux kernel does recognize this issue and hagdad an option oHZ = 300 that
divides evenly with the most common video frame rates, sscB5PSfor Phase Alternate
Line (PAL) and 30FPSfor National Television System CommitteldTSC) video formats, but
this is not used as default. We did not recompile the kern#éll wichanged HZ setting because
we do not want this system to depend on any nonstandardgettsomponents that we can not
control from within the application. It is one of our specations for the system that it should

48

run on top of the stock Linux kernel as statedir?.

5.3 Handling the Machine Vision Camera

The industry machine vision camera, the Basler Pilot piA192@dc, is handled through a user
space handler, developed in conjunction with another gaheoVerdione project, for use with
openFrameworks. This provides access to functions to seiibed of the camera to a specic
frame rate, and to set an absolute exposure time.

The proprietary driver package unfortunately do not prevadtime stamp for the actual ac-
quisition of the image. For this reason the camera handieoody provide a time stamp for

when the frame grabber function returns a new image fromtiverd This means that the time

stamp for the reception of the image in the camera driygrigta bit later than is actually the

case. This means that the measured and calculated delag Bfltih camera is higher than the
true latency of the camera, because the time spent in therdire interpreted as a part of the
camera. This has no impact on isolating the delay of otheicdsvn our system because this
behavior is consistent in all cases that the Pilot Cameraeid.us

We used the same parameters for this camera as for the weba;drmowever we had to use a
higher resolution image of 480 x 360 pixels, compared to & x 144 we use for the USB
web camera. The Pilot camera only support setting a regiantefest of the sensor, so we
had to set a large enough resolution to be able to t the scireéime view of the camera. The
image was scaled down to 176 x 144 pixels for the processiogrimpplication. We have two
reasons for choosing a low resolution image: First, we lthetamount of data that is sent over
the communication links. The second reason is to show thavadsolution camera also can
be used in this system.

5.4 Matching the Frame Rate of the Camera to the Refresh
Rate of the Monitor

As we now know, we can not adjust the refresh rate of the sc\encan however control the
camera to some extent in order to match the capturing frateetwaa multiple of the screen
refresh rate. We also make the assumption that our captdewige is operating, or at least

49

may be con gured to operate, at a speed considerably lesshanonitor, as the granularity
of this way of matching the frame rates is quite coarse.

Assuming our screen refresh rate is 60 Hz which is very comfoorboth LCD and CRT
monitors, we need our camera to operate at frame rates okénge 30, 20, 15, 12 or 10
FPSor even below. The Logitech QuickCam pro 9000 camera does noeide a control
to set the frame rate. However we may utilize the exposuréraloto enforce the behavior
requested. As mentioned earlier, Logitech does not pradaeimentation on the behavior of
this control, but we discovered it to support a reasonabke granularity, enabling us to tune
relatively close to any desired average delivery frame watiein the camera's boundaries. It
is important to keep in mind the limitations introduced by tiimekeeping in the kernel for
IO device communication as addressed in sectto® that undoubtedly introduces a variable
amount of jitter depending on the desired average frameaiglrate. Our tests show that on
our current system, the jitter is minimal when we choose te timto a delivery rate of 1BPS

(0:002FPS). See chaptes for further results.

We implemented this by monitoring the rate of which we ree@mwages from the camera in our
application, and depending on the average rate over a pnedenumber of frames we adjust the
exposure time via our camera driver by small amounts untihaxge achieved a stable average
frame rate within a prede ned deviation. To avoid a very Igrgcess of matching the frame
delivery rate to the refresh rate of the monitor, we inigalthe camera with a value for the
exposure control which we estimate to be close to our dedieédery rate. By doing this only
small adjustments are needed.

The Basler Pilot camera provides controls for setting thérel@grame rate, so this tuning of
the exposure control is not necessary as long as the setwrpi®e is not too long for the
frame rate to be achieved.

For our Logitech camera nding a proper value for the expestwntrol is somewhat coun-
terintuitive due to their non standard interpretation @& tdontrol. However we found that the
following formula give a good approximation to the Logitaokerpretation:

- 1 1
Logitech true exposure time [} GEvaiie 100s

1000000

1000

10
Logitech true exposure time [s]

UVCvalue =

50

Exposure period

] |] |] | Exposure

i [IME

gl b sereen

Virtual display period

Figure 5.1: System in phase. The speed of the system is nttdereen frames to the exposure
period. System are in phase when the virtual display periatthes the exposure.

If we assume that the camera exposes constantly, the expisigr is equal to the inter frame
delivery time, and we get

UVCvalue = desired FPS 10

This way we can nd a decent approximation to the true exposune depending on our de-
sired frame delivery rate when we initialize the camera, amlgt small adjustments would be
necessary to match the frame rate to our target.

In following this scheme of matching the frame rate to a rpldtiof the monitor refresh rate
by utilizing the exposure time, we are making the assumgtamh the exposure period of the
camera, i.e. the time between the start of each exposurenstant provided all variable con-
trols are turned off, and that this exposure period is dyemirrelated with the frame delivery
rate from the camera. On this grounds it should be suf ciemhaitch the frame delivery rate as
close as possible to a multiple of the screen refresh rat@atee it possible to synchronize to
the exposure period later on.

5.5 Matching the Phase of the Display to the Camera Expo-
sure Period

At the point in our calibration pipeline where we start thexpé synchronization, we assume
that we have a good match between the screen refresh rateendrera exposure period as
shown in gure 5.1 The exposure periof the camera is de ned as the time between the

51

start of an exposure to the start of the next. We now must ntatchime of when we display
images on the screen to the start of the camera’s exposuessknce we want to establish a
virtual display period for the screen equal to the camerasuge period (the time from the
start of one exposure to the start of the next), and matchirggtd the exposure phase. If
we use a capture frame rate of 10 FPS and a 60 Hz refresh ratkef@creen, we have an
exposure period 01000ns=10 = 100ms which matches 6 times the screen refresh rate of
1000ms=60 = 16:67ms. If we do not control when we display events to the screen wdco
initiate the display of an event at any time during the expegeriod, introducing an uncertainty
in the delay measurements of the full duration of the exp®period, in this example a full 100
ms potential measurement error.

As we discussed in chapte, we can not adjust or skew the refresh rate of the screen so tha
it exactly matches the start of exposure. Neither can we skevcamera exposure period to
exactly match the time of the screen update. The lower bo@iodrgphase synchronization is
restricted to identifying which particular screen frames displayed during the start of expo-
sure, which translate into a uncertainty in our delay messents of one screen frame duration
of 16.67 ms.

To implement this phase synchronization we keep track &f ae& number of screen frames
matching the camera exposure period, making this the lesfgblr virtual display period. In
our example above, we have an exposure period of 100 ms soedemé&eep track of sets of
6 screen frames to match the period of the camera. The chall&en is to gure out when to
display these 6 frames in such a way that all of them are displauring one single exposure
period of the camera. Depending on the camera architeataig,a subset of these frames,
that matches the actual exposure time, may be visible in agemFor a camera that uses a
constantly exposing rolling shutter, the whole set of 6 farmay be visible in one image.

If we do have a camera with a shorter exposure time than thesexe period, meaning that the
camera is “blind” in the last part of the exposure period, wedha way of identifying which of
the frames from our set actually are captured by the camereauBe we want to synchronize
with the start of the exposure, we display bright areas oferdint locations in a number of
frames matching the exposure time in the beginning of ourA®tve can assume we do know
the exposure time of the camera since we set it ourself totia sedue, nding the number of
display frames to mark is trivial. By doing this we may adjusten we display these frames
in such a way that all the marked frames are visible in onelsimgage from the camera. We
decide that we have a successful synchronization of theepbiagur “virtual display period”
when all the marked frames are visible in the image for a pregeber of frames from the

52

camera.

We may think of our monitor as having a constant number of sioés for displaying frames
each second, determined by the refresh rate of the screesnnmisg the screen refresh rate is 60
Hz as in the example above, we may think of the monitor as lgeéntime slots for displaying
frames. This is a simple scheme and we can keep track of thatseby a simple counter.
Initially we do not know anything about which slots corresgdo the start of the exposure
period, so we start by just selecting a slot and display ouos&ames. Upon receiving the
images from the camera we detect the marked frames and weargkek decision based on
how many of these we see in the image.

Using the numbers from our example of 6 frames matching tpesxe period of our camera,
and assuming that it is using a constantly exposing shulie6 frames are captured by the
camera. At this point though, it is likely that we are out obph and the displayed frames span
over two images. If we had a camera with a discrete exposuw@atessing period, some of
the frames will not be visible in any image as they were diggtwhile the shutter was closed.
For this reason we must select the rstimage in which we ddteemarked frames as a basis
for our decision, as we can not assume that the camera started exposure directly after
the exposure of this image was done. Let us say we see 2 of thednframes in this image,
and that we identify them as the 2 rst of the displayed frames want to shift the time for
displaying the frames 4 display time slots earlier in ordeamtike them all visible in the image.
This process of displaying and capturing the frames of theali display period is repeated a
few times to verify that we now are in phase with the camerg®sure period.

It is unsafe to assume that we have achieved a stable sysa¢ke#ps in phase over time, when
using a system like this. It is likely that the matching of freme rate of the camera may not
be exactly a multiple of the screen refresh rate, and as wisbed in sectionb.2 we may
have a considerable jitter in the reception of the framesfitee camera, however as long as the
assumption that the camera exposure period is constanhani is not dependent on that the
kernel timekeeping granularity is valid, then this is notralgpem. Another issue is the possible
jitter in the control loop deciding when to draw to the gragshbuffer to be displayed on the
screen. This may cause a frame not to be displayed, eithaubeat was overwritten in the
graphics buffer by the next frame arriving too early or bynggeivritten too late so it missed its
time slot. We discuss this in sectiob.6. These uncertainties dictate that we must repeat the
phase synchronization in a timely manner in order to achéestable system.

53

5.6 Program Control Loop and Speed Management

The single most important aspect of implementing this systetimekeeping and speed man-
agement in order to insure that each event happens at theingh We have decided on the
following requirements for our application:

1. The display thread must run at the same speed as the sefezshrrate in order to main-
tain hard deadlines for writing to the graphics buffer.

2. No image processing step should interfere with the spé#tealisplay thread in such a
way that it misses its deadlines

As discussed earlier, we use the framework openFramewloaksplements a program man-
agement loop on top of the openGL toolkit, using recurrintbeaks to the functionapdate()
anddraw() , whereupdate() handles any time consuming processing stepscdaad/()
only draws to the graphics buffer. The rst task is to contitté speed of this loop so that we
draw exactly one frame to the graphics buffer for each screfeash.

OpenFrameworks provide a frame rate control functid8etFrameRate() that is sup-
posed to control the speed of the callback loop to match tget&rame rate given as parameter
to the function. This was the obvious rst choice for conliray our framerate, but there is a
few disadvantages with this method though. For the frameegantrol openFrameworks uses
the Linux implementation ofisleep() which is jif es based and as such has a low granular-
ity similar to what we discussed for timers in sectidnd, 4 ms for recent Linux kernels with
a HZ value of 250.usleep() is also deprecated from the POSIX.1-2001 standard, and in
POSIX.1-2008 the speci cation is removed all together. Blonportant is the placement of
this timer control in openFrameworks as it sleeps to matehtdinget frame rate just before it
calls the possibly labor intensivgdate() function, effectively eliminates the possibility to
adapt to changing workloads in the application. For us trakes theofSetFrameRate()
function useless.

Our second approach was to turn off the openFrameworks frateecontrol and handle the
speed control ourself. By establishing a timer control inkibginning of thedraw() function
we are able to make the application to start drawing to thelgea buffer at the right times. We
used the Linux high resolution sleep functicleck_nanosleep() to be able to wake up
at the right time, by utilizing the possibility to sleep uran absolute point in time according to
a speci c clock, as opposed to sleeping for a time intervalsTs reasonably precise, however

54

we still experienced some jitter causing us to drift comgacethe display refresh, so that we
skew our control with the time slots for the screen.

Therefor itis necessary to synchronize our applicatiohéovertical retrace signal of the screen,
the time when the monitor nishes drawing a frame and prejgaio start drawing the next (see
2.2). The hardware and the graphics drivers do provide a védigac signal, Vblank, that
openGL may use to synchronize the swapping of the graphitferbu When this option is
set, openGL blocks when the swap buffers is called until thiahk signal occurs, effectively
locking the frame rate of the application to the refresh odtthe screen in a way that insures
that every frame is displayed on time, providing the appiicais not too slow to reach the
deadline. OpenFrameworks provide an interface to the opeay@chronization to the Vblank
signal with the functiorofSetVerticalSync()

The next challenge was to make sure that our display threstdlégdo reach its deadlines, mean-
ing that one loop should never take more than one frame iadt(étﬁ%ms for a 60 Hz display).
The most time consuming tasks we do are related to the imagegsing, with the openCV
calibration of the coordinate spaces and the calculatioth@fambient pixel intensity values
as the heaviest (seb.1.2. As these tasks are done in a non critical phase of the apiolic

in terms of timing, this is okay. Of the recurring image pregiag tasks we need to do, the
warping of the image perspective (guré.4) and then image buffer copying are the most time
intensive, so care must be taken to avoid to use these actioresthan necessary. Because our
identi cation of displayed frames in the images is only kdsa recording the pixel intensity at
known locations in the image by simple arithmetics, thisastime consuming in itself.

One last challenge still persists in this scenario. In apE®e setting, the operating system
may choose to schedule our display thread in such a way timgsies its deadline. The present
scheduler in Linux, the Completely Fair ScheduléF§, shares the CPU evenly between the
running processes, granting each competing prote@siber of processe$ of the available
CPU time de ned by a period that by default start at 6 ms, butdases so that each process is
granted a minimum of 2 ms CPU time during each period. In the taet we are competing
for the CPU with one CPU intensive process, we may have a waosstldacking period of 3
ms, meaning we are spending 3 ms per 6 ms elapsed time in bigtkie. This may result in a
maximum time in blocked state of 9 ms over the course of ondalidrame Q.6§ms). In the
case that we have to spend more time tﬁ%mns in processing for the next display frame, this
is causing us to miss our deadline. However this scenarioligaly in the normal case, but
with increasing load on the system with more processes congpfer the CPU, the time spent
in blocked state might be a concern.

55

A challenge due to scheduling is that we may get preemptesi ¢tmissuing the command to
openGL to swap its buffers. If this causes us to miss the degdhe Vblank synchroniza-

tion causes the application to block until the next displenfe, making us miss one frame
completely and throw our phase synchronization off.

For these reasons, it is preferable to run the applicatioaroidle system, minimizing the risk
of missing deadlines due to system load. In our implementatie also included a function that
sets a high real time priority under ts&®CHED _FIFOscheduler when run with root privileges,
which indeed helps avoid the problem. However we do not deépenthe availability of root
access.

5.7 Taking Measurements

Once the calibration of the system is done, the rst displanfe of the next virtual display
period as found during the phase synchronization stageidee®.5), is marked to display

a white square in the middle of the screen. This action isroeEmbwith the time stamp ag,t
according to our breakdown of time in sectidt?. The location to record the time of the display
command for this screen frame, is a design choice. We chose to de ne this as the time when
the graphics buffers were swapped on the graphics card. Besa& also have synchronized
this action to the vertical retrace signal, we make the aptomthat the time stamps and ¢
become equal.

To achieve this, a change to the openFrameworks code basequased, creating a callback to
our application once the call to the functigiutSwapBuffers() returns. In this callback
function we then record the time for't,.

The next time possible to record in software happens at ttepton of image data from the
camera. We record the time of the reception of the last pixéhé image buffer in time stamp
ts. The last time we record is time stampwhen we detect the image containing the white
square event.

These time stamps together with the known exposure settitighee theoretical calculations on
transmission and propagation delays, form the basis foevhkiation.

As discussed in sectioB.5, we can not assume that the phase stays matched for several me
surements in a row as there can be a high possibility of dudt @ different factors including

56

speed matching errors, jitter and preemption. Thereforelese to run the algorithm for syn-
chronizing the phase between every measurement when beeasurements are conducted in
series.

5.8 Summary

In this chapter we discussed how we implemented our systdre@ne of the challenges we en-
countered in the process. The system is implemented userfopmeworks on top of openGL
as aloop of callbacks todraw() and arupdate() function. Our program proceeds through
a series of stages in order to calibrate itself by matchiegtiordinate spaces of the screen and
the image so we address the image directly using the knowatitws on screen. Then we
match the frame rate of the camera to a multiple of the screfeesh rate, and nally we match
the phase of a virtual display cycle to the exposure periati@tamera so that we are able to
display an image as close to the start of the camera exposy@saible. When this is done an
event is drawn on screen at a time according to this phasehartane it takes for the event to
appear in an image from the camera is recorded. In the negta@hae present and discuss our
test setup and results for the delay management system.

57

58

Chapter 6

Tests and Results

6.1 Test Setup

We conducted our tests by connecting the monitor and the reatnea computer and placing
the camera so that it had a full view of the screen. The camasplaced 1 meter from the
screen, and tests were conducted in an environment with ddrambient lighting conditions
(about 100 lux measured in front of the screen).

The computer we used has a 3.2 GHz Intel Core i7 960 CPU, 6GB of Red,a NVIDIA
GTX460 graphics card. The Basler Pilot piA1900-32gc mackis®n camera is connected
to the machine via a gigabit Ethernet switch, and the Logit@aickCam pro 9000 USB web
camera is connected directly to an USB 2.0 port on the compUtee ViewSonic VX2000
LCD monitor is connected using the digital DVI connection anel Brell P992CRT monitor
using the analog VGA connection.

The following parameters were set for all tests:

Screen refresh rate 60 Hz

Screen resolution 1280 x 1024 (for CRT)
1600 x 1200 (for LCD)

Target frame rate for capture 10

Capture image size 176 x 144 (for the USB camera)
480 x 360 (for the Ethernet camera)

Tests were run with normal user priority for the processngishe 2.6.35 Linux kernel. The

59

system runs on the X-server and the GNOME window managere&ar of the setup con gu-
rations of camera and monitor pairs, 1500 measurementstales.

To validate our results, we also conducted tests with arrexitéool. We connected the Basler
Pilot camera to a manual hardware trigger, with which we acantrol precisely when the camera
starts the exposure. For the measurements we placed a Ligttirt§ Diode CED) right in
front of the camera, also controlled by the trigger so thatnwve activate the trigger, the diode
lights up at the same time as the exposure starts. A phastoess placed on the screen so that
it reacts to the image of the diode light when displayed orstiieen. The voltage over th&D
and over the photoresistor is monitored by a storage oscijpe, which allows us to read out
the difference in time between the rise in voltage over thesecomponents.

These validation tests has clear and de ned uncertainiiee.camera has a de ned start delay
from the trigger signal to the exposure start of 66.45 The introduced lag by tHeED is in
the range of nanoseconds, so we assume it is negligible eTe@&o uncertainty in the timing
of the event to the exposure start.

On the monitor side we can only display images at the scrdegsterate, which means an un-
certainty of the duration of one screen frame is introdud¥#d.keep the settings of the camera
and display the same as in the other tests, meaning the amtgrof the validation measure-
ments is 16667 s. The photoresistor, the PDV-P9004 photo cell from Advdneéhotonics
Inc., has a speci ed typical rise time, which means the tiheeresistor needs to adjust fully to
light, of 60 ms. We measured its initial response in our setitip the oscilloscope to be almost
instant in terms of starting the reaction to light.

No separate validation tests were conducted with the USBoaetera because this camera can
not be controlled by an external trigger. The test setup @lstrould prove the accuracy of the
tool itself, and is valid also for the USB web camera con dgioas.

6.2 Results

In this section we discuss how to evaluate the timestampthaesults for each different setup.
Generally we see a reasonably consistent pattern betweeamthgurations. Our main metric
for evaluating the results is stability and reliability betreadings, and how well we can isolate
the introduced delay from the cameras and monitors. Thet éxaal of total end-to-end delay
shown in these results is not universally representatigeyea can not assume our hardware

60

setup or software is comparable directly to other systems.

6.2.1 Evaluating the time stamps

The time stamps we de ned in sectiofh.2are recorded throughout our application as described
in section 5.7. Here we translate these into a few delay intervals that wasome directly or
calculate:

to—>1t Processing delay from the decision to show the event umtigthphics card starts
sending the image to the monitor (measured).

t, —>1t; Transmission delay of the screen frame data over the disiplaycalculated)

t,—>1t3 Total delay of the elements outside the computer (measured)

t; —>1tg Transmission delay of the video image data over the cametddalculated)

ts—>1g Processing delay up to the measurement application recédnevideo image
(measured)

In addition to these, the exposure times-$ t5, is known.

Of these delay intervals, the time between the time stampsad § is the most interesting to
us. This is the time the pixel data spends in the hardware oosmngs outside the computer. We
know the delay introduced by the connection links by calioites, the rest of this delay consists
of the exposure time of the camera and the processing la®ntthe camera and the display.

It is important to note that the actions happening in the noor@ind the camera are completely
independent of each other, and may overlap in time to anynextmited by the camera expo-

sure time in this setting. Anything that is displayed durihg exposure time are visible in the
captured image. By matching the phase of our display timioghe exposure period of the

camera, we try to time the display of the event to the rst sar&tame visible after the start of

the image exposure. This is shown in gul(a)

Further, it is important to know that several of the time comgnts within each of the devices
may overlap. This is especially important on the camera widere our web camera process
and transmits its data continuously as the rolling shuttekes exposed pixels available. We
assume the Logitech QuickCam pro 9000 reads out pixels fremensor line by line as this
is common for CMOS rolling shutter image sensors, and presessd transmits them as they
come, although we have not been able to nd documentationekglicitly states this. The

61

Processing and transmission

Exposure

Display screen frame

Pixel processing - 5 Monitor

Transmission o 5

(a) LCD monitor and web camera. The web camera processesastiits ready image data concurrently with the
exposure

<> Transmission
Camera _
<« 5 Processing

Exposure

Display screen frame ¢ N

o Monitor
Transmission —«— >

(b) CRT monitor and the industry vision camera. Note thairtiege is drawn on screen as the monitor receives the
signal

Figure 6.1: Actions within monitor and the camera (Timings @ot to scale)

Basler Pilot piA1900-32gc does not overlap the exposure;gasing and transmission of the
same frame.

This overlap in time is also present for tBRT monitor, as it directs the incoming analog signal
directly to its electron guns, drawing the frame on the steeethe signal is received. The LCD

monitor has to process the received pixels before they arerdon screen adding a processing
delay to the signal.

The overlap of these time components make them a bit hardsolade, although it is possible
to approximate them by calculating the transmission dedapffie line of the image when using
the web camera rather than for the whole image. In any caseawethe difference between
the time stampstand $ which is the total time spent after the graphics card stantisg data
until the last pixel of the image is received by camera drivessuming we have successfully
matched the phase of displaying images and the exposureawsubtract the known exposure
time as well from this result. This should indicate the tédiééncy of the external hardware, the
monitor, camera and cables:

mw = tg tp exposuretime
For the tests using the web camera we may, under the assampdide above, further subtract
the transmission delay of one image line from the camerag@dmputer from this. Using the

Ethernet camera, we may subtract the transmission delaybbé frame as the camera does
not start sending data before the exposure is done.

62

From the monitor side, the transmission delay of a screendraver the graphics link can be
calculated and subtracted from the above result. This lzdeml differential should, provided

we display the image on the screen at the same time as thewggpsiarts and that the actual
drawing of the image and the reception of the signal does veriap in the monitor, in theory

only consist of the in-device processing latencies of threera and monitor combined.

camera+ monitor — t8 t2 exposure time Txcameralink Txgraphicslink

The uncertainty of this calculation necessarily includestime difference between the start of
exposure and the display of the screen frame containing\amntetypically up to one screen
frame duration, 16667s for a 60Hz monitor. This is therefore the granularity of measure-
ments for the total end-to-end delay.

Assuming that &RT monitor does not introduce any delay to the system, we cdatésthe
delay introduced by the camera used with the CRT monitor fleacalculated camera+ monitor -
Then we can again use this information to isolate the latehtye LCD monitor

In the next sections we show the calculations for the linkageland discuss the ndings for
each of the test con gurations.

6.2.2 Transmission delays

Here we present the calculations for the transmission daay the communication links in
the system, the graphics link to the monitors and the dakaflom the cameras. We have not
included propagation delays in the presentation of thelseledions, because they are evaluated
to zero when rounded to microseconds, which is the chosetutas of our test. For reference,
the longest propagation delay we calculated for our systtapds 26 nanoseconds (0.02§).
This is for the Ethernet network link, using a signal spee@€AT5e of 195000 km/s (0.65 c)
and a cable length of 5 meters.

Transmission delay over the USB camera link

The Logitech QuickCam usesWSB 2.0 link to the computer. The USB link is speci ed to
a data rate of 480 Mbit/s, however the camera does not utiiegull rate of the link as it
constantly transmits small amounts of data as it becomekblafrom the sensor. Using the
Wireshark network protocol analyzer, we measured thatki®edverage bandwidth used by the
Logitech camera is 5.689 Mbit/s with our settings.

63

For the capture from the USB camera we use a 176 x 144 px resolatage in the YUV422
format which means 2 bytes/pixel or 16 bits/pixel. Assumihgt the camera transmits one
image line at the time, we get the following calculated traission delay:

176x 16bit=px
(5:689 1000000pit=s

T Xusblink = 1000000 = 495

Transmission delay over the Ethernet camera link

The Basler Pilot camera link is a gigabit Ethernet link, carted to the computer through a gi-
gabit Ethernet switch with no other traf c. By speci catiohd switch we used, the NETGEAR
GS108 gigabit switch, has a maximum packet switching defaly cs. From the Basler Pilot
manual we know that the GigE protocol used for transmittiatadptimizes the network ow
by making sure to Il every Ethernet frame with payload siZeld96 bytes. The inter packet
delay is set to 800 ns.

The image resolution captured from the Pilot camera we séB@x 360 px, and with the
selected format YUV422 we get the following calculated @ggtion delay:
_ 480 36Qox 16bit=px

. —PX 10000005=s = 2765
(1000 1000000Dit=s S S

T XEthlink raw

This delay is the theoretical time for transmitting the iratata on to the link without pause
time. To this we must add the additional delays caused byntiee packet delay and the switch
delay:

480 36(Qx 2B=px 80Ms

1496 1000s=s _ -80S

Accumulated interpacket delay=

T Xewink = 2765s +185s +4 s =2954s

Transmission delay over the VGA graphics link

To calculate the transmission delay of the VGA link of the mam we nd the necessary

information in the “modeline” from the NVIDIA graphics dev mode pool. The modeline is
a con guration line containing parameters on how the grephiriver should send data to the
monitor. We use for the CRT monitor a resolution of 1280 x 10B4Is and a refresh rate of
60 Hz. From the modeline we nd the pixel clock parameter while nes the rate the pixels

should be sent onto the link. For this resolution and refrasé the pixel clock is 108 MHz,

which give us the following calculation of the transmissagiay:
1280 1024x

1 =s =121
(108 1000000px=s 00000®=s 36s

tXvea =

64

monitor mean value (ms) standard deviancg)(con dence interval (£ms)
CRT 156.23 3.60 56.54
LCD 170.40 5.04 63.70

Table 6.1: Mean values for the validation test. 30 obserwnati

Transmission delay over the DVI graphics link

The digital DVI link protocol works the same way in terms ohthg as the VGA, although the
semantics of the image signals are different. From the nhoelgd use for LCD panel resolution
of 1600*1200 and refresh rate of 60 Hz, we get the value foptkel clock of 162 MHz, which
gives the following transmission delay.

1600 120(x

1 =s =121
(162 1000000px=s 00000®=s 36s

tXpvi =

6.2.3 Validation tests

The validation test result shows the time betweenuiB lights up and the time the image of
the light is visible to the photoresistor on the screen. \aiame that these measurements are
accurate up to the uncertainty of the duration of one screand as explained above.

We did 30 tests for each of the monitors with the photoresistped on to the screen, and
the camera pointing directly at the LED. When the trigger issped, the LED lights up and

simultaneously the camera starts to expose an image. Tlyeifrean the camera passes through
the processing chain of our measurement tool and is displagethe screen. The difference

in time between the power was supplied to the LED and to theégpesistor starts to react is

recorded with the oscilloscope (see gufi2).

The mean values of the test results are presented in &lleNe see that the 95% con dence
interval is very high. This is due to the low number of obs&ores, which lead to a high level of
statistical uncertainty. These validation test valuesusexl to compare the results we have for
the two con gurations where the Pilot Ethernet camera islugethe results are comparable,
we know that our measurements were accurate.

6.2.4 Delays using the web camera and the CRT monitor

In gure 6.3we see a plot of our total delay as measured by our tool. Thig/slthe pattern
of the results from our measurement system. We see thatgdhktseoncentrate on three levels

65

Figure 6.2: Output from the oscilloscope

250000 T T T T s T qc T - T
+
240000 - USB camera and CRT monitor |

230000 T
220000 - T
210000 - —
200000]

190000 - —
180000 - - - - - - -HE - - - - - -

170000 F 4 3 o == = = = - B B M M OB e HE = s =
160000 [—

150000 -
140000 -
130000 -
120000 T
110000 T
100000 -
90000 -
80000 [+ + =+ + o+ o+ 4 + 4+ + ++ + O+ O+ o+ o+ + 4+ o+
70000 -
60000 -

50000 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Measurement number

microseconds

Figure 6.3: Total end to end delay for the web camera and CRTitar@on guration

66

......... > < — = = EXxposure

..... | | | | === Screen frames

Figure 6.4: An event displayed on the screen frame at thedtan exposure may be captured
by the previous video image

Delay interval mean value §) standard devianceg) con dence interval (xs)

to —> 1ty (total delay) 171822 26514 9320

to—>1 16635 602 840

t,—>1g 145857 25044 7754

tg —> 1o 9330 4823 726
hw 45857 25044 2694
camera+ monitor 33226 25044 2054

Table 6.2: Mean delays for web camera and CRT monitor setlj) @bservations

of delay, two of which are spaced at approximately 1678@part. This corresponds to events
being displayed on different screen frame slots comparedetart of the camera exposure,
where the top row was exposed for the longest. The next rondvsatayed 16667 s later and
hence was exposed for a shorter time.

We see another constellation in this plot as well, with ald@@000 s shorter delay than the
top row. Because the web camera we use has no pause betweapdkare of each frame, it
captures anything as long as it is displayed before it isheis with the current image. When
we display our event on a screen frame during which we expechéw exposure to start, we
run the danger of the previous image capturing the event #s Wais scenatrio is illustrated
in gure 6.4 The images that we display just early enough to be captuyetido previous
exposure, show up in our results as having 100 ms shortey tleden the others. The ratio
of these “premature” measurements are 8% of the total nuwibeslues, while 65% of the
measured values are contained in the “top” constellatidhe@flelay measurements.

Table 6.2 shows the mean values of the different measured delay aiserand the calculated
values of the the hardware delays. We see that the standaedide of the values is quite high
due to the large range of measured values, especially duarte ef the events being captured
by the “previous” video frame as explained above. If we télese readings out of the equation,
we see in table6.3that the standard deviation is comparably much smaller.

The values of the total end-to-end delay we observe haveaa gpacing of one screen frame

67

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> t (total delay) 179232 7651 9706
to—>1 16630 626 874
t,—>1 153026 4596 8075
ts—>1 9575 4930 756
hw 53026 4596 2805
camera+ monitor 40395 4596 2139

Table 6.3: Mean delays for web camera and CRT monitor setupuithe “premature” obser-
vations. 1383 observations (92%)

(16667 s). This shows the granularity of our total end to end delagsueements as we have
explained in sectior6.2.1 It is also clear from the plot of the raw end-to-end measer@sias
shown in gure 6.3 We can argue logically for how these constellations ocand therefore
that these constellations of delay readings also are gegsilistinguish into separate classes
of results. The 95% con dence interval for the total delayasigrements support this in that the
distinct constellations of data we see also are distinctsitaistical sense in that the con dence
interval do not span over the values of the other constefiati

Therefore it also makes sense to investigate the constellat values with the highest delay.
If we isolate the top row of the plot shown in guré.3we get the values shown in tab&4.
The measurements and calculations rely on how close to dniea$tthe exposure of the video
image we are able to display our event. This means that ieisaiigest measured delays that
would represent a good basis for calculating the hardwaeadzes.

The lower constellation of values however are still intengsto investigate, because, if our
theory is correct, they should represent the delay in theesygexcluding the exposure time as
a factor. These numbers could then also actually serve aschimark for the other measure-
ments because, again if our theory is correct, they are coed to be displayed on a screen
frame that covers both the exposures as shown in gé6ré The mean values for this con-
stellation is showed in tabl@?. We see that the latency calculated for the camera and nmonito
(' camera+monitor) INdeed match the mean value calculated for the top coastilreasonably
close. This Con rms our theory about the origin of these lowaglevalues, and it also con rms
that the top constellation of the end to end delay values ohadsh the start of exposure as close
as possible.

The processing delay we measure within our applicationsis ahportant to understand. We
see that the delay from the application decides to displkagtent until the screen image carry-

68

Delay interval mean value §) standard devianceg) con dence interval (xs)

to — 1ty (total delay) 184198 34 11608
to—>1 16699 553 1045
t,—>1g 155330 3324 9651
ts—> 1o 12170 3261 912
hw 55330 3324 3364
42699 3324 2569

camera+ monitor

Table 6.4: Mean values for the maximum delay constellatmmttie web camera and CRT
monitor setup, 973 observations (65%)

Delay interval mean value §) standard devianceg) con dence interval (£S)
to —> 1 (total delay) 84232 14 15267
to—>1 16695 117 3017
t—>1g 61111 1297 11016
tg—> 1y 6426 1295 1234
hw * 61111 1297 11016
48480 1297 8727

camera+ monitor

Table 6.5: Mean delay values for the lower constellationeaidings for the web camera and
CRT monitor setup, 117 observations (8%) (*)Not subtradtedexposure time

69

ing the event is being sent onto the graphics link, is on @el®630 s with a small standard
deviance of only 480 s. Because our application is synchronized to the Vblankepastsde-
scribed earlier, our control loop only runs once every 1666.7 When the delay from within
our processing loop to the Vblank pulse occurs is very closthis number, it indicates that
we normally have a very light processing load in the systefmclvmeans that we spend the
majority of our processing time waiting for the Vblank putseoccur. The standard deviance
also shows that we occasionally do miss the deadline foridgpthe screen frame. We discuss
this more closely in sectio6.4.

The delay incurred before we acquire the image in our appdicdrom the camera handler is
also affected by the control thread being blocked waitindHe Vblank pulse. On the reception
side of our application we therefore have a certain rate foerwwe can grab the image from
the camera handler of 1666%. The average value for the delay is lower than this graitylar
because the camera handler may receive the image at anydimpaced to our control loop.

Because of the way these measurements are generated, wdlselBnstellation of data with
the highest measured total delay as the basis for isoldti@dhardware latencies. From the
table 6.4 we see that that the introduced latency by the camera and tméan together

(' camera+monitor) IS IN the statistical con dence range of 42699 2569 (40.1 — 45.3 ms).
Because we assume that the CRT monitor does not introduce @mgyato the system, we
can conclude that the Logitech QuickCam pro 9000 web camereas responsible for this
latency.

6.2.5 Delays using the machine vision camera and the CRT monitor

The test con guration using the Basler Pilot Ethernet cantegether with the CRT monitor
shows a similar pattern in the raw end-to-end delay measmepiot in gure 6.5. For this test
con guration we have the two distinct constellations of m@@ment values spaced at 16667
s apart. The reason for this is the same as above. From thigvpleee that we do not have
the constellation of low delay values that the previous gumation did. This is because the
Pilot camera does not expose constantly, meaning that thereadoes not capture events that
happen between exposures. As illustrated in guses, when the event is displayed on the
screen frame that correspond to the start of exposure, baljntended exposure captures it.

For this setup, 68% of the measured end-to-end delay is ilother constellation of values as
opposed to the previous test con guration where the majovas in the top row. This means

70

250000 T T T IE h T d CR_I'_ - T
+
240000 - thernet camera an monitor i

230000 |- .
220000 | .
210000 | .
200000 |- .
190000 |- .
180000 |- .
170000 |- .
160000 |- .
150000
140000 | .
130000 |- E
120000 |- .
110000 |- .
100000 |- .
90000 |- .
80000 |- .
70000 |- .
60000 |- .

50000 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Measurement number

microseconds

Figure 6.5: Total end to end delay for the Ethernet cameraC&id monitor con guration

..... > < — = — EXposure

..... 1 --.---.-I | | I-" Screen frames

Figure 6.6: The camera do not exposure constantly, thusemt Bappening on a screen frame
that overlap the start of an exposure are not captured byréweopis image

71

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> t (total delay) 141629 7720 6896
to—>1 16589 24 841
t,—>1g 122079 7722 5906
ts—>1 2960 5 150
hw 55411 1722 2532
camera+ monitor 40321 17722 1768

Table 6.6: Mean values for the Ethernet camera and CRT masetap. 1500 observations

Delay interval mean value §) standard devianceg) con dence interval (£S)
to —> 1o (total delay) 152917 33 13725
to—>1 16587 33 1488
t,—>1g 133370 33 11969
tg—> 1y 2960 5 268
hw 66720 33 5986
camera -+ monitor 51612 33 4632

Table 6.7: Mean values for the maximum delay constellatooritie Ethernet camera and CRT
monitor setup. 478 observations (32%)

that 68% of the time the events were displayed one screereftatar than the optimal. Still
32% of the measurements seem to have hit the target of beipged on the rst screen frame
overlapping the exposure time.

The mean values of the experiments run with this con guraice shown in tableés.6 and the
values for the top row only are shown in tab&7. Generally we see that the total end-to-end
delay is lower compared to the previous test con guratiohisTis explained by the exposure
time of the two cameras being set differently due to the ckffié ways they operate.

Because there still is a clear constellation of total endsid-delay readings in the high row of
values, we use this constellation as the basis for evaly#imhardware latencies. In tab&e7
we see that the Pilot camera seems to introduce a slighthehigtency to the system than the
web camera does. However this difference is well within thergmm of error. Again, under
the assumption that the CRT monitor does not introduce araydelthe system, we conclude
that the Basler Pilot machine vision camera introduces adgteo our system in the statistical
con dence range of 51612 +463% (47.0 ms — 56.2 ms).

As we discussed in sectioh.3, the driver delay is included in this measured delay for titat P

72

250000 T T T
240000
230000
220000
210000
200000 |- S-S S S U OIS
190000
180000 - —
170000 - —
160000 -]
150000 - —
140000 - —
130000 - —

uUsB carrlmera and LCDI monitor +

T T T
+
+

| | |

microseconds

120000 & % + + + # + +4+ + + 4+ + + + # + ¥+ 4+ H 4 |
110000 - T
100000 [+ #4 HH B S HE HE B S R HEE e e
90000 T
80000 T
70000 T
60000 T

50000 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Measurement number

Figure 6.7: Total end to end delay for the USB camera and LCDitmrocon guration

Ethernet camera, resulting in a misleading value for thisera. However calculations for other
devices in these tests are not affected by this because titsedetay is always con ned in this

the delay for this camera. The total delay readings are fietted by this either, as it is just
one time stamp that is recorded at a different point in thesmesment loop.

Comparing our result to the validation test results for tHetRiamera and CRT monitor we
see that the validation mean value of 156.23 ms is statistidestinguishable from the mean

value of the maximum delay constellation of 152.91 ms bezdnash values fall within each

others uncertainty level. Our maximum constellation meane/even falls inside the standard
deviance of the validation test values as we see in téhle

6.2.6 Delays using the web camera and the LCD monitor

In this test con guration we use the web camera together thigh_.CD monitor. As we can see
from gure 6.7 we have one strong constellation of values correspondirige@vent being
displayed at the start of the exposure. We also have the sans¢etiation of low values as we
did with the web camera and CRT monitor, corresponding to Weatebeing captured by the
previous image exposure when screen frame are overlagpengnid and start of exposures.

73

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> t (total delay) 178807 40007 5951
to—>1 16616 588 840
thb—>1 152162 39317 4348
tg —> 1o 10029 4503 764
hw 52162 39317 3643
camera+ monitor 39531 39317 3003

Table 6.8: Mean values for the USB web camera and LCD monitaps&500 observations

Delay interval mean value §) standard devianceg) con dence interval (xs)

to —> 1ty (total delay) 200969 106 11646

to—>1 16622 671 962

t,—>1g 173964 3672 10565

tg —> 1o 10384 3738 118
hw 73964 3672 4770
camera+ monitor 61333 3672 4038

Table 6.9: Mean values for the maximum delay constellatonife USB web camera and LCD
monitor setup. 1145 observations (76%)

This time we also see that we have a second low constellatizalwes concentrated one screen
frame duration above the rst. This row of data corresporadthe event being displayed one
additional screen frame earlier, in the previous image s This indicates that our phase
synchronization was out during some of these measuremntéoigever the vast majority, 76 %,
of the observed values are in the top row constellation.

The mean values for this experiment are shown in t&hand the mean values for the maxi-
mum delay constellation of data is shown in talfl®. We see that the delays measured for this
setup con guration is a bit higher compared to the previous ¢xperiments.

Since we observe the same capturing phenomenon in thisiesgugras in the previously de-
scribed, with events being captured by the previous franeesiow their mean values in table
6.10 We see the same pattern as we did for the experiment with ¢élecamera together with
the CRT monitor: These values con rm our explanation of thergs being captured by the pre-
vious exposure. They also con rm that the top constellabbrmalues are captured in the very
beginning of the exposure because the difference betwese theasurements and the ones in
the top constellation are exactly the length of the exposare.

74

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> t (total delay) 100934 128 13368
to—>t 16593 121 2200
ty —> fg 80033 2805 10897
ts —> 1t 4308 2804 271
o 80033 1297 11016
camera + monitor * 67402 2805 9224

Table 6.10: Mean delay values for the lowest constellatioresults for the web camera and
LCD monitor setup, 219 observations (15%) (*)Not subtra¢tedexposure time

Again we select the top constellation of values as our basissblating the latency of the
camera and the monitor. We see from tabl®that the combined isolated delay for the camera
and the monitor are in the statistical range of 61333 +4088From section6.2.4we have
that the latency of the USB web camera is 42699 +2569, whidmséhe latency of the LCD
monitor using the statistical con dence interval is in tlaage:

monitor = 61333 42699 (4038 +2569)s = 18634 6607s

6.2.7 Delays using the machine vision camera and the LCD monitor

In the last test con guration we look at how the Basler Piloimesia and the LCD monitor
perform together. From the total end-to-end delay measemésrin gure 6.8, we see that
there is again two distinct constellations of values spd&&67 s apart, as was the case with
both the test con gurations with the CRT monitor. The reasartlfis is the same.

One single measurement with a total delay of 621 ms was ddbjppsn the data set for this test
con guration as it was an obvious outlier.

The mean values of this experiment are shown in tahltEl and the mean values of the maxi-
mum delay constellation of the delay measurement valueshemen in table6.12 Again we
verify that the two constellations of measurement valuesssatistically distinct because the
con dence interval of the one group does not span the intealaes of the other.

From the mean values of the maximum delay constellation shiowable 6.12 we see that
the combined latency of the monitor and the camera is in thisstal con dence range of
68313 £3710 s. From section6.2.5we have that the Ethernet camera introduces a delay in

75

250000 T T

240000
230000
220000 -
210000
200000
190000
180000
170000 v

T T T T
Ethernet camera and LCD monitor +

160000 -
150000
140000
130000 -
120000
110000 -
100000
90000
80000
70000
60000
50000 L L

microseconds

0 200 400

600

800 1000

Measurement number

1200 1400

Figure 6.8: Total end to end delay for the Ethernet camerd @i monitor con guration

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> 1o (total delay) 167425 5536 8588

to—>1 16514 451 839

t,—> 15 147906 5649 7599

tg —> g 3006 390 150
hw 81238 5649 4224
camera + monitor 66148 5649 3460

Table 6.11: Mean delay values for the Ethernet camera and LGftar setup. 1499 observa-

tions

76

Delay interval mean value §) standard devianceg) con dence interval (£S)

to —> t (total delay) 169563 299 9207
to—>1 16498 481 899
t,—>1 150071 810 8147
ts—>1 2994 404 161
hw 83403 810 4529
camera+ monitor 68313 810 3710

Table 6.12: Mean values for the maximum delay constelldtothe Ethernet camera and LCD
monitor setup. 1304 observations (87%)

the statistical con dence range of 51612 +4632. With thisoar isolate the introduced latency
of the LCD monitor:

monitor = 68313 51612 (3710 +4632)s = 16701 8342s

Together with the result from sectio®.2.6 of ontor = 18634 6607s, we have two
estimations of the introduced latency by the LCD monitor. V&@e aot combine these two
ranges into a more certain estimation of the delay, so thertainty consist of the full interval
of the two estimations:

MAX = 18634 + 6607 = 25241s

monitor

MIN = 16701 8342 =8359%

monitor

This interval is interesting, because the width of the utagety range is 16882 s which is
very close to the length of one screen frame. As mentioneédtian 6.2.1, the granularity
of the end to end delay measurements is the duration of oeersérame. It is not possible
to match the choice of when to display our event any closehecstart of the exposure, than
choosing the screen frame that is displayed when the expasant. In gure 6.6 we see that
the exposure starts in the middle of the screen frame caryi@ event, exactly when during
this frame the exposure start is not possible to determio@ fvithin our application. This
uncertainty applies to every part of the measured delaytssiten the camera exposure. For
example, the camera+monitor 1@teNcy has this uncertainty because it depends on thevahtigr
—> tg which spans the exposure of the camera. Therefore the tleghoa uncertainty of these
measurements are the duration of one screen frari’ﬂ@?—7 S.

77

When the statistical uncertainty of the calculated latencytfe LCD screen is equal to the tech-
nological uncertainty, it is a clear indication that our m@@ment system works as intended,
and that the measurements made are reliable.

These results are again con rmed when comparing this testyocation results to the val-
idation test results for the Ethernet camera and LCD mokMi®isee that the validation test
mean value of 170.40 ms is statistical indistinguishaldenfthe mean value of the maximum
delay constellation of 169.56 ms because both values f#linveach others uncertainty level.
Our maximum constellation mean value falls inside the stasthdeviance of the validation test
values as we see in tab& 1 This proves that our measurements are accurate.

6.3 Phase Matching Accuracy

When looking at the raw plots of the data in the gurés3, 6.5 6.7 and 6.8 we see that
we get predictable results with very little variance. Thetph gure 6.9is an example set of
measurements with the phase matching algorithm turnediof$. easy to see that our phase
matching algorithm performs well.

The test plot shows a pattern which in several ways con rmsresults. Here the length of
the exposure period of the camera is controlled, but theeways a slight time difference
between the two. So when the phase is not controlled you wexgéct to see a line of values
corresponding to the drift of the exposure period companeti¢ speed of the screen refresh.
The gradient is a function of the speed difference. We sddtipaneasurements are ordered in
certain horizontal levels along this line. The differeneveen these levels correspond to the
length of the screen frame, and shows that this is the gratylinit with a system that uses
the screen as a measurement tool.

The Pilot camera, which is used for this example, does nob®xpmages constantly. This

means that events displayed on screen in the time betwe@as@rgs must wait for the next

exposure start before they are detected. This accounteddarbken line at the top of the plot

which has one screen frame higher delay than the ones werhaue tests for the same camera
and screen combination. The value for the delay measurertteattwere captured by the start
of the exposure have the same delay level as in our testpapately 153000 ms.

For our tests, we see that we have some measurements théftlar@ne screen frame in most
of the data sets, meaning that the event was displayed ome fiete. For the most part these

78

250000 T T

240000 L I Etherlnet camelra and CRI’T monito; -no phalse tuning i |
230000 - -
220000 —
210000 - -
200000 - -
190000 - -
180000 [—
«»n 170000 e "
2 160000 | .
é 150000 L L -
é 140000 " -
130000 [—
120000 - - el -
110000 - -
100000 | R -
90000 . —
80000 -
70000 -
60000 —
50000 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Measurement number

Figure 6.9: End-to-end delay as measured by our tool wittleuphase tuning algorithm

deviances seem periodic, which indicates that this is chbgehe drift between the camera
period and the screen refresh. We also have some smallexndea that do not seem to be
caused by a linear drift, but rather by jitter in the systeselft either from our application or
for example by preemption or other system level actionsideitsf our control.

6.4 Control Loop Timings

The accuracy of the control loop timings is an importantdattiat many parts of our application
depends on. The phase synchronization, for example, wautdrbwn off by only one missed
screen frame deadline. During our tests we also collectetirthings for the control loop, which
are presented in the tablés13and 6.14

We see from these numbers that our application with the ntigen guration, never spends
more time in the internal processing chain than about 20%eftailable time of 16667s.
We see that there are some variations in the frame rate ofpiblecation, which means that
once in a while the application does miss a deadline. Thiseaa participating factor in some
of the variations we see in the measurements if it were toferewith an actual measurement

79

processing time mean value maximum minimum

In the draw() function 27s 101 s 12 s
oF;draw > update 76 s 89 s 74 s

In the update() function 1033s 2977 s 615 s
oF;update > draw 181 s 205 s 164 s

Measured frame rate 60.02 fps 70.77 fps 52.34 fps

Table 6.13: Mean values for the control loop when using theeftet camera.

processing time mean value maximum minimum

In the draw() function 27s 104 s 12 s
oF;draw > update 73 s 83 s 69 s

In the update() function 155s 934 s 0 s
oF;update > draw 144 s 163 s 137 s

Measured frame rate 60.02 fps 64.06 fps 56.51 fps

Table 6.14: Mean values for the control loop when using th& d&mera.

action before the phase synchronization would correctkber.s

6.5 Evaluation of the System Design and Measurement Ap-
proach

As we can see from our results above, we have consistent neeasuts, that have been vali-
dated by an external measurement tool that we assume isaéeclihe variations we see can
be explained accurately by the technology implementatedralior, and they are clearly distin-
guishable into different classes of results by the statifli computed con dence intervals.

From our results, we are able to isolate and calculate amastin of the individual delays for
the monitors and the cameras. However, for components viativ &atency closely comparable
to the screen refresh rate used, this approach is not vefyl @seit yields a comparably high
uncertainty to the result. In the case of our LCD monitor, weensble to conclude that the
latency of the monitor is somewhere between 8.36 ms and 25524

In the case of the web camera, we have an estimate of theyadéA2.70 ms with a statistical
con dence range of £2.57 ms. When taking the technology duoed uncertainty of one screen

80

frame duration into account, we can only conclude that ttenkzy of the web camera is in the
range 26.03 ms — 59.37 m$X70 18¥'ms).

As we can see the granularity of the measurements, as de yékebduration of one screen
frame, limits the usability of this tool for measuring lowtdacy devices. However it does give
an indication of the latency one can expect from the deviEeslonger delays, as for the total
delay measurements, the granularity of the measuremesgssioticeable as it covers less of
the total measured delay.

From this, we can conclude that our approach works accotditige intention, in that it is able
to measure the delays of the system and provide an undeirsgaofcthe distribution of them.
We can also conclude that our calibration of the system pmed as intended and enabled the
system to collect accurate, reliable and robust measurtsmen

6.6 Summary

In this chapter we have described our test setup con gunatand presented our results. We
have shown that the results are accurate to the de ned wesft reliable and robust. Our
results are con rmed by the validation tests. We have byehesults also shown that the cali-
bration of our system is robust and adequate, but that thegptyanchronization has a potential
for future improvement to compensate better for drift in system.

81

82

Chapter 7

Conclusion

7.1 Summary

In this thesis we have investigated the delays and laterdiescamera-to-display computer
system, by building a tool to measure these delays from witie system itself, without ex-
ternal equipment. The measurement system is based on afdeldlop control that evaluates
the video feed from a camera that watches a computer moiitercontrol loop uses the video
feed in order to control when to display an event on the scasenrding to the start of each
exposure in the camera.

For this measurement tool we have implemented a seriesibfat@bn steps in order to stabilize
our measurements:

Calibrate the camera coordinate space to the screen so ¢hlataw the corresponding
locations in the camera image from the location we draw oeestr

Calculate the ambient light intensity as a baseline so wededect events on screen by
rise in intensity level

Match the speed of the camera to a multiple of the screeegiefrate

Match the phase of a virtual display period to the exposheasp of the camera

A delay measurement is done by displaying a white square @sdreen at the moment the
camera starts the exposure and to identify the square iretteved image. The total delay

83

recorded in this controlled environment contains knowagebmponents, and we are therefore
able to isolate the latency of the camera and display deused, up to an uncertainty of the
duration of one screen frame as de ned by the refresh rate.

7.2 Conclusion

We have successfully designed and implemented a method asureethe true delays of a
camera-to-display computer system from within the systselfi The implemented solution
has proven to be reliable and robust, and produces accesu#s limited to the de ned un-
certainty of the duration of one screen frame. We have prtivainthe controlled environment
the system generates, makes it possible to break down thksreso the delay components
we have de ned. We are able isolate the combined latencgdoited by the camera and the
monitor, limited to the de ned uncertainty. It is possible isolate the latency to the single
components if a device with known latency is used in the setup

The implemented solution is inexpensive in that it does ®egietd on any extra or specialized
equipment for conducting the measurements. We have prdwarnhe system work with a
standard and readily available web camera, and that it Elpledo run the measurement system
on a standard unmodi ed Linux kernel.

7.3 Future Work

This work is an extended proof of concept that shows the pitisgiof a self contained mea-
surement system for camera-to-display computer systerisogh we have managed to im-
plement a reliable and robust solution, it is possible tormap parts of the calibration of the
system. As we have discussed in secti®, drift caused by slight differences in the speed of
the camera compared to the de ned multiple of the screeeshkfrate, seem to cause that some
measurements are off by one screen frame, until the phaséreynzation manages to correct
the phase shift.

One way of investigating whether the stability of both thelagation speed and timing control
can be even further improved, is to implement the tool usergekample openGL library for
graphics directly. This will give a closer control with themication as the control can be
handled directly without a separate framework in between.

84

One interesting aspect is how to improve the granularityhefresults by reducing the tech-
nology induced uncertainty. A monitor with a 120 Hz refreslter available on the market
today, would reduce the uncertainty by half compared to esir $etup. Investigations should
be done to determine if it is possible to reduce the unceytaifithe system, technologically or
statistically, beyond the duration of the screen frame.

85

86

Appendix A
Appendix

Attached is a CD-ROM containing the source code for the measaint tool. The tool depends
on the openFrameworks toolkit which can be downloaded fitip//www.openframeworks.
ccl .

The contents of the CD-ROM can also be found at the followirdyess:

http://heim.ifi.uio.no/~steffag/master/

87

88

Bibliography

[1] The World Opera websitehttp://theworldopera.org/ . [Online; accessed 25-
January-2011].

[2] Verdione project websitehttp://verdione.org/ . [Online; accessed 25-January-
2011].

[3] Omer Boyaci, Andrea Forte, Salman Abdul Baset, and Hen&cdigulzrinne. vdelay:
A tool to measure capture-to-display latency and frame rtaltimedia, International
Symposium qr0:194-200, 2009.

[4] Mario Baldi and Yoram Ofek. End-to-end delay analysis adeoconferencing over
packet-switched network$EEE/ACM Trans. Netw8:479-492, August 2000.

[5] Wikipedia the free encyclopedia. Photoelectric effedittp://en.wikipedia.
org/wiki/Photoelectric , 2011. [Online; accessed 12-January-2011].

[6] Wikipedia the free encyclopedia. Rotary disc shuttetp://en.wikipedia.org/
wiki/Rotary_disc_shutter , 2010. [Online; accessed 12-January-2011].

[7] Wikipedia the free encyclopedia. Webcarhttp://en.wikipedia.org/wiki/
Webcam 2011. [Online; accessed 13-January-2011].

[8] Wikipedia the free encyclopedia. Trojan Room coffee putp://en.wikipedia.
org/wiki/Trojan_Room_coffee pot , 2010. [Online; accessed 13-January-
2011].

[9] USB Implementers Forum. Universal Serial Bus Device ClBssnition for Video
Devices, Revision 1.1http://www.usb.org/developers/devclass_docs/
USB Video Class_1 1.zip , 2005. [Online; accessed 13-January-2011].

[10] Wikipedia the free encyclopedia. Machine visiohttp://en.wikipedia.org/
wiki/Machine_vision , 2011. [Online; accessed 13-January-2011].

89

[11] Wikipedia the free encyclopedia. Cathode ray tubtp://en.wikipedia.org/
wiki/Cathode_ray_tube , 2011. [Online; accessed 19-January-2011].

[12] Frank L. Lewis.Applied Optimal Control and EstimatiorPrentice Hall PTR, 1992.

[13] J. Clerk Maxwell. On governors. IRroceedings of the Royal Society of Londgal-
ume 16, pages 270-283, 1867 - 1868.

[14] Stuart Bennett. A history of control engineering 1930-1953eter Peregrinus Ltd. on
behalf of the Institution of Electrical Engineers, 1993.

[15] Unlocking the Phase Locked Loop (PLL). Charan Langton. http://
complextoreal.com/tutorial.htm , 2002. [Online; accessed 25-January-2011].

[16] openFrameworks. http://www.openframeworks.cc . [Online; accessed 15-
January-2011].

[17] Joshua NobleProgramming interactivity O'Reilly Media Inc., 2009.

[18] Open Graphics Library (openGL)http://www.opengl.org . [Online; accessed
15-January-2011].

[19] Attila P&sztor and Darryl Veitch. Pc based precisionitig without gps.SIGMETRICS
Perform. Eval. Rey30:1-10, June 2002.

[20] John Stultz, Nishanth Aravamudan, and Darren Hart. \WeMot Getting Any Younger:
A New Approach to Time and Timers. Iroceedings of the Linux Symposium, Ottawa,
Canada volume 1, pages 219-232, 2005.

[21] Linux man-pages project. Linux Programmer's ManualME(7). http://www.
kernel.org/doc/man-pages/online/pages/man7/time.7.html , 2010.
[Online; accessed 05-January-2011].

[22] POSIX.1-2008. The Open Group Base Speci cations. Alsbligshed as IEEE Std 1003.1-
2008, July 2008.

[23] Ingo Molnar. kernel/timer.c design (was: Re: ktimerbsgstem)http://lkml.org/
lkmI/2005/10/19/46 alternatively http://lwn.net/Articles/156329 ,
2005-10-19 12:49:38. [Online; accessed 11-January-2011]

[24] Thomas Gleixner and Douglas Niehaus. Hrtimers and Beydmnansforming the Linux
Time Subsystems. IRroceedings of the Linux Symposium, Ottawa, Canadlime 1,
pages 333-346, 2006.

90

[25] Arne Caspari. unicap - The uniform API for image acquisitdevices. http://
unicap-imaging.org/ , 2009. [Online; accessed 05-January-2011].

[26] Bill Dirks et. al. Video for Linux Two API Speci cation, Résion 2.6.33. http://
linuxtv.org/downloads/v4l-dvb-apis/v4l2spec.html . [Online; ac-
cessed 16-January-2011].

91

	List of abbreviations
	Preface
	Acknowledgements
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Related Work
	1.4 Contributions
	1.5 Outline

	2 Technology and Constraints
	2.1 Digital Cameras
	2.1.1 Image sensors
	2.1.2 The electronic shutter
	2.1.3 Web cameras
	2.1.4 Industry machine vision cameras

	2.2 Monitors
	2.2.1 CRT monitors
	2.2.2 LCD monitors

	2.3 Summary

	3 Feedback Loop Measurement System
	3.1 Control Theory – the Feedback Control
	3.2 Phase Locked Loop
	3.3 Measuring Delay in a Controlled Feedback Loop
	3.4 Summary

	4 Design
	4.1 Delay Measurement System – Introduction
	4.2 What Time to Measure
	4.3 Implementation Design
	4.3.1 Platform and tools
	4.3.2 Main Control loop
	4.3.3 Calibration
	4.3.4 Taking measurements — Generating and identifying events

	4.4 Acquiring Accurate Time Stamps in Linux
	4.5 Success Criteria
	4.6 Summary

	5 Implementation
	5.1 Application Overview
	5.1.1 Tasks of setup()
	5.1.2 Tasks of update()
	5.1.3 Tasks of draw()

	5.2 Handling the USB Web Camera
	5.3 Handling the Machine Vision Camera
	5.4 Matching the Frame Rate of the Camera to the Refresh Rate of the Monitor
	5.5 Matching the Phase of the Display to the Camera Exposure Period
	5.6 Program Control Loop and Speed Management
	5.7 Taking Measurements
	5.8 Summary

	6 Tests and Results
	6.1 Test Setup
	6.2 Results
	6.2.1 Evaluating the time stamps
	6.2.2 Transmission delays
	6.2.3 Validation tests
	6.2.4 Delays using the web camera and the CRT monitor
	6.2.5 Delays using the machine vision camera and the CRT monitor
	6.2.6 Delays using the web camera and the LCD monitor
	6.2.7 Delays using the machine vision camera and the LCD monitor

	6.3 Phase Matching Accuracy
	6.4 Control Loop Timings
	6.5 Evaluation of the System Design and Measurement Approach
	6.6 Summary

	7 Conclusion
	7.1 Summary
	7.2 Conclusion
	7.3 Future Work

	A Appendix

