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Preface

Today we see an increasing number of time dependent visual computer systems, ranging from

interactive video installations, via high de�nition teleconferencing to the high performance

computer vision disciplines for example in industry and robotics. Common for all of these

are the requirement for low and predictable delays from the system itself and its components.

In this thesis, we look into the delay of camera-to-display computer systems to understand the

properties of their delay components, as well as how the camera and display devices contribute

to this delay, in order to �nd a method to measure the delay components of the system without

using external tools.

We have successfully designed and developed a measurement tool that is able to measure the

true delays of a camera-to-display computer system from within the system itself, and to help

the user understand the delay properties of the system.
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Chapter 1

Introduction

1.1 Background and Motivation

With the evolving technology of digital video and communication, come new demands and new

ways to utilize the technology. We see an increasing number visual or video based computer

systems in several areas, such as interactive video installations, teleprecense systems as well as

in industry. Common for all of these systems are the requirement of low delays.

Within this picture arise projects like The World Opera [1]. The World Opera want to create a

mixed reality scene where performers in different locations can interact with each other on their

local stage, and the audience in each location can see the entire play, both their local performers

in real life mixed together with the virtual world from all the other stages merged together. A

project like this stretch the limits even further and new solutions have to be made, where the

requirement for lower delays are ever more strict.

To meet these challenges, new research on the time properties of video systems have to be done

to fully realize the ideas behind such a project. This form the basis for the Verdione [2] project,

which is a large scale collaborative research project led bySimula Research laboratory and

funded by the Norwegian Research Council. Verdione aims to develop robust video processing

and dependable networking support for the world-wide mixed-reality stage at the World Opera.

The work with this thesis is done in conjunction with the Verdione project.

Some of the tasks of the Verdione project is to develop systems that use several cameras in

cooperation with each other, and systems that calibrates and controls those cameras. The delays

in such a systems is important to understand in order to synchronize the system. One important
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aspect of this is to understand how the cameras and the display devices themselves contribute

to the delay.

1.2 Problem Statement

In this thesis, we want to investigate the true delays of camera-to-display systems, by designing

and implementing an inexpensive and robust method to measure these delays. The measurement

system should be able to measure the delays from within the system itself, and to provide an

insight into the properties of this delay. Our method shouldbe able to produce reliable and

accurate results, and to be able to isolate the latencies introduced by the camera and display

devices.

By inexpensive we mean that the method should

• not depend on any extra or specialized equipment

• work with standard and readily available cameras such as a web camera

• use software that runs on top of a stock Linux kernel

1.3 Related Work

There has been done little work in the �eld of measuring delays within vision or video based

systems themselves. Boyaci et al. [3] did a similar approach with their vDelay tool for measur-

ing delay in peer to peer video chat applications, but they donot attempt to isolate the delay

of the hardware components. They concentrate on measuring the end to end delay of network

video chat applications, by use of embedded barcodes into the video stream. Our approach

do not measure the performance of video applications, but aim to measure the delay in the

hardware components themselves. Also we aim to eliminate uncertainties by synchronize the

exposure phase of the camera to the refresh rate of the screen, which Boyaci et al do not.

Baldi and Ofek [4] did a comprehensive analysis of end to end delay of videoconferencing over

networks, but this work focus on the networking delays and video format processing, and not

on the end device latency as we do here.

2



1.4 Contributions

We provide an easy and inexpensive way of measuring the delays of a camera-to-display com-

puter system without the use of external measuring tools. This tool can be valuable in evaluating

the performance of a camera and display setup, and to gain knowledge on how the components

contribute to the overall delay. Our results are This is helpful to developers of camera-to-display

systems, to help them understand the delay and latency properties of their setup.

1.5 Outline

This thesis is organized as follows:

In chapter 2 we present and discuss the camera and monitor, their technology and properties.

The chapter provide an insight into how these components work and to what we can expect

from them. In chapter 3 we brie�y present the control theory that forms the basis and idea of

the system design, and in chapter 4 the design of the measurement system is explained. Here we

also go through important aspects of timekeeping both for our application and how the Linux

kernel affects this. Chapter 5 describes our implementationof the measurement system and we

discuss how the different parts of our calibration pipelinework. In chapter 6 we present and

discuss the results and �nally the thesis is concluded in chapter 7.
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Chapter 2

Technology and Constraints

2.1 Digital Cameras

With the introduction of the digital camera, several new ways of using video and photography

became possible. As the concept of the digital camera includes the storage of the image data in

a digital format, it made it possible to use this technology to process image data with computers,

without being dependent on a lengthy chemical development of �lm and following digitization

using image scanners. For example, this introduced new possibilities for the industry by using

video or image based automated control integrated into their production lines. However, the

most evident impact of the digital camera for most of us may bethe new found availability of

both photography and video devices caused by the low cost of these technologies, and of course

the possibilities of editing our own images ourself by usingour computers and sharing our

images with each other over computer networks. Photographsare de�nitely no longer con�ned

to photo albums.

In recent years, as digital cameras have become readily available for all of us and in many

different variants, also video communication has become a common way of utilizing the po-

tential of technology, both for use with mobile telephones,teleconferencing systems and today

most commonly over the Internet, using easily available software such as Skype™ or Microsoft

Live™.

5
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Figure 2.1: CCD sensor principle design. The CCD transfer each charge cell by cell, and

converts the charges to voltage on output.

2.1.1 Image sensors

Digital cameras use the same principles of optics as conventional �lm cameras, however the

light is exposed onto a photoelectric1 image sensor, essentially a type of photo-diode, instead

of a chemical �lm, and then the image is read out of the sensor and stored to memory. Two

main technologies are in use today for these image sensors, Charge-coupled device (CCD)

and Complementary metal–oxide–semiconductor (CMOS), however none of these technologies

really have anything to do with the actual photoelectric process of the sensor, but rather how the

charge gathered by it is handled.

The CCD is an analog device, constructed to shift charge from one cell to the next. When

used in an imaging sensor theCCD is accumulating electrical charge from the light in a set

of cells organized in rows. When an image is exposed, the sensor shifts each charge out of

the image array cell by cell through a charge ampli�er which converts the charge into voltage.

This is shown in �gure 2.1. There are several different ways of designing theCCD image

sensor depending on how the charges are shifted within and output from the sensor. The typical

interline transferCCDsensor shifts the charges accumulated by the light exposurequickly over

to a second set of cells which is shielded from light, and fromthere it is shifted out of the image

array as explained above. In a different circuit outside thesensor, the voltages are then sampled

and stored as bits in memory. As no processing is done within aCCD chip, this grants the

camera designer a great deal of freedom in how to design the camera and it's functions. The

downside to this is that the complexity and cost of such a camera is higher because the sampling

and digitization of the analog output from the sensor must behandled by an additional circuit.

1The photoelectric effect is described as the emission of electrons from matter that is exposed to light. The

electrons in the matter absorbs the energy of the photons andmay by this be ejected causing an electrical current [5].
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Figure 2.2: CMOS image sensor principle design. The CMOS basedimage sensor do the

charge ampli�cation within each cell, and analog to digitalconversions on-chip to produce a

digital output.

TheCMOSimaging sensor provides a different approach to of�oading the photo-diode charge

from the image sensor. The CMOS technology allows implementing a lot of logic on small

areas. In these imaging sensor designs a lot of the electronic processing is moved closer to the

photo-diodes (pixels) resulting in a much faster readout. The basic design of aCMOSimaging

sensor is a charge to voltage converter alongside each pixelwhich in turn of�oads row by row

to an analog to digital converter and then output from the chip (�gure 2.2). This technology

has the advantage of using much less power than theCCDbecause it does not need to move the

charges as the CCD does. By doing the analog to digital conversions on-chip theCMOSsensor

allows for a simple and compact design of both the sensor and the camera, which again means

that the cost of the CMOS based cameras may be considerably less compared to theCCDbased

cameras, and the faster of�oad from the image sensor means that it is much easier to construct

live video devices with high resolution and a very small formfactor.

When comparing the two technologies, it is evident that both have strengths and weaknesses

compared to each other. CMOS image sensors have become very popular due to their low power

consumption, easy implementation, and low cost. The possibility to make the CMOS sensors

in very small sizes also opened up a completely new market forimaging devices. However, the

physical space required for the electronics in each pixel reduces the possible size of the area for

gathering light for each pixel. It has been argued that this lesser surface area causes theCMOS

sensors to produce an inferior image quality compared to theCCD sensors where almost all of

the pixel area may be used to capture light. Some argue as wellthat the CCD are a much more

7



mature technology than the CMOS, however the image quality penalty in CMOS sensors has

been reduced over the recent years, and may now very much be eliminated2.

2.1.2 The electronic shutter

The electronic image sensors introduce another new conceptinto the cameras, the electronic

shutter that in many cases replaces the traditional mechanical shutter technologies. The conven-

tional mechanical shutters used in cameras use many different concept designs, but we explain

two for our purpose: Theglobal shutterand therotary disk shutter. The global shutter is usu-

ally a set of plastic or metal leaves that slide quickly asideand expose the entire light sensitive

surface virtually at once. This type of shutter is widely used especially in still picture cameras.

The next concept is the rotary disc shutter [6] that use a disc with a sector opening rotating in

front of the light sensitive surface. This causes each part of the image to be exposed at slightly

different times as the opening advances over. The rotary disc shutter was commonly used in

motion picture cameras using �lm.

While chemical �lm cameras need protection for the �lm by physically restricting light from it

to avoid damage, electronic image sensors do not need this protection. This opens up new ways

of controlling the exposure of an image. With the introduction of smaller and low cost digital

camera devices, adding a mechanical shutter both adds cost,require space for installation as

well as adding complexity, making the use of another exposure control desirable. For these

reasons many digital camera devices control the exposure electronically.

Two common concepts of the electronic shutter is widely usedtoday, the global and the rolling

electronic shutter. These resemble the mechanical shutters explained above in how they work.

The global electronic shutter discharges all cells or pixels simultaneously, making them ready

to accept light exposure. The interline CCD sensor is designedfor this purpose, as it moves all

the charges in the exposed cells to protected cells simultaneously, gaining both the protection

of the exposed image frame while reading it out, and making the exposed cells ready for a new

frame at the same time. This allows for a continuously exposure limited only by the time the

CCD of�oads the previous image.

A CMOS image sensor applies a control current to the pixels to discharge them, and depending

2One evidence in this matter is that two well known digital camera producers, Nikon(http://www.nikon.

com) and Canon(http://www.canon.com ), now use CMOS sensors in their top models: Canon eos-1ds mark

III and Nikon D3x (Data collected 2011-01-12)
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on the CMOS design regarding control and readout circuitry, this can be applied to all pixels

at once achieving a similar effect as the interline CCD. Many CMOS image sensors however,

do employ a much simpler design where signals are only sent toparts of the sensor at a time,

typically row by row. This is known as the electronic rollingshutter, resembling the behavior of

the rotary disk shutter. The CMOS applies an erase signal for each row consecutively, usually

from top to bottom of the image making the cells ready for capturing light. Then it reads out the

pixel values for this row after the set exposure time has passed. This means that each row in the

image is exposed at a slight difference in time just as for therotary disk shutter �lm cameras.

Almost all compact consumer market CMOS image devices such asmobile phones equipped

with cameras, web cameras and low end compact cameras employan electronic rolling shutter.

Because the rolling shutter exposes each line in the image at slightly different times, the result-

ing images may suffer from artifacts. Particularly when picturing moving objects or when the

camera is moving fast while the image are exposed, we get a image distorted by motion. Often

this is a skewing effect, due to the object have moved noticeably from one part of the image was

exposed until the next. This is illustrated by �gure2.3(a)and 2.3(b). Another issue one might

experience is a tearing effect in the image caused by rapidlychanging light conditions during

the exposure as shown in �gure2.3(c).

2.1.3 Web cameras

The web camera (webcam) is de�ned by Wikipedia as a camera designed to be directly con-

nected to a computer or a network and supply it's video feed live over this link. [7] A web

camera usually does not have storage memory of its own, so it's operation is dependent on this

link being present.

The �rst well known use of a camera in the way as intended for web cameras was the Trojan

Room coffee pot [8] at the computer laboratory in the University of Cambridge, England. In

1991 they connected a video camera through a capture card in aserver and published an image

feed of the coffee pot on to the local network, so that the employees could see if there was

coffee ready for them.

Today the most common understanding of the term web camera isthe low cost compact video

cameras that either connects to a personal computer via Universal Serial Bus (USB) or Firewire,

or are embedded in common personal computer hardware, typically monitors or laptops. These

web cameras are most commonly used today as personal communication devices for video chat

9



(a) The turning rotor blades appear twisted (b) A fast moving car appear skewed backwards

(c) Changing light condition may produce tearing

Figure 2.3: Distortions caused by a rolling shutter (Imagesfrom Wikipedia, Rolling shutter

(accessed 2011-01-19))
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over the Internet, however their compact design, low cost and ease of use make them usable in

many different applications.

For this project we use a typicalUSBwebcamera, the Logitech QuickCam pro 9000, and in the

next section we explain how these commonly used types of web cameras work.

2.1.3.1 Physical properties of USB web cameras

The typicalUSB web camera today is a compact device usually employing a small form factor

CMOSimage sensor and an electronic shutter. While some may employa simple optical focus

control, most use �xed focus optics. The absence of moving parts and the fact that all complex

electronics are included in the CMOS chip, make it possible toconstruct small devices with a

wide range of use.

Most consumer market web cameras, as the Logitech QuickCam pro 9000, employ a CMOS

chip with an electronic rolling shutter, making them prone to the distortions shown in �gure

2.3. However, because of the simple design, the low cost of thesedevices and the relatively high

quality of the modern CMOS sensors, this as accepted. These web cameras are also primarily

designed to be used in a computer user environment where mostmovement is relatively slow.

Most of the web cameras do not implement any physical user controls on the camera itself as

is the case for most hand held cameras. Instead they implement user controls such as exposure

settings, resolution and other image processing settings in software, making them available

through the device driver on the computer.

Unfortunately we do not know exactly what hardware is used orwhich controls the camera

supports, as we have been unable to obtain any documentationfrom Logitech on the technical

properties of the Logitech QuickCam pro 9000 camera apart from a small list of features listed

on the Logitech web page3:

• Carl Zeiss® optics with auto focus

• Native 2-megapixel HD sensor

• High-de�nition video (up to 1600 X 1200)

• 720p wide screen mode with recommended system

3http://www.logitech.com/en-us/38/6333 (accessed 2011-01-15)
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• Up to 8-megapixel photos (enhanced from native 2 MP sensor)

• Up to 30-frames-per-second video

• Hi-Speed USB 2.0 certi�ed

This camera is compliant to the USB Video Device Class (UVC) standard [9], which speci�es

the common interface ofUSBvideo devices in terms of both operation and control. This makes

it much easier to determine the capabilities of the camera, and during the course of this project

we have learned a lot of how this camera works which have been interesting because of the lack

of documentation. The most important features we found was the ability to control the exposure

quite closely, and that the sensor does not seem to have any idle time inbetween the exposure

of each frame, meaning that the camera starts a new exposure directly after �nishing a frame,

providing it is not limited by the de�ned maximum frame rateswithin the camera.

2.1.3.2 Delays introduced by USB web-cameras

For our project the most important aspect of the camera design is how it contributes to the delay

of our system. We know from the information we have, that the camera supports a frame rate

of up to 30 frames per second (FPS). We assume that this frame rate may be controlled in some

way, either by a direct interval setting, by resolution setting, or by setting a static exposure time.

Either way, this means that the latency introduced by the camera as a whole may be controlled.

Looking at the technology in itself, we see that the time spent by the camera consists of the

exposure time (the time each pixel gathers light), the time spent on readout from the sensor,

the time spent on image processing, and then �nally the time it takes to send the image data

over the link to the computer. We assume that by controlling the exposure statically, turning off

all automatic image processing controls, and selecting an image format with a �xed data size,

the latency from the camera is static and measurable, even down to the processing step of the

electronics, as the exposure is known and the data transfer over theUSBlink may be calculated.

2.1.4 Industry machine vision cameras

Industry machine vision cameras are intended to be used in a an environment where perfor-

mance, reliability and robustness is important. Common areas of application include quality

assurance, sorting and calibration of robots for material handling [10]. This type of cameras are

12



usually connected to networks or computers because video processing of some kind is almost

always a necessary part of their task. This actually would, by the de�nition in 2.1.3, make them

web cameras, however they are never regarded as such as theirperformance, quality and price

tag, as well as their use is very different from the common webcameras.

There are many types of the machine vision cameras available, ranging from highly specialized

cameras such as a 1-dimensional line scan camera that employa single array of pixel sensors,

often used for capturing a continuous stream for example on aconveyor belt, to more traditional

2-dimensional image designs for various applications.

Common for all of them is that their performance is their most important feature, but the metrics

of performance varies from task to task. This may be, but not limited to, optimizations for

capturing at high speed, sensitivity for special light or itmay be optimized for precision.

We are be using the Pilot piA1900-32gc camera from Basler AG for this project. This is a high

quality industry machine vision camera, with a small footprint and a vast range of available

con�guration controls for the system designer, making thisa very versatile camera.

2.1.4.1 Physical properties of the Basler Pilot camera

The industry machine vision camera Basler Pilot piA1900-32gc employs an interlineCCD im-

age sensor capable of full 1080p High De�nition resolution (1920 * 1080) at a frame rate of 32

FPSin full resolution. The exposure control is handled by a fullframe global electronic shutter,

which does not make this camera prone to the distortions shown in �gure 2.3. A C-mount is

provided for third party lenses, providing the possibilityfor using different optics for different

use cases.

The communication interface of the Pilot is a gigabit Ethernet connection, making it possible

to attach the camera either directly to an Ethernet interface on a computer, or on to a local area

network. This Ethernet connection is used both for video feed transfer and camera control,

making the control and image acquisition from these camerasvery �exible as it is reachable

from the whole network it is attached to.

The Pilot implement a second physical control interface as well as the Ethernet connection,

which are used for external hardware control of the camera. This is for example used in settings

where an absolute control of the timing of the image exposureis necessary. This hardware

trigger control would be very useful as well in our setting where we need to synchronize the
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camera to an event source as we describe in section5.5, but this is not used here since it is

outside our de�ned scope for the project.

As already mentioned, the Pilot camera offers a wide range ofsettings and tunable parameters,

but the most important for us is the possibility to turn off automatic processing controls in the

camera to avoid variable delays, and to set a static frame delivery rate and exposure time to be

able to control the speed of the exposure to data transmission operation cycle.

2.1.4.2 Delays introduced by industry vision Ethernet cameras

The basic conceptual design is similar for all cameras, meaning that the Basler Pilot camera

contributes to the delay in the same way as the Logitech QuickCam, as basically the same

things happens in the process of capturing, processing and dispatching an image. However we

do expect the times to be different.

With the Pilot we should have a more precise control of the exposure time and frame delivery

rates, because the camera offer a speci�c control for both, unlike the Logitech web camera,

which only offers the exposure control. In addition to this,the Pilot also has support for reading

out the true numbers for these controls so we know which values actually are used by the

camera.

On the other side, the Ethernet connection of the Pilot camera behaves differently than theUSB

does. TheUSB offers a guaranteed bandwidth for devices operating in isochronous mode, a

streaming mode de�ned by USB, like video cameras, ensuring the data �ow from the camera.

When connected to an Ethernet network, the video throughput may be affected by other traf�c,

as well as various network conditions restricting connectivity. The Basler Pilot camera uses the

GigE protocol set, specialized for machine vision cameras,which operate on top of the UDP

and IP protocols. The delays introduced by the network may besevere, but in a local connection

this is unlikely to be a problem.

In line with the network standards the data from the camera must also be divided into several

packets that pass through the network stack in the camera to be reassembled again on the re-

ceiver side before the image can be delivered to the application. The delay introduced by this

remains dependent on the kernel timings for the network interface interrupts in addition to the

timings for data delivering from the kernel space to the userspace.
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2.2 Monitors

The display device or monitor is the device that produces visible images of input from a com-

puter, and is of course an important part of any visual computer system. In this project, the

monitor is used for displaying events that is captured by a camera. In the following we de�ne

themonitor as the device that process the input from the computer and produces images to be

drawn on the screen, and thescreenas the physical device that the images are drawn on, making

them visible.

A few different monitor technologies exist on the market today, and we use the two most com-

mon technologies in this project. These are presented in thenext sections.

2.2.1 CRT monitors

The Cathode Ray Tube (CRT) monitor is an analog display technology dating back to the early

20th century. [11] The technology has seen a lot of improvements over the years, resulting in

high performance display devices with excellent color representation and low latencies.

The core of the technology is a cathode ray (an electron beam)within a vacuum tube that sweeps

across a �uorescent phosphor target which then lights up. The beam is focused and controlled

by magnetic or electromagnetic �elds, making it sweep across the target phosphor repeatedly in

a �xed pattern. This makes a visible and identi�able image light up from the phosphor. Figure

2.4 illustrates the function of aCRT.

The beam of electrons does only translate into light intensity in the phosphor, but it does not

carry color information. The color is decided by the �uorescent phosphor used, so usually the

color CRT monitors uses different phosphors for the colors red, greenand blue, and often one

dedicated cathode ray for each of the three colors. The colorphosphors are laid out in a speci�c

grid, where often one dot for each color de�ne a pixel.

Because of the space the electron beam needs to be de�ected enough to cover a larger screen

area,CRT monitors are quite large devices. Combined with the need to use heavy materials,

especially the high security glass needed for the vacuum tube, these monitors became very

heavy and dif�cult to handle for larger screen sizes.

TheCRTwas the dominant technology for computer monitors until quite recently, but is loosing

the competition against the much lighter and smaller devices of new monitor technologies, as
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Figure 2.4: Functional overview of a Cathode Ray Tube (Image from Wikimedia Commons,

Cathode ray tube (accessed 2011-01-19))

the monitor of choice for personal use.

For this project we are using a Dell P992CRT monitor.

2.2.1.1 Physical properties

In being a completely analog device, theCRT does not need to process or decode any signals.

Any input within the input boundaries is sent through the circuitry to the cathode unit. Usually

a modern CRT monitor is capable of a very high dynamic range, and theoretically very wide

color range in that the cathode rays may be have any intensityfor any of the red, green and blue

colors.

Also the rate of which the cathode rays covers the entire screen (the refresh rate) has a very

high theoretical range as it is limited only of how quickly the de�ection coils (�gure 2.4) used

is capable of changing the direction of the ray.

In practice though, there are many factors reducing the theoretical ranges of the CRT, including

the choice of materials in the production of the monitors, the �neness of the color pixel grid of

the screen and the capabilities of the digital to analog converter on the graphics card. Also, as

in the nature of the analog device most of these elements are connected, meaning that tuning

each parameter could have an impact on the range of the others.
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One of the most important tunable values for the users is the refresh rate of the screen. If the

refresh rate is too slow the image appears to �icker. CRT monitors support a refresh rate ranging

from 60 Hz to about 85 Hz depending on resolution and color depth, with the high end monitors

achieving up to 100 Hz or 120 Hz.

2.2.1.2 Delays introduced by CRT monitors

As theCRT monitor accept only analog input and does not do any processing we expect it to

introduce a negligible processing latency, on top of the transmission- and propagation delays

of the signal through the circuitry and the cathode ray translation. The response time of the

�uorescent phosphor we also assume to be negligible.

Because the monitor is driven directly by the input signal, weassume that the latency of the

CRT monitor is negligible.

2.2.2 LCD monitors

The Liquid Crystal Display (LCD) computer monitors, often called �at panel displays, was

introduced in the late 1990s and has quickly gained popularity due to rapidly falling prices and

a vast selection of products. TodayLCD monitors have more or less completely conquered the

market for personal computer monitors.

The LCD monitor is fundamentally different from theCRT monitor. They utilize a special

liquid crystal which by applying an electric �eld may changethe orientation of its molecules to

restrict various amounts of light, effectively meaning controlling the light intensity. The liquid

crystals in aLCD is organized into small cells, called sub-pixels, between polarizing �lters

with individual electrodes controlled by transistors. Red,green and blue �lters are put in front,

making each cell output a speci�c color of light in various intensities according to the voltage

supplied. The basic concept of design is shown in �gure2.5.

An important feature of theLCD technology is that the devices do not suffer from �ickering as

theCRTmonitors do. This causes less eye-strain which make the LCD comfortable to use over

time. Together with the compact and light display devices allowed by the technology design,

are the key factors of their success. This success is in spiteof the fact that theLCD monitors

actually are inferior to theCRT devices in terms of image quality and dynamics. We discuss

this in the next section.
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Figure 2.5: Concept of LCD design with sub pixels (Image from Wikimedia Commons, LCD

RGB subpixel (accessed 2011-01-19))

We are using the ViewSonic VX2000LCD monitor for this project as a representative for the

typical LCD monitor. This monitor has a response time of 25ms, which means the time a pixel

cell needs to change from one value to another and then back again, by speci�cation from white

to black to white, depicting in the maximum time a cell need tochange. Typically manufacturers

of LCDs use a time for the pixel transition from a shade of gray to black and back again, yielding

a lower number representing the response time. We have not found the exact semantics of this

number from ViewSonic, so we assume it represents the full transition white to black to white.

Below is a list of the speci�cations for this monitor:

Screen size: 20.1"

Response time: 25 ms

Brightness: 280 cd/m2

Contrast ratio: 600

Pixel pitch: 0.255

Resolution: 1600x1200

Panel type: MVA

Vertical fequency: 60-85 Hz

Horizontal frequency: 30-82 kHz
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2.2.2.1 Physical properties

LCD monitors use an active and individual control of each liquidcrystal cell, making it hold

its state once the electric �eld is set. This is a big difference fromCRT monitors which have

to redraw the complete image on the screen many times a secondas the �uorescent phosphor

looses its luminance quickly after the electron beam has passed. This individual cell control and

the persistence in the cell state, make the image shown on thescreen of theLCD completely

static, as it only changes when the state of the cell control transistor changes. For this reason,

LCDs do not have a refresh rate as such. The technology does however employ the concept of

a refresh rate but with a slight different semantics from theCRT: the rate of which it collects

new image data from the graphics card and updates the image onscreen. By design, this is

commonly set by the manufacturers to 60 or 75 Hz.

As mentioned, the digital nature of theLCD monitors has introduced some limitations. Due to

the �xed bit width in the representation of for example colors and light intensities, the dynamic

range and color depth of the device is limited compared to an analog device. These ranges may

of course be extended, but this adds complexity and might increase the processing time in the

display unit considerably.

The properties of the crystal liquid itself also play an important role in how the display performs.

Even though a change in the electric �eld for a cell may happenquickly, the crystals do need

some time to reorient their molecules. This is commonly referred to as theresponse timeof

the LCD panel. In the earlyLCD display devices this time was considerable, making theLCD

unsuited for watching content with rapid movement. This hasbecome much better, and in recent

models this does not seem to be a concern for most users.

2.2.2.2 Delays introduced by LCD monitors

As we have seen,LCD monitor can introduce a delay to the system. The digital nature of the

monitor means it needs time for processing the input signal.This is known as theinput lag

of the LCD monitor. Next the crystal itself needs time to reactto the change, making the new

image visible on screen.

By designLCD monitors only update the pixels that change for the new screen frame. Depend-

ing on the control implementation, this may introduce a variable delay as the image detail on

screen changes.
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2.3 Summary

In this chapter we introduced the peripheral hardware technology important to this project, and

we discussed the properties of cameras and monitors we use, and how we expected them to

contribute to the delay we measured. In the next chapter, we introduce the control theory which

form the inspiration and the basis for our system design ideas.
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Chapter 3

Feedback Loop Measurement System

3.1 Control Theory – the Feedback Control

The feedback control is the mechanism that different systems utilize to achieve a form of bal-

ance. This is a principle widely used or described in many areas, including in biology, economic

theory and in electrical and mechanical systems. For example in biology the feedback control

is described for the process of regulating body temperaturefor warm blooded animals, and also

the long term feedback that allows the evolution of species as described by Charles Darwin [12].

The feedback control mechanism monitors de�ned variables in a system and compares these to

desired target values in order to adapt the system to achievethis target. When this monitoring

happens repeatedly we have an automated feedback loop control system. Several such systems

are in use in our daily lives, for example a thermometer controlled heater, or a cruise control

system in a car.

This kind of self monitoring and adjusting systems are not aninvention of our time. The ancient

Greeks designed and used such systems, for example the in their water clocks. In their attempt

to establish an accurate notion of passed time, a �oat regulator was invented that controlled a

�lling valve to keep the �ll level in a water tank constant. By the �ll level being constant, they

achieved a constant water pressure at the bottom of the tank,meaning the water �ow rate from

a hole near the bottom of the tank was constant and could be measured.

As the industrial revolution introduced more machines, more control systems for these were

designed alongside them. Examples include the pressure valve for a steam engine kettle, and

several different speed regulating devices for the steam engine output.
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Figure 3.1: Centrifugal governor

(Image from Wikipedia, Centrifugal governor (accessed 2011-01-24))

The �rst formal theoretical description of the stabilizingcontrol theory and the feedback loop

was made by the Scottish scientist James Maxwell in his studyof machine regulating devices

including the centrifugal governor constructed for controlling the speed of rotary steam engines

[13]. This governor as seen in �gure3.1 used the speed of the steam engine wheel to rotate

two pivoted metal balls which were slung upwards by the centrifugal forces. These were in turn

connected to a steam �ow valve, reducing the steam �ow when the balls were forced high.

We may abstract the control feedback loop of the control theory to a system as shown in �gure

3.2, where the system or process accepts an input signal and produces an output signal that

is monitored by a sensor. The controller of the system receives the error of the output signal

based on a reference, and may adjust the input signal to the system to match it to the reference.

Commonly the monitored system output is called theProcess Variableand the reference signal,

or target value is known as thesetpoint.

Common to these control systems, when they are engineered properly, is the ability to control

the system towards a de�ned stable state. The one important property of the feedback loop

control systems is the ability to adapt to any unforeseen changes to the process' environment

always working towards this state. However achieving stability is not necessarily trivial. For

example in a blast furnace, you want to have a stable temperature. When the system is started
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Figure 3.2: Feedback loop(Image from Wikipedia, Control theory (accessed 2011-01-24))

up, the control system of course applies the power, but the challenge is to decide when to

increase, reduce, stop or start the supply. If too much poweris applied and it stops too late,

the furnace may continue heating up and overheat due to stored energy in the material. If the

power then is stopped for too long, the temperature may drop too much. Such oscillations in a

control system of course depends on the system under control, and many different factors must

be considered when designing a controller algorithm.

There are many different controller designs de�ned for several different sets of feedback loop

systems, where probably the most used generalized theoretical design is the Proportional In-

tegral Derivative (PID) controller. This control algorithm takes into account three different

calculations on the process variable error according to time, based on the current state of the

process for the proportional part, the accumulated error over time in the integral part, and the

predicted error in the Derivative part. This makes thePID controller highly adaptive and suit-

able for many control designs, also where there is limited knowledge of the dynamical model

of the process to be controlled [14].

3.2 Phase Locked Loop

The Phase Locked Loop (PLL) is a special case of an automated feedback control system,

where the phase of an incoming electrical signal is shifted to match a reference signal. The

basic concept design of thePLL is very similar to that of the general control system. The core

of the control loop in thePLL is the Voltage Controlled Oscillator (VCO). This device is a signal

generator which are adjustable by applying voltage. The PLLthen generates a signal from the

VCO based on the incoming signal and a reference signal: The input signal is multiplied with a

reference signal, obtaining a signal which is a function of the phase difference. This is �ltered

and used as a regulator signal for the Voltage Controlled Oscillator (VCO). When the regulator

voltage to the VCO is zero, the phase of the input and output signals are synchronized. (See
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Figure 3.3: The Phase Locked Loop (PLL)

�gure 3.3) [15].

ThePLL is used in a wide variety of electrical and electronic systems, and it is a vital part of

communication systems where it is used for example for carrier synchronization, demodulation,

and frequency multiplication and division.

3.3 Measuring Delay in a Controlled Feedback Loop

The feedback loop has the inherent advantage that it feeds back your output carrying informa-

tion you may utilize as it returns to the controller. Considera basic feedback loop control system

similar to the one in �gure 3.2. We have an actuator in the process that produces some kind

of a continuous base signal, a sensor that detects the signaland feeds it back into the control.

The time from the actuator emits the signal to the sensor detects it is greater than zero. It is

not trivial to identify speci�c parts of the signal from the rest by observing a continuous analog

signal . A sinus wave is the same for every part of the signal, so which part of the signal was

emitted from the process actuator at what time?

To be able to distinguish parts of the signal we may modulate asecond signal on top of the base

signal from the actuator. Then the controller knows when theactuator emitted the modulated

signal and observe when it is received back via the sensor, measuring the delay inbetween.

The second problem is the synchronization of the system. Boththe process actuator and the

sensor operate in their own frequency patterns. If the sensor is only sampling the signal at

given intervals, it may miss the modulated signal all together in the case that the actuator have

a comparable higher frequency. Even if the duration of the signal sampling in the sensor is

long compared long to the actuator frequency, the sensor mayintroduce an extra delay in the

measurement which is not part of the system as such. In such cases the system must utilize the

principle of thePLL to lock the frequency and phase of the modulated signal to thephase of the
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sensor sampling rate so that the modulated signal arrives atthe sensor just as the sensor starts

the sampling.

If the system is in a stable state, it can accurately measure its internal delay by recording the

time difference from the emission of the modulated signal tothe reception of the captured signal

from the sensor.

This idea of time control is indeed important in control systems today. Looking at our example

above with the blast furnace, in order to avoid dangerous situations the control system must have

an idea about how long it takes from the supply is changed to the temperature starts to change,

and then again how long it takes until a new stable state is reached. Often these mechanisms,

accounting for delay, are set by design of the control systemlogic according to models of

oscillation damping for the speci�c system.

3.4 Summary

In this chapter we have breie�y presented the concepts of thecontrol theory,the feedback loop

andPLL concepts, and thePID control. We have also seen how it can be possible to measure

delays in a controlled system from within using the conceptsof the control theory. In the next

chapter we discuss how we may use these principles in order toimplement the self measurement

of delays in a vision based controlled system.
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Chapter 4

Design

4.1 Delay Measurement System – Introduction

Our main goal is to be able to measure the delays and latenciesof a camera-to-display-computer-

system, without the use of external measuring tools. By acamera-to-display-computer-system,

we mean a setup where a video stream from a camera is displayedon a monitor by an intercon-

necting computer system. The computer system may be anything from a single computer, to a

network of autonomous systems that provides functionalityto dispatch the video stream.

The concept of measuring the delay of the system is this: You show a clock on the screen of a

computer monitor. If you capture this by a video camera and display the video back on to the

screen, the two clocks will show different times as shown in �gure 4.1. This difference is the

end-to-end delay we want to measure.

However, recognizing a clock like this programmatic is dif�cult, so we need another way to do

this. Boyaci et al. [3] used barcodes for this purpose in their vDelay tool, but forour use case

this is not desirable because to encode and decode the imagesto interpret the barcode can be

computational intensive.

We solve this instead by �ashing a white square on the screen.Because we know the time the

square was displayed we can measure how long it takes before we receive the image containing

the square from the camera. The concept of the square, we generalize as anevent.

To be able to measure this accurately our system needs to be calibrated to address several

sources of uncertainties. The delay in the processing part of the system, meaning what hap-
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Figure 4.1: The difference of the clocks is the end-to-end delay in the system

pens inside the computer is measurable by collecting timestamps, so this we consider known.

The delays introduced outside of the computer, after the graphics card start sending data and

before the camera driver receives the image, is another matter. The delays introduced in the

connection links, meaning the graphics link and the camera connection, can be calculated, but

from there we initially know very little about when an event is displayed on the screen com-

pared to when the camera captures it. If we do not address this, our measurement would include

an uncertainty minimum of the full exposure period of the camera plus the time for drawing a

frame on the screen. If the camera operate at 10FPSand the screen at 60 Hz, this would lead

to almost 117 ms of uncertainty, a very high amount of time, comparable to a complete round

trip in the system.

So the most important task in this respect is learning when todisplay an event so that it matches

as close as possible to when the camera start the exposure foran image.

This is the phase synchronization of the system, and the mostimportant part of our calibration

pipeline. The core concept of the idea for this phase synchronization is to utilize the fact that

the frequency of the monitor is several times higher than thecapture rate from the camera. The

difference in operational rate is the key to synchronize thetwo because the screen draw several

frames during the exposure time of the camera. This means that we can see these frames in

the image, and if the information in the screen frames are distinguishable, we can say when a

particular screen frame was drawn compared to the exposure start.
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The design of our measurement system is based on the controlled feedbackloop, where the

analysis of the image stream from the camera decides which actions the system should take.

Our design is in function based on thePID control design. The integral control function is

taking decisions based on a number of previous collected images, for example in adjusting the

speed of the camera, a decision is made according to the average arrival speed of a number of

previous images. The proportional control function take decisions based on the current video

image and is used for example in our phase synchronization. The derivative concept of thePID

is not utilized here.

The implementation of the phase synchronization is based onthe principle of thePLL feedback

loop. We de�ne a virtual display period of a number of identi�able screen frames that matches

the length of the exposure period in the camera. When we receive an image from the camera

thePLL takes a decision based on the number and position of the virtual display period in the

image, and skews the point of where the display period start.

In the following we use the phrasescreen frameas the image drawn in one draw cycle in the

monitor. At a 60 Hz refresh rate, the monitor draw 60 screen frames per second, and the duration

of one screen frame is 1/60 s (16.67 ms).

4.2 What Time to Measure

Our �rst objective is to measure the end-to-end delay of the system. We de�ne this delay to

be the time from an event occurs in front of the camera, for example turning on a light, until

the video image of this event is displayed on the monitor (�gure 4.2). By an event we de�ne

a happening in the real world that may be captured by a camera,for example a lamp being

switched on. Controlling the time of when this event occurs isa major part of this thesis, and is

covered in the following sections.

Looking at the setup in �gure4.2 we see that there is no possibility to include the delay of

the monitor in measurement without the use of external tools. However we can adjust the setup

slightly to be able to include this as well, by pointing the camera at the screen as shown in �gure

4.3. This way we can generate and display an event on screen and capture it by the camera, thus

including the hole delay chain in our measurements.

To understand the end-to-end delay a camera-to-display-system, we need to break the delay we

measure into its components, evaluating each part according to our system. This tells us how
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0 tEnd to end delay

Figure 4.2: End to end delay, from an event until display

these delays work and how the different parts of a setup contributes to the overall performance

of the system. Our main interest is how the closed systems, the cameras and the monitors,

contribute to the delay.

Here we de�ne a few points in time that de�ne the separate timecomponents that represent

more or less independent parts of the total delay. These timestamps are shown in �gure4.3.

t0 Preparation of the event start in the application loop

t1 The application issues the command to display the event on screen

t2 The graphics card sends the �rst pixel onto the display link

t3 The monitor receives the last pixel of the image

t4 The event becomes visible on screen

t5 The camera opens its shutter

t6 The camera closes its shutter

t7 First pixel is sent by the camera

t8 Last pixel is received by the low level device driver

t9 The full image is available to the receiving application

Looking at these de�ned points we see that some are known, some can be theoretically calcu-

lated, and there are some assumptions we can make.

The measurable time instances are t0, t1 and t9 which are time stamps directly from our software,

t8 which may be collected from the camera handler, and �nally weknow the differencet6 � t5

as this is the static exposure time we set for the camera.

It should be safe to assume that the propagation delay of the light from the screen to the camera

is negligible as we are working with short distances in this project. In this part of the system we

have a high uncertainty of when the event is displayed duringthe exposure of the camera. This

is an important question we are answering in the following sections.
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Figure 4.3: Division of the total end-to-end delay

The calculations we would have to make is the theoretical transmission delay over the link from

the graphics card to the display (t2 to t3), and the transmission delay over the link from the

camera to the computer (t7 to t8). These delays are important to include as they are a necessary

factor in order to isolate the delays of the screen and the camera.

This leaves us the processing latency in the display (t3 to t4) and in the camera (t6 to t7), which

remain unknown.

There are some challenges in collecting these timestamps. We must ensure only to measure the

true delays of our system components without external interference. Most importantly, we must

be able to control the event in such a way that we can recognizeit in the video stream, and to

be able to measure when it actually is displayed on the screen.

4.3 Implementation Design

The feedback loop based measurement system should be self calibrating and self adjusting to

the environment to be able to measure the delays of the system. By setting up the system as

shown in �gure 4.3, we can display our event on the screen and because we know what we

display, we can detect our event in the video stream from the camera. We also then know when

we issued the draw command, so the difference in time when theapplication returns to that

point after the event is detected in the camera stream, give us the total end to end delay.

Here we describe our design for the measurement system, and we address the control system
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structure and challenges, and the properties of the calibration pipeline.

4.3.1 Platform and tools

For this project we are using a personal computer running theLinux operating system kernel

version 2.6.35. We have chosen the Linux platform for our project because of its open source

nature, which allow us to gain a precise knowledge of how the kernel handles timing and how

it interacts with the rest of the system.

The performance speed of the hardware is not so much a concernin this project since we do

not utilize the processing power of the system to a high extent. More important is the hardware

ability to provide a stable environment for our software, and how precise timings it can provide.

Connected to our computer we use two different monitors, theLCD monitor ViewSonic VX2000

and theCRT monitor Dell P992, and two cameras, the web camera Logitech QuickCam pro

9000 and the industry machine vision camera Basler Pilot piA1900-32gc. These are presented

in chapter2.

We have chosen to implement this project using the openFrameworks [16] toolkit as our de-

velopment base. The openFrameworks toolkit is an open source C++ framework intended for

artistic and interactive programming and provide for easy prototyping.

The strength of openFrameworks is that it provides a clean and simple interface to the under-

lying frameworks, hiding all the “ugly” details necessary to make a graphics based application

run. The user may start an openFrameworks application by simply declaring a main function

that makes two framework calls:ofSetupOpenGL() with properties of the desired window

as arguments, andofRunApp() with a pointer to an application class instance. The applica-

tion class needs only to de�ne the three methodssetup() , update() anddraw() , and it

will run [17]. This makes it particularly easy to draw graphical elements to the screen, as any

necessary setup is done for you.

OpenFrameworks uses Open Graphics Library (OpenGL) [18] as its graphics engine. One

feature of openGL that is important for us, is that openGL provides a low level control of the

hardware graphics card, and through this Application Programming Interface (API) we are able

to synchronize our application to the Vblank pulse, or “vertical sync“ signal1.

1The vertical sync signal, the retrace signal, was originally de�ned as a signal from theCRT monitor to the

computer when the monitor was �nished drawing an image to thescreen and had its cathode ray turned off for
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One alternative to using openFrameworks is to use OpenGL directly. This should give a closer

control with the graphics system, but it also means a higher amount of initial work to get to a

working prototype state where we can investigate algorithms.

4.3.2 Main Control loop

The main control loop of our measurement system is what controls the drawing of screen

frames, receives the video feed and makes decisions based onthe images we receive. We

are using the openFrameworks environment which basic structure is a repeated callback loop

consisting of theupdate() function that is intended to handle processing and thedraw()

function that controls drawing to screen. One complete callback loop processes the available

data and prepares a new frame for the screen.

The measurement software must perform a few simple principal steps to establish a loop that is

measurable:

1. Calibrate the system

2. Generate a recognizable event

3. Display the event on the screen

4. Receive the video stream from the camera

5. Recognize the event in the stream

6. Collect and record timestamps

7. Calculate delays

We divide these steps into a pipeline of stages, which naturally depend on one another. For

example in the calibration of the system, the identi�cationof the screen in the captured image

must be done before we can use this information to identify the images we display.

The implementation of these stages must be sequential and based on state variables. For each

run through the code inupdate() anddraw() we must make decisions based on the col-

lected information and completed stages in our pipeline.

repositioning it to the top left for starting next frame. ModernLCD monitors still provide this signal although they

do not need to reposition in the same way. See section2.2.2.1.
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The challenge in this design is how the system should calibrate itself. It is important that the

steps above are stable in terms of timing in order to gain reliable measurements. By stable we

mean that we should be able to have consistent result for every measurement when using the

same con�gurations.

Instability in the timings and external additions to the delays are introduced in several parts of

the system. For example by high system load or a variable processing delay in the camera. This

may be caused by automatic adjustments according to the environment in order to optimize

image quality. The most important external factors for the measured delay in our system is that

we do not know when an event was displayed on the screen duringthe time the camera exposes

an image.

In order to have a measurement system that is able to produce accurate and reliable delay mea-

surements, the timing requirement of the control loop itself must be strict. By this we mean that

the loop should always be able to produce the desired output to screen on time.

4.3.3 Calibration

The calibration of our measurement system consist of several parts in order to achieve the

desired stability. We de�ne calibration as the process of tuning every part of the system to

cooperate or behave in a way that eliminates all unnecessarydelays or processing that can

interfere with our measurements. The quality of our calibration largely determines the reliability

of our measurements and the feasibility of our approach at measuring these delays.

In the following paragraphs we present and discuss the calibration steps of our pipeline.

4.3.3.1 Identifying the screen in the captured image

First in our calibration pipeline we must identify the screen in the images from the camera. This

is important to be able to locate events displayed and to distinguish between locations on the

screen. To be able to do this we must calibrate the camera coordinate space to the screen to

establish a point-to-point correlation between the two. This is a mapping from a location on

screen to the corresponding location in the image.

To do this we use the OpenCV library as it already contains the needed algorithms. If we draw a

chess board pattern on the screen with known screen coordinates, openCV can detect this from

the image stream and return the corresponding coordinates for the chessboard in the image.

34



Image

Screen

Image

Screen

Figure 4.4: Warping the image means to change the perspective of an image to a different

coordinate set. The �gure illustrates an image of a screen which is warped to match the screen

coordinate space.

The two sets of coordinates can then be used to establish a point-to-point correlation between

the two, a set of parameters that describe the relation between a point on the screen to the

corresponding point in the image. This relationship matrix, called a homography matrix, may

in turn be used to warp the image so that each pixel can be addressed in a 1:1 relationship

between screen and image. The term warp means to change the perspective and scale of the

image to match a de�ned tartet perspective. This means that every pixel on the screen have the

same coordinate in the captured image. This warp operation is illustrated in �gure 4.4.

4.3.3.2 Controlling the camera

The digital cameras we use have many different image processing capabilities designed to opti-

mize the image quality of the video in varying light conditions and so on. All of these automatic

adjustments and image processing can add a variable processing delay in the camera and in most

cases the introduced delays are not possible to predict in real time from the application receiving

the images. For our purpose it is required that we stabilize the delay introduced by the camera

in such a way that the exposure happens at regular intervals,each exposure results in an image

and all images are delivered to the computer at regular intervals.

Most cameras intended for use with computers offer an interface for controlling the exposure,

focus, and processing steps. The proprietary device driverpackage for the Basler Pilot camera

offers full access to these controls trough the driverAPI. For handling this camera there has

already, in conjunction with another part of the Verdione project, been made a user space camera

driver that wraps these controls, so we are reusing this here.
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Figure 4.5: Phase of display and camera exposure is out of sync. If an event appears on the

screen at T1, we must wait until T2 before the camera start to capture it

For controllingUVC compliant cameras like the Logitech web camera, there are several user

space drivers available, however not all of these makes the controls we need available to the

users. For this reason we found it necessary to write our own user space camera handling driver

on top of the Video4Linux2 (V4L2) and uvcvideo kernel drivers for our web camera. These

kernel modules allow direct communication with the hardware device drivers and the camera

through theioctl() Linux system call. Our driver tries to turn off all automaticcontrols

in the camera, particularly the auto exposure control and the auto focus which tends to be the

most signi�cant contributers to a variable delay from a camera. The exposure and focus of the

camera has to be set explicitly.

The implementation of this driver is discussed in section5.2

4.3.3.3 Matching the speed and phase of the display to the camera

Because of the long exposure time of a camera compared to the processing speed of the system,

it is important to match the appearance of the event on the screen to the start of the camera's

exposure. In �gure4.5 we see that if our event happens right after the camera has closed its

shutter, we have to wait for the next exposure before the camera is able to capture it. For most

conventional cameras this add several milliseconds to our measured delay, a noticeable amount

in this setting.

One important note about this issue is that it is not possibleto control or shift the actual phase

timing of either the screen or the camera, as both are controlled by the internal clocks of the

hardware. That is why the difference in the refresh rate of the screen and the exposure period

is crucial, since this decides how close we can tune the display of an event to the start of the

cameras exposure. Our application must therefore analyze the images from the camera in order

to determine when to display the event so that no unnecessarytime is lost in waiting for the

camera.
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In order to perform this synchronization we again need to look to the control theory presented

in chapter 3. Because the screen refresh rate is static, we can de�ne a virtual display period

as our process variable, consisting of a number of screen frames, matching the exposure period

of the camera. This is actually modulating a signal on top of the base frame rate of the screen

that may be detected and identi�ed via our sensor, the camera. This display period, using the

principles of thePLL may be skewed based on analysis of the camera images, to matchthe feed

from the camera by making sure the identi�ed display period frames do not span images. We

can do this because we de�ned our virtual display period to beequal to one exposure period in

the camera.

Before we can attempt to match the phase in this way, we must also match the speed of the

camera, meaning the length of its exposure period, to a multiple of the screen refresh rate to

minimize drift in the phase tuning scheme. Although we can not control or skew the actual

phase timings of the exposure period of the camera, we can control the length of it by using the

absolute exposure time setting in the cameras, or by adjusting the frame interval settings. Using

the feedback loop we can monitor the rate of the received video feed from the camera, and

adjust the settings to achieve the intended match. By doing this we are making the assumption

that the exposure period of the camera is equal to the inter frame interval, meaning that the time

between the reception of each image from the camera should beequal to the time between the

start of each exposure. As we by this should know the exposuretime of the camera from the

value we set, matching the frame rate should not be very troublesome.

In a scenario where we would have the possibility to skew the phases of either the screen or the

camera, we might use the intensity of the display period frames we see in the image to determine

if the edges, the �rst or the last visible frame in the image, was only partially exposed to the

camera. If for example the intensity for the �rst visible frame indicates it was only exposed for

half the amount of time it was visible, we may derive that the camera started its exposure in the

middle of that particular screen frame, and skew the phase accordingly.

By using visual information to tune these parameters, it is not safe to assume we may match

the phase of our virtual display period to the exposure period of the camera perfectly so that we

completely avoid drift. For this reason we must repeatedly check and adjust the phase using the

PLL.
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4.3.3.4 Correcting for ambient light

In order to use the pixel intensity as a detection method, we need to calculate the ambient

light intensity for all pixels as a base line for detecting changes. We keep the screen black

while we record intensity values for all pixels in the cameras image for a prede�ned number

of images. Then the average intensity value for every pixel is stored in an ambient image.

By subtracting the ambient value from a collected pixel value, we can easily detect if there is

something displayed on that position of the screen.

By choosing this method, we make the assumption that the measurement tool is not run under

such conditions that make it impossible for the camera imagesensor to distinguish between the

screen background and the white areas displayed on it. We believe the limit for this method

depend on several different factors, including the light re�ection properties of the screen sur-

face, the brightness and contrast level of the screen and thecharacteristics of the ambient light

conditions. For example a direct light source and a highly re�ective screen surface would be

much worse than a matte screen surface and a possibly brighter indirect light.

4.3.4 Taking measurements — Generating and identifying events

Once the system is calibrated, we start collecting time stamps for our measurements. First we

must generate and display an event on screen that is easily recognized in the image stream,

preferably without extensive image processing as this may penalize our strict timing require-

ment for producing images on the screen. The event could be anything, as long as it is positively

identi�able. Displaying a bright spot in a known location ona dark background on the screen

is suf�cient, as the big increase in pixel intensity are easyto detect. This method does not re-

quire any encoding or decoding of the event, neither does it require image processing apart from

warping the coordinate spaces and querying the pixel intensity. Once the image containing the

displayed event is recognized in the video feed, we can calculate a total end-to-end delay.

The time stamps we collect on the way in this event pipeline, t0, t1 and t9, is de�ned in sec-

tion 4.2. As we have discussed in this chapter, we also have a time stamp for t8.

By assuming that openGL synchronizes our application with the Vblank pulse from the graphics

driver, the graphics card should immediately start sendingthe data onto the display link once the

graphics buffers are swapped. This means that the graphics card make the buffer which contain

the screen frame data we generated in thedraw() function, available to the monitor just as it
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is about to read out the pixel data. By this, the time difference from t1 to t2 only consists of the

time from our application exits thedraw() function until openGL reacts to the Vblank pulse.

This time stamp of when the buffer swap occur, is not directlycollectible from our application

as openFrameworks hides these details. We get around this byaltering the openFrameworks

code, getting access to the time for our time stamp t2.

4.4 Acquiring Accurate Time Stamps in Linux

Most computer architectures today have several different time sources available for their time-

keeping:

Real Time Clock (RTC)

TheRTCis a hardware clock which is battery powered and hence operates even when the

computer is powered off. The clock usually employs a crystaloscillator to keep track of

time, like common quartz wrist watches. To query the hardware clock is considered ex-

pensive and is usually only done by the operating system at startup, or with long intervals,

to acquire a notion of the wall clock time.

Programmable Interval Timer ( PIT)

ThePIT is maintained in software by the operating system, and is thebasis for the legacy

software clock in the system. The software clock is initialized at system startup to the cur-

rent time of theRTC, and maintained by counting interrupts from thePIT. The frequency

of the hardware timer is set by the operating system on startup, typically in the range of

100 to 1000 Hz, and the time delta of each interrupt is called jif�es. The software clock

is prone to drift caused by jitter, frequency error of the timer chip, and missed interrupts.

CPU Time Stamp Counter (TSC) register

Most CPUs maintain aTSCregister that is incremented by every CPU clock cycle. This

theoretically provides a timer resolution of the processorspeed. These registers may

differ between cores in multi-core architectures causing jitter in readings, and they may

also be prone to changes in tick rate due to power saving functionality in processors.

High Precision Event Timer (HPET)

In recent years most new personal computer chipsets also include a High Precision Event

Timer (HPET) which provide a much higher resolution than thePIT, up to 100MHz. High
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performance hardware such as new memory technologies rely on the HPET resolution to

operate. Now operating systems also have started to utilizethis for their high resolution

timers.

The Linux kernel utilizes these features in many different ways, providing programmers with

different purpose clocks and timers. The legacy functiongettimeofday() , in common use

for acquiring time in applications, returns an estimate of the actual wall time expressed in sec-

onds and microseconds since the Epoch2. This estimation is done based on the software clock

as described above, and an interpolation of time between interrupts using theTSC, however

only based on a boot-time calibration of theTSCtick rate and truncated to a microsecond res-

olution3 [19] [20]. The software clock resolution is determined by the jif�es4, and in the most

recent Linux kernels this is 4 ms determined by the default HZparameter value of 250. From

the POSIX.1-2008 speci�cation [22], thegettimeofday() function is marked as obsolete.

Since kernel version 2.6.21, Linux has native support for high resolution timers and time sources

by utilizing modern hardware and changing the handling of time from the earlier jif�es bound

approach in the previous Linux kernels, known as Cascading Timer Wheel (CTW)5. The kernel

still maintains theCTW for legacy support as many kernel functions and user applications still

rely on this. The new high resolution timer API [24] (hrtimers) provides several different ways

of interacting with time through a few different high resolution clocks, including:

CLOCK_REALTIME

CLOCK_MONOTONIC

CLOCK_MONOTONIC_RAW

CLOCK_REALTIMEis required by the POSIX standards and represents wall time as described

above for the jif�es bound system clock.CLOCK_MONOTONICdoes not represent the time as

2The Unix Epoch is de�ned as the exact point in time of 1970-01-01 00:00:00 +0000 (UTC). The purpose of

this was to serve as a base point for representation of time inUnix systems, with the de�nition of Unix time as the

number of seconds elapsed since the Epoch.
3From quite recently, the implementation ofgettimeofday() in the Linux kernel, was changed to use a

high resolution timer instead of the jif�es based clock, although it still only provides microsecond resolution.
4Jif�es are in Linux de�ned as the duration between each hardware timer interrupt. This timer frequency is set

by the kernel on startup, usually in the range of 100 to 1000 Hz. In the newer Linux kernels (from 2.6.13) this is a

compile time con�guration parameter. [21]
5The further algorithms of the traditional timer implementation the Linux kernel, including theCTW, and their

performance, limitations and shortcomings, is very well explained by the Linux kernel developer Ingo Molnár

in [23]
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such, but ticks monotonically forward from an unspeci�ed moment in time, usually at system

startup. WhileCLOCK_REALTIMEmay appear to jump backwards or forwards on system time

adjustments, theCLOCK_MONOTONICclock is guaranteed to strictly tick forward. However

it may be prone to slight changes in tick rate on Network Time Protocol (NTP) adjustments.

To address this, Linux has recently included theCLOCK_MONOTONIC_RAWwhich is created

to read the raw nonNTPfrequency corrected monotonic system time. This is a special clock

designed to provide the actual time frequency of the hardware, and is not supported for use in

system timers such as sleep commands.

The resolution of these clocks are determined by the underlying hardware, and is usually 1 ns

for modern computers. With the new hrtimers framework, the Linux kernel now allows for very

accurate timestamps and high precision timing for user space applications as well as for high

priority kernel tasks. The most important interface for us to the high resolution timers is the

following POSIX.1-2001 de�ned functions:

clock_gettime()

clock_nanosleep()

clock_gettime() takes one of the clocks as argument and returns a time according to

the given clock with nanosecond resolution.clock_nanosleep() can in addition to the

reference timer clock parameter, sleep for either a speci�ed time interval or to a absolute time

as measured by the speci�ed clock. By sleeping to an absolute time, we avoid some of the

problems relative sleeping have with oversleep, for example due to preemption in between time

calculation and the sleep call.

The high resolution timer framework of the recent Linux kernels provides us with high precision

time stamps and timings. Because we are only interested in therelative time in this project, the

CLOCK_MONOTONICprovide us with the guarantees and functionality we need forboth our

sleep control and time stamps. TheCLOCK_MONOTONIC_RAWwould seem even better suited

for our time stamps because of its guaranteed tick rate, but because it does not support sleep

timers we have to chooseCLOCK_MONOTONICinstead. The reason for this is that the two

clocks may have a very different value, especially if the system has been running for some

time, as the static error of the hardware time source frequency naturally accumulate over time.

Mixing the two time sources may therefore yield wrong timingresults.
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4.5 Success Criteria

We look at the different parts of this project independentlyto evaluate our results. How well we

do the calibration steps is important, as this determine thestability of our measurements. We

look speci�cally at how close we are able to do the phase tuning of the screen and the camera.

Also the stability of our delay measurements are an important evaluation criteria, and how well

we are able to isolate the latencies of the camera and displayfrom the rest of the end to end

delay we measure.

4.6 Summary

In this chapter we have showed that the main goal for this system is to be able to measure

the delays and latencies of a camera to display computer system by measuring time internally

and by analyzing the video stream captured of a display screen we control. It is necessary to

match the speeds of the camera and screen as close to a multiple of each other as possible to

minimize the error and jitter of our measurements. We have seen that Linux provides us with

a high resolution timer framework to enable us to do the measurements with high precision.

In the next chapter we show how we implemented this system anddiscuss the challenges we

encountered in the process.
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Chapter 5

Implementation

5.1 Application Overview

The system was implemented on the Linux platform, using the Cand C++ programming lan-

guages. Our main program loop was implemented in the openFrameworks toolkit and consists

of the following main structure:

setup() This is called once when the program starts and initializes all data structures and

toolkit libraries that are used globally in this application

update() The update function is registered as a callback function in the underlying frame-

work and are called once for every loop of the program. This iswhere all the image

processing is done and where the control feedback loop logicis handled

draw() The draw function is registered as a callback function in theunderlying framework

as well, and together with update() consists of the main program loop. For each call

this draws any elements for the screen frame into the graphics buffer of the underlying

OpenGL.

Most of the image processing is handled using the OpenCV data structures and some of their

library functions, as we found this more convenient than using the openFrameworks wrapper of

the same library.

Due to limitations and performance considerations in available user space camera handling

libraries such as unicap, openCV or openFrameworks, we choseto write our own user space

driver. We discuss this in section5.2.
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5.1.1 Tasks ofsetup()

As mentioned, thesetup() function is called once when the application start. It is used to

initialize any data structures or variables that is needed in the application. Due to the callback

loop nature of this framework, every data structure needs tobe declared in a class global scope

and initialized here. This includes the image and utility data structures, the camera handler and

state variables to control the behavior of the program loop.

5.1.2 Tasks ofupdate()

Update handles the complete �ow of our application, receives and processes the video feed, and

controls the calibration pipeline and the measurements. The calibration is implemented through

the following steps:

Calibrate the coordinate spaces of screen and camera

The �rst vision based step in our calibration is to detect a chess board pattern in the image

stream that has been drawn on the screen. The OpenCV library implements algorithms to

do this speci�c task, so a call to thecvFindChessboardCorners() function returns

the coordinates of each corner of the chess board in the image. Using the matching corner

coordinates recorded when we made the chess board pattern inthedraw() part of the

program, OpenCV �nds the the point-to-point correlation (homography matrix) with a

call to cvFindHomography() . This homography matrix are used to warp the image

as shown in �gure4.4using thecvWarpPerspective() call. When the homography

matrix has been found, we update the state to indicate this and move on to the next step

in the calibration process.

We found that, given the large difference in resolution of the screen and the image, using

these pixel coordinates as they are, introduced a few challenges relating to translation

between them and also some increased processing delays. We solved this by scaling

down the coordinate space of the screen to match the resolution of the image. This way

we could warp the image without having to resize anything, and we can just use the

downscaled screen coordinates directly in the warped imageto address any pixel.

Find the ambient light intensity

We are using the pixel intensity in the image converted to grayscale to be able to dis-

tinguish the elements we show on the screen. By warping the image as described above
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and displaying bright spots on a dark background this is easily recognizable. However

we need to cancel out the ambient light conditions in order todo this. We capture the

average intensity for every pixel in the image over a number of frames to establish our

base image matrix. We then de�ne that any rise in pixel intensity for a given pixel over

a prede�ned threshold, indicate that something is there. Once the ambient pixel values

have been calculated, the state is updated andupdate() can move on to the next step.

Match the frame rate of the camera to the screen refresh rate

This monitors the frame rate received from the camera, and adjust it to match a multiple

to the screen refresh rate. We discuss this in section5.4.

Match the phase of the display of events and the camera exposure

This is the most important and also the most challenging partof the calibration process.

This is discussed in section5.5.

When the calibration of the system is done, we go on to the actual delay measurements, which

we do by displaying an image on screen which we may recognize in the video stream from the

camera, recording timestamps for each step. We discuss how this is done in section5.7.

5.1.3 Tasks ofdraw()

This part of our application draws to the graphics buffer based on the state set byupdate() .

Here we mostly use the openFrameworks draw calls to perform these actions. First we start

by creating a chessboard pattern on the screen and storing the corner coordinates for use by

update() . Once the calibration of the coordinate spaces is con�rmed,we keep the screen

black until the ambient pixel intensity calculations have been done.

To calibrate the phase and frame rate of the screen, we display white squares on a black back-

ground, that move to a different prede�ned position on the screen on every frame we display.

How these are interpreted is discussed in5.5.

When running a measurement, thedraw() function is only responsible for drawing the event

into the graphics buffer and record the time. It is kept visible on the screen until it is con�rmed

detected.
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5.2 Handling the USB Web Camera

We �rst implemented this project by using the Unicap [25] library for handling theUSB web

camera and the image stream from it. We soon found that this was too limiting in terms of

camera control since we did not have access to the low level management of the camera. By

investigating the issues we had with Unicap, we decided it was best to implement a limited user

space handler or driver for USB cameras on top ofV4L2 and uvcvideo ourself to gain complete

control of the camera. The capture example provided in theV4L2 API [26] was chosen as a

basis for our implementation.

The API is quite simple and limited as most settings are hard coded inthe driver to provide

a stable as possible video stream. We provide an initializerfunction camdriver_init()

or camdriver_init_exp() which accept an initial value for the exposure control, a shut-

down functioncamdriver_ stop() that stops the capture and clears structures, and �nally

a grab functionscamdriver_grab_frame() for the application to poll for new frames.

Apart from these basic interaction functions, we also provide access to the exposure control

of the camera withcamdriver_adjustExposure() which accept a positive or negative

difference in the exposure value and returns the new exposure setting.

The internal structure of the driver is also quite simple: The camera device is represented by a

Linux �le descriptor, and all interaction with the camera isdone using theioctl() system

call. The process starts by initializing the camera for capture, then entering a capture loop

controlled by theselect() system call. The capture loop is run in a dedicated thread, and

with real-time priority if run with root privileges.

As mentioned earlier, we require that the camera provides constant, or at least close to constant,

exposure times and frame delivery rates to be able to use it inthe way we intended. To achieve

this we must disable any control or processing in the camera that prevents this and set static

values where we can. For our Logitech QuickCam pro 9000 this means setting the following

controls inV4L2 during the initialization of the device:

User controls:

V4L2_CID_AUTO_WHITE_BALANCE := 0

Extended controls:

V4L2_CID_EXPOSURE_AUTO := V4L2_EXPOSURE_MANUAL

V4L2_CID_EXPOSURE_AUTO_PRIORITY := 0
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V4L2_CID_EXPOSURE_ABSOLUTE := 160

0xa046d04 (private focus ctrl) := 100

This turns off the automatic white balance and exposure controls, and set a static value for the

exposure time and the focus. In addition we set theV4L2_CID_POWER_LINE_ FREQUENCY

�lter to 50Hz to match the main power line frequency to reduce�ickering. The capture format

is initialized to a relatively small image size of 176 x 144 pixels to minimize data transfer de-

lays, and the pixel color space is set to YUV2 to avoid variable processing for compression in

the camera. The QuickCam pro 9000 camera has an optical auto focus according to its lim-

ited documentation, however we found that it does not support the standardV4L2 controls for

auto focus. Our tests show no indication, though, that this auto focus control introduce any

variable delays indicating it might adjust its focus of�inefrom the capture process. We felt

safer however, to set the focus to a static value in the one private focus control the camera does

provide.

The value of theV4L2_CID_EXPOSURE_ABSOLUTEcontrol is in theUVC speci�cation1

and theV4L2 API is de�ned to be in units of 100� s, so our value of 160 would according to

speci�cation mean an exposure time of 16ms. However, the current Logitech devices interpret

this value in a different and inverted way. We have been unable to �nd an of�cial speci�cation

of this control by Logitech, but the Logitech maintained QuickCam Team website2 suggest that

the control in relation to aUVC exposure property value of0:n [s] is interpreted as1=n [s].

This means that our value of 160 (0.016s according to speci�cation) should be interpreted as

an exposure time of 1/16s (62.5ms). This seems consistent with the behavior of our Logitech

QuickCam 9000 pro.

We also initialize the low level device driver for capture into shared memory buffers using the

mmap() system call to map the address spaces. This gives us a pointerto the buffers where the

device driver actually receives the image data from the camera, and enables us to monitor the

arrival of bits into the buffer. This provides us with the time stamp for when the �rst part of the

image is received.

When we implemented the camera handler, we noticed a signi�cant jitter in the inter frame

arrival times. With our camera settings we expected a stableframe rate of 15FPS(in this case

limited by anUSB 1.1 hub) from the camera, meaning� = 66:67ms per frame. However

our own time stamps taken with theCLOCK_MONOTONICwhenselect() returns on a new

1http://www.usb.org/developers/devclass_docs/USB_Video_Class_1_1.zip
2http://www.quickcamteam.net
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frame event, resulted in an inter frame arrival time patternof � � 63:98ms per frame for 11

frames, then� � 95:98ms for 1 frame. The reasons for this turned out to be that theselect()

system call is still using the old jif�es based timer system (see section4.4) when waiting for

the data ready signal. In our case, the kernel HZ setting is kept at the default 250, giving a timer

interrupt every 4 ms. This means that when the kernel services a source of 15FPS, it wakes

up at � = 64ms intervals (16 jif�es) until it can skew its pattern to match the requested rate

of � = 66:67ms by waiting a bit longer. For the 11 frames with the low rate the“backlog” is

(66:67ms � 64ms) � 11 = 29:37ms, so for the 12th frame it adds 32 ms which is the closest

number of jif�es (8 jif�es), resulting in a frame arrival time of � = 96ms for this frame, exactly

matching the� = 66:67ms for this frame plus the “backlog” time. The average arrival rate over

12 frames is then� = 66:67ms (15.0FPS).

For most consumer video demands, we would believe this to be okay in the sense that this is not

usually detectable for the user, at least it is presumably not annoying. However for our project

this jitter represents a concern because it introduces an uncertainty regarding the frame arrival

times which again affects our total delay measurements.

The uvcvideo driver does however provide a time stamp for thereception of the �rst byte of

each frame which is not dependent on ourselect() call. However according to speci�cation

it usesgettimeofday() . This is still the case on our Linux kernel 2.6.32, on which the

uvcvideo driver time stamps yields exactly the same inter frame time� pattern as above. In

Linux kernel 2.6.35 the uvcvideo driver is updated with a patch addressing this issue, changing

the time source for the frame time stamps to the jif�es independentCLOCK_MONOTONIC.

This is a huge improvement, with much less jitter in the appeared arrival rate. However it still

does not appear to be stable. With the same settings as above,we now get frame timings of

� � 60:00ms and� � 64:00ms in the ratio of about 2 to 3 frames.

Although the new uvcvideo time stamps provide more accuratetimestamps for each frame,

the jitter in the actual frame delivery rate caused byselect() and other kernel sleep based

primitives, does not change. To change this we would have to recompile our kernel with a

different setting of the HZ parameter, making the length of the jif�es compatible to our frame

rate. The Linux kernel does recognize this issue and has included an option ofHZ = 300 that

divides evenly with the most common video frame rates, such as 25FPSfor Phase Alternate

Line (PAL) and 30FPSfor National Television System Committee (NTSC) video formats, but

this is not used as default. We did not recompile the kernel with a changed HZ setting because

we do not want this system to depend on any nonstandard setting or components that we can not

control from within the application. It is one of our speci�cations for the system that it should
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run on top of the stock Linux kernel as stated in1.2.

5.3 Handling the Machine Vision Camera

The industry machine vision camera, the Basler Pilot piA1900-32gc, is handled through a user

space handler, developed in conjunction with another part of the Verdione project, for use with

openFrameworks. This provides access to functions to set the speed of the camera to a speci�c

frame rate, and to set an absolute exposure time.

The proprietary driver package unfortunately do not provide a time stamp for the actual ac-

quisition of the image. For this reason the camera handler can only provide a time stamp for

when the frame grabber function returns a new image from the driver. This means that the time

stamp for the reception of the image in the camera driver (t8) is a bit later than is actually the

case. This means that the measured and calculated delay of the Pilot camera is higher than the

true latency of the camera, because the time spent in the driver are interpreted as a part of the

camera. This has no impact on isolating the delay of other devices in our system because this

behavior is consistent in all cases that the Pilot Camera is used.

We used the same parameters for this camera as for the web camera, however we had to use a

higher resolution image of 480 x 360 pixels, compared to the 176 x 144 we use for the USB

web camera. The Pilot camera only support setting a region ofinterest of the sensor, so we

had to set a large enough resolution to be able to �t the screenin the view of the camera. The

image was scaled down to 176 x 144 pixels for the processing inour application. We have two

reasons for choosing a low resolution image: First, we limitthe amount of data that is sent over

the communication links. The second reason is to show that a low resolution camera also can

be used in this system.

5.4 Matching the Frame Rate of the Camera to the Refresh

Rate of the Monitor

As we now know, we can not adjust the refresh rate of the screen. We can however control the

camera to some extent in order to match the capturing frame rate to a multiple of the screen

refresh rate. We also make the assumption that our capturingdevice is operating, or at least
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may be con�gured to operate, at a speed considerably less that the monitor, as the granularity

of this way of matching the frame rates is quite coarse.

Assuming our screen refresh rate is 60 Hz which is very commonfor both LCD and CRT

monitors, we need our camera to operate at frame rates of for example 30, 20, 15, 12 or 10

FPSor even below. The Logitech QuickCam pro 9000 camera does not provide a control

to set the frame rate. However we may utilize the exposure control to enforce the behavior

requested. As mentioned earlier, Logitech does not providedocumentation on the behavior of

this control, but we discovered it to support a reasonable �ne granularity, enabling us to tune

relatively close to any desired average delivery frame ratewithin the camera's boundaries. It

is important to keep in mind the limitations introduced by the timekeeping in the kernel for

IO device communication as addressed in section5.2, that undoubtedly introduces a variable

amount of jitter depending on the desired average frame delivery rate. Our tests show that on

our current system, the jitter is minimal when we choose to tune into a delivery rate of 10FPS

(� 0:002FPS). See chapter6 for further results.

We implemented this by monitoring the rate of which we receive images from the camera in our

application, and depending on the average rate over a prede�ned number of frames we adjust the

exposure time via our camera driver by small amounts until wehave achieved a stable average

frame rate within a prede�ned deviation. To avoid a very longprocess of matching the frame

delivery rate to the refresh rate of the monitor, we initialize the camera with a value for the

exposure control which we estimate to be close to our desireddelivery rate. By doing this only

small adjustments are needed.

The Basler Pilot camera provides controls for setting the desired frame rate, so this tuning of

the exposure control is not necessary as long as the set exposure time is not too long for the

frame rate to be achieved.

For our Logitech camera �nding a proper value for the exposure control is somewhat coun-

terintuitive due to their non standard interpretation of the control. However we found that the

following formula give a good approximation to the Logitechinterpretation:

Logitech true exposure time [s]=
1

UVCvalue� 100�s
1000000�s

� 1000

UVCvalue =
10

Logitech true exposure time [s]
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Figure 5.1: System in phase. The speed of the system is matched 6 screen frames to the exposure

period. System are in phase when the virtual display period matches the exposure.

If we assume that the camera exposes constantly, the exposure time is equal to the inter frame

delivery time, and we get

UVCvalue = desired FPS� 10

This way we can �nd a decent approximation to the true exposure time depending on our de-

sired frame delivery rate when we initialize the camera, andonly small adjustments would be

necessary to match the frame rate to our target.

In following this scheme of matching the frame rate to a multiple of the monitor refresh rate

by utilizing the exposure time, we are making the assumptionthat the exposure period of the

camera, i.e. the time between the start of each exposure, is constant provided all variable con-

trols are turned off, and that this exposure period is directly correlated with the frame delivery

rate from the camera. On this grounds it should be suf�cient to match the frame delivery rate as

close as possible to a multiple of the screen refresh rate, tomake it possible to synchronize to

the exposure period later on.

5.5 Matching the Phase of the Display to the Camera Expo-

sure Period

At the point in our calibration pipeline where we start the phase synchronization, we assume

that we have a good match between the screen refresh rate and the camera exposure period as

shown in �gure 5.1. The exposure periodof the camera is de�ned as the time between the
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start of an exposure to the start of the next. We now must matchthe time of when we display

images on the screen to the start of the camera's exposure. Inessence we want to establish a

virtual display period for the screen equal to the camera exposure period (the time from the

start of one exposure to the start of the next), and matching this to the exposure phase. If

we use a capture frame rate of 10 FPS and a 60 Hz refresh rate forthe screen, we have an

exposure period of1000ms=10 = 100ms which matches 6 times the screen refresh rate of

1000ms=60 = 16:67ms. If we do not control when we display events to the screen we could

initiate the display of an event at any time during the exposure period, introducing an uncertainty

in the delay measurements of the full duration of the exposure period, in this example a full 100

ms potential measurement error.

As we discussed in chapter2, we can not adjust or skew the refresh rate of the screen so that

it exactly matches the start of exposure. Neither can we skewthe camera exposure period to

exactly match the time of the screen update. The lower bound of our phase synchronization is

restricted to identifying which particular screen frames are displayed during the start of expo-

sure, which translate into a uncertainty in our delay measurements of one screen frame duration

of 16.67 ms.

To implement this phase synchronization we keep track of sets of a number of screen frames

matching the camera exposure period, making this the lengthof our virtual display period. In

our example above, we have an exposure period of 100 ms so we need to keep track of sets of

6 screen frames to match the period of the camera. The challenge then is to �gure out when to

display these 6 frames in such a way that all of them are displayed during one single exposure

period of the camera. Depending on the camera architecture,only a subset of these frames,

that matches the actual exposure time, may be visible in an image. For a camera that uses a

constantly exposing rolling shutter, the whole set of 6 frames may be visible in one image.

If we do have a camera with a shorter exposure time than the exposure period, meaning that the

camera is “blind” in the last part of the exposure period, we need a way of identifying which of

the frames from our set actually are captured by the camera. Because we want to synchronize

with the start of the exposure, we display bright areas on different locations in a number of

frames matching the exposure time in the beginning of our set. As we can assume we do know

the exposure time of the camera since we set it ourself to a static value, �nding the number of

display frames to mark is trivial. By doing this we may adjust when we display these frames

in such a way that all the marked frames are visible in one single image from the camera. We

decide that we have a successful synchronization of the phase of our “virtual display period”

when all the marked frames are visible in the image for a preset number of frames from the
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camera.

We may think of our monitor as having a constant number of timeslots for displaying frames

each second, determined by the refresh rate of the screen. Assuming the screen refresh rate is 60

Hz as in the example above, we may think of the monitor as having 60 time slots for displaying

frames. This is a simple scheme and we can keep track of these slots by a simple counter.

Initially we do not know anything about which slots correspond to the start of the exposure

period, so we start by just selecting a slot and display our set of frames. Upon receiving the

images from the camera we detect the marked frames and we makea quick decision based on

how many of these we see in the image.

Using the numbers from our example of 6 frames matching the exposure period of our camera,

and assuming that it is using a constantly exposing shutter,all 6 frames are captured by the

camera. At this point though, it is likely that we are out of phase and the displayed frames span

over two images. If we had a camera with a discrete exposure and processing period, some of

the frames will not be visible in any image as they were displayed while the shutter was closed.

For this reason we must select the �rst image in which we detect the marked frames as a basis

for our decision, as we can not assume that the camera starteda new exposure directly after

the exposure of this image was done. Let us say we see 2 of the marked frames in this image,

and that we identify them as the 2 �rst of the displayed frames, we want to shift the time for

displaying the frames 4 display time slots earlier in order to make them all visible in the image.

This process of displaying and capturing the frames of the virtual display period is repeated a

few times to verify that we now are in phase with the camera's exposure period.

It is unsafe to assume that we have achieved a stable system that keeps in phase over time, when

using a system like this. It is likely that the matching of theframe rate of the camera may not

be exactly a multiple of the screen refresh rate, and as we discussed in section5.2 we may

have a considerable jitter in the reception of the frames from the camera, however as long as the

assumption that the camera exposure period is constant and that it is not dependent on that the

kernel timekeeping granularity is valid, then this is not a problem. Another issue is the possible

jitter in the control loop deciding when to draw to the graphics buffer to be displayed on the

screen. This may cause a frame not to be displayed, either because it was overwritten in the

graphics buffer by the next frame arriving too early or by being written too late so it missed its

time slot. We discuss this in section5.6. These uncertainties dictate that we must repeat the

phase synchronization in a timely manner in order to achievea stable system.
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5.6 Program Control Loop and Speed Management

The single most important aspect of implementing this system is timekeeping and speed man-

agement in order to insure that each event happens at the right time. We have decided on the

following requirements for our application:

1. The display thread must run at the same speed as the screen refresh rate in order to main-

tain hard deadlines for writing to the graphics buffer.

2. No image processing step should interfere with the speed of the display thread in such a

way that it misses its deadlines

As discussed earlier, we use the framework openFrameworks that implements a program man-

agement loop on top of the openGL toolkit, using recurring callbacks to the functionsupdate()

anddraw() , whereupdate() handles any time consuming processing steps anddraw()

only draws to the graphics buffer. The �rst task is to controlthe speed of this loop so that we

draw exactly one frame to the graphics buffer for each screenrefresh.

OpenFrameworks provide a frame rate control functionofSetFrameRate() that is sup-

posed to control the speed of the callback loop to match the target frame rate given as parameter

to the function. This was the obvious �rst choice for controlling our framerate, but there is a

few disadvantages with this method though. For the frame rate control openFrameworks uses

the Linux implementation ofusleep() which is jif�es based and as such has a low granular-

ity similar to what we discussed for timers in section4.4, 4 ms for recent Linux kernels with

a HZ value of 250.usleep() is also deprecated from the POSIX.1-2001 standard, and in

POSIX.1-2008 the speci�cation is removed all together. More important is the placement of

this timer control in openFrameworks as it sleeps to match the target frame rate just before it

calls the possibly labor intensiveupdate() function, effectively eliminates the possibility to

adapt to changing workloads in the application. For us this makes theofSetFrameRate()

function useless.

Our second approach was to turn off the openFrameworks framerate control and handle the

speed control ourself. By establishing a timer control in thebeginning of thedraw() function

we are able to make the application to start drawing to the graphics buffer at the right times. We

used the Linux high resolution sleep functionclock_nanosleep() to be able to wake up

at the right time, by utilizing the possibility to sleep until an absolute point in time according to

a speci�c clock, as opposed to sleeping for a time interval. This is reasonably precise, however
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we still experienced some jitter causing us to drift compared to the display refresh, so that we

skew our control with the time slots for the screen.

Therefor it is necessary to synchronize our application to the vertical retrace signal of the screen,

the time when the monitor �nishes drawing a frame and preparing to start drawing the next (see

2.2). The hardware and the graphics drivers do provide a vertical sync signal, Vblank, that

openGL may use to synchronize the swapping of the graphics buffers. When this option is

set, openGL blocks when the swap buffers is called until the Vblank signal occurs, effectively

locking the frame rate of the application to the refresh rateof the screen in a way that insures

that every frame is displayed on time, providing the application is not too slow to reach the

deadline. OpenFrameworks provide an interface to the openGL synchronization to the Vblank

signal with the functionofSetVerticalSync() .

The next challenge was to make sure that our display thread isable to reach its deadlines, mean-

ing that one loop should never take more than one frame interval (162
3ms for a 60 Hz display).

The most time consuming tasks we do are related to the image processing, with the openCV

calibration of the coordinate spaces and the calculation ofthe ambient pixel intensity values

as the heaviest (see5.1.2). As these tasks are done in a non critical phase of the application

in terms of timing, this is okay. Of the recurring image processing tasks we need to do, the

warping of the image perspective (�gure4.4) and then image buffer copying are the most time

intensive, so care must be taken to avoid to use these actionsmore than necessary. Because our

identi�cation of displayed frames in the images is only based on recording the pixel intensity at

known locations in the image by simple arithmetics, this is not time consuming in itself.

One last challenge still persists in this scenario. In a preemptive setting, the operating system

may choose to schedule our display thread in such a way that itmisses its deadline. The present

scheduler in Linux, the Completely Fair Scheduler (CFS), shares the CPU evenly between the

running processes, granting each competing process1=(nuber of processes) of the available

CPU time de�ned by a period that by default start at 6 ms, but increases so that each process is

granted a minimum of 2 ms CPU time during each period. In the case that we are competing

for the CPU with one CPU intensive process, we may have a worst case blocking period of 3

ms, meaning we are spending 3 ms per 6 ms elapsed time in blocked state. This may result in a

maximum time in blocked state of 9 ms over the course of one display frame (162
3ms). In the

case that we have to spend more time than72
3ms in processing for the next display frame, this

is causing us to miss our deadline. However this scenario is unlikely in the normal case, but

with increasing load on the system with more processes competing for the CPU, the time spent

in blocked state might be a concern.
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A challenge due to scheduling is that we may get preempted close to issuing the command to

openGL to swap its buffers. If this causes us to miss the deadline, the Vblank synchroniza-

tion causes the application to block until the next display frame, making us miss one frame

completely and throw our phase synchronization off.

For these reasons, it is preferable to run the application onan idle system, minimizing the risk

of missing deadlines due to system load. In our implementation we also included a function that

sets a high real time priority under theSCHED_FIFOscheduler when run with root privileges,

which indeed helps avoid the problem. However we do not depend on the availability of root

access.

5.7 Taking Measurements

Once the calibration of the system is done, the �rst display frame of the next virtual display

period as found during the phase synchronization stage (section 5.5), is marked to display

a white square in the middle of the screen. This action is recorded with the time stamp at t0,

according to our breakdown of time in section4.2. The location to record the time of the display

command for this screen frame, t1, is a design choice. We chose to de�ne this as the time when

the graphics buffers were swapped on the graphics card. Because we also have synchronized

this action to the vertical retrace signal, we make the assumption that the time stamps t1 and t2
become equal.

To achieve this, a change to the openFrameworks code base wasrequired, creating a callback to

our application once the call to the functionglutSwapBuffers() returns. In this callback

function we then record the time for t1/t2.

The next time possible to record in software happens at the reception of image data from the

camera. We record the time of the reception of the last pixel in the image buffer in time stamp

t8. The last time we record is time stamp t9 when we detect the image containing the white

square event.

These time stamps together with the known exposure setting and the theoretical calculations on

transmission and propagation delays, form the basis for theevaluation.

As discussed in section5.5, we can not assume that the phase stays matched for several mea-

surements in a row as there can be a high possibility of drift due to different factors including
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speed matching errors, jitter and preemption. Therefore wechose to run the algorithm for syn-

chronizing the phase between every measurement when several measurements are conducted in

series.

5.8 Summary

In this chapter we discussed how we implemented our system and some of the challenges we en-

countered in the process. The system is implemented using openFrameworks on top of openGL

as a loop of callbacks to adraw() and anupdate() function. Our program proceeds through

a series of stages in order to calibrate itself by matching the coordinate spaces of the screen and

the image so we address the image directly using the known locations on screen. Then we

match the frame rate of the camera to a multiple of the screen refresh rate, and �nally we match

the phase of a virtual display cycle to the exposure period ofthe camera so that we are able to

display an image as close to the start of the camera exposure as possible. When this is done an

event is drawn on screen at a time according to this phase, andthe time it takes for the event to

appear in an image from the camera is recorded. In the next chapter we present and discuss our

test setup and results for the delay management system.
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Chapter 6

Tests and Results

6.1 Test Setup

We conducted our tests by connecting the monitor and the camera to a computer and placing

the camera so that it had a full view of the screen. The camera was placed 1 meter from the

screen, and tests were conducted in an environment with dimmed ambient lighting conditions

(about 100 lux measured in front of the screen).

The computer we used has a 3.2 GHz Intel Core i7 960 CPU, 6GB of RAM,and a NVIDIA

GTX460 graphics card. The Basler Pilot piA1900-32gc machinevision camera is connected

to the machine via a gigabit Ethernet switch, and the Logitech QuickCam pro 9000 USB web

camera is connected directly to an USB 2.0 port on the computer. The ViewSonic VX2000

LCD monitor is connected using the digital DVI connection and the Dell P992CRT monitor

using the analog VGA connection.

The following parameters were set for all tests:

Screen refresh rate 60 Hz

Screen resolution 1280 x 1024 (for CRT)

1600 x 1200 (for LCD)

Target frame rate for capture 10

Capture image size 176 x 144 (for the USB camera)

480 x 360 (for the Ethernet camera)

Tests were run with normal user priority for the process, using the 2.6.35 Linux kernel. The
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system runs on the X-server and the GNOME window manager. Foreach of the setup con�gu-

rations of camera and monitor pairs, 1500 measurements weretaken.

To validate our results, we also conducted tests with an external tool. We connected the Basler

Pilot camera to a manual hardware trigger, with which we can control precisely when the camera

starts the exposure. For the measurements we placed a Light Emitting Diode (LED) right in

front of the camera, also controlled by the trigger so that when we activate the trigger, the diode

lights up at the same time as the exposure starts. A photoresistor is placed on the screen so that

it reacts to the image of the diode light when displayed on thescreen. The voltage over theLED

and over the photoresistor is monitored by a storage oscilloscope, which allows us to read out

the difference in time between the rise in voltage over thesetwo components.

These validation tests has clear and de�ned uncertainties.The camera has a de�ned start delay

from the trigger signal to the exposure start of 66.45� s. The introduced lag by theLED is in

the range of nanoseconds, so we assume it is negligible. There is no uncertainty in the timing

of the event to the exposure start.

On the monitor side we can only display images at the screen refresh rate, which means an un-

certainty of the duration of one screen frame is introduced.We keep the settings of the camera

and display the same as in the other tests, meaning the uncertainty of the validation measure-

ments is 16667� s. The photoresistor, the PDV-P9004 photo cell from Advanced Photonics

Inc., has a speci�ed typical rise time, which means the time the resistor needs to adjust fully to

light, of 60 ms. We measured its initial response in our setupwith the oscilloscope to be almost

instant in terms of starting the reaction to light.

No separate validation tests were conducted with the USB webcamera because this camera can

not be controlled by an external trigger. The test setup above should prove the accuracy of the

tool itself, and is valid also for the USB web camera con�gurations.

6.2 Results

In this section we discuss how to evaluate the timestamps andthe results for each different setup.

Generally we see a reasonably consistent pattern between the con�gurations. Our main metric

for evaluating the results is stability and reliability of the readings, and how well we can isolate

the introduced delay from the cameras and monitors. The exact level of total end-to-end delay

shown in these results is not universally representative, as we can not assume our hardware
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setup or software is comparable directly to other systems.

6.2.1 Evaluating the time stamps

The time stamps we de�ned in section4.2are recorded throughout our application as described

in section 5.7. Here we translate these into a few delay intervals that we measure directly or

calculate:

t0 –> t1 Processing delay from the decision to show the event until the graphics card starts

sending the image to the monitor (measured).

t2 –> t3 Transmission delay of the screen frame data over the displaylink (calculated)

t2 –> t8 Total delay of the elements outside the computer (measured)

t7 –> t8 Transmission delay of the video image data over the camera link (calculated)

t8 –> t9 Processing delay up to the measurement application receives the video image

(measured)

In addition to these, the exposure time, t5 –> t6, is known.

Of these delay intervals, the time between the time stamps t2 and t8 is the most interesting to

us. This is the time the pixel data spends in the hardware components outside the computer. We

know the delay introduced by the connection links by calculations, the rest of this delay consists

of the exposure time of the camera and the processing latencies of the camera and the display.

It is important to note that the actions happening in the monitor and the camera are completely

independent of each other, and may overlap in time to any extent, limited by the camera expo-

sure time in this setting. Anything that is displayed duringthe exposure time are visible in the

captured image. By matching the phase of our display timings to the exposure period of the

camera, we try to time the display of the event to the �rst screen frame visible after the start of

the image exposure. This is shown in �gure6.1(a).

Further, it is important to know that several of the time components within each of the devices

may overlap. This is especially important on the camera sidewhere our web camera process

and transmits its data continuously as the rolling shutter makes exposed pixels available. We

assume the Logitech QuickCam pro 9000 reads out pixels from its sensor line by line as this

is common for CMOS rolling shutter image sensors, and processes and transmits them as they

come, although we have not been able to �nd documentation that explicitly states this. The
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(a) LCD monitor and web camera. The web camera processes and transmits ready image data concurrently with the

exposure
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Display screen frame

Time

Monitor

Camera

Transmission

Processing
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(b) CRT monitor and the industry vision camera. Note that theimage is drawn on screen as the monitor receives the

signal

Figure 6.1: Actions within monitor and the camera (Timings are not to scale)

Basler Pilot piA1900-32gc does not overlap the exposure, processing and transmission of the

same frame.

This overlap in time is also present for theCRTmonitor, as it directs the incoming analog signal

directly to its electron guns, drawing the frame on the screen as the signal is received. The LCD

monitor has to process the received pixels before they are drawn on screen adding a processing

delay to the signal.

The overlap of these time components make them a bit harder toisolate, although it is possible

to approximate them by calculating the transmission delay for one line of the image when using

the web camera rather than for the whole image. In any case we have the difference between

the time stamps t8 and t2 which is the total time spent after the graphics card start sending data

until the last pixel of the image is received by camera driver. Assuming we have successfully

matched the phase of displaying images and the exposure, we may subtract the known exposure

time as well from this result. This should indicate the totallatency of the external hardware, the

monitor, camera and cables:

� hw = t8 � t2 � exposure time

For the tests using the web camera we may, under the assumption made above, further subtract

the transmission delay of one image line from the camera to the computer from this. Using the

Ethernet camera, we may subtract the transmission delay of awhole frame as the camera does

not start sending data before the exposure is done.
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From the monitor side, the transmission delay of a screen frame over the graphics link can be

calculated and subtracted from the above result. This calculated differential should, provided

we display the image on the screen at the same time as the exposure starts and that the actual

drawing of the image and the reception of the signal does not overlap in the monitor, in theory

only consist of the in-device processing latencies of the camera and monitor combined.

� camera + monitor = t8 � t2 � exposure time� Txcameralink � Txgraphicslink

The uncertainty of this calculation necessarily includes the time difference between the start of

exposure and the display of the screen frame containing our event, typically up to one screen

frame duration, 16667� s for a 60Hz monitor. This is therefore the granularity of ourmeasure-

ments for the total end-to-end delay.

Assuming that aCRT monitor does not introduce any delay to the system, we can isolate the

delay introduced by the camera used with the CRT monitor from the calculated� camera + monitor .

Then we can again use this information to isolate the latencyof the LCD monitor

In the next sections we show the calculations for the link delays and discuss the �ndings for

each of the test con�gurations.

6.2.2 Transmission delays

Here we present the calculations for the transmission delayover the communication links in

the system, the graphics link to the monitors and the data link from the cameras. We have not

included propagation delays in the presentation of these calculations, because they are evaluated

to zero when rounded to microseconds, which is the chosen resolution of our test. For reference,

the longest propagation delay we calculated for our system setup is 26 nanoseconds (0.026� s).

This is for the Ethernet network link, using a signal speed ofCAT5e of 195000 km/s (0.65 c)

and a cable length of 5 meters.

Transmission delay over the USB camera link

The Logitech QuickCam uses aUSB 2.0 link to the computer. The USB link is speci�ed to

a data rate of 480 Mbit/s, however the camera does not utilizethe full rate of the link as it

constantly transmits small amounts of data as it becomes available from the sensor. Using the

Wireshark network protocol analyzer, we measured that thatthe average bandwidth used by the

Logitech camera is 5.689 Mbit/s with our settings.

63



For the capture from the USB camera we use a 176 x 144 px resolution image in the YUV422

format which means 2 bytes/pixel or 16 bits/pixel. Assumingthat the camera transmits one

image line at the time, we get the following calculated transmission delay:

Txusblink =
176px � 16bit=px

(5:689� 1000000)bit=s
� 1000000 = 495�s

Transmission delay over the Ethernet camera link

The Basler Pilot camera link is a gigabit Ethernet link, connected to the computer through a gi-

gabit Ethernet switch with no other traf�c. By speci�cation the switch we used, the NETGEAR

GS108 gigabit switch, has a maximum packet switching delay of 4 � s. From the Basler Pilot

manual we know that the GigE protocol used for transmitting data optimizes the network �ow

by making sure to �ll every Ethernet frame with payload size of 1496 bytes. The inter packet

delay is set to 800 ns.

The image resolution captured from the Pilot camera we set to480 x 360 px, and with the

selected format YUV422 we get the following calculated propagation delay:

TxEthlink raw =
480� 360px � 16bit=px
(1000� 1000000)bit=s

� 1000000�s=s = 2765�s

This delay is the theoretical time for transmitting the image data on to the link without pause

time. To this we must add the additional delays caused by the inter packet delay and the switch

delay:

Accumulated interpacket delay=
480� 360px � 2B=px

1496
�

800ns
1000ns=�s

= 185�s

TxEthlink = 2765�s + 185�s + 4�s = 2954�s

Transmission delay over the VGA graphics link

To calculate the transmission delay of the VGA link of the monitor, we �nd the necessary

information in the “modeline” from the NVIDIA graphics driver mode pool. The modeline is

a con�guration line containing parameters on how the graphics driver should send data to the

monitor. We use for the CRT monitor a resolution of 1280 x 1024 pixels and a refresh rate of

60 Hz. From the modeline we �nd the pixel clock parameter which de�nes the rate the pixels

should be sent onto the link. For this resolution and refreshrate the pixel clock is 108 MHz,

which give us the following calculation of the transmissiondelay:

tx V GA =
1280� 1024px

(108� 1000000)px=s
� 1000000�s=s = 12136�s

64



monitor mean value (ms) standard deviance (� s) con�dence interval (±ms)

CRT 156.23 3.60 56.54

LCD 170.40 5.04 63.70

Table 6.1: Mean values for the validation test. 30 observations

Transmission delay over the DVI graphics link

The digital DVI link protocol works the same way in terms of timing as the VGA, although the

semantics of the image signals are different. From the modeline in use for LCD panel resolution

of 1600*1200 and refresh rate of 60 Hz, we get the value for thepixel clock of 162 MHz, which

gives the following transmission delay.

tx DV I =
1600� 1200px

(162� 1000000)px=s
� 1000000�s=s = 12136�s

6.2.3 Validation tests

The validation test result shows the time between theLED lights up and the time the image of

the light is visible to the photoresistor on the screen. We assume that these measurements are

accurate up to the uncertainty of the duration of one screen frame as explained above.

We did 30 tests for each of the monitors with the photoresistor taped on to the screen, and

the camera pointing directly at the LED. When the trigger is pressed, the LED lights up and

simultaneously the camera starts to expose an image. The image from the camera passes through

the processing chain of our measurement tool and is displayed on the screen. The difference

in time between the power was supplied to the LED and to the photoresistor starts to react is

recorded with the oscilloscope (see �gure6.2).

The mean values of the test results are presented in table6.1. We see that the 95% con�dence

interval is very high. This is due to the low number of observations, which lead to a high level of

statistical uncertainty. These validation test values areused to compare the results we have for

the two con�gurations where the Pilot Ethernet camera is used. If the results are comparable,

we know that our measurements were accurate.

6.2.4 Delays using the web camera and the CRT monitor

In �gure 6.3 we see a plot of our total delay as measured by our tool. This shows the pattern

of the results from our measurement system. We see that the results concentrate on three levels
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Figure 6.2: Output from the oscilloscope
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Figure 6.3: Total end to end delay for the web camera and CRT monitor con�guration
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0 5 10 15

Exposure

Screen frames

Figure 6.4: An event displayed on the screen frame at the start of an exposure may be captured

by the previous video image

Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 171822 26514 9320

t0 –> t1 16635 602 840

t2 –> t8 145857 25044 7754

t8 –> t9 9330 4823 726

� hw 45857 25044 2694

� camera + monitor 33226 25044 2054

Table 6.2: Mean delays for web camera and CRT monitor setup. 1500 observations

of delay, two of which are spaced at approximately 16700� s apart. This corresponds to events

being displayed on different screen frame slots compared tothe start of the camera exposure,

where the top row was exposed for the longest. The next row wasdisplayed 16667� s later and

hence was exposed for a shorter time.

We see another constellation in this plot as well, with about100000� s shorter delay than the

top row. Because the web camera we use has no pause between the exposure of each frame, it

captures anything as long as it is displayed before it is �nished with the current image. When

we display our event on a screen frame during which we expect the new exposure to start, we

run the danger of the previous image capturing the event as well. This scenario is illustrated

in �gure 6.4. The images that we display just early enough to be captured by the previous

exposure, show up in our results as having 100 ms shorter delay than the others. The ratio

of these “premature” measurements are 8% of the total numberof values, while 65% of the

measured values are contained in the “top” constellation ofthe delay measurements.

Table 6.2 shows the mean values of the different measured delay intervals, and the calculated

values of the the hardware delays. We see that the standard deviation of the values is quite high

due to the large range of measured values, especially due to some of the events being captured

by the “previous” video frame as explained above. If we take these readings out of the equation,

we see in table6.3that the standard deviation is comparably much smaller.

The values of the total end-to-end delay we observe have a clear spacing of one screen frame
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 179232 7651 9706

t0 –> t1 16630 626 874

t2 –> t8 153026 4596 8075

t8 –> t9 9575 4930 756

� hw 53026 4596 2805

� camera + monitor 40395 4596 2139

Table 6.3: Mean delays for web camera and CRT monitor setup without the “premature” obser-

vations. 1383 observations (92%)

(16667� s). This shows the granularity of our total end to end delay measurements as we have

explained in section6.2.1. It is also clear from the plot of the raw end-to-end measurements as

shown in �gure 6.3. We can argue logically for how these constellations occur,and therefore

that these constellations of delay readings also are possible to distinguish into separate classes

of results. The 95% con�dence interval for the total delay measurements support this in that the

distinct constellations of data we see also are distinct in astatistical sense in that the con�dence

interval do not span over the values of the other constellations.

Therefore it also makes sense to investigate the constellation of values with the highest delay.

If we isolate the top row of the plot shown in �gure6.3we get the values shown in table6.4.

The measurements and calculations rely on how close to the start of the exposure of the video

image we are able to display our event. This means that it is the longest measured delays that

would represent a good basis for calculating the hardware latencies.

The lower constellation of values however are still interesting to investigate, because, if our

theory is correct, they should represent the delay in the system excluding the exposure time as

a factor. These numbers could then also actually serve as a benchmark for the other measure-

ments because, again if our theory is correct, they are con�rmed to be displayed on a screen

frame that covers both the exposures as shown in �gure6.4. The mean values for this con-

stellation is showed in table??. We see that the latency calculated for the camera and monitor

(� camera + monitor ) indeed match the mean value calculated for the top constellation reasonably

close. This Con�rms our theory about the origin of these low delay values, and it also con�rms

that the top constellation of the end to end delay values doesmatch the start of exposure as close

as possible.

The processing delay we measure within our application is also important to understand. We

see that the delay from the application decides to display the event until the screen image carry-
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 184198 34 11608

t0 –> t1 16699 553 1045

t2 –> t8 155330 3324 9651

t8 –> t9 12170 3261 912

� hw 55330 3324 3364

� camera + monitor 42699 3324 2569

Table 6.4: Mean values for the maximum delay constellation for the web camera and CRT

monitor setup, 973 observations (65%)

Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 84232 14 15267

t0 –> t1 16695 117 3017

t2 –> t8 61111 1297 11016

t8 –> t9 6426 1295 1234

� hw * 61111 1297 11016

� camera + monitor * 48480 1297 8727

Table 6.5: Mean delay values for the lower constellation of readings for the web camera and

CRT monitor setup, 117 observations (8%) (*)Not subtracted the exposure time
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ing the event is being sent onto the graphics link, is on average 16630� s with a small standard

deviance of only 480� s. Because our application is synchronized to the Vblank pulse as de-

scribed earlier, our control loop only runs once every 16667� s. When the delay from within

our processing loop to the Vblank pulse occurs is very close to this number, it indicates that

we normally have a very light processing load in the system, which means that we spend the

majority of our processing time waiting for the Vblank pulseto occur. The standard deviance

also shows that we occasionally do miss the deadline for drawing the screen frame. We discuss

this more closely in section6.4.

The delay incurred before we acquire the image in our application from the camera handler is

also affected by the control thread being blocked waiting for the Vblank pulse. On the reception

side of our application we therefore have a certain rate for when we can grab the image from

the camera handler of 16667� s. The average value for the delay is lower than this granularity

because the camera handler may receive the image at any time compared to our control loop.

Because of the way these measurements are generated, we select the constellation of data with

the highest measured total delay as the basis for isolating the hardware latencies. From the

table 6.4 we see that that the introduced latency by the camera and the monitor together

(� camera + monitor ) is in the statistical con�dence range of 42699 ±2569� s (40.1 – 45.3 ms).

Because we assume that the CRT monitor does not introduce any latency to the system, we

can conclude that the Logitech QuickCam pro 9000 web camera alone is responsible for this

latency.

6.2.5 Delays using the machine vision camera and the CRT monitor

The test con�guration using the Basler Pilot Ethernet cameratogether with the CRT monitor

shows a similar pattern in the raw end-to-end delay measurement plot in �gure 6.5. For this test

con�guration we have the two distinct constellations of measurement values spaced at 16667

� s apart. The reason for this is the same as above. From this plot we see that we do not have

the constellation of low delay values that the previous con�guration did. This is because the

Pilot camera does not expose constantly, meaning that the camera does not capture events that

happen between exposures. As illustrated in �gure6.6, when the event is displayed on the

screen frame that correspond to the start of exposure, only the intended exposure captures it.

For this setup, 68% of the measured end-to-end delay is in thelower constellation of values as

opposed to the previous test con�guration where the majority was in the top row. This means
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Figure 6.5: Total end to end delay for the Ethernet camera andCRT monitor con�guration
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Figure 6.6: The camera do not exposure constantly, thus an event happening on a screen frame

that overlap the start of an exposure are not captured by the previous image
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 141629 7720 6896

t0 –> t1 16589 24 841

t2 –> t8 122079 7722 5906

t8 –> t9 2960 5 150

� hw 55411 7722 2532

� camera + monitor 40321 7722 1768

Table 6.6: Mean values for the Ethernet camera and CRT monitorsetup. 1500 observations

Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 152917 33 13725

t0 –> t1 16587 33 1488

t2 –> t8 133370 33 11969

t8 –> t9 2960 5 268

� hw 66720 33 5986

� camera + monitor 51612 33 4632

Table 6.7: Mean values for the maximum delay constellation for the Ethernet camera and CRT

monitor setup. 478 observations (32%)

that 68% of the time the events were displayed one screen frame later than the optimal. Still

32% of the measurements seem to have hit the target of being displayed on the �rst screen frame

overlapping the exposure time.

The mean values of the experiments run with this con�guration are shown in table6.6and the

values for the top row only are shown in table6.7. Generally we see that the total end-to-end

delay is lower compared to the previous test con�guration. This is explained by the exposure

time of the two cameras being set differently due to the different ways they operate.

Because there still is a clear constellation of total end-to-end delay readings in the high row of

values, we use this constellation as the basis for evaluating the hardware latencies. In table6.7

we see that the Pilot camera seems to introduce a slightly higher latency to the system than the

web camera does. However this difference is well within the margin of error. Again, under

the assumption that the CRT monitor does not introduce any delay to the system, we conclude

that the Basler Pilot machine vision camera introduces a latency to our system in the statistical

con�dence range of 51612 ±4632� s (47.0 ms – 56.2 ms).

As we discussed in section5.3, the driver delay is included in this measured delay for the Pilot
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Figure 6.7: Total end to end delay for the USB camera and LCD monitor con�guration

Ethernet camera, resulting in a misleading value for this camera. However calculations for other

devices in these tests are not affected by this because the extra delay is always con�ned in this

the delay for this camera. The total delay readings are not affected by this either, as it is just

one time stamp that is recorded at a different point in the measurement loop.

Comparing our result to the validation test results for the Pilot camera and CRT monitor we

see that the validation mean value of 156.23 ms is statistical indistinguishable from the mean

value of the maximum delay constellation of 152.91 ms because both values fall within each

others uncertainty level. Our maximum constellation mean value even falls inside the standard

deviance of the validation test values as we see in table6.1.

6.2.6 Delays using the web camera and the LCD monitor

In this test con�guration we use the web camera together withthe LCD monitor. As we can see

from �gure 6.7 we have one strong constellation of values corresponding tothe event being

displayed at the start of the exposure. We also have the same constellation of low values as we

did with the web camera and CRT monitor, corresponding to the event being captured by the

previous image exposure when screen frame are overlapping the end and start of exposures.
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 178807 40007 5951

t0 –> t1 16616 588 840

t2 –> t8 152162 39317 4348

t8 –> t9 10029 4503 764

� hw 52162 39317 3643

� camera + monitor 39531 39317 3003

Table 6.8: Mean values for the USB web camera and LCD monitor setup. 1500 observations

Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 200969 106 11646

t0 –> t1 16622 671 962

t2 –> t8 173964 3672 10565

t8 –> t9 10384 3738 118

� hw 73964 3672 4770

� camera + monitor 61333 3672 4038

Table 6.9: Mean values for the maximum delay constellation for the USB web camera and LCD

monitor setup. 1145 observations (76%)

This time we also see that we have a second low constellation of values concentrated one screen

frame duration above the �rst. This row of data corresponds to the event being displayed one

additional screen frame earlier, in the previous image exposure. This indicates that our phase

synchronization was out during some of these measurements.However the vast majority, 76 %,

of the observed values are in the top row constellation.

The mean values for this experiment are shown in table6.8and the mean values for the maxi-

mum delay constellation of data is shown in table6.9. We see that the delays measured for this

setup con�guration is a bit higher compared to the previous two experiments.

Since we observe the same capturing phenomenon in this experiment as in the previously de-

scribed, with events being captured by the previous frame, we show their mean values in table

6.10. We see the same pattern as we did for the experiment with the web camera together with

the CRT monitor: These values con�rm our explanation of the events being captured by the pre-

vious exposure. They also con�rm that the top constellationof values are captured in the very

beginning of the exposure because the difference between these measurements and the ones in

the top constellation are exactly the length of the exposuretime.
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 100934 128 13368

t0 –> t1 16593 121 2200

t2 –> t8 80033 2805 10897

t8 –> t9 4308 2804 271

� hw * 80033 1297 11016

� camera + monitor * 67402 2805 9224

Table 6.10: Mean delay values for the lowest constellation of results for the web camera and

LCD monitor setup, 219 observations (15%) (*)Not subtractedthe exposure time

Again we select the top constellation of values as our basis for isolating the latency of the

camera and the monitor. We see from table6.9that the combined isolated delay for the camera

and the monitor are in the statistical range of 61333 ±4038� s. From section6.2.4we have

that the latency of the USB web camera is 42699 ±2569, which means the latency of the LCD

monitor using the statistical con�dence interval is in the range:

� monitor = 61333� 42699� (4038 + 2569)�s = 18634 � 6607�s

6.2.7 Delays using the machine vision camera and the LCD monitor

In the last test con�guration we look at how the Basler Pilot camera and the LCD monitor

perform together. From the total end-to-end delay measurements in �gure 6.8, we see that

there is again two distinct constellations of values spaced16667� s apart, as was the case with

both the test con�gurations with the CRT monitor. The reason for this is the same.

One single measurement with a total delay of 621 ms was dropped from the data set for this test

con�guration as it was an obvious outlier.

The mean values of this experiment are shown in table6.11and the mean values of the maxi-

mum delay constellation of the delay measurement values areshown in table6.12. Again we

verify that the two constellations of measurement values are statistically distinct because the

con�dence interval of the one group does not span the interval values of the other.

From the mean values of the maximum delay constellation shown in table 6.12, we see that

the combined latency of the monitor and the camera is in the statistical con�dence range of

68313 ±3710� s. From section6.2.5we have that the Ethernet camera introduces a delay in
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Figure 6.8: Total end to end delay for the Ethernet camera andLCD monitor con�guration

Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 167425 5536 8588

t0 –> t1 16514 451 839

t2 –> t8 147906 5649 7599

t8 –> t9 3006 390 150

� hw 81238 5649 4224

� camera + monitor 66148 5649 3460

Table 6.11: Mean delay values for the Ethernet camera and LCD monitor setup. 1499 observa-

tions
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Delay interval mean value (� s) standard deviance (� s) con�dence interval (±� s)

t0 –> t9 (total delay) 169563 299 9207

t0 –> t1 16498 481 899

t2 –> t8 150071 810 8147

t8 –> t9 2994 404 161

� hw 83403 810 4529

� camera + monitor 68313 810 3710

Table 6.12: Mean values for the maximum delay constellationfor the Ethernet camera and LCD

monitor setup. 1304 observations (87%)

the statistical con�dence range of 51612 ±4632. With this wecan isolate the introduced latency

of the LCD monitor:

� monitor = 68313� 51612� (3710 + 4632)�s = 16701 � 8342�s

Together with the result from section6.2.6, of � monitor = 18634 � 6607�s , we have two

estimations of the introduced latency by the LCD monitor. We can not combine these two

ranges into a more certain estimation of the delay, so the uncertainty consist of the full interval

of the two estimations:

� MAX
monitor = 18634 + 6607 = 25241�s

� MIN
monitor = 16701� 8342 = 8359�s

This interval is interesting, because the width of the uncertainty range is 16882� s which is

very close to the length of one screen frame. As mentioned in section 6.2.1, the granularity

of the end to end delay measurements is the duration of one screen frame. It is not possible

to match the choice of when to display our event any closer to the start of the exposure, than

choosing the screen frame that is displayed when the exposure start. In �gure 6.6 we see that

the exposure starts in the middle of the screen frame carrying the event, exactly when during

this frame the exposure start is not possible to determine from within our application. This

uncertainty applies to every part of the measured delays that span the camera exposure. For

example, the� camera + monitor latency has this uncertainty because it depends on the interval t2
–> t8 which spans the exposure of the camera. Therefore the technological uncertainty of these

measurements are the duration of one screen frame,� 16667
2 � s.
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When the statistical uncertainty of the calculated latency for the LCD screen is equal to the tech-

nological uncertainty, it is a clear indication that our measurement system works as intended,

and that the measurements made are reliable.

These results are again con�rmed when comparing this test con�guration results to the val-

idation test results for the Ethernet camera and LCD monitor.We see that the validation test

mean value of 170.40 ms is statistical indistinguishable from the mean value of the maximum

delay constellation of 169.56 ms because both values fall within each others uncertainty level.

Our maximum constellation mean value falls inside the standard deviance of the validation test

values as we see in table6.1. This proves that our measurements are accurate.

6.3 Phase Matching Accuracy

When looking at the raw plots of the data in the �gures6.3, 6.5, 6.7 and 6.8, we see that

we get predictable results with very little variance. The plot in �gure 6.9 is an example set of

measurements with the phase matching algorithm turned off.It is easy to see that our phase

matching algorithm performs well.

The test plot shows a pattern which in several ways con�rms our results. Here the length of

the exposure period of the camera is controlled, but there isalways a slight time difference

between the two. So when the phase is not controlled you wouldexpect to see a line of values

corresponding to the drift of the exposure period compared to the speed of the screen refresh.

The gradient is a function of the speed difference. We see that the measurements are ordered in

certain horizontal levels along this line. The difference between these levels correspond to the

length of the screen frame, and shows that this is the granularity limit with a system that uses

the screen as a measurement tool.

The Pilot camera, which is used for this example, does not expose images constantly. This

means that events displayed on screen in the time between exposures must wait for the next

exposure start before they are detected. This accounts for the broken line at the top of the plot

which has one screen frame higher delay than the ones we have in our tests for the same camera

and screen combination. The value for the delay measurements that were captured by the start

of the exposure have the same delay level as in our tests, approximately 153000 ms.

For our tests, we see that we have some measurements that are off by one screen frame in most

of the data sets, meaning that the event was displayed one frame late. For the most part these
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Figure 6.9: End-to-end delay as measured by our tool withoutthe phase tuning algorithm

deviances seem periodic, which indicates that this is caused by the drift between the camera

period and the screen refresh. We also have some smaller deviances that do not seem to be

caused by a linear drift, but rather by jitter in the system itself, either from our application or

for example by preemption or other system level actions outside of our control.

6.4 Control Loop Timings

The accuracy of the control loop timings is an important factor that many parts of our application

depends on. The phase synchronization, for example, would be thrown off by only one missed

screen frame deadline. During our tests we also collected the timings for the control loop, which

are presented in the tables6.13and 6.14.

We see from these numbers that our application with the current con�guration, never spends

more time in the internal processing chain than about 20% of the available time of 16667� s.

We see that there are some variations in the frame rate of the application, which means that

once in a while the application does miss a deadline. This canbe a participating factor in some

of the variations we see in the measurements if it were to interfere with an actual measurement
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processing time mean value maximum minimum

In the draw() function 27� s 101� s 12� s

� oF; draw� > update 76 � s 89� s 74� s

In the update() function 1033� s 2977� s 615� s

� oF; update� > draw 181� s 205� s 164� s

Measured frame rate 60.02 fps 70.77 fps 52.34 fps

Table 6.13: Mean values for the control loop when using the Ethernet camera.

processing time mean value maximum minimum

In the draw() function 27� s 104� s 12� s

� oF; draw� > update 73 � s 83� s 69� s

In the update() function 155� s 934� s 0� s

� oF; update� > draw 144� s 163� s 137� s

Measured frame rate 60.02 fps 64.06 fps 56.51 fps

Table 6.14: Mean values for the control loop when using the USB camera.

action before the phase synchronization would correct the skew.

6.5 Evaluation of the System Design and Measurement Ap-

proach

As we can see from our results above, we have consistent measurements, that have been vali-

dated by an external measurement tool that we assume is accurate. The variations we see can

be explained accurately by the technology implementation behavior, and they are clearly distin-

guishable into different classes of results by the statistically computed con�dence intervals.

From our results, we are able to isolate and calculate an estimation of the individual delays for

the monitors and the cameras. However, for components with alow latency closely comparable

to the screen refresh rate used, this approach is not very useful as it yields a comparably high

uncertainty to the result. In the case of our LCD monitor, we were able to conclude that the

latency of the monitor is somewhere between 8.36 ms and 25.24ms.

In the case of the web camera, we have an estimate of the latency of 42.70 ms with a statistical

con�dence range of ±2.57 ms. When taking the technology introduced uncertainty of one screen
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frame duration into account, we can only conclude that the latency of the web camera is in the

range 26.03 ms – 59.37 ms (42:70� 16:67
2 ms).

As we can see the granularity of the measurements, as de�ned by the duration of one screen

frame, limits the usability of this tool for measuring low latency devices. However it does give

an indication of the latency one can expect from the devices.For longer delays, as for the total

delay measurements, the granularity of the measurement is less noticeable as it covers less of

the total measured delay.

From this, we can conclude that our approach works accordingto the intention, in that it is able

to measure the delays of the system and provide an understanding of the distribution of them.

We can also conclude that our calibration of the system performed as intended and enabled the

system to collect accurate, reliable and robust measurements.

6.6 Summary

In this chapter we have described our test setup con�gurations and presented our results. We

have shown that the results are accurate to the de�ned uncertainty, reliable and robust. Our

results are con�rmed by the validation tests. We have by these results also shown that the cali-

bration of our system is robust and adequate, but that the phase synchronization has a potential

for future improvement to compensate better for drift in thesystem.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we have investigated the delays and latenciesof a camera-to-display computer

system, by building a tool to measure these delays from within the system itself, without ex-

ternal equipment. The measurement system is based on a feedback loop control that evaluates

the video feed from a camera that watches a computer monitor.The control loop uses the video

feed in order to control when to display an event on the screenaccording to the start of each

exposure in the camera.

For this measurement tool we have implemented a series of calibration steps in order to stabilize

our measurements:

• Calibrate the camera coordinate space to the screen so that we know the corresponding

locations in the camera image from the location we draw on screen

• Calculate the ambient light intensity as a baseline so we candetect events on screen by

rise in intensity level

• Match the speed of the camera to a multiple of the screen refresh rate

• Match the phase of a virtual display period to the exposure phase of the camera

A delay measurement is done by displaying a white square on the screen at the moment the

camera starts the exposure and to identify the square in the received image. The total delay
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recorded in this controlled environment contains known delay components, and we are therefore

able to isolate the latency of the camera and display devicesused, up to an uncertainty of the

duration of one screen frame as de�ned by the refresh rate.

7.2 Conclusion

We have successfully designed and implemented a method to measure the true delays of a

camera-to-display computer system from within the system itself. The implemented solution

has proven to be reliable and robust, and produces accurate results limited to the de�ned un-

certainty of the duration of one screen frame. We have proventhat the controlled environment

the system generates, makes it possible to break down the results into the delay components

we have de�ned. We are able isolate the combined latency introduced by the camera and the

monitor, limited to the de�ned uncertainty. It is possible to isolate the latency to the single

components if a device with known latency is used in the setup.

The implemented solution is inexpensive in that it does not depend on any extra or specialized

equipment for conducting the measurements. We have proven that the system work with a

standard and readily available web camera, and that it is possible to run the measurement system

on a standard unmodi�ed Linux kernel.

7.3 Future Work

This work is an extended proof of concept that shows the possibility of a self contained mea-

surement system for camera-to-display computer systems. Although we have managed to im-

plement a reliable and robust solution, it is possible to improve parts of the calibration of the

system. As we have discussed in section6.3, drift caused by slight differences in the speed of

the camera compared to the de�ned multiple of the screen refresh rate, seem to cause that some

measurements are off by one screen frame, until the phase synchronization manages to correct

the phase shift.

One way of investigating whether the stability of both the application speed and timing control

can be even further improved, is to implement the tool using for example openGL library for

graphics directly. This will give a closer control with the application as the control can be

handled directly without a separate framework in between.
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One interesting aspect is how to improve the granularity of the results by reducing the tech-

nology induced uncertainty. A monitor with a 120 Hz refresh rate, available on the market

today, would reduce the uncertainty by half compared to our test setup. Investigations should

be done to determine if it is possible to reduce the uncertainty of the system, technologically or

statistically, beyond the duration of the screen frame.
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Appendix A

Appendix

Attached is a CD-ROM containing the source code for the measurement tool. The tool depends

on the openFrameworks toolkit which can be downloaded fromhttp://www.openframeworks.

cc/ .

The contents of the CD-ROM can also be found at the following address:

http://heim.ifi.uio.no/~steffag/master/

87



88



Bibliography

[1] The World Opera website.http://theworldopera.org/ . [Online; accessed 25-

January-2011].

[2] Verdione project website.http://verdione.org/ . [Online; accessed 25-January-

2011].

[3] Omer Boyaci, Andrea Forte, Salman Abdul Baset, and HenningSchulzrinne. vdelay:

A tool to measure capture-to-display latency and frame rate. Multimedia, International

Symposium on, 0:194–200, 2009.

[4] Mario Baldi and Yoram Ofek. End-to-end delay analysis of videoconferencing over

packet-switched networks.IEEE/ACM Trans. Netw., 8:479–492, August 2000.

[5] Wikipedia the free encyclopedia. Photoelectric effect. http://en.wikipedia.

org/wiki/Photoelectric , 2011. [Online; accessed 12-January-2011].

[6] Wikipedia the free encyclopedia. Rotary disc shutter.http://en.wikipedia.org/

wiki/Rotary_disc_shutter , 2010. [Online; accessed 12-January-2011].

[7] Wikipedia the free encyclopedia. Webcam.http://en.wikipedia.org/wiki/

Webcam, 2011. [Online; accessed 13-January-2011].

[8] Wikipedia the free encyclopedia. Trojan Room coffee pot.http://en.wikipedia.

org/wiki/Trojan_Room_coffee_pot , 2010. [Online; accessed 13-January-

2011].

[9] USB Implementers Forum. Universal Serial Bus Device ClassDe�nition for Video

Devices, Revision 1.1.http://www.usb.org/developers/devclass_docs/

USB_Video_Class_1_1.zip , 2005. [Online; accessed 13-January-2011].

[10] Wikipedia the free encyclopedia. Machine vision.http://en.wikipedia.org/

wiki/Machine_vision , 2011. [Online; accessed 13-January-2011].

89



[11] Wikipedia the free encyclopedia. Cathode ray tube.http://en.wikipedia.org/

wiki/Cathode_ray_tube , 2011. [Online; accessed 19-January-2011].

[12] Frank L. Lewis.Applied Optimal Control and Estimation. Prentice Hall PTR, 1992.

[13] J. Clerk Maxwell. On governors. InProceedings of the Royal Society of London, vol-

ume 16, pages 270–283, 1867 - 1868.

[14] Stuart Bennett.A history of control engineering 1930-1955. Peter Peregrinus Ltd. on

behalf of the Institution of Electrical Engineers, 1993.

[15] Unlocking the Phase Locked Loop (PLL). Charan Langton. http://

complextoreal.com/tutorial.htm , 2002. [Online; accessed 25-January-2011].

[16] openFrameworks. http://www.openframeworks.cc . [Online; accessed 15-

January-2011].

[17] Joshua Noble.Programming interactivity. O'Reilly Media Inc., 2009.

[18] Open Graphics Library (openGL).http://www.opengl.org . [Online; accessed

15-January-2011].

[19] Attila Pásztor and Darryl Veitch. Pc based precision timing without gps.SIGMETRICS

Perform. Eval. Rev., 30:1–10, June 2002.

[20] John Stultz, Nishanth Aravamudan, and Darren Hart. We Are Not Getting Any Younger:

A New Approach to Time and Timers. InProceedings of the Linux Symposium, Ottawa,

Canada, volume 1, pages 219–232, 2005.

[21] Linux man-pages project. Linux Programmer's Manual, TIME(7). http://www.

kernel.org/doc/man-pages/online/pages/man7/time.7.html , 2010.

[Online; accessed 05-January-2011].

[22] POSIX.1-2008. The Open Group Base Speci�cations. Also published as IEEE Std 1003.1-

2008, July 2008.

[23] Ingo Molnár. kernel/timer.c design (was: Re: ktimers subsystem).http://lkml.org/

lkml/2005/10/19/46 alternatively http://lwn.net/Articles/156329 ,

2005-10-19 12:49:38. [Online; accessed 11-January-2011].

[24] Thomas Gleixner and Douglas Niehaus. Hrtimers and Beyond: Transforming the Linux

Time Subsystems. InProceedings of the Linux Symposium, Ottawa, Canada, volume 1,

pages 333–346, 2006.

90



[25] Arne Caspari. unicap - The uniform API for image acquisition devices. http://

unicap-imaging.org/ , 2009. [Online; accessed 05-January-2011].

[26] Bill Dirks et. al. Video for Linux Two API Speci�cation, Revision 2.6.33. http://

linuxtv.org/downloads/v4l-dvb-apis/v4l2spec.html . [Online; ac-

cessed 16-January-2011].

91


	List of abbreviations
	Preface
	Acknowledgements
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Related Work
	1.4 Contributions
	1.5 Outline

	2 Technology and Constraints
	2.1 Digital Cameras
	2.1.1 Image sensors
	2.1.2 The electronic shutter
	2.1.3 Web cameras
	2.1.4 Industry machine vision cameras

	2.2 Monitors
	2.2.1 CRT monitors
	2.2.2 LCD monitors

	2.3 Summary

	3 Feedback Loop Measurement System
	3.1 Control Theory – the Feedback Control
	3.2 Phase Locked Loop
	3.3 Measuring Delay in a Controlled Feedback Loop
	3.4 Summary

	4 Design
	4.1 Delay Measurement System – Introduction
	4.2 What Time to Measure
	4.3 Implementation Design
	4.3.1 Platform and tools
	4.3.2 Main Control loop
	4.3.3 Calibration
	4.3.4 Taking measurements — Generating and identifying events

	4.4 Acquiring Accurate Time Stamps in Linux
	4.5 Success Criteria
	4.6 Summary

	5 Implementation
	5.1 Application Overview
	5.1.1 Tasks of setup()
	5.1.2 Tasks of update()
	5.1.3 Tasks of draw()

	5.2 Handling the USB Web Camera
	5.3 Handling the Machine Vision Camera
	5.4 Matching the Frame Rate of the Camera to the Refresh Rate of the Monitor
	5.5 Matching the Phase of the Display to the Camera Exposure Period
	5.6 Program Control Loop and Speed Management
	5.7 Taking Measurements
	5.8 Summary

	6 Tests and Results
	6.1 Test Setup
	6.2 Results
	6.2.1 Evaluating the time stamps
	6.2.2 Transmission delays
	6.2.3 Validation tests
	6.2.4 Delays using the web camera and the CRT monitor
	6.2.5 Delays using the machine vision camera and the CRT monitor
	6.2.6 Delays using the web camera and the LCD monitor
	6.2.7 Delays using the machine vision camera and the LCD monitor

	6.3 Phase Matching Accuracy
	6.4 Control Loop Timings
	6.5 Evaluation of the System Design and Measurement Approach
	6.6 Summary

	7 Conclusion
	7.1 Summary
	7.2 Conclusion
	7.3 Future Work

	A Appendix

