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Abstract. We propose a refined version of the stochastic SEIR model for epidemic of the new corona virus
SARS-Cov-2, causing the COVID-19 disease, taking into account the spread of the virus due to the regular
infected individuals (transmission coefficient β), hospitalized individuals (transmission coefficient lβ, l >
0) and superspreaders (transmission coefficient β′). The model is constructed from the corresponding
ordinary differential model by introducing two independent environmental white noises in transmission
coefficients for above mentioned classes - one noise for infected and hospitalized individuals and the other
for superspreaders. Therefore, the model is defined as a system of stochastic differential equations driven
by two independent standard Brownian motions. Existence and uniqueness of the global positive solution
is proven, and conditions under which extinction and persistence in mean hold are given. The theoretical
results are illustrated via numerical simulations.
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1 Introduction
The COVID-19 disease, caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syn-

drome coronavirus type 2), today is in the focus of research in many scientific disciplines. In comparison
to most of the other coronaviruses, the SARS-CoV-2 virus, discoveblack in December 2019 and believed
to be of animal origin (see e.g. [? ]), causes the severe respiratory infection with a wide range of differ-
ent symptoms, consequences and, in some cases, even death. In comparison to influenza in which one
infected person spreads the virus to 1− 2 others, in the case of SARS-CoV-2 virus it is more likely that
one infected person infects 2 − 4 other persons, according to the Norwegian Institute of Public Health
[? ]. The virulency of this virus is highly dependent on its robustness which is, with respect to the
different environmental conditions, studied in [? ]. According to this study, after 14 days of incubation
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in the virus transport medium at 4◦C, the virus was stable. However, if the incubation temperature was
increased to 70◦C, the virus was inactivated within 5 minutes. Regarding different surfaces inoculated
with the virus at room temperature of 22◦C, it was shown that the printing and tissue paper was free of
the infectious virus after 3 hours of incubation, while the virus is much more stable on smooth surfaces
- after 4 days there was no infectious virus on glass surfaces and banknotes, while the stainless steel and
plastic were free of infectious virus 7 days after the exposure. Furthermore, this study claims that various
disinfectants at room temperature of 22◦C disable infectious virus within 5 minutes and that virus is
highly stable in pH 3− 10 environments.

However, the main transmission way is the close person-to-person contact during which the virus
transmits via aerosols and respiratory droplets (see [? ]). According to [? ], this virus has the highest
infectiousness potential just before or within the first five days after the appearance of symptoms. Al-
though the positive reverse transcription polymerase chain reaction (RT-PCR) test is not equivalent to
infectiousness of a person, it is important to point out that these tests detect the viral RNA in the upper
respiratory tract of an infected person for a mean of 17 days (for more details on duration of incubation
period and mean incubation time, based on different sources, see e.g. [? ] and [? ]). In some cases the
symptoms of the infection doesn’t occur and these asymptomatic carriers silently spread the infection
(see [? ]). However, according to [? ], pre-symptomatic (1−2 days before the symptom onset) and symp-
tomatic individuals play a greater role in the spread of the infection than the asymptomatic carriers. For
more information on asymptomatic carriers and the estimations of their proportion within the infected
population we refer to [? ] and [? ]. Another category of virus carriers that plays an important role
in spreading the disease are the so-called superspreaders. Superspreader status of an infected individual
includes one or more of the following factors: high viral load due the immunity issues, underlying diseases,
existing infectious co-factors and/or elevated social activity. Early modeling of COVID-19 data suggest
a possibility that a small proportion of infected individuals could be responsible for high proportion of
transmissions, indicating the importance of the role of the superspreaders in SARS-CoV-2 spread (see [?
] and references therein). For more epidemiological details and references on this virus and the related
disease we refer to [? ], [? ] and [? ].

This pandemic triggeblack the adaptation of some classical and development of many new mathe-
matical models for disease spread, and promoted the application of such models in biomedical research.
One of the novel approaches, relying on recent successful modeling of different phenomena in online social
dynamics, is the agent-based modeling approach, which is used for simulation of infection transmission
driven by the social activity dynamics and comprising e.g. the characteristics of individuals as well as
the virus survival time and its mutations, see e.g. [? ], [? ] and [? ]. Furthermore, we point out the
application of machine learning algorithms within the standard time-series models (see e.g. [? ], [? ], [? ],
[? ]) and use of deterministic SIR, SEIR and similar classical compartmental epidemiological models and
many of their refinements (for different refinements of the SEIR model we refer to [? ], [? ], [? ] and [?
]). As the spread of the SARS-CoV-2 virus is highly dependent of many parameters which are stochastic
in nature (e.g. transmission rate and contact rate), this motivated the transition of deterministic models
to their stochastic counterparts (see e.g. [? ]). For examples of stochastic models, quite different than
the models in the present paper, we refer to the binomial distribution based discrete stochastic model
in [? ], the stochastic version of the SEIR model in [? ] and the refined SEIR model in [? ] including
stratification by age, mobility, social contacts and the impact of the asymptomatic cases. For another
model incorporating spatial heterogeneity and stochasticity we refer to [? ].

To get more close to the approach used in this paper, we point out that due to environmental un-
certainty and the behavior of infectious agents (e.g. viruses) in such environment, the classical literature
suggests that the purely differential population dynamics models benefit from introducing the stochastic
noise, see e.g. [? ], [? ], [? ], [? ] and [? ]. There are many ways of introducing environmental uncer-
tainty into continuous-time epidemiological models, but most of them are concentrated on modeling the
transmission rate β, which is in classical deterministic models either constant or given as a deterministic
function of time t (e.g. piecewise constant function as in [? ]). Here we outline several main lines of
introducing stochastic noise into the continuous-time epidemiological model. First line follows the idea
of introducing uncertainty by modeling the transmission rate β by an Itô diffusion process

dβ(t) = µ(t)dt+ σ(t)dB(t), t ≥ 0,
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with drift µ(·) and diffusion σ(·), possibly depending on β(t) (see e.g. [? ] where the Ornstein-Uhlenbeck
process is incorporated in the classical SIS compartmental model). Introducing other Itô diffusions as
models for transmission rate results in analytically complex stochastic systems depending on Itô integrals
of unknown distribution which then has to be either approximated or estimated and therefore allow
numerical rather than stochastic analysis. For the problem of estimation of the distribution of certain
Itô integral observed by the authors in the case of modeling the transmission rates with certain heavy-
tailed diffusions we refer to [? ] and [? ]. Furthermore, the transmission rate and possibly other model
parameters can be modeled by a more general SDEs, comprising Lévy driven jumps beside the driving
Brownian motion (see e.g. [? ] and [? ]). Second line, referring to the more simple approach for
introducing the stochastic noise into continuous-time compartmental models, used in e.g. [? ], [? ], [? ]
and [? ], is the perturbation of the constant transmission rate β by the additive noise

β 7→ β + dB(t),

where (B(t), t ≥ 0) is the standard Brownian motion with a certain intensity. This approach, due to
additive nature of the noise, results in system of Itô SDEs which are more suitable for explicit stochastic
analysis than the systems incorporating Itô diffusions as models for transmission rate:
• The existence and uniqueness of the positive local solution follows from the classical stochastic

analysis book [? ], while the extension to its global version relies on proving that the explosion
time for the solution is almost surely (a.s.) infinite. The later problem, as well as the problem
dealing with the derivation of the explicit conditions for the persistence of the disease, are solved
by applying the transformation of the stochastic system by the appropriately defined Lyapunov
function (see e.g. [? ] and [? ]), the classical multidimensional Itô formula (see e.g. [? ]) and
elementary stochastic estimates (inequalities).

• Explicit conditions for extinction of the disease, i.e. the condition on the intensities of the stochastic
noises, are derived by applying the Itô formula (see [? ]) and stochastic inequalities on a suitable
chosen equation from the system.

• All results and underlying theoretical conditions are illustrated by simulation for the appropriately
chosen parameter values, see Figure (2) for the problem of persistence and Figure (3) for the problem
of extinction of the disease.

Third line relies on the assumption of varying infectivity, where either the transmision coefficient
or the contact rate are taken to be a simple piecewise defined deterministic functions or some right-
continuous random functions, while in the system itself the distribution of the incubation time and the
distribution of the period of infectiousness are used as a kind of a "distributional delay", see e.g. [? ],
[? ] and [? ]. Delayed stochastic models are appealing since they comprise the memory of the process.
Beside [? ], for different approaches of introducing delays in the epidemiological models we refer to [? ]
and [? ].

This paper is structublack as follows. After extensive Introduction, In Section 2 (Mathematical
models and methodology) we define deterministic and stochastic refinement of the SEIR model and give
a short overview of the methodology used for its analysis. In section 3 (Main results), the existence
and uniqueness of the positive global solution of this system are proved (subsection 3.1), the sufficient
conditions for persistence and extinction of the disease are given in Theorems 2 and 3 (subsections 3.2
and 3.3, respectively) while subsection 3.4 is dedicated to simulations for reasonably chosen parameter
values. Section 4 is dedicated to discussion and conclusion, comprising the guidelines for future research.

2 Mathematical models and methodology
Torres et al. in [? ] defined the deterministic model of SEIR type in which they introduced the classes

of asymptomatic individuals A, hospitalized individuals H and superspreaders P (SEIPHAR model).
The model depends on several parameters, including the constant transmission coefficients related

to symptomatic infected individuals (β), hospitalized individuals (lβ) and to superspreaders (β′). The
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importance of refinement of the infected class by introducing the classes of asymptomatic carriers, hospi-
talized individuals and superspreaders is visible in the corresponding figures within the simulation study
at the end of the Section 3.

Naturally, the assumption of constant transmission coefficients is rather restrictive. Therefore, mo-
tivated by the nature of transmission rates itself as well as by [? ] and other references from the
Introduction discussing the stochastic nature of the model coefficients, we introduce into the model two
independent stochastic noises by the additive perturbation of constant transmission coefficients β and β′
(for more details please see (3), (4) and (5)).

Beside this novelty, we generalize the particular deterministic model from [? ] by introducing more
refined parametrization. In particular, we introduced different recovery rates for asymptomatic carriers,
symptomatic individuals and superspreaders.

Furthermore, we would like to emphasize the advantages of the stochastic model over its deterministic
counterpart in short-term pblackictions as well as to show that for the long-term behaviour the deter-
ministic and the stochastic models greatly coincide, which is clearly visible from the simulation study in
subsection 3.4.

2.1 Deterministic SARS-CoV-2 epidemic model
We observe the SEIPHAR compartmental model for epidemics of the new corona virus SARS-CoV-2,

introduced in the recent paper [? ]. Under this model, the human population is divided into seven
mutually exclusive compartments:
• S - susceptible individuals,

• E - individuals exposed to the virus SARS-CoV-2, but not yet infectious to others (they may become
infectious after a certain incubation period),

• I - symptomatic infectious individuals,

• P - superspreaders,

• A - asymptomatic infectious individuals,

• H - hospitalized individuals,

• R - recoveblack individuals.

Let us suppose that the total population size at time t is given by

N(t) = S(t) + E(t) + I(t) + P (t) +A(t) +H(t) +R(t), t ≥ 0.

We introduce the difference in the intensity of the human-to-human transmission (per day per person)
between classes I, P and H. The transmission coefficient describing the human-to-human transmission
due the regular infected individuals is denoted by β, while the transmission due to the superspreaders
(who are more likely to infect others, compablack with a typical infected person) is described by the
coefficient β′. The relative infectiousness of the hospitalized individuals is described by the coefficient lβ,
with the natural assumption β < β′, where l is an estimated constant. An individual leaves the exposed
class and becomes infectious (symptomatic, super-spreader or asymptomatic) at rate κ. The proportions
of exposed individuals progressing to symptomatic, super-spreader or asymptomatic class are ρ1, ρ2 and
(1−ρ1−ρ2), respectively. Symptomatic individuals and superspreaders become hospitalized at the average
rate γa, hospitalized individuals are recoveblack at rate γr, while non-hospitalized individuals recover with
rate γi. The disease induced death rates are δi, δp and δh for infected individuals, superspreaders and
hospitalized patients, respectively, while death-rate in other classes is µ. The description of dynamics of
asymptomatic infectious individuals within this model is limited, due to the lack of real measurements
regarding this class. For more information on the role of asymptomatic carriers we refer to the recent
paper by [? ]. For estimated parameter values in similar model, based on the data from e.g. [? ] and
similar national resources, we refer to [? ]. Furthermore, Table 1 in this paper contains sensible parameter
values chosen for the simulation study.
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Remark 2.1 It is sensible to assume that these parameters depend on the age a and location m of
individuals and therefore they could be treated as functions of these two variables, allowing the application
of this model to some age and/or location restricted subpopulation, for example κ = κ(a,m) (for similar
approach see [? ]).

The dynamics of the SARS-CoV-2 virus spread in the framework of the model constructed in [? ] is
described by the following system of ordinary differential equations (ODE):

dS(t) = −
(

β
N(t) (I(t) + lH(t)) + β′

N(t)P (t)
)
S(t) dt,

dE(t) =
(

β
N(t) (I(t) + lH(t))S(t) + β′

N(t)P (t)S(t)− κE(t)
)
dt,

dI(t) = (κρ1E(t)− (γa + γi + δi)I(t)) dt,
dP (t) = (κρ2E(t)− (γa + γi + δp)P (t)) dt,
dH(t) = (γa(I(t) + P (t))− (γr + δh)H(t)) dt,
dA(t) = κ(1− ρ1 − ρ2)E(t) dt,
dR(t) = (γi(I(t) + P (t)) + γrH(t)) dt.

(1)

It follows that the number of disease induced deaths at time t is given by

D(t) = δiI(t) + δpP (t) + δhH(t). (2)

2.2 Stochastic SARS-CoV-2 epidemic model
In this subsection we introduce the stochastic version of the model (1). The model is constructed by

introducing the perturbation in the form of the environmental white noise in transmission coefficients β
and β′:

β → β + σ1dB1(t), σ1 > 0, (3)
β′ → β′ + σ2dB2(t), σ2 > 0, (4)

where B1 = {B1(t), t ≥ 0} and B2 = {B2(t), t ≥ 0} are independent standard Brownian motions with
intensities σ1 and σ2, respectively. However, stochastic model under consideration is not only stochastic
generalisation of the deterministic model (1) via introduced noises, but it is also qualitative generalisation
of the model since we introduced parameter Λ (the expected number of new susceptible individuals,
observed in appropriate units, e.g. per year per million people), general population death rate µ and finer
assessment in terms of recovery rates. The resulting system of stochastic differential equations (SDEs) is
of the following form:

dS(t) =
(

Λ−
(

β
N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ
)
S(t)

)
dt

− σ1

N(t) (I(t) + lH(t))S(t) dB1(t)− σ2

N(t)P (t)S(t) dB2(t),

dE(t) =
(

β
N(t) (I(t) + lH(t))S(t) + β′

N(t)P (t)S(t)− (κ+ µ)E(t)
)
dt

+ σ1

N(t) (I(t) + lH(t))S(t) dB1(t) + σ2

N(t)P (t)S(t) dB2(t),

dI(t) = (κρ1E(t)− (γa + k1γi + δi)I(t)) dt,
dP (t) = (κρ2E(t)− (γa + k2γi + δp)P (t)) dt,
dH(t) = (γa(I(t) + P (t))− (γr + δh)H(t)) dt,
dA(t) = (κ(1− ρ1 − ρ2)E(t)− (γi + µ)A(t)) dt,
dR(t) = (γi(A(t) + k1I(t) + k2P (t)) + γrH(t)− µR(t)) dt,

(5)

where k1, k2 are constants such that k2 < k1 < 1.
Remark 2.2 Observe that the last two equations, regarding the dynamics of asymptomatic infectious
patients and recoveblack individuals, are independent of the first five equations. Therefore, it is enough to
analyze the problem of existence and uniqueness of the global positive solution of the system of first five
SDEs from system (5), since it applies to the complete system (5) as well.

Schematically, the transitions in the framework of the stochastic model are shown in Figure 1 (note
that under β and β′ in this scheme we understand their perturbed versions).
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Figure 1: Scheme of the SDE system (5)

2.3 Problems and methodology
For the stochastic model (5) we observe three usual, but important problems, which are analyzed by

standard tools from stochastic calculus.
First we prove existence and uniqueness of the positive global solution of stochastic system (5).

This problem for a general system of Itô SDEs is widely coveblack in the classical and more recent
mathematical literature. For example, in [? ] it is proved that a presence of even a tiny amount of
environmental noise in population dynamics system can suppress its explosion, i.e. even if solution of
the deterministic system explodes to infinity in a finite time, under certain conditions with probability
one the solution of the corresponding stochastic system does not (for more details please see [? ] and
references therein). Underling idea of the proof, also used in our paper, is that the explosion time is
a.s. infinite, which provides the extension of the positive local to the the positive global solution. This
statement for the model (5) is proven in Subsection 3.1.

Other two problems addressed in the paper are derivation of explicit conditions, comprising the
intensities of Borwnian motions B1 and B2, under which the disease is persistent or goes into extinction.
We deal with this problems in Subsections 3.2 and 3.3, respectively. Motivation for the methodology used
comes from the paper [? ]. In particular, persistence is observed in the mean sense, which understands
the expected value of the process of all infected individuals over the interval 0 to t (integral over time
of the sum of processes regarding to all infected subgroups, divided by the length of the time interval).
Conditions under which this integral will be greater than a certain positive constant as time tends to
infinity are given in Theorem 2, meaning that under these conditions the disease remains persistent in the
population. On the contrary, for the extinction of the disease, we generate the conditions under which
the disease vanishes, i.e. the conditions under which the value of the sum of processes of all infected
subgroups tends to zero as time tends to infinity. The sufficient conditions for the extinction of the
COVID-19 disease are given in Theorem 3.

To emphasize more novelties of this paper that justify its position in the recent vast number of
publications regarding the COVID-19 pandemic, we refer to two recent papers [? ] and [? ], dealing with
similar, but not the same refinements of the SEIR model of the same stochastic nature as the model (5).

The paper [? ] deals with the SLIRD (susceptible - infected - latent - recoveblack - dead) model
for which the problems of existence and uniqueness of the positive solution as well as the problems of
persistence and the extinction of the disease are addressed. However, the advantage of the model (5) is
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the observation of additional classes of superspreaders, asymptomatic and hospitalized patients.
Very recent paper [? ] deals with the SEIAQHR (susceptible - exposed - infected - asymptomatic

- quarantined - hospitalized - recoveblack) model, where the class I contains infected individuals with
symptoms and the class A infected individuals that are asymptomatic but can become symptomatic over
time. Although very similar to our model (5), this model treats asymptomatic carriers in a different
way and doesn’t cover the superspreader class. Regarding the mathematical analysis, the problem of
existence and uniqueness of the positive solution and the problem of exponential stability of disease free
equilibrium are addressed. However, the problem of persistence of the disease is not observed.

3 Main results

3.1 Existence and uniqueness of a positive global solution
Suppose that independent Brownian motions B1 = {B1(t), t ≥ 0} and B2 = {B2(t), t ≥ 0}, that

govern the SDE system (5), are defined on the complete probability space (Ω,F ,F,P) with filtration
F = {Ft, t ≥ 0}, where Ft := FB1

t ∪ F
B2
t , where FBi

t , i = 1, 2, are σ-algebras from natural filtrations of
Brownian motions B1 and B2 and it contains all P-null sets. The problem of existence and uniqueness of
a positive global solution is treated in the following theorem, where we use the notation R7

+ for the space
{(x1, x2, x3, x4, x5, x6, x7) : xi > 0, ∀i = 1, . . . , 7}.
Theorem 1 For any initial value (S(0), E(0), I(0), P (0), H(0), A(0), R(0)) ∈ R7

+ there exists a unique
positive solution (S(t), E(t), I(t), P (t), H(t), A(t), R(t)) of the SDE system (5) for every t ≥ 0, which
almost surely remains positive, i.e.

(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) ∈ R7
+, P-a.s.,

for all t ≥ 0. Moreover, since N(t) = S(t) + E(t) + I(t) + P (t) +A(t) +H(t) +R(t) we have that

lim sup
t→∞

N(t) =
Λ

µ
.

Proof 1 The proof of this theorem follows the idea from [? ] and [? ]. First we prove that N(t)→ Λ/µ
as t→∞. By summing all seven equations from the system (5) we obtain the following

d (S(t) + E(t) + I(t) + P (t) +H(t) +A(t) +R(t)) =

= (Λ− µ (S(t) + E(t) +A(t) +R(t))− δiI(t)− δpP (t)− δhH(t)) dt.

More precisely, we obtain the equation

d (S(t) + E(t) + I(t) + P (t) +H(t) +A(t) +R(t))

dt
=

= Λ− µ (S(t) + E(t) +A(t) +R(t))− δiI(t)− δpP (t)− δhH(t), (6)

with solution of the following form

S(t) + E(t) + I(t) + P (t) +H(t) +A(t) +R(t) =

= e−µt

S(0) + E(0) + I(0) + P (0) +H(0) +A(0) +R(0) +

t∫
0

(Λ− δiI(s)− δpP (s)− δhH(s)) eµsds

 .

(7)
A simple application of the L’Hospital’s rule yields the following result

lim sup
t→∞

(S(t) + E(t) + I(t) + P (t) +H(t) +A(t) +R(t)) ≤
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≤ lim sup
t→∞

S(0) + E(0) + I(0) + P (0) +H(0) +A(0) +R(0) +
t∫
0

Λeµsds

eµt
=

Λ

µ
,

i.e.
lim sup
t→∞

N(t) =
Λ

µ
. (8)

Now we proceed to proof of the existence and uniqueness of the positive global solution. Namely, since
equations 1 − 5 in system (5) are independent of equations 6 and 7, it is enough to prove the existence
of a positive global solution of the system consisting of the first five equations:

dS(t) =
(

Λ−
(

β
N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ
)
S(t)

)
dt

− σ1

N(t) (I(t) + lH(t))S(t) dB1(t)− σ2

N(t)P (t)S(t) dB2(t),

dE(t) =
(

β
N(t) (I(t) + lH(t))S(t) + β′

N(t)P (t)S(t)− (κ+ µ)E(t)
)
dt

+ σ1

N(t) (I(t) + lH(t))S(t) dB1(t) + σ2

N(t)P (t)S(t) dB2(t),

dI(t) = (κρ1E(t)− (γa + k1γi + δi)I(t)) dt,
dP (t) = (κρ2E(t)− (γa + k2γi + δp)P (t)) dt,
dH(t) = (γa(I(t) + P (t))− (γr + δh)H(t)) dt.

(9)

Since the coefficients of system (9) are locally Lipschitz continuous, according to [? ], for any initial
value (S(0), E(0), I(0), P (0), H(0)) ∈ R5

+ = {(x1, x2, x3, x4, x5) : xi > 0, ∀i = 1, . . . , 5}, this system has
a unique local solution on [0, τ0〉, where τ0 denotes the explosion time. It is necessary to prove that the
solution is global, i.e. that τ0 = +∞ P-a.s.

Let k0 > 0 be a constant large enough so that all initial values S(0), E(0), I(0), P (0), H(0) belong to
the interval [1/k0, k0]. Then, for each k > k0 we define the stopping time

τk = inf

{
t ∈ [0, τ0〉 : min {S(t), E(t), I(t), P (t), H(t)} ≤ 1

k
or max {S(t), E(t), I(t), P (t), H(t)} ≥ k

}
,

(10)
with the usual agreement that inf ∅ =∞. Note that τk increases as k is increasing and denote

τ∞ = lim
k→∞

τk.

Now it follows that τ∞ ≤ τ0 P-a.s. To complete the proof, we need to prove that τ∞ = ∞ P-a.s. Since
inf ∅ = ∞ and τk ≤ τ0, the proof of τ∞ = ∞ P-a.s. completes the proof of this theorem. Namely, if
τ∞ =∞ P-a.s., then τ0 =∞ P-a.s., which means that (S(t), E(t), I(t), P (t), H(t)) P-a.s. remains in R5

+

for all t > 0.

Let us suppose the opposite, i.e. let us suppose that there exists a pair of constants T ≥ 0 and ε ∈ (0, 1)
such that

P(τ∞ ≤ T ) ≥ ε.

Hence, there exists k1 ≥ k0 such that

P(τk ≤ T ) ≥ ε for all k ≥ k1.

Furthermore, from result (8) for t ≤ τk we have that N(t) = N , where

N =

{
Λ/µ , S(0) + E(0) + I(0) + P (0) +H(0) +A(0) +R(0) ≤ Λ/µ

S(0) + E(0) + I(0) + P (0) +H(0) +A(0) +R(0) , S(0) + E(0) + I(0) + P (0) +H(0) +A(0) +R(0) > Λ/µ
.

Now define a twice continuously differentiable function V : R5
+ → R+ ∪ {0}

V (S,E, I, P,H) = (S−1−log (S))+(E−1−log (E))+(I−1−log (I))+(P−1−log (P ))+(H−1−log (H)).
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Note that since log (x) ≤ x − 1 for every x ≥ 0, V is a non-negative function. By applying the multidi-
mensional Itô formula (see e.g. [? ]) to the function V , we obtain the following

dV (S,E, I, P,H) =

(
1− 1

S(t)

)
dS(t) +

1

2S2(t)
(dS(t))

2
+

(
1− 1

E(t)

)
dE(t) +

1

2E2(t)
(dE(t))

2
+

+

(
1− 1

I(t)

)
dI(t) +

1

2I2(t)
(dI(t))

2
+

(
1− 1

P (t)

)
dP (t) +

1

2P 2(t)
(dP (t))

2
+

+

(
1− 1

H(t)

)
dH(t) +

1

2H2(t)
(dH(t))

2
. (11)

Let us introduce the following notation in the first two equations from the system (9)

K1(t) =
1

N(t)
(I(t) + lH(t)) , K2(t) =

P (t)

N(t)
.

From (11) it follows that
dV (S,E, I, P,H) = L(S,E, I, P,H)dt+

+

(
1

S(t)
− 1

E(t)

)
σ1K1(t)S(t)dB1(t) +

(
1

S(t)
− 1

E(t)

)
σ2K2(t)S(t)dB2(t), (12)

where function L : R5
+ → R+ is given by the following expression:

L(S,E, I, P,H) =

(
1− 1

S(t)

)
(λ− βK1(t)− β′K2(t)− µ)S(t) + σ2

1K
2
1 (t) + σ2

2K
2
2 (t)+

+

(
1− 1

E(t)

)
((βK1(t) + β′K2(t))S(t)− (κ+ µ)E(t)) +

1

2E2(t)
(σ2

1K
2
1 (t) + σ2

2K
2
2 (t))S2(t)+

+

(
1− 1

I(t)

)
(κρ1E(t)− (γa + k1γi + δi)I(t)) +

(
1− 1

P (t)

)
(κρ2E(t)− (γa + k2γi + δp)P (t)) +

+

(
1− 1

H(t)

)
(γa(I(t) + P (t))− (γr + δh)H(t)) . (13)

Next, we need an upper bound for the function L, for each t > 0. Since all random variables and all
coefficients in (13) are non-negative, by applying elementary inequalities we obtain the following upper
bound of the function L

L(S,E, I, P,H) ≤ (S(t) + 1) (λ+ βK1(t) + β′K2(t) + µ) + σ2
1K

2
1 (t) + σ2

2K2(t)2+

+

(
S(t) +

S(t)

E(t)

)
(βK1(t) + β′K2(t)) + (E(t) + 1) (κ+ µ) +

S2(t)

E2(t)
(σ2

1K
2
1 (t) + σ2

2K
2
2 (t))+

+

(
E(t) +

E(t)

I(t)

)
κρ1 + (I(t) + 1) (γa + k1γi + δi) +

(
E(t) +

E(t)

P (t)

)
κρ2 + (P (t) + 1) (γa + k2γi + δp)+

+

(
I(t) + P (t) +

I(t) + P (t)

H(t)

)
γa + (H(t) + 1) (γr + δh). (14)

Furthermore, since N(t) ≥ S(t) + E(t) + I(t) + P (t) +H(t), it follows that for every t > 0,

1 ≤ S(t), E(t), I(t), P (t), H(t) ≤ N(t),

K1(t) ≤ 1 + l, K2(t) ≤ 1,

S(t)

E(t)
≤ S(t),

E(t)

I(t)
≤ E(t),

E(t)

P (t)
≤ E(t),

I(t) + P (t)

H(t)
≤ I(t) + P (t),

(15)
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which, together with the upper bound (14), yields the following estimate for the function L

L(S,E, I, P,H) ≤ (N + 1) (λ+ (1 + l)β + β′ + κ+ δi + δp + 2γa + 2γi + 2µ) +
+2N ((1 + l)β + β′ + κ(ρ1 + ρ2)) +

(
N2 + 1

) (
(1 + l)2σ2

1 + σ2
2

)
.

:= N̂ .

(16)

Now we proceed with the analysis of the expectation of V for random time (τk ∧ T )

E [V (S(τk ∧ T ), E(τk ∧ T ), I(τk ∧ T ), P (τk ∧ T ), H(τk ∧ T ))] ≤ E [V (S(0), E(0), I(0), P (0), H(0))]+TN̂.

Let Ak = {τk ≤ T} for k ≥ k1. Then under the introduced assumptions, it follows that P(Ak) ≥ ε. Even
more, for every ω ∈ Ak at least one of random variables S,E, I, P,H is either less or equal than 1/k or
it is greater or equal than k. It follows that

V (S(τk), E(τk), I(τk), P (τk), H(τk)) ≥ min

{
k − 1− log (k),

1

k
− 1 + log (k)

}
. (17)

Now it follows that

E [V (S(0), E(0), I(0), P (0), H(0))] + TN̂ ≥ εmin

{
k − 1− log (k),

1

k
− 1 + log (k)

}
,

where IAk
is the indicator function of the event Ak. If we now let k →∞, it follows that

∞ > E [V (S(0), E(0), I(0), P (0), H(0))] + TN̂ =∞, (18)

which is a contradiction. This means that the assumption is not correct, i.e. it follows that τ∞ = ∞
P-a.s.

�

Remark 3.1 Note that the set

Γ? = {(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) :

S(t) > 0, E(t) > 0, I(t) > 0, P (t) > 0, H(t) > 0, A(t) > 0, R(t) > 0, N(t) ≤ Λ/µ}

is a positively invariant set of the system (5) for every t > 0, i.e. if the system starts from Γ?, it never
leaves Γ?.

3.2 Persistence in mean
From the objective point of view, the virus remains persistent in population if there is at least one

symptomatic infectious, asymptomatic infectious, hospitalized individual or super-spreader. From the
mathematical point of view we observe the persistence in mean and, in accordance to previously stated
objective explanation, we say that the system (5) is persistent in mean if

lim
t→∞

1

t

t∫
0

(I(s) + P (s) +A(s) +H(s)) ds > 0 P− a.s. . (19)

We introduce the notation

[x(t)] =
1

t

t∫
0

x(s) ds.

10



Theorem 2 Let initial value (S(0), E(0), I(0), P (0), A(0), H(0), R(0)) ∈ R7
+, such that the solution of

the system (5) is in Γ?, where µ, β, β′ and l satisfy the relation

Λ >

(
β

N(t)
(I(t) + lH(t)) +

β′

N(t)
P (t) + µ

)
S(t), ∀t ≥ 0 (20)

and where c is a small fixed constant such that inft≥0E(t)/N(t) ≥ c.
If we assume that noises satisfy the condition

σ2
1 + σ2

2 < cκ

(
ρ1

γr + γa + δp
(γa + k1γi + δi)(γr + δp)

+ ρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp)
+

1− ρ1 − ρ2
γi + µ

)
,

than the solution (S(t), E(t), I(t), P (t), A(t), H(t), R(t)) has the property

lim inf
t→∞

[I(t) + P (t) +H(t) +A(t)] ≥

c

(
κρ1

γr + γa + δp
(γa + k1γi + δi)(γr + δp)

+ κρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp)
+
κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)
> 0.

Proof 2 In order to obtain [I(s) + P (s) +H(s) +A(s)] we derive a specific weighted sum of equation 1
with equations 3− 6 from the system (5)

dS(t) +KidI(t) +KpdP (t) +
1

γr + δp
dH(t) +

1

γi + µ
dA(t)

= d

(
S(t) +KiI(t) +KpP (t) +

1

γr + δp
H(t) +

1

γi + µ
A(t)

)
= Λdt−

(
β

N(t)
(I(t) + lH(t)) +

β′

N(t)
P (t) + µ

)
S(t)dt+

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ

)
E(t)dt

− (I(t) + P (t) +H(t) +A(t)) dt− σ1
N(t)

(I(t) + lH(t))S(t)dB1(t)− σ2
N(t)

P (t)S(t)dB2(t), (21)

where (1− ρ1 − ρ2) > 0 and weight coefficients are

Ki =
γr + γa + δp

(γa + k1γi + δi)(γr + δp)
, Kp =

γr + γa + δp
(γa + k2γi + δp)(γr + δp)

.

Let us introduce the following notation

V (t) := S(t) +KiI(t) +KpP (t) +
1

γr + δp
H(t) +

1

γi + µ
A(t)

By applying the Itô formula on log (V (t)), we obtain the following

d (log V (t)) =
1

V (t)

(
Λ−

(
β

N(t)
(I(t) + lH(t)) +

β′

N(t)
P (t) + µ

)
S(t)

+

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ

)
E(t)− (I(t) + P (t) +H(t) +A(t))

)
dt

− 1

V (t)

σ1
N(t)

(I(t) + lH(t))S(t)dB1(t)− 1

V (t)

σ2
N(t)

P (t)S(t)dB2(t)

− 1

2V 2(t)

σ2
1

N2(t)
(I(t) + lH(t))

2
S2(t)dt− 1

2V 2(t)

σ2
2

N2(t)
P 2(t)S2(t)dt.

Since
0 < Ki,Kp ≤ 1, and 0 <

1

γr + δp
,

1

γi + δp
< 1,

11



under assumptions of the theorem and using that µ/Λ < 1/N(t) ≤ 1/V (t) ≤ 1, β < β′ and l < 1, we
obtain the following lower bound for d (log V (t))

d (log V (t)) ≥ c
(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ

)
dt

− (I(t) + P (t) +H(t) +A(t)) dt− 1

2V 2(t)N2(t)

(
σ2
1 (I(t) +H(t))

2
+ σ2

2P
2(t)

)
S2(t)dt

− 1

V (t)N(t)
(σ1 (I(t) +H(t))S(t)dB1(t) + σ2P (t)S(t)dB2(t))

≥ c

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)
dt

− σ1S(t)dB1(t)− σ2S(t)dB2(t)− (I(t) + P (t) +H(t) +A(t)) dt. (22)

By integrating the last inequality from 0 to t and by dividing the whole expression by t, we obtain the
following result

log (V (t))− log (V (0))

t
≥ c

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)

− M1(t)

t
− M2(t)

t
− [I(t) + P (t) +H(t) +A(t)] , (23)

where

M1(t) = σ1

t∫
0

S(s)dB1(s), M2(t) = σ2

t∫
0

S(s)dB2(s),

are continuous local martingales with values 0 at time t = 0 and for which

lim sup
t→∞

〈M1,M1〉t
t

≤ σ2
1Λ2

µ2
<∞, lim sup

t→∞

〈M2,M2〉t
t

≤ σ2
2Λ2

µ2
<∞,

and therefore
M1(t)

t
→ 0 and

M2(t)

t
→ 0 P− a.s. as t→∞.

Now it follows that

[I(t) + P (t) +H(t) +A(t)] ≥ c

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)

− log (V (t))− log (V (0))

t
− M1(t)

t
− M2(t)

t
. (24)

Therefore,

lim inf
t→∞

[I(t) + P (t) +H(t) +A(t)] ≥ c

(
κρ1Ki + κρ2Kp +

κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)
,

which is greater than zero for

cκ

(
ρ1Ki + ρ2Kp +

1− ρ1 − ρ2
γi + µ

)
> σ2

1 + σ2
2 ,

which completes the proof.

�
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3.3 Extinction
In this section the conditions for complete eradication of the disease (virus) from the population are

proven.
Theorem 3 If noises satisfy that

1

2

(
β2

σ2
1

+
(β′)2

σ2
2

)
− (κ+ µ) < 0,

than for any initial value (S(0), E(0), I(0), P (0), A(0), H(0), R(0)) ∈ R7
+, such that the solution of the

system (5) is in Γ?, it follows that

E(t) + I(t) + P (t) +H(t) +A(t)→ 0 P− a.s. as t→∞,

while
lim sup
t→∞

S(t) =
Λ

µ
P− a.s.

Proof 3 Theorem 1 guaranties existence of unique positive global solution of system (5). To derive
the conditions for extinction of the disease we apply the Itô formula to logE(t) and obtain the following
upper bound

d (logE(t)) =
1

E(t)

(
β

N(t)
(I(t) + lH(t))S(t) +

β′

N(t)
P (t)S(t)− (κ+ µ)E(t)

)
dt

− S2(t)

2E2(t)N2(t)

(
σ2
1 (I(t) + lH(t))

2
+ σ2

2P
2(t)

)
dt

+
S(t)

E(t)N(t)
(σ1 (I(t) + lH(t)) dB1(t) + σ2P (t)dB2(t))

=
β2

2σ2
1

dt− 1

2

(
S(t)

E(t)N(t)
σ1 (I(t) + lH(t))− β

σ1

)2

dt

+
β′

2

2σ2
2

dt− 1

2

(
S(t)

E(t)N(t)
σ2P (t)− β′

σ2

)2

dt− (κ+ µ)dt

+
S(t)

E(t)N(t)
(σ1 (I(t) + lH(t)) dB1(t) + σ2P (t)dB2(t))

≤
(

1

2

(
β2

σ2
1

+
(β′)2

σ2
2

)
− (κ+ µ)

)
dt+ σ1 (1 + l) dB1(t) + σ2dB2(t), (25)

where we have used the following upper bound

S(t)

E(t)N(t)
·max {I(t), H(t), P (t)} ≤ 1, ∀t > 0. (26)

Integration of expression (25) from 0 to t and division by t yield the following result

logE(t)

t
≤ logE(0)

t
+

(
1

2

(
β2

σ2
1

+
(β′)2

σ2
2

)
− (κ+ µ)

)
+
M3(t)

t
+
M4(t)

t
, (27)

where

M3(t) = σ1

t∫
0

(1 + l) dB1(s), M4(t) = σ2

t∫
0

dB2(s),

are continuous local martingales with values 0 at time t = 0 and

lim sup
t→∞

〈M3,M3〉t
t

<∞, lim sup
t→∞

〈M4,M4〉t
t

<∞.
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Therefore,
M3(t)

t
→ 0 and

M4(t)

t
→ 0 P− a.s. as t→∞.

From the lower bound (27) it follows that

lim sup
t→∞

logE(t)

t
=

1

2

(
β2

σ2
1

+
(β′)2

σ2
2

)
− (κ+ µ) < 0 P− a.s.,

and therefore
lim
t→∞

E(t) = 0 P− a.s. (28)

To verify that I(t), P (t), H(t), A(t), R(t)→ 0 P-a.s. as t→∞ we solve equations 3− 7 from the system
(5) explicitly:

I(t) = e−(γa+k1γi+δi)tI(0) + κρ1[E(t)],

P (t) = e−(γa+k2γi+δp)tP (0) + κρ2[E(t)],

H(t) = e−(γr+δh)tH(0) + γa[I(t) + P (t)],

A(t) = e−(γi+µ)tA(0) + κ (1− ρ1 − ρ2) [E(t)],

R(t) = e−µtR(0) + γi[I(t) + P (t) +A(t)] + γr[H(t)].

Since E(t)→ 0 P-a.s. as t→∞, from previous solutions it follows that I(t)→ 0, P (t)→ 0 and A(t)→ 0
P- a.s. as t→∞. Furthermore, it follows that H(t)→ 0 and R(t)→ 0 P-a.s. as t→∞.
Recall that

N(t) = S(t) + E(t) + I(t) + P (t) +H(t) +A(t) +R(t),

and since E(t) + I(t) + P (t) +H(t) +A(t) +R(t)→ 0, it follows that

lim sup
t→∞

S(t) = lim sup
t→∞

N(t) =
Λ

µ
P− a.s.,

which completes the proof.

�

3.4 Simulation results
In this section we provide simulation results which illustrate the obtained theoretical results provided

in Theorem 2 and Theorem 3. All simulations were done assuming daily increments (dt = 1/365) with
182500 simulated points for each stochastic process (simulation of approximately 500 years).

The proven results are illustrated for the parameter and starting values given in Table 1.

Λ β l β′ κ ρ1 ρ2 γa γi γr δi δp δh
Persistence 198.6184 8 1.56/8 10 0.25 0.58 0.001 0.4 0.27 0.5 0.000517241 0.1 0.0015
Extinction 0.015 0.02 0.7 0.06 0.5 0.58 0.001 0.2 0.27 0.5 0.000517241 0.1 0.03

µ σ1 σ2 k1 k2 S(0) E(0) I(0) P (0) H(0) A(0) R(0) c
Persistence 0.007261 0.06 0.05 0.4 0.2 1660 380 125 0.2 100 166 12570 0.01
Extinction 0.01 0.07 0.1 0.4 0.2 2.9 1 0.05 0.05 0.05 0.02 0.01 -

Table 1: Parameter values taken in extinction and persistence simulation

Regarding persistence proven in Theorem 2, assumption on the noises is fulfilled if we take σ2
1 +σ2

2 =
0.0061, since

cκ

(
ρ1

γr + γa + δp
(γa + k1γi + δi)(γr + δp)

+ ρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp)
+

1− ρ1 − ρ2
γi + µ

)
= 0.00853793.
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This is illustrated in Figure 2. Moreover, Figures 2 (2h, 2j) show that necessary conditions are valid
as well, i.e. proportion of the exposed individuals in population does not drop below c = 0.01.

(a) S: susceptible (b) E: exposed (c) I: infected

(d) P: superspreaders (e) H: hospitalized (f) A: asymptomatic

(g) R: recoveblack (h) E: exposed (%) (i) Total Population

(j) Condition of Theorem 2 (k) Mean persistence

Figure 2: Persistence - stochastic (black) and deterministic (orange) models.

Persistence of stochastic process modeling infection (I, P,H,A) can be seen in Figures 2c - 2f, while
the validity sufficient condition (20) of the Theorem 2 is illustrated in Figure 2j. Formally, persistence
in mean can be verified in Figure 2k where [I(t) + P (t) + H(t) + A(t)] never drops below the desiblack
constant

c

(
κρ1

γr + γa + δp
(γa + k1γi + δi)(γr + δp)

+ κρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp)
+
κ(1− ρ1 − ρ2)

γi + µ
−
(
σ2
1 + σ2

2

)
c

)
= 0.00243793.
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On the other hand, extinction of the disease can be seen in Figure 3, since all processes converge to
0, while only susceptibles tend to Λ/µ = 1.5 as t→∞.

(a) S: susceptible (b) E: exposed (c) I: infected

(d) P: superspreaders (e) H: hospitalized (f) A: asymptomatic

(g) R: recoveblack

Figure 3: Extinction - stochastic (black) and deterministic (orange) models.

4 Discussion and conclusion
Mathematical models of the spread of the infectious disease are the crucial tool for tracking the

course of the epidemic as well as for forecasting its persistence or extinction in the population. The most
widely used models in epidemiology are compartmental models. Within model presented in this paper the
population is divided into several disjoint classes that can mutually communicate. The communication
between classes is described by model parameters. For example, the transmission coefficient, which
incorporates the force of infection, is one of them. The nature of this parameter is highly influenced by
the environmental uncertainty and therefore it is much more suitable to assume the stochastic nature of
this parameter than to take its value as a constant or define its change via some deterministic function
depending on time.

In this paper we followed this exact idea. We introduced finer parametrization and perturbed the
constant transmission rates regarding the symptomatic infected individuals (β), hospitalized individuals
(lβ) and superspreaders (β′) in the system of ordinary differential equations first published in [? ]. The
perturbation of transmission coefficients was performed by adding of mutually independent Brownian
noises dB1 and dB2 to β and β′, respectively. The resulting system (5) is the two-diffusion stochastic
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model, consisting od two Itô SDEs (regarding classes S and E) and five ODEs (regarding classes I, P, H,
A, R). By using the classical stochastic techniques from Itô’s calculus explained in the Introduction as
well as in the introductory part of subsection Problems and Methodology, we proved the existence and
uniqueness of the solution of the system (5) and derived quite elegant conditions regarding the intensities
of the noises which ensure the persistence in mean and the extinction of the disease. Theoretical results
regarding the persistence and extinction of the disease are, for reasonable set of values of model parameters
for which the global positive solution exists, verified within the simulation study. Simulations confirm
that the trajectories of the stochastic model either oscillate around (on the short time-scale) or are close
to (on the long time-scale) the trajectories of the deterministic model, showing the robustness of such
stochastic model to the noise of Brownian nature. Furthermore, on the long time-scale, the behavior of the
stochastic and the deterministic model coincide, which could be seen from Figure (2) (under persistence
conditions) and Figure (3) (under extinction conditions).

In comparison to other models in recent publications, by the best of our knowledge, our model (5)
is the only stochastic model that includes the analysis of four disjoint classes of infected individuals
- symptomatic infected individuals, asymptomatic carriers, superspreaders and hospitalized individuals.
Furthermore, this is the compartmental model for which, under the existence of the unique positive global
solution, both the persistence in mean and the extinction of the disease are analyzed both theoretically
and practically within the simulation study.

Stochastic model (5) can be generalized to the model in which all the coefficients can be functions of
several variables, e.g. delayed functions of time t catching the incubation period and the duration of the
infectiousness, of location m covering the different regional population densities and different intensities
of movements within the regions, of age a etc. Furthermore, parameters of the model could be defined
to depend of any observable value which is relevant for the spread of the disease.

Beside this "stratification" of model coefficients, our future plan is to introduce heavy-tailed diffusions
as models for transmission rates and maybe for some other parameters, which yields much more compli-
cated stochastic model depending od Itô integrals with unknown distribution which then has to be either
approximated or estimated. Furthermore, these diffusions could be non-autonomous or driven by corre-
lated Brownian motions, they could be driven by the noise of different nature (e.g. Lévy, fractional and
time-changed Brownian motion) producing respectively jump processes and long-memory processes with
trajectories allowing jumps and resting periods, which could be important for catching the superspreader
events.
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