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ABSTRACT

Machine learning has recently become a promising technique in fluid mechanics, especially for active flow control (AFC) applications. A
recent work [Rabault et al., J. Fluid Mech. 865, 281–302 (2019)] has demonstrated the feasibility and effectiveness of deep reinforcement
learning (DRL) in performing AFC over a circular cylinder at Re¼ 100, i.e., in the laminar flow regime. As a follow-up study, we investigate
the same AFC problem at an intermediate Reynolds number, i.e., Re¼ 1000, where the weak turbulence in the flow poses great challenges to
the control. The results show that the DRL agent can still find effective control strategies, but requires much more episodes in the learning. A
remarkable drag reduction of around 30% is achieved, which is accompanied by elongation of the recirculation bubble and reduction of tur-
bulent fluctuations in the cylinder wake. Furthermore, we also perform a sensitivity analysis on the learnt control strategies to explore the
optimal layout of sensor network. To our best knowledge, this study is the first successful application of DRL to AFC in weakly turbulent
conditions. It therefore sets a new milestone in progressing toward AFC in strong turbulent flows.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037371

I. INTRODUCTION

Active flow control (AFC) is a long-standing topic in fluid
mechanics. Using actuators, it alters flow behavior to improve
aerodynamic/hydrodynamic performance, such as lift augmenta-
tion, drag reduction, flow-induced-vibration suppression, and
mixing or thermal convection enhancement. AFC can be either
open-loop or closed-loop, depending on whether measured flow
information is used to adjust the control. Compared with open-
loop controls, well-designed closed-loop controls can be adaptive
and effective in a wider range of flow conditions. However, when
flow is turbulent involving strong nonlinearity and multiple spatial
and temporal scales, it is quite challenging to design suitable
closed-loop control laws in an explicit form.

In the past few years, AFC started to benefit from advances in the
field of machine learning (ML). Genetic Programming (GP) was prob-
ably the first ML technique applied in AFC. For example, Gautier
et al.1 applied GP to search explicit control laws for reducing the recir-
culation zone behind a backwards-facing step. Zhou et al.2 applied the
linear GP to control the dynamics of a turbulent jet and discovered
novel wake patterns. Ren et al.3 adopted GP-identified control laws to

successfully suppress vortex-induced vibrations in a numerical simula-
tion environment.

Recently, a novel ML technique, deep reinforcement learning
(DRL), has been attracting increasing attention in the fluid mechanics
community,4–6 following its many successes in robotics control7 and
sophisticated game playing such as Go.8 Applications were mainly
focused on agile maneuvering and biomimetism. For example, Reddy
et al.9 used DRL to train a glider to fly autonomously by exploiting
thermal currents in sunny weathers. Verma et al.10 studied the loco-
motion of fish schoolings, and using DRL trained rear fishes to harness
energy from the wake of leading fishes. In these studies, owing to the
limitations of early DRL algorithms, discretized control was used,
where the control space was limited to a few discrete values rather
than spanning a continuous range. With continuous efforts from ML
community, however, novel DRL algorithms have been developed to
overcome such limitations and, in particular, the so-called “policy-
based methods” are now well suited to continuous-control problems.

By applying a policy-based method, i.e., the proximal policy opti-
mization (PPO) method that is now regarded as one of the state-of-
the-art methods for continuous control,11,12 Rabault et al.13 achieved
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a drag reduction of approximately 8% for a circular cylinder immersed
in a laminar channel flow at a diameter-based Reynolds number
Re¼ 100, using a pair of anti-phase jets that are issued transversely
from the top and bottom of the cylinder. To speed up the simulation-
based training, Rabault and Kuhnle14 also proposed a multi-
environment approach, which opens the way to performing DRL-
trained controls at higher Reynolds numbers. Following this work,
Tang et al.15 were able to design a robust DRL controller, which can
effectively control the flow around the cylinder in the range of
Reynolds numbers from 60 to 400. Compared to other control strate-
gies, such as the phasor control of Pastoor et al.,16 DRL is more flexible
in that it can adapt both the phase and amplitude of the control signal
dynamically as the flow configuration evolves, as well as not being lim-
ited to some specific forms of forcing, such as sinusoidal forcing.

Given these recent results, two main milestones remain to be
demonstrated. First, one needs to fully qualify DRL for control appli-
cations in turbulent conditions. Some works already suggest that DRL
can satisfactorily control chaotic systems (see, for example, the DRL
control of the Kuramoto–Sivashinsky equation presented by Bucci
et al.,17 and the control of the Lorentz attractor discussed in their
Appendix by Beintema et al.18), but no clear evidence has been pre-
sented yet in the context of the control of the full Navier–Stokes equa-
tions. Second, the present 2D results with a few actuation locations
need to be extended to both larger 2D systems with many actuators,
and fully 3D systems. While this may seem challenging, some promis-
ing results in this direction have been presented recently, such as the
work by Belus et al.19 In this work, the authors demonstrated that an
adequate network architecture can take advantage of physical invari-
ants of the system in order to perform effective control at a constant
training cost for an arbitrary large number of actuators. Another
recent work that suggests that DRL may be effective in more challeng-
ing configurations is the experimental work of Fan et al.20 In this
work, the authors built a setup with two small rotating cylinders
located behind a larger cylinder. The aim is to reduce drag by adjusting
the rotation rate of the small control cylinders. The authors present
satisfactory results, though the final control strategy (close to constant
opposite rotation rate for both control cylinders) is of relatively low
complexity.

Therefore, we aim in this study to further push the boundary
of DRL applications to AFC by conducting more challenging con-
trol in weakly turbulent conditions. Specifically, we investigate the
same AFC problem as in Rabault et al.13 and Tang et al.,15 but at a
higher Reynolds number Re¼ 1000, where the cylinder wake
becomes turbulent and difficult to control. Indeed, while the flow
up to Re¼ 400 as studied by Tang et al.15 presents some weakly
chaotic instabilities in the cylinder wake, something similar to
what is described by other works,21,22 it is still dominated by a few
well-established harmonic peaks as evidenced in the energy spec-
trum (see Fig. 1). By contrast, the energy spectrum at Re¼ 1000 is
dominated by the �5/3 energy cascade and has no well-defined
harmonic peaks. This corresponds well to the changes in flow
characteristics discussed by Panton.23 Hence, the flow at Re¼ 1000
has more pronounced turbulent properties that make it more chal-
lenging to control than what was presented previously in the litera-
ture. Our results show that the DRL-trained AFC not only
continues to perform well in this weak turbulent condition, but
also achieves a remarkable drag reduction of around 30%.

II. METHODOLOGY
A. Flow configuration

In the present work, we adopt a flow configuration similar to that
in Rabault et al.,13 i.e., a 2D flow past a circular cylinder, except for the
Reynolds number being increased from 100 to 1000 to consider possi-
ble turbulence. More specifically, as sketched in Fig. 2(a), a circular cyl-
inder of diameter D is located in the centerline of a narrow channel,
2D downstream of the inlet boundary and about 20D upstream of the
outlet boundary. The incoming flow from the inlet boundary has a
parabolic velocity profile. The Reynolds number is then defined based
on the mean incoming velocity U and the cylinder diameter D as
Re ¼ UD=�, where � is kinematic viscosity of the fluid. In the follow-
ing, all results will be presented in nondimensional form, nondimen-
sionalized with combinations of U, D, and a reference time T ¼ D=U .

An array of velocity sensors is employed to perceive the flow
environment. As illustrated by orange dots around and behind the cyl-
inder in Fig. 2(a), in total 151 sensors are used, each providing two

FIG. 1. Comparison of the turbulent kinetic energy spectra obtained 0.75D down-
stream from the cylinder at the centerline of the channel, at Re¼ 100, 400, and
1000 (the flow configuration is described in Fig. 2 and Sec. II A). A clear difference
is visible among these three cases. While the flow at Re¼ 100 is entirely domi-
nated by the pseudo-harmonic vortex shedding and a few harmonics, the flow at
Re¼ 400 presents both a richer frequency content and a weak (i.e., much lower
than the frequency peaks) �5/3 energy cascade. By contrast, the flow at
Re¼ 1000 does not show well-defined harmonic peaks, and the �5/3 energy cas-
cade becomes the dominant feature.

FIG. 2. Schematics of the computational domain, boundary conditions and layout of
velocity sensor array (a) and the cylinder with a pair of anti-phase jets (b). A sinu-
soidal velocity profile is applied to the jets.
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time-dependent signals, i.e., the streamwise and transverse velocity
components. As having been shown in Rabault et al.,13 this choice of
sensor number provides sufficient flow information to perform good
AFC at low Reynolds number, which is thus fixed in the present study.

As actuators for the flow control, a pair of jets being issued trans-
versely are implemented at the top and bottom of the cylinder, each
covering an arc of 10�, as depicted in Fig. 2(b). This jet pair operates in
anti-phase, realizing a zero net mass flux at anytime. A sinusoidal pro-
file is applied to the jet velocities, so that the no-slip boundary condi-
tion (BC) is satisfied at the slot edges. The jet centerline velocity is
confined in the range of ½�1:62; 1:62�, consistent with the range set in
Rabault et al.13

The goal of the DRL agent is to reduce drag and meanwhile to
mitigate lift fluctuation. To achieve it, we adopt a similar reward func-
tion defined in Rabault and Kuhnle:14

r ¼ �hCDiS � whjCLjiS; (1)

where CD and CL are the drag and lift coefficients, respectively. h�iS
indicates an average over a typical actuation period. w is a weighting
factor that weights the contributions of drag and lift fluctuation in the
reward. In this study it is set as 1, different from that used in Rabault
et al.13 due to a significant increase in jCLj=CD from the Re¼ 100 case
to the Re¼ 1000 case. The choice of an absolute value term for lift
means that both lift bias and fluctuations are penalized. As discussed
in Rabault et al.,13 the choice of the value of w allows to avoid degener-
ated control strategies. An additional effect of using a reward function
that combines the drag and lift coefficients is to provide different time-
scales to the reward value. Indeed, the lift part of the reward reacts fast
to actuation, as the blowing is in the spanwise direction, while the drag
component takes time to evolve following actuation.

B. Flow solver

In prior studies by Rabault et al.13 and Tang et al.,15 the flow
solver used failed at Reynolds numbers roughly larger than 500. To
overcome this, here we adopt a well-established lattice-Boltzmann-
method (LBM) code for flow simulation.3,24,25 In this code, we use the
multi-relaxation-time collision scheme,26 the He–Luo incompressible
model,27 as well as a uniform Cartesian mesh in the entire computa-
tional domain. The BCs are similar to those in Rabault et al.:13 a con-
stant parabolic velocity profile is applied at the inlet and a zero
pressure condition is applied at the outlet. Both BCs are implemented

using the nonequilibrium extrapolation scheme.28 The halfway
bounce-back scheme29 is used to satisfy no-penetration and no-slip
BC at the top and bottom walls. As for the cylinder with jets, we apply
the double linear interpolation method for curved boundary treat-
ment,30 and the corrected momentum exchange method for hydrody-
namic force calculation.31

In ML-based AFC, it is vital to reduce the time taken by the flow
solver to perform each training simulation, as many such simulations
are required to find an effective control strategy. Thus, instead of con-
ducting accurate but time-consuming direct numerical simulations
(DNS) for the training, we resort to large eddy simulations (LES)
when simulating flows at Re¼ 1000. In LES, fluid viscosity involves
both molecular viscosity and eddy viscosity, the latter modeling
subgrid-scale dissipation and being derived from a local velocity deriv-
ative tensor. In this study, the Vreman model32 is implemented to real-
ize LES, where velocity derivatives are calculated using a second-order
finite difference scheme. This model has been successfully imple-
mented in our previous works.24,25

To validate the current flow solver, we conduct simulations using
different configurations and make comparisons with prior benchmark
results, as summarized in Table I. For the three configurations at
Re¼ 100, the intermediate mesh (configuration II) generates �CD and
jCLj values fairly close to those obtained with the finest mesh (configu-
ration I). The maximum CD and CL values as well as the vortex shed-
ding Strouhal number St match the benchmark results in Sch€afer
et al.33 and approximate those in Tang et al.15 For the three configura-
tions at Re¼ 1000, although LES with the coarsest mesh (configura-
tion VI) gives results with errors of 5% in �CD and 7% in jCLj
compared with the highly resolved DNS (configuration IV), it has
good numerical stability and, more importantly, takes only 2% of the
latter’s computational time, showing a very good balance between
accuracy and efficiency. In addition, with a similar mesh resolution
(overall 445, 938 mesh nodes, and 397 mesh nodes located along the
cylinder surface), the case performed using the finite volume method
(FVM) based DNS by the commercial software ANSYS-Fluent obtains
consistent results as configuration V. Based on these results, the set-
tings in configurations II and VI are adopted for the DRL training at
Re¼ 100 and 1000, respectively. At Re¼ 1000, each trial simulation
running for a duration of 32T only takes about 5min, using our in-
house flow solver accelerated with a NVIDIA K40c graphics process-
ing unit (GPU). These efficient simulations to a great extent make the
present DRL-based AFC feasible. On the other hand, once the training

TABLE I. Validation and convergence study. Note: dx ¼ 1 and dt ¼ 1 are the lattice unit length and time step, respectively, used in our LBM code.

Re Configuration Method D=dx T=dt �CD CD;max jCLj CL;max St

100 I DNS 94 2000 3.204 3.244 0.646 1.021 0.3021
II DNS 47 1000 3.200 3.240 0.639 0.999 0.3021
III DNS 23.5 500 3.196 3.236 0.608 0.948 0.3030

Sch€afer et al. DNS 3.22–3.24 0.99–1.01 0.295–0.305
Tang et al. DNS 3.230 1.032 0.3020

1000 IV DNS 282 6000 3.476 2.515
V DNS 141 3000 3.438 2.463
VI LES 70.5 1500 3.293 2.339

Fluent FVM-DNS 126 300 3.421 2.530
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is done and effective control strategies are identified, the settings in the
highly resolved DNS configuration, i.e., configuration V, are used to
evaluate the well-trained PPO agents, for which the computational
cost is not a big concern.

Figure 3 presents snapshots of typical velocity fields obtained at
Re¼ 100 and 1000. One can observe that, compared with the laminar
case at Re¼ 100, the simulation at Re¼ 1000 has revealed some cha-
otic characteristics: vortices shed from the cylinder lose the spatial-
temporal symmetry and strongly interact with the channel walls. This
can also be clearly seen from the video associated with Fig. 7(a)
(Multimedia view). Some vorticity development is visible along the
walls near the cylinder, which is due to the blocking effect of the cylin-
der on the flow. Indeed, we minimized the domain width in order to
reduce the computational costs. While this slightly affects the exact
value of the drag coefficient compared with the free flow case, it has
no implications on either the ability of the DRL agent to control the
flow, or the main findings regarding vortex shedding control. Finally,
we observe a clear turbulent cascade behind the cylinder, as revealed
in Fig. 1 in Sec. I and discussed further in Sec. III when analyzing the
effect of the actuation on the flow (see Fig. 10 there).

C. Deep reinforcement learning

The PPO DRL setup for performing AFC is similar to that in
Rabault et al.13 The closed-loop interaction between the cylinder, i.e.,
the DRL agent, and the fluid environment is depicted in Fig. 4. The
sensor array collects the velocity information at selected locations, i.e.,
the state, from the simulation. The cylinder uses the jet-pair actuation,
i.e., the action, to alter the fluid environment. The performance of the
AFC is then evaluated using the reward r [defined in Eq. (1)]. In the
present study, the DRL algorithm is implemented with an in-house
code using Python. More implementation details can be found in
Appendix A.

III. RESULTS AND DISCUSSIONS

To build confidence on our in-house flow solver and DRL algo-
rithm, we start with benchmarking our DRL-trained AFC at Re¼ 100
against those reported in Rabault et al.13 Both the identified strategies
and the control performance are in good agreement, as detailed in
Appendix B. This constitutes an additional validation for the present
methods. For the sake of brevity, in the following we only focus on dis-
cussing the DRL training at Re¼ 1000. To deal with high-frequency
turbulence at this Re, in the learning process we run each episode for
32T and adjust the jet actuation five times per T, both significantly lon-
ger than those adopted at Re¼ 100. We adopt two different learning
strategies for more challenging controls at Re¼ 1000: the first one is to
start the learning from a randomly initialized policy, whereas the sec-
ond one is the so-called “transfer learning,” i.e., to start the learning
from the well-trained policy at Re¼ 100. Learning curves are pre-
sented in Fig. 5, where three independent trainings are performed for
each learning strategy. Very similar learning trends are observed for
the trainings under the same strategy, demonstrating the robustness of
these two learning strategies. By adopting different strategies, however,

FIG. 3. Snapshots of the flow fields obtained at Re¼ 100 (a) and Re¼ 1000 (b).
The vorticity contours are normalized by U/D and scaled in a ½�2; 2� range.
Vortices are identified using the kci criterion

34 and enclosed with gray lines. The
chaotic features in the flow at Re¼ 1000 is clearly visible.

FIG. 4. Schematic of the DRL loop.

FIG. 5. Learning curves of DRL-trained AFC at Re¼ 1000: starting from scratch
(a) and starting from the strategy learnt at Re¼ 100 (b).

FIG. 6. Comparison of mean drag coefficient (a) and mean lift coefficient (b) among
the baseline (i.e., uncontrolled) and six controlled cases that are evaluated using
well trained policies and in deterministic mode. The error bars denote the standard
deviations of the data. Multimedia view: https://doi.org/10.1063/5.0037371.1
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an obvious difference in the learning curves is observed: the learnings
using transfer learning start with much higher initial �CD values than
those started from randomly initialized policies. This indicates that the
policies learnt at Re¼ 100 do not work well at Re¼ 1000, due to the
big difference in the flow dynamics. Nevertheless, all the learning
curves eventually approach to similar low �CD values, mutually

verifying the effectiveness of learnings using both strategies. Note that,
compared to the learnings at Re¼ 100, all these learnings take much
more episodes to converge, revealing the difficulty in controlling cha-
otic flow systems.

Once the trainings are done, the converged policies from each
training are evaluated in the deterministic mode using the highly
resolved DNS configuration (i.e., configuration V in Table I). As
shown in Fig. 6(a), the evident reductions in �CD (ranging from 27.4%
to 34.2%, with a mean value 30.7%) predicted by DNS simulations
confirm that the policies trained using less accurate LES simulations
are valid. The slight variation is within expectation, which arises from
the eminently random exploration mechanism present in the PPO
algorithm and the strong nonlinearity and chaoticity of the turbulent
flow considered here. Meanwhile, the fluctuation in CD is also greatly
mitigated by the control. As revealed in Fig. 6(b), lift fluctuations are
also reduced by the control. The maximum reduction of 55.2% occurs
in case II. However, the control generally leads to asymmetric lift fluc-
tuations, resulting in nonzero �CL. This is similar to the findings of sev-
eral previous works,35–37 in which it was found that control leading to
an asymmetric flow configuration is what provides the largest drag
reduction behind the symmetric fluidic pinball, though at the price of
the creation of a biased lift.

Two cases with the smallest lift fluctuations, i.e., cases II and VI,
are chosen to reveal more details about control effects of these learnt
policies. The evolution of the cylinder wakes in these two controlled
cases as well as the uncontrolled case in compared in the videos associ-
ated with Fig. 7. The temporal variations of CD, CL, and jet velocity ujet
presented in Fig. 8 clearly show the irregular feature of the control in

FIG. 7. Videos showing the evolution of the cylinder wakes without control (a), with
control learnt in case II (b), and with control learnt in case VI (c). Multimedia views:
https://doi.org/10.1063/5.0037371.2; https://doi.org/10.1063/5.0037371.3

FIG. 8. Temporal variations of drag coefficient (a) and (b), lift
coefficient (c) and (d), and jet velocity (e) and (f) for two rep-
resentative cases evaluated using well trained policies and in
deterministic mode: case II (left column) and case VI (right
column).
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turbulence conditions, contrarily to those at Re¼ 100 as shown in Fig.
15 in Appendix B.

Contours of the first- and second-order turbulence quantities are
presented in Fig. 9. Comparison among the mean-streamwise-velocity

contours in Figs. 9(a)–9(c) reveals that the control significantly elon-
gates the recirculation bubble in the wake, by 211% in case II and
195% in case VI, which is accompanied by significant reduction of
hydrodynamic drag as revealed earlier. The control also significantly
reduces the Reynolds stresses, i.e., u0u0 ; v0v0 and u0v0 , in the wake
region, indicating that the wake flow becomes less fluctuating. The tur-
bulent-kinetic-energy (TKE) spectra at two selected locations in the
wake, one in the recirculation bubble at 0:75D downstream of the cyl-
inder center and the other outside the bubble at 3D, are presented in

FIG. 9. Contours of mean and turbulence quantities of the flow without (left column) and with (middle column, case II; right column, case VI) control: mean streamwise velocity
�u (a)–(c), mean transverse velocity �v (d)–(f), streamwise Reynolds stress u0u0 (g)–(i), transverse Reynolds stress v0v0 (j)–(l), Reynolds shear stress u0v0 (m)–(o). The white
lines in (a)–(c) are iso-lines of zero streamwise velocity, enclosing the recirculation bubble. The data are obtained through processing 10 000 snapshots of the flow field col-
lected from t¼ 100 to 200, where the control starts at t¼ 0 from a statistically stationary state.

FIG. 10. TKE spectra at two locations in the centerline of the channel, i.e., 0:75D
(a) and 3D (b) downstream of the cylinder center. The frequency is represented by
the Strouhal number St ¼ fD=U.

FIG. 11. Time-averaged flow field of the half flow domain. The arrowed lines are
streamlines, and the background is colored by mean streamwise velocity.
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Fig. 10. It is seen that the peak at St � 0:7 in the baseline (i.e., uncon-
trolled) case disappears in the controlled cases, reflecting the fact that
the natural vortex formation and shedding process is significantly
altered by the jet actuation. In addition, with the control, obvious
decrease in the spectra at higher frequencies is observed. This is consis-
tent with the significant reduction of the Reynolds stresses revealed
in Fig. 9.

From the results shown in Figs. 8–10, it is seen that the flow char-
acteristics in cases II and VI are very similar, indicating that different
learning strategies eventually give similar control policies. This similar-
ity can also be clearly seen from the video in Figs. 6(a)–6(c)
(Multimedia view).

To further evaluate the effectiveness of the learnt control policies,
we conduct a comparative study similar to that in Bergmann et al.,38

which was also adopted in, among others, Rabault et al.13 and Tang
et al.15 Bergmann et al.38 suggests that the drag experienced by the cyl-
inder consists of two main components, one arising from a
“symmetric base flow” around the cylinder, and the other arising due
to the vortex shedding from the cylinder. We estimate the symmetric-
base-flow drag by performing a simulation of flow around a half cylin-
der at Re¼ 1000 with a symmetrical boundary condition employed at
the centerline of the channel. The resulting flow is shown in Fig. 11. In
this case, the mean drag coefficient on the half cylinder is read as
�CD ¼ 0:927. Therefore, according to Bergmann et al.,38 it is deduced
that for the whole cylinder �CD ¼ 1:854 if the vortex shedding is fully
suppressed. This is a 47% reduction from the uncontrolled �CD listed
in Table I. Compare to this idealized value, the maximum reduction of

34% (case III in Fig. 6) obtained using the present DRL-trained AFC is
still quite remarkable. We anticipate that further improvements can be
made by using finer grained actuation, for example, through multiple
jet pairs deployed on the cylinder.

Finally, we perform a sensitivity analysis on cases II and VI to
explore the optimal layout of sensor network, using the Python library
SALib that is based on the method introduced by Saltelli39 and
Sobol.40 For each case, we generate 10 000 groups of random samples
for both the streamwise and transverse velocity components (u and v)
collected by the 151 sensors, each ranging between �2 and 2. Two
observations are made from the results shown in Fig. 12: first, the sen-
sors placed on the windward side of the cylinder are generally less
important; second, the control is more sensitive to v component than
u component, except for sensors deployed in the near leeward side of
the cylinder. By comparing the distributions of the total sensitivity
indices (ST) in the two cases, one can clearly see the difference in the
pattern of most influential sensors located in the mid-wake region.
This indicates that the pattern of influential sensors in this region dif-
fers with control strategies. Hence, in order to achieve effective control
with an essential number of sensors, this sensitivity analysis should be
conducted on more cases to reach a statistically meaningful answer,
which deserves a further investigation.

IV. SUMMARY AND CONCLUSION

In the present work, we performed the first PPO DRL trained
AFC in weakly turbulent conditions, with the aim to reduce the drag

FIG. 12. Distribution of total sensitivity indices (ST) at all the 151 sensor locations. The sensors are colored with eight equal levels ranging from gray (ST¼ 0) to black
(ST ¼ 0:01) to reflect their influence on the control output. A larger ST corresponds to a larger influence.
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and mitigate lift fluctuations experienced by a circular cylinder at
Re¼ 1000. The findings are summarized as follows:

1. At intermediate Reynolds numbers where the flow shows weakly
turbulent features, DRL can still find effective control strategies.
Due to the much stronger nonlinear flow features involved; how-
ever, the learning requires much more episodes to converge than
the learning in the laminar flow regime.

2. Both randomly initialized and transfer-learning strategies per-
form well to reach a similar drag reduction level, i.e., around
30%. The latter strategy does not show obvious advantages over
the former strategy as expected, mainly due to the large differ-
ence in flow dynamics caused by turbulence.

3. Through analyzing the AFC results, two flow features associated
with the drag reduction are identified: first, the recirculation
bubble is greatly elongated, similar to what has been observed in
the laminar regime. Second, turbulence levels in the wake, espe-
cially in the near wake, are significantly reduced by the control.

4. The sensitivity analysis identifies the most influential sensors as
well as the influential velocity component, which can greatly
help reduce the number of sensors and hence the complexity of
ANN architecture for the control.

This work further qualifies DRL as a useful ML tool for solving
AFC problems, and sets a new milestone by illustrating the effective-
ness of DRL in a case much more complex than previous studies. We
anticipate that more relevant studies will be conducted in much stron-
ger turbulent conditions to further progress toward real-world
applications.
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APPENDIX A: DEEP REINFORCEMENT LEARNING

Here we present a brief description about the proximal policy
optimization (PPO) algorithm. For more details, readers are
referred to any of the many discussions on this topic, such as Heess
et al.,12 Schulman et al.,11 and Rabault et al.5,13

In each episode, the PPO agent applies the control policy N
times and collects a sequence of state-action-reward combinations,
i.e.,

s ¼ ðs1; a1; r1Þ; ðs2; a2; r2Þ; ðst ; at; rtÞ;…; ðsN ; aN ; rNÞ: (A1)

To optimize against a long-term objective, the learning process
is driven by a discounted reward

Rt ¼
X

t0>t

ct
0�trt0 ; (A2)

where 0 < c < 1 is a discount factor usually close to 1 (herein set as
0.97), such that later rewards contribute more to the discounted
reward.

The policy, pH, is modeled by an artificial neural network
(ANN) having a set of weights H. As shown in Fig. 13, the PPO
algorithms uses two sets of ANNs: an “actor” network whose input
is the state and output the action, and a “critic” network whose
input is the state and output a prediction of the discounted reward.
In both ANNs, we use two fully connected hidden layers with 512
neurons in each layer.

In order to perform training, an appropriate loss function
must be defined for each ANN. When training the critic network,
an intermediate variable, i.e., the “advantage,” is used to evaluate
the difference between the predicted and actual discounted rewards

Ât ¼ Rt � VHðstÞ: (A3)

Then, the objective of the critic network is to minimize a loss
function measuring the discrepancy between the predicted and
actual discounted reward, i.e.,

Jcritic ¼ Êtð�Â
2
t Þ; (A4)

where Êt denotes the empirical expectation over time.
As learning progresses, the PPO agent always attempts to

increase its cumulative reward. To achieve this, the actor network is
used to generate actions so that the agent can interact with the envi-
ronment. In return, this network is also trained using the reward
information. In the present PPO implementation, we follow the
work in Schulman et al.,11 where a clipped surrogate objective func-
tion is used, i.e.,

Jactor ¼ Ê t minðqtðHÞÂt ; clipðqtðHÞ; 1� �; 1þ �ÞÂtÞ
� �

; (A5)

where qtðHÞ ¼ pHðat jstÞ=poldðat jstÞ is the ratio of the probability of
current policy pH in adopting action at according to state st to the
probability of previous policy pold. The clipped term inside the above
equation means that qtðHÞ is constrained to an interval ½1� �; 1þ ��,
where � is a hyper-parameter set as 0.2 as recommended by Schulman
et al.11 Therefore, excessively large policy updates, which would make
the training process unstable, are avoided.

FIG. 13. General actor-critic setup used in the PPO algorithm.
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When updating the policy, we use the Adam (short for “adaptive
moment estimation”) optimizer, which performs better in fast conver-
gence than conventional stochastic gradient descent optimizers.41 For
both ANNs, the learning rate is fixed as 0.001. To deal with continuous
control, the actor network does not directly generate actions. Instead, it
generates a combination of parameters for a certain probability distri-
bution for actions. In this study, we choose the beta distribution, from
which the actions are sampled in a predefined range.42

Once the learning converges and the performance reaches a
satisfactory level, deterministic runs can be performed to reveal
more details. In these runs, the agent no longer conducts learning
from the sampled data. Instead, it directly generates deterministic
actions, which come with the highest probability in the distribution,
i.e., no random process is involved.

APPENDIX B: DRL CONTROL OF LAMINAR FLOW

Since in the present work different flow solver and DRL imple-
mentation are employed, we cross-validate our methods by performing
the same AFC problem at Re¼ 100 as in Rabault et al.13 We adopt the
same settings for the learning. The learning curves, performed using
two different weighting factors for lift, i.e., w¼ 0.2 and 1.0, are pre-
sented in Fig. 14, all showing good learning trends and converge within
about 200 episodes. During the learning progress, each episode, i.e., a
complete run of the simulation starting from a uncontrolled, fully
developed flow, runs for 24T, corresponding to about 7.3 vortex shed-
ding periods in the uncontrolled case. During each episode the action
is adjusted 60 times according to the latest policy. To mitigate possible
instability in the simulation, each adjustment of action is gradually
realized using a smooth function. The control policy learnt by the PPO
agent is updated every 20 episodes.

Once the training is done, deterministic controls are per-
formed using the learnt policies. Results from three representative
cases (i.e., DRL I, II, and III) are presented in Fig. 15. The achieved
drag reduction rates are 7.6%, 7.5%, and 7.1%, respectively, close to
8% as reported in Rabault et al.13 Note that, different weighting fac-
tors for lift give different results. As w¼ 0.2 is relatively small (i.e.,
DRL I and II), the agent pursues larger drag reduction rates.
However, as revealed in Figs. 15(g) and 15(h), the jet forcing is sig-
nificantly biased, i.e., one side of the jet pair always blows and the
other side always sucks. As a result, the cylinder will experience

FIG. 15. Three typical control strategies observed in the deterministic run at Re¼ 100: temporal variations of drag coefficient (a)–(c), lift coefficient (d)–(f), and jet velocity
(g)–(i). Results shown in the left and middle columns use lift weighting factor w¼ 0.2, and results shown in the right column correspond to w¼ 1.0. The black lines represent
the baseline (uncontrolled) case. In each subfigure, the gray background indicates the transient process, whereas the white background indicates the steady-state process.

FIG. 14. Learning process at Re¼ 100: (a) using weighting factor w¼ 0.2, (b)
using w¼ 1.0.
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nonzero mean lift force, as evidenced in Figs. 15(d) and 15(e),
which is unexpected and could cause serious problems to the struc-
ture. On the other hand, as w¼ 1.0 is relatively large (i.e., DRL III),
the agent weights the lift fluctuation more. Although a smaller drag
reduction rate is obtained, the undesirable asymmetric lift fluctua-
tion is significantly mitigated, as evidenced in Fig. 15(f). Moreover,
the significant reduction in the fluctuation amplitude, compared to
that in the baseline case, also suggests that the vortex formation and
shedding is well suppressed by the control.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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