
University of Oslo
Department of Informatics

Bridging in RPR
networks

Amund Kvalbein

Evaluation of an
enhanced bridging
algorithm

May 1, 2003

Preface

The hardest thing in life to learn
is which bridge to cross and which to burn.

—David Russell

This thesis is presented for the degree of Cand. Scient. at the Department
of Informatics, University of Oslo.

Most of the work has been done at the Simula Research Laboratory at
Fornebu, Oslo. I wish to thank the Simula community for providing good
working conditions and many nice lunches during the project period.

Fredrik Davik and professor Stein Gjessing have been my supervisors in
this work. I never found their office doors closed. A warm thank goes to
them for their cooperation and help during this period.

Also, thanks to professor Ørnulf Borgan for help with statistical issues in
this work.

Oslo, May 2003

Amund Kvalbein

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Simulation model . 2
1.4 The structure of this paper . 3

2 Resilient Packet Ring 5
2.1 RPR in context . 6

2.1.1 Network topologies . 6
2.1.2 Existing ring technologies 7
2.1.3 Why RPR? . 8
2.1.4 Access scenarios . 9
2.1.5 A word on IEEE 802 10

2.2 Major design issues . 11
2.2.1 RPR frame format . 13

2.3 The MAC data path . 16
2.3.1 Frame transmission . 16
2.3.2 Frame reception . 18
2.3.3 Stripping frames from the ring 19

2.4 The MAC control sublayer . 19
2.4.1 Protection . 20
2.4.2 Fairness . 22
2.4.3 Ringlet selection . 24
2.4.4 Topology discovery . 24
2.4.5 Operations, Administration and Maintenance (OAM) . 25

2.5 Summary . 25

3 Bridging 27
3.1 Bridging in context . 27
3.2 Transparent bridging . 29

3.2.1 Conceptual model of a transparent bridge 29

v

vi CONTENTS

3.2.2 Transparent bridging example 30
3.2.3 The Spanning Tree Protocol 32

3.3 Source Route Bridging . 33
3.3.1 Source route bridging example 34

3.4 The limitations of bridging . 35
3.5 Summary . 36

4 Bridging RPR networks 37
4.1 The ideal case . 37
4.2 Basic bridging in RPR . 39

4.2.1 Promiscuous mode and its discontents 39
4.2.2 Flooding . 40

4.3 An improved bridging algorithm 42
4.3.1 SRCS tables . 42
4.3.2 Frame format . 44
4.3.3 The learning process 46

4.4 Summary . 48

5 The Java simulation model 49
5.1 Discrete event simulators . 50
5.2 About this simulation model 51
5.3 The important classes . 53

5.3.1 Kernel.java . 53
5.3.2 Packet.java . 54
5.3.3 ApplicationHigh.java and ApplicationLow.java 54
5.3.4 DualNode.java . 55
5.3.5 Node.java . 56
5.3.6 Link.java . 57
5.3.7 Srcs.java . 57
5.3.8 Relay.java . 57
5.3.9 Reporter.java . 58

5.4 About the development of this model 58
5.5 Summary . 59

6 Simulations and results 61
6.1 Scenario 1: A simple flow . 62

6.1.1 Topology . 62
6.1.2 Traffic pattern . 63
6.1.3 The metrics . 64
6.1.4 Analysis of the results 64
6.1.5 Discussion . 67

CONTENTS vii

6.2 Scenario 2: Filling the SRCS tables 68
6.2.1 Topology . 68
6.2.2 Traffic pattern . 69
6.2.3 Collected data . 71
6.2.4 Flooding . 71
6.2.5 Throughput . 75
6.2.6 Discussion . 77

6.3 Scenario 3: Bridging impact on service level 78
6.3.1 Self similar traffic . 79
6.3.2 Topology . 80
6.3.3 Traffic pattern . 80
6.3.4 Collected data . 83
6.3.5 Analysis and discussion 86

6.4 Summary . 87

7 Conclusions and further work 89
7.1 Results . 89
7.2 Problem statement revisited 90
7.3 Further work . 91

Bibliography 93

A Dictionary 97

Chapter 1

Introduction

1.1 Motivation

Resilient Packet Ring (RPR) is a new standard for a packet based ring net-
work currently under development. RPR is primarily intended to be a tech-
nology for the metro environment, supporting link capacities up to multiple
gigabits per second. One of the important characteristics of RPR is spatial
reuse, which allows data frames in the network to traverse only the shortest
path between the source and destination nodes on the ring.

The main topic of this work is how several such RPR rings can be intercon-
nected by bridges. Bridges are devices with two or more network interfaces,
that forward data frames from one interface to one or more of the others.
Figure 1.1 shows a situation where two RPR rings are interconnected by a
bridge.

A

B

Bridge

Figure 1.1: Two RPR rings interconnected by a bridge.

1

2 CHAPTER 1. INTRODUCTION

As will be explained in the sequel, bridging as specified in the current
RPR draft standard leads to loss of the spatial reuse properties on the ring.
Frames from node A to node B in figure 1.1 must be broadcasted on both
rings. This broadcasting consumes extra bandwidth resources, and leads to
a poor utilisation of the network resources.

Ideally, frames from node A to node B would only consume bandwidth
resources along the shortest path between the two nodes, as illustrated in
the figure. This work discusses an enhanced bridging algorithm for RPR
networks, which allows spatial reuse also for bridged traffic. This will be
achieved by keeping tables in the RPR nodes. These tables will be used to
direct traffic destined for nodes on a remote network to a specified bridge.

1.2 Problem statement

The goal of this work is to evaluate an enhanced bridging algorithm for RPR.
The differences between the enhanced bridging approach and the algorithm
in the current RPR draft standard are discussed, and the performance of the
enhanced bridging algorithm is evaluated through simulations.

The purpose of the enhanced bridging algorithm is to give better resource
utilisation in a bridged RPR network by allowing spatial reuse for bridged
traffic. This work tries to answer how such improvements can be made with
respect to bandwidth utilisation, and at what cost this can be achieved. The
tradeoffs that must be made are discussed. The enhanced bridging algorithm
relies on mapping tables in the RPR nodes, demanding some amount of avail-
able memory. The effect of limiting the size of these tables is investigated.
Furthermore, reducing the amount of traffic in a network means that the
probability that a link gets congested declines. This in turn has a positive
effect on the latency and jitter characteristics of all the traffic. This work
tries to shed some light on what effect the choice of bridging algorithm has
for the local traffic on an RPR ring.

1.3 Simulation model

A simulation model of RPR networks written in the Java programming lan-
guage is used to evaluate the enhanced bridging algorithm. The model used
in my work is an extension of a model previously developed by professor Stein
Gjessing at Simula Research Laboratory. The work with this model has been
a substantial part of the work in this project. The simulation model has been
used to investigate the above problems, through constructing and simulating

1.4. THE STRUCTURE OF THIS PAPER 3

three different traffic scenarios.
The source code for the simulation model used in this work is available

at

http://www.simula.no/download/nd/rpr/rprbridging/

Three configurations of the simulation model are given, corresponding to
the three scenarios described in chapter 6. By following the steps described
in the readme file associated with each scenario, it should be possible to
recreate the simulation results. An electronic version of this document is
also provided at the web site.

1.4 The structure of this paper
This paper is organised in seven chapters. After this introduction, chapters
2 and 3 give the reader the background needed to follow the discussion of
bridging in RPR. Chapter 2 discusses the emerging RPR standard, while
chapter 3 treats bridging in general, with emphasis on how different bridg-
ing strategies are used in existing network technologies. Then, chapter 4
introduces the problems that arise when bridging is used in RPR networks.
The bridging algorithm used in the existing RPR draft standard is discussed,
together with an enhanced bridging algorithm which allows spatial reuse of
bridged traffic. Chapter 5 describes the simulation model used in the perfor-
mance evaluations of the bridging algorithms. The three simulated scenarios
are presented in chapter 6, and the simulation results are discussed. Finally,
chapter 7 summarises the work, and discusses whether the goals have been
reached and what has been learnt through this work. Some ideas for further
research topics are also presented.

At the end, appendix A gives an explanation of some of the terms and
acronyms used in this work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Resilient Packet Ring

A basic knowledge of the RPR technology is needed to fully appreciate the
discussion of bridging algorithms which is the main topic of this work. As
will be explained in chapter 4, some adaptations are needed before bridging
of RPR networks is possible. The reason for this can be found in some of the
properties of the RPR technology, and the main purpose of this chapter is
to provide the reader with the necessary understanding of RPR. The latest
RPR draft standard consists of over 600 pages. This chapter is thus not a
full description of all RPR functionality. However, most of the important
RPR characteristics are mentioned.

This survey of the RPR technology is based on the February 2003 draft
of the RPR standard [18]. This document is not an official standard, only a
working document for the RPR working group. It is only available through
the working group’s password-protected web site.

The purpose of section 2.1 is to place RPR in a broader context. Different
network topologies are described, and some existing ring network technologies
are mentioned. Some of the motivating factors for developing RPR is high-
lighted, and IEEE 802 is discussed as the formal framework in which RPR is
developed. Then, section 2.2 explains some of the key features the designers
of RPR had in mind, and what makes RPR distinct from formerly devel-
oped ring technologies. Section 2.3 describes the data path in RPR, which
contains functionality for transmitting, forwarding and removing frames on
the ring. Finally, section 2.4 gives an overview of the MAC control sublayer,
describing various control functions in RPR.

5

6 CHAPTER 2. RESILIENT PACKET RING

2.1 RPR in context

2.1.1 Network topologies

Computers can be connected in a wide variety of topologies. The most in-
tuitive topology is perhaps to have a direct link between each of the nodes
in the network. This topology, known as a mesh, has its clear advantage in
providing each node with direct connection to all other nodes. The obvious
drawback is scalability; the number of links and network interfaces needed is
proportional to the square of nodes. A more general variant of this topology
is a partial mesh, in which not all nodes are directly connected. This kind of
general network is perhaps the most usual of all network topologies.

Star Bus RingMesh

Figure 2.1: Possible network topologies

Another possible topology is star networks. Here, all nodes are connected
to one central node. The cables radiate from this central node much like the
spokes in a wheel. This topology demands less cables and network interfaces
than does the mesh topology. However, the scalability can be limited by the
central node, through which all traffic in the network must pass. Another
issue is reliability - if the central node fails, all the other nodes become
unreachable.

In a bus topology, all nodes are connected to the same cable in a linear
fashion. Data transmitted by one node on this common cable is available to
all other nodes. This topology is easy to manage, since nodes can be added
and removed without affecting the other nodes in the network. In a heavy
loaded network, performance may be limited by the fact that all nodes have
to share the available capacity on the cable.

Finally, nodes in a network can be connected in a ring. In this topology,
each node is linked to its two neighbours. Data is passed from node to node
around the ring until it reaches its destination. A ring topology allows nodes
to be connected using a modest number of links and network interfaces,
without the possible bottleneck of a central node. A drawback with a ring
topology, is that the loss of a single node or link can possibly disable the

2.1. RPR IN CONTEXT 7

entire network. This problem can be overcome in a dual ring network, where
each node is connected to two counter rotating rings. A dual ring allows the
construction of protection mechanisms that can restore connectivity in case
of a node or link failure, so that if a node or link breaks, all nodes are still
connected.

2.1.2 Existing ring technologies

The idea of organising computer networks as rings is far from new. For
the last three decades, which is the main part of the history of computer
networking, different kinds of ring network technologies have been developed.
RPR has a number of interesting older relatives.

The first ring network technology was the Cambridge Ring [23], devel-
oped at the University of Cambridge in the early seventies. This single ring
technology came into use in 1975, and was one of the first LANs in use. The
Cambridge Ring regulated access to the medium by passing a token from
node to node around the ring. The owner of the token was allowed to insert
two bytes of data into it, and send it to the desired recipient. Using the Basic
Block Protocol [24] for communication, the total size of the token with its
two bytes of payload was 36 bits, giving an overhead of 125%.

A few years later, IBM developed Token Ring as their main LAN tech-
nology. This technology has also been standardised by the IEEE as the 802.5
standard [2]. Like the Cambridge Ring, Token Ring is a single ring technol-
ogy. As the name suggests, Token Ring kept the idea of circulating a token
to regulate access to the medium. Each station is allowed to hold the token
for a limited period of time, and has the exclusive right to transmit on the
ring during this period. The frame size in a token ring is not fixed, as it
was in Cambridge ring. Instead, the maximum frame size is limited by the
maximum token holding time. Token Ring originally operated over 4 Mbps
copper wires, with a later extension allowing 16 Mbps links. Being IBM’s
main LAN technology for a long time, Token Ring has been one of the most
widely deployed ring technologies.

The need for higher bandwidth led to the development of Fiber Dis-
tributed Data Interface (FDDI) [29]. This technology operates in much the
same way as Token Ring. The most striking difference is with respect to
bandwidth, where FDDI operates at a speed of 100 Mbps. Also, FDDI is a
dual ring network, meaning that it consists of two separate fibre rings known
as the primary and secondary ring. The secondary ring is not used during
normal operation, but it allows the implementation of a protection mecha-
nism. In case of a network failure, traffic is wrapped over on the secondary
ring, thus maintaining a ring topology even after a link or station failure.

8 CHAPTER 2. RESILIENT PACKET RING

Another interesting single ring network, is Scalable Coherent Interface
(SCI) [14]. This high speed network offers transfer speeds of up to 8 Gbps.
The origin of SCI was an attempt to come up with a more efficient bus
architecture for multiprocessor computers. The limitations of a bus archi-
tecture led the inventors to choose a ring topology [10]. SCI is a single ring
technology, consisting of uni-directional links connecting up to a theoretical
maximum of 64K nodes. Unlike the technologies discussed above, SCI has
no token controlling access to the medium. Instead, SCI is a buffer insertion
network, where each node makes a decision on when to send based on the
traffic passing on the ring. SCI uses destination stripping, meaning that the
destination node is responsible for stripping a received frame off the ring.
When a receiver strips a frame, an ack or a nack message continues around
the ring back to the sender, indicating whether the frame could be received.
The sender node buffers the transmitted frames, and resends them if the des-
tination node could not receive it. The strategy of destination stripping is
different from Token Ring and FDDI, where the sender node strips the frames
when they have traversed the whole ring. As we will see later, destination
stripping is also used in RPR.

2.1.3 Why RPR?

Much of the fibre found in todays metro networking environment is organised
in ring topologies. Data traffic over such fibre rings is typically sent using
the SONET [1] protocol. SONET is well suited for a ring topology, with a
fast (sub 50 ms) protection mechanism that can restore connectivity using
an alternate path around the ring in case of a network failure. However,
SONETs circuit switched nature has clear disadvantages for data traffic. The
need to reserve bandwidth for each connection between nodes is a bad match
for the often bursty data traffic. Also, multicast in SONET demands a
separate circuit to be set up for each recipient. A separate copy is then sent
to each of them, resulting in multiple copies of multicast frames travelling
around the ring. Point-to-point Ethernet on the other hand, is better suited
for data traffic, making more efficient use of the available bandwidth. But
it does not take advantage of a ring topology to implement a protection
mechanism when this is possible. Point-to-point Ethernet also lacks a way to
provide a fair sharing of the ring-wide available bandwidth between the nodes.
One of the motivations for developing the RPR ring network is to come up
with a technology that combines the strengths of the SONET and Ethernet
protocols used over ring topologies today. RPR is packet based, which allows
for a more dynamic use of the available bandwidth than a circuit switched
SONET ring. At the same time RPR exploits the ring topology to implement

2.1. RPR IN CONTEXT 9

a protection mechanism and a ring-wide fairness algorithm, as discussed in
section 2.4.

Other MAN

Internet/WAN

Figure 2.2: An RPR ring can typically be used in a metro area to interconnect
several local networks.

2.1.4 Access scenarios

RPR is primarily designed to be a metropolitan or wide area (MAN/WAN)
technology, but its use in a local area (LAN) context is also discussed. A
typical scenario could involve an RPR ring spanning a campus, a city or a
larger region. Each node on the ring could aggregate traffic from an office
building, a campus, or a rural area, depending on the scale of the network.
Figure 2.2 shows a possible scenario, where RPR is used to interconnect
different local networks.

An interesting initiative in this context is called Ethernet in the First
Mile (EFM)[32]. The first mile here means the infrastructure that connects
a subscriber to the service provider. This infrastructure can often be a bot-
tleneck between the business or residential subscriber’s local network and the
high capacity metro networks. Various kinds of technologies such as ISDN
and xDSL are in use in this first mile today. The EFM task force argues
that the well-known Ethernet technology would give clear performance and

10 CHAPTER 2. RESILIENT PACKET RING

manageability advantage over these. The work with Ethernet in the First
mile is today taking place in the IEEE 802.3ah working group1.

The EFM is interesting in an RPR/bridging context. Ethernet and RPR
both use the same kind of MAC addresses for frame routing. One could thus
imagine using bridges to interconnect an EFM network and an RPR ring,
without the need for a higher layer protocol such as IP.

2.1.5 A word on IEEE 802

The RPR standard is being developed by the Institute of Electrical and
Electronics Engineers (IEEE). IEEE is an organisation doing work in a wide
range of engineering fields, from biomedical technology to electric power. In
the field of local- and metropolitan area computer networking, their efforts
are collected in the 802 series. The 802 family of specifications is traditionally
often placed in the link layer (layer two) of the Open Systems Interconnection
(OSI) reference model [19]. This is because the 802 protocols act like a link
layer seen from a network protocol like IP. However, the 802 protocols also
perform many functions that usually would belong in the network layer, like
addressing and some routing functionality. It is therefore not possible to give
an accurate description of the relationship between the 802 specifications and
the OSI reference model. The placement of the 802 standards in the link layer
given in figure 2.3 is thus not the whole truth. Still, it gives an idea of what
kind of protocols the 802 specifications define, at least as seen from IP’s
perspective.

The RPR technology can be placed in what is known in IEEE terminology
as the Medium Access Control (MAC) layer, and is said to define a specific
MAC protocol. The MAC layer defined by RPR can be split in a data path
and a control sublayer. RPR also defines a service interface to the above,
logical link control sublayer, and the underlying physical layer. RPR does not
itself define a physical layer. Instead, RPR is designed to run over existing
layer one technologies. In the current draft standard, reconciliation layers to
the Ethernet and SONET/SDH physical layers are defined.

The origin of what is today known as Resilient Packet Ring, was a tech-
nology called Spatial Reuse Protocol [33], developed by Cisco Systems around
1998. Cisco took their work to the IEEE, to see if it could form the basis for
a new standard for ring networks. Here, a study group was formed, which in
March 2001 was given status as a working group. The project got the name
Resilient Packet Ring, and was designated the IEEE number 802.17. The

1The proceedings of the 802.3ah standardisation efforts can be followed at
http://grouper.ieee.org/groups/802/3/efm/

2.2. MAJOR DESIGN ISSUES 11

OSI reference

model layers

IEEE 802/RPR

layers

physical layer
Ethernet or SONET/SDH

Reconciliation

MAC datapath

MAC control

Higher layers

RPR standard
Scope of Scope of

IEEE 802 standards

Logical link control / 802.2

Physical

Data link

Transport

Session

Presentation

Application

Network (IP)

Figure 2.3: The IEEE 802 family of specifications can be placed in the lower part
of the OSI reference model.

working group consists of representatives from many of the major actors in
the networking industry and from several academic communities. The group
has produced several draft versions of the new standard. An official version
is expected in the second half of 2003.

Being an IEEE 802 standard, RPR falls into line with other well known
networking standards standards, such as 802.3 [4] (Ethernet), 802.5 [2] (To-
ken Ring) and 802.11 [3] (Wireless LAN). The 802 family also contains a
specification of bridges as a means for interconnecting 802 networks of vari-
ous kinds. These standards, known as 802.1D [16] and 802.1Q [15], must be
supported by all 802 networks. A closer look upon this kind of bridging is
given in section 3.2.

2.2 Major design issues

One of the important characteristics of RPR is its dual ring topology. An
RPR network consists of two counter rotating rings, giving each node a full
duplex connection to each of its two neighbors. This double ring can be
seen as two independent ringlets. The ringlets are called counter rotating,
because the traffic on each flows in opposite directions. Traffic on the outer
ringlet is defined to flow clockwise, while the traffic on the inner ringlet flows
counter-clockwise, as shown in figure 2.4. At each ringlet, a node receives
frames from its upstream neighbour, while it transmits to its downstream

12 CHAPTER 2. RESILIENT PACKET RING

neighbour.

Outer ringlet

Inner ringlet

26

3

4

5

1

Figure 2.4: The traffic flows in opposite directions on the inner and the outer
ringlet

The concept of a dual ring topology has several advantages. Like in
FDDI mentioned above, it is used to implement a protection mechanism
that restores connectivity in case of a node or link failure. The key difference
here is that while the secondary ring in FDDI is idle during normal operation,
both RPR ringlets take part in the packet transport. RPR chooses which of
the two available ringlets to transmit on. This makes possible a better link
utilisation, allowing RPR to transport twice as much traffic as FDDI over
the same amount of fibre. The protection mechanisms in RPR are discussed
in section 2.4.

Unlike Token Ring and FDDI, RPR has no token or other synchronisation
mechanism to control access to the medium. Instead, RPR is a buffer inser-
tion ring, like SCI. Each node makes its own decisions on when to transmit,
in correspondence with the fairness algorithm described in section 2.4. To
avoid collision when the node is pulsing out a frame from its own transmit
buffer, a buffer is needed to store traffic arriving from the upstream neigh-
bour, as shown in figure 2.5. This buffer is called a transit buffer in RPR,
or sometimes also an insertion buffer. If the transit buffer is filled above a
configurable threshold, the node is prevented from adding traffic to the ring
by the fairness algorithm.

2.2. MAJOR DESIGN ISSUES 13

T
o the ring

From
 the ring

Output selector

Transit buffer

Figure 2.5: Buffer insertion rings have a transit buffer to hold back frames in transit
while transmitting frames on the ring.

Another important characteristic of RPR is spatial reuse of the available
bandwidth. This allows several frames to be in transit on different parts
of the same ringlet at the same time, as illustrated in figure 2.6. Spatial
reuse is made possible by the use of destination stripping. This means that
a frame is stripped from the ring when it reaches its destination node, as in
SCI mentioned above. The bandwidth that would otherwise be consumed
by the frame traversing the whole ring back to the source, is this way made
available for other traffic. The reuse of this freed bandwidth, is termed spatial
reuse. Destination stripping and spatial reuse allows each unicast frame to
travel only the shortest path between the sender and destination nodes. As
we shall see later, destination stripping makes it more complicated to do
bridging in an RPR network. Maintaining the spatial reuse properties on
the ring becomes one of the key challenges in the context of bridging.

The dual ring and spatial reuse properties of RPR can give significant
performance advantages. By choosing the ideal ringlet for transmission, no
frame has to travel more than half way around the ring. On average, each
frame needs only to traverse one quarter of the ring, with uniformly dis-
tributed traffic. Compared to Token Ring and FDDI, where a frame always
travels the full length of the ring, this can significantly improve bandwidth
utilisation.

2.2.1 RPR frame format

The RPR frame format has had many different forms, before it reached the
design here described. This clause treats the RPR frame format as defined
in draft 2.1 of the RPR standard [18].

Four different types of frames are transmitted on an RPR ring; idle
frames, control frames, fairness frames and data frames. Idle frames are
used for synchronisation purposes when no other traffic is sent on a link.

14 CHAPTER 2. RESILIENT PACKET RING

1

2

3

4

5

6

Figure 2.6: Spatial reuse allows several packets to be sent on different spans of the
same ringlet simultaneously. Node 1 can transmit to node 3 at the same time as
node 4 transmits to node 6.

Control frames are used to propagate topology, maintenance and error re-
covery information. Fairness frames are small fixed-size frames used by the
fairness algorithm described below in its communication. This discussion will
focus on the data frames used in the normal exchange of traffic between the
nodes on the ring.

The minimum RPR data frame size is 24 bytes, which is the combined
size of the header and trailer fields, along with a minimum two byte payload.
These two bytes contain the protocolType field described below. The max-
imum frame size is 1522 bytes, allowing a 1500 byte payload for Ethernet
compatibility. An RPR ring can optionally support jumbo frames, which
can be up to 9216 bytes long. Figure 2.7 shows the layout of an RPR data
frame, with its different fields.

• The time-to-live (ttl) field is used to limit the number of hops a frame
can travel before reaching its destination. It can be set to the expected
number of hops for the frame, or a higher number. The use of this field
in a bridging algorithm is discussed in section 4.3. The ttl is an eight
bit value, limiting the maximum number of nodes on an RPR ring to
256. 2

2Due to other considerations, the maximum number of nodes allowed on an RPR ring

2.2. MAJOR DESIGN ISSUES 15

ttl

baseRingControl

da

sa

ttlBase

extndRingControl

hec

protocolType

sdu

fcs

header

payload

trailer

1

1

1

1

6

6

2

2

4

n

Figure 2.7: RPR data frame format

• The baseRingControl field in the header contains several fields with in-
formation that is used to control the frame’s flow around the ring. This
includes information such as what type of frame it is, what service class
it belongs to, and various information needed in case of a protection
event.

• The destination and sender addresses are kept in the da and sa fields
respectively. These are globally unique 48 bit MAC addresses, used to
identify the nodes on the ring.

• By setting the value of the ttlBase field to the ttl value at the time of
transmission, the number of hops a frame has travelled can easily be
calculated at the destination. This is useful in the context of protection,
to prevent packet reordering and duplication. As will be shown in
section 4.3, this information can also be helpful when implementing an
enhanced bridging algorithm.

• The extndRingControl field contains more option subfields to control
the frame behaviour. This includes information that is needed if the
source or destination node of the frame is not on the local ring.

• The hec field contains a checksum on the header.

is 255, not 256

16 CHAPTER 2. RESILIENT PACKET RING

• The two bytes protocolType field in the payload of the frame are inter-
preted either as a specifier of the MAC client protocol, or as the length
of the payload. The maximum RPR payload (MTU) is 1500 bytes,
allowing a protocolType value greater than this to specify the nature
of the MAC client protocol.

• The sdu can be of variable length, and contains the service data unit
provided by the MAC client.

• Finally, the 32 bit frame check sequence in the trailer is used to discover
bit errors in the payload of the frame.

An extended frame format is used for frames whose source or destination
address is not local on the ring. These frames must contain an extra local
source station identifier to ensure reliable delivery with respect to packet
reordering and duplication. This extra header information becomes very im-
portant in the context of bridging. A full treatment of this topic is postponed
to section 4.3, where an improved bridging algorithm is discussed.

2.3 The MAC data path
The medium access control layer defined by RPR, can be naturally split into
a MAC data path and a MAC control sublayer, as shown in figure 2.3 on
page 11. The MAC data path sublayer is responsible for transmitting frames
on the ring, forwarding traffic from the upstream to the downstream node,
and stripping frames from the ring.

Figure 2.8 shows a simplified model of the MAC data path. An RPR
node contains a separate MAC data path for each of the ringlets. Each
data path contains logic to strip frames from the ring, store the frames in
transit in a buffer if needed, and select the next frame to be transmitted.
The transit buffer is needed to store frames that cannot be passed on to the
downstream neighbour immediately, when the node is already transmitting
on the outbound link. The RPR standard does not specify the size of this
buffer, but it needs to be at least as big as the RPR maximum transfer unit.
Two different options are allowed with respect to the transit buffer. A single-
queue design (as on figure 2.8) has only one transit buffer, while a dual-queue
(figure 2.9) has two. The use of these buffers is explained below.

2.3.1 Frame transmission

RPR supports three different service classes for frames transmitted on the
ring; high, medium and low priority. A limited fraction of the frames are

2.3. THE MAC DATA PATH 17

Outer ringlet

 MAC client

MAC control

MAC data path

Inner ringlet

Stripper

Output selector

Transit buffer

Transit buffer

T
o the ring

From
 the ring

Figure 2.8: There are two separate data paths in the MAC data path layer, one
for each ringlet.

high priority, known as class A traffic. This service class is subdivided into
class A0 and class A1, the difference being that A0 uses reserved bandwidth
that cannot be re-used by the other traffic classes. The class A service is used
by applications with strict demands on latency and jitter, such as interactive
audio or video applications. In addition, RPR control frames are usually
transmitted using this traffic class. The class B service offers a bounded
delay on a part of the traffic, which does not exceed that nodes fair rate.
This traffic is known as in-profile traffic, and is not subject to rate limiting
by the fairness algorithm. Class B traffic that exceeds the fair rate is deemed
out-of-profile. Together with the low priority class C service, this traffic has
no guarantees on delay, and is rate limited by the fairness algorithm.

The MAC client has a separate transmission buffer for each traffic class.
Frames are taken from this buffer and put into a stage buffer, and then onto
the ring, as shown in the simplified model in figure 2.9. Associated with each
traffic class is a shaper, which controls how much traffic is added on the ring.
The shapers provide each traffic class with credits, that are accumulated over
time in a token bucket fashion. The MAC client must pay one token from
this token bucket for each byte of traffic it adds to the ring.

18 CHAPTER 2. RESILIENT PACKET RING

shM

shA shB shC

add A

add B

add C
add MAC

Stage buffer

Secondary transit

MAC datapath

MAC control

Primary transit

MAC client

Figure 2.9: Each traffic class has its own transmit buffer, from which frames are
put onto the ring. In addition, MAC control frames have a separate transmit
buffer. shA, shB and shC are the shapers associated with traffic classes A, B and
C respectively. shM is the shaper for the MAC control frames.

2.3.2 Frame reception

A node on an RPR ring must inspect every frame received from its upstream
neighbour, and make a decision on how to treat it. The node first inspects the
destination address to see if the frame is destined for this node. “Frames des-
tined for this node” includes unicast frames for this node, broadcast frames,
or multicast frames meant for this node. If any of these is true, the frame is
copied to the MAC control sublayer. From here, data frames are passed on
to the MAC client, based on the frame type field discussed in section 2.2.

The node then decrements the ttl of the frame, and frames with a ttl
of zero are discarded. Frames with a destination address different from this
nodes MAC address are put in a transit buffer, waiting to be passed on to the
downstream node. The transit buffer acts like a fifo queue, and is sometimes
referred to as the transit queue. As mentioned above, RPR allows one or
two such buffers. In a dual queue design, the primary buffer is reserved for
class A traffic, while both class B and C use the secondary transit buffer.
Since the primary buffer has higher priority when frames are selected for
transmission, it is possible for class A traffic to overtake other traffic in the
nodes. Note that class B traffic can never overtake class C traffic on the
ring, even with a dual queue implementation. The difference between these
classes lies exclusively in how they are treated in the ingress node. The RPR
standard puts no constraints on whether the transit buffers should be “cut
through”, where transmission can start before the whole frame has entered

2.4. THE MAC CONTROL SUBLAYER 19

the buffer, or “store and forward”.

2.3.3 Stripping frames from the ring

As described in section 2.2, spatial reuse is made possible in RPR by making
the destination node responsible for stripping a frame from the ring. Mul-
ticast and broadcast frames are exceptions from this rule. These are not
stripped by their destination, but continue around the ring and are not re-
moved until they return to their source node. Obviously, no spatial reuse for
multicast or broadcast traffic is possible with this strategy. Source stripping
is also used as a safety mechanism for unicast traffic; unicast frames that for
some reason were not stripped by the destination, are removed when they
return to the source. Specifically, frames with a unicast destination address
that is not found on the ring will be source stripped.

If the source node disappears from the ring while a multicast frame is
in transit (or both the source and destination node for a unicast frame), no
node would ever remove the frame. It would seemingly keep circulating on
the ring forever. This is prevented by the ttl field in the RPR header. The
ttl works as a maximum hop count, and is decremented every time the frame
reaches a new node. If the ttl reaches zero, the frame is discarded.

To sum up, there are four different conditions that leads to the stripping
of a frame from the ring.

1. If a bit error is detected in the received frame, the frame is discarded.
For data frames, only bit errors in the header results in stripping.

2. A unicast frame reaches its destination node.

3. A frame returns to its source node, after travelling around the ring.

4. The ttl value of the frame reaches zero.

Frames that do not meet any of these conditions, are passed on to the
next downstream node.

2.4 The MAC control sublayer
While the MAC data path sublayer is responsible for the actual sending of
frames from one node, the MAC control sublayer is concerned with ring-
wide functionality that demands cooperation between several nodes. Here
lies the logic that monitors the traffic on the ring, and takes appropriate
action when an exception occurs. Figure 2.10 shows an overview of the MAC

20 CHAPTER 2. RESILIENT PACKET RING

control sublayer and the functions it perform. This section will discuss each
of these functions.

OAMTopology

Ringlet selectionProtection

MAC client

MAC service interface

Outer ringlet datapath

Inner ringlet datapath

Fairness

MAC control
MAC

Figure 2.10: This figure shows an overview of the medium access control layer
defined by RPR, with the placement of some of the important functionality.

2.4.1 Protection

RPR will be used to carry different kinds of traffic, including data with strict
demands on latency, such as real time interactive audio. A goal is therefore to
be able to detect and repair a node crash or a link failure within 50 ms, which
is considered the time constraint for audio. A connectivity failure, either in
a node or on a link, is termed a protection event. RPR offers two separate
protection mechanisms that can be used to restore connectivity when such
an event occurs, steering and wrapping. Both of them are made possible by
the dual ring nature of RPR.

Steering is the normal protection mechanism, and must be supported by
all nodes. The basic idea is to make the sender nodes responsible for avoiding
points of error when frames are transmitted. The node(s) that first detects
a protection event will send an error report around the ring. This is used by
the other nodes to update their topology image, using the topology discovery
mechanism described below. A new host-to-ringlet mapping is built in all the
nodes. When this new image is complete, the point of failure can be avoided

2.4. THE MAC CONTROL SUBLAYER 21

by choosing the correct ringlet to send on. If steering is the only protection
mechanism in use on the ring, all frames that are sent in the time from the
failure occurs to the topology image is rebuilt, are lost.

The advantage of the other protection mechanism in RPR, wrapping, is
that it reduces the number of lost frames during a protection event. An
example of wrapping is shown in figure 2.11. In case of a node failure, frames
destined for a node beyond the point of error are looped and placed on
the opposite ringlet. This way, frames that are in transit when an error is
detected can still reach their destination on the other ringlet. The support
of this protection mechanism is optional in the RPR standard.

6 2

3

Normal state Wrapped state

1

2

3

4

5

1

4

5

6

Figure 2.11: Frames reaching a point of error are wrapped and sent back on the
opposite ringlet. During normal operation, node 6 sends to node 4 via the path
6-5-4. In a wrapped state, the frames are sent 6-5-6-1-2-3-4.

Wrapping increases the complexity of the ring, by introducing some new
problems regarding frame duplication and reordering. In figure 2.11, consider
a case when the ring returns from wrapped to normal state, or when steering
causes frames from node 6 to node 4 to be transmitted on the outer ringlet.
This transition suddenly reduces the number of hops the frames must travel,
leading to the possibility that frames reach their destination in a different
order than they were sent. Such frame reordering is not acceptable to some
applications. RPR therefore allows traffic to be sent in two different modes,
known as strict mode and relaxed mode. Frames in strict mode are never
wrapped. This guarantees that no frame reordering will occur, but increases
the number of frames lost during a protection event. Strict mode frames will

22 CHAPTER 2. RESILIENT PACKET RING

be discarded at the point of error, and all such frames will be lost until the
steering mechanism restores the connectivity.

If a link fails or a node suddenly crashes, loss of some frames is inevitable
without buffering. Frames in transit in a node that dies, for instance because
of a power failure, will certainly be lost. The above protection mechanisms
are used to restore connectivity in case of such an event. The use of wrapping
minimises the number of frames lost. Note that during normal operation,
RPR guarantees that no frames are lost or reordered on the ring. Only in
case of a protection event might this occur.

2.4.2 Fairness

The nodes on an RPR ring must compete for the available bandwidth. If
the nodes’ aggregate need for bandwidth exceed the capacity of the ring, a
mechanism to provide each node with its fair share is needed. The algorithm
used to achieve this is called RPR fairness.

RPR−fa

4

Buffer filled above threshold

Add traffic prevented
"Slow down"

1 2 3 65

Figure 2.12: Node four is prevented from sending, because the transit buffer is filled
up with frames arriving from node 3. It sends a fairness frame to its upstream node
to slow it down.

A node is prevented from adding traffic on a ringlet when its transit buffer
is filled above a configured threshold. If a node continuously receives frames
from an aggressive upstream neighbour, this can lead to starvation. Figure
2.12 shows a situation where node four is prevented from transmitting on
a ringlet, because node two is sending a continuous flow of frames to node
five. If node four had kept adding traffic in this situation, the result would
be buffer overflow and loss of frames in the transit buffer. This would not
be acceptable, since RPR is designed to be a lossless network technology,
meaning that no frames are lost on a single ring during normal operation.
To end the starvation in node four, the fairness functionality generates small
fairness frames with information on how much traffic this node (node four)
is adding to the ring. This information, called the node’s allowedRate, is

2.4. THE MAC CONTROL SUBLAYER 23

sent to its upstream neighbour. Fairness frames concerning the data flow on
one ringlet, are sent using the opposite ringlet. When the upstream node
receives the fairness message, it adjusts its send rate so that it transmits no
more than the received allowedRate. The idea of returning fairness messages
to the upstream node is called backpressure, and is shown in figure 2.12.

Each node advertises its allowedRate periodically. The fairness frames
are forwarded around the ring and processed by all upstream nodes, so each
of them know where the ring is most congested. The upstream nodes then
adjust their sending rates accordingly. This is called “single-choke”, since
each node keeps track of the single most congested link on the ring. A more
advanced version of the fairness algorithm allows every node to monitor the
congestion at each of the downstream links. By using this technique, known
as “multi-choke”, a node knows which links are congested, and which are not.
This information can be used to send traffic to nodes beyond a congested
link at a slower rate than to other nodes, as shown in figure 2.13. To avoid
so-called head-of-line blocking, the nodes must implement Virtual Output
Queueing (VOQ). Head-of-line blocking occurs when the first frame in the
output buffer is held back because it is destined for a node beyond a congested
link, thus blocking the way for the frames behind, destined for nodes before
the congested link. By maintaining a separate output queue for each of the
destination nodes, other frames can be transmitted before such a blocking
frame. By allowing traffic destined for nodes near the sender to ignore far-
away points of congestion, the use of multi-choke and VOQ can improve
throughput on the ring [9].

3 4 5 6

Congested link

2

Blocked queues

Mac client

1 43 5 6

Figure 2.13: Node two keeps a separate output queue for each of the other nodes.
When the link between nodes 4 and 5 gets congested, the frames destined beyond
this link are held back.

24 CHAPTER 2. RESILIENT PACKET RING

2.4.3 Ringlet selection

Before a frame can be transmitted on the ring, it must be decided which
ringlet to transmit on. When this decision has been made, the frame can be
put in the appropriate add queue. RPR allows this decision to be taken by
the MAC client. If the MAC client has no preferences, a default ringlet will
be chosen by the MAC control sublayer. The algorithm used to choose the
default ringlet is implementation specific. The only constraint imposed by
the standard is that the same ringlet must be chosen for all frames with the
same [source address, destination address, traffic class] tuple.

2.4.4 Topology discovery

RPR contains a topology discovery mechanism in the MAC control sublayer.
This mechanism is responsible for providing each node with an overview of
the number and placement of nodes on the ring. Every node keeps and
maintains such an overview, called the topology image. The topology image
consists of one record for each node on the ring. These records contain a hop
count to that node on each of the ringlets. The records also contain addi-
tional information concerning each node, like protection status and reserved
bandwidth status.

The topology information is distributed to the nodes by broadcasting
protection messages on the ring. This distribution is not governed by a master
node, each node is responsible for initiating the protocol as needed. Initially,
a node’s topology image contains only one record, with information about
the node itself. It then triggers the topology algorithm by broadcasting a
protection message, and continually listens for received protection messages.
Each node that receive this protection message, responds by broadcasting
a protection message on all ringlets. By looking at the received protection
messages, each node gets information about the distance to every other node,
and information about its protection status. This information is used to build
the topology image.

The calculation of the topology image is repeated in case of a protection
event, that is when a node discovers a failure in the connection to one of its
neighbours. Note particularly that such a protection event will occur when
a node is added to or removed from the ring. The topology calculation is
also repeated periodically. The time between each periodic topology image
update is configurable, the default period being 10 ms.

2.5. SUMMARY 25

2.4.5 Operations, Administration andMaintenance (OAM)

The OAM functionality in the MAC control sublayer offers a set of control
functions to support configuration management, fault management and per-
formance management. This includes functions for monitoring the connec-
tions between stations, and for reporting abnormal behaviour to a managing
system. This information is distributed using special OAM control frames.
The RPR draft standard allows some of these frames to be vendor specific,
meaning that each individual vendor can define their own OAM frames and
functionality.

2.5 Summary
This section has given a description of the RPR technology. RPR is a new
buffer insertion ring network technology under development by the IEEE. It
is a dual ring, with traffic flowing in opposite directions on the outer and
the inner ringlet. Among RPR’s most important properties are destination
stripping, spatial reuse, fairness and protection.

26 CHAPTER 2. RESILIENT PACKET RING

Chapter 3

Bridging

While the previous chapter introduced the RPR technology, this chapter
turns to the topic of bridging. Bridging is a well established technology in
some traditional networks. The purpose of this section is to explain the idea
behind bridging as a way of interconnecting networks. A basic understanding
of how a bridge works is necessary in the discussion of different bridging
solutions for RPR in chapter 4.

First, section 3.1 takes a look at the basic idea of bridging, and what dis-
tinguishes bridging from the related terms of routing and switching. Then,
sections 3.2 and 3.3 gives a description of two different approaches to bridg-
ing; transparent bridging and source route bridging. Transparent bridging is
offered most attention, since it is the most widespread and the most impor-
tant technology in the context of RPR. A comparison of the two strategies
is given in section 3.4, and some of the limitations of bridging as a way of
interconnecting networks are discussed.

3.1 Bridging in context

To enable hosts to communicate with hosts on a different LAN or MAN, a way
to interconnect such networks is needed. Routers, switches and bridges are
all devices that perform forwarding of traffic between networks or segments
of networks.

The terms router and routing is normally used in connection with IP. A
router is a device with several inputs and several outputs. A router receives
an IP packet on one of the input ports, and forwards it on the correct output,
based on the destination address found in the IP header. The correct output
port is selected based on a table with mappings between IP addresses and
output ports. This table can be set manually by a system manager, or

27

28 CHAPTER 3. BRIDGING

maintained by a routing protocol like OSPF [22]. The routing process often
involves modifying the routed packets, by decreasing the time-to-live field in
the IP header.

A switch performs much the same tasks as a router, but this term is
normally used in a different context. Like a router, a switch can be defined as
a multiple-input multiple-output device that forwards frames from an input
to one or more outputs [27]. But in contrast to routers, switches usually do
not operate on IP packets. The term switching is normally used to describe
forwarding of frames below the IP layer. In an IEEE 802 context, switching is
used to forward MAC frames between the inputs and the outputs. Switching
is also used to denote the forwarding of cells in an ATM network.

The above definition of a switch also suits a bridge, so a bridge can be
looked upon as a special kind of switch. A bridge is sometimes referred to
as a LAN switch. Bridges are most common in an 802 context, but they
are also used with other network technologies, such as IEEE 1596 Firewire
[17]. Traditionally, a bridge interconnects shared medium networks such as
Ethernets, where all transmitted frames can be seen by all the nodes. This is,
however, not always the case. RPR is an example of a network that supports
bridging without being a shared medium network1. Bridges are also distinct
from other switches in that they sometimes can interconnect networks using
different MAC protocols. For example, a bridge can be used to interconnect
an 802.3 (Ethernet) network to an 802.17 (RPR) network. This is possible
with transparent bridges described in section 3.2, but it is not true for source
route bridging described in section 3.3.

Bridges are said to operate below the MAC service boundary. This means
that the precence of a bridge is invisible to a higher layer protocol. A network
that consists of several LAN segments interconnected by bridges, is commonly
referred to as an extended LAN. The only difference that a higher layer
protocol operating over an extended LAN encounter, is a possible degradation
of service quality. Note here that a bridge may be forced to discard data
frames. If data from several inputs are destined for the same output, this
can lead to buffer overflow in the bridge. In the context of RPR, this means
that a bridged network cannot give the same guarantees with respect to
packet loss as a single RPR ring.

Forwarding frames below the MAC service boundary can give an efficiency
gain compared to using IP routing. In a router, every MAC frame must be
unpacked and the IP address inspected, before the packet is re-packed into

1In RPR, the ring itself is often called a shared medium. I would argue that this is
at least inaccurate. It is rather so that the ring can be made to imitate shared medium
behaviour, if this is required by higher layer protocols. This is what is done in the basic
bridging algorithm described in section 4.2.

3.2. TRANSPARENT BRIDGING 29

a new MAC frame for transmission. Bridges base their forwarding decisions
on MAC addresses, and thus avoids this unpacking and re-packing of frames.
This way, bridges can be kept simpler and cheaper.

As mentioned above, bridging is always invisible to a higher layer protocol.
However, the way bridging is implemented may vary. The following two
sections will describe two different bridging strategies. Transparent Bridging
hides from the end nodes the fact that they belong to an extended LAN.
Source Route Bridging on the other hand, distributes most of the bridging
logic in the end nodes.

3.2 Transparent bridging

Transparent bridging allows nodes in a network to communicate as if at-
tached to a single LAN, while in fact they are attached to different LANs
- possibly with different MAC methods. However, it is required that LANs
interconnected by bridges use the same addressing scheme, e.g. 48 bit IEEE
addresses (MAC addresses).

The concept of transparent bridging was first developed by Digital Equip-
ment Corporation in the early eighties [26], primarily to interconnect several
Ethernet segments. It was later submitted to IEEE, and developed into the
IEEE 802.1D standard. This standard was first published in 1990, and later
revised in 1993 and 1998 with descriptions of support for different traffic
priorities in bridges. Several additions to this standard has been published,
among the more important is IEEE 802.1Q, which defines bridge support for
Virtual LANs (VLANs).

The presence of bridges in a network is always invisible to a higher layer
protocol working over the network. Transparent bridging, in its traditional
fields of application, is special in the sense that the bridges are also invisible
to the end nodes in the network. The end nodes communicate as if they
were all part of the same LAN segment. This is a key difference between
transparent and source route bridging, described in section 3.3.

3.2.1 Conceptual model of a transparent bridge

A bridge consists of an interface to each of the network segments it connects,
called a port, and a relay unit. The relay forwards frames between the ports,
and implements the learning and filtering processes described below. Bridges
implementing these learning- and filtering processes are known as learning
bridges. Earlier bridges did not always have this functionality. Instead, all

30 CHAPTER 3. BRIDGING

frames reaching the bridge was forwarded on all ports except the incoming
port.

Internal
Sublayer
Services

Internal
Sublayer
Services

LLC
MAC service

LLC
MAC service

Learning

Filtering

Forwarding

802.x MAC

(Bridge Protocol Entity, Bridge Management o.l.)

802.x MAC

Higher layer entities

(MAC method dependent functions) (MAC method dependent functions)

Relay
(MAC method independent functions)

Figure 3.1: The bridge consists of a relay entity, with an interface towards each of
the connected LANs

As mentioned above, a bridge can interconnect 802 LANs, each having
their own way to control access to the media. The different MAC protocols
communicate with the bridge using an interface known as Internal Sublayer
Services (ISS). When an error-free frame from a LAN reaches a bridge, it will
under certain conditions be sent through this interface to the relay part of the
bridge. The relay will then decide whether the frame should be forwarded,
and forward it on the correct port using the ISS interface again.

The learning-, filtering- and forwarding processes take part in the relay
part of the bridge. These processes are independent of the different MAC
protocols used in the attached LANs. The relay contains a table with in-
formation on which nodes are attached to the different ports, known as the
filtering database. The filtering database can consist of a mix of static and
dynamic entries. Static entries are set by an administrator, while the dy-
namic entries are governed by the learning process. By inspecting the source
addresses of the frames passing the relay, the learning process builds up an
image of which stations are reachable through the different ports. This in-
formation is used to make the bridge more efficient, by only passing unicast
frames to the LAN where the destination node is known to be.

3.2.2 Transparent bridging example

In figure 3.2, LAN 1, LAN 2 and LAN 3 are connected by a bridge. The
bridge maintains a filtering database, which initially is empty. Nodes A and

3.2. TRANSPARENT BRIDGING 31

A

B
C

Bridge

LAN 2

LAN 1

LAN 3

Figure 3.2: The bridge inspects the source address of each frame to learn which
station is attached to which port.

B are attached to LAN 1, while node C resides at LAN 2. Consider a case
where host A first wants to transmit a frame to host C. When the frame
reaches the bridge, it consults it (initially empty) forwarding table. It finds
no record for host C, and therefore forwards the frame on all ports, except
the one it arrived on. The bridge inspects the source address of the frame,
and saves a record that node A belongs to LAN 1. A response from C to
A will not be forwarded to LAN 3, since the bridge now knows that node
A resides at LAN 1. The bridge inspects the source address field of this
response frame, and learns that node C resides on LAN 2. Note that since
node B still has not transmitted a frame, any traffic destined for this node
will be forwarded on all LANs. This situation will not end before the bridge
has seen a frame from node B, and added an entry for node B in its filtering
database.

The important thing to note from this example is that before the filtering
database is built complete, some “unnecessary” forwarding will occur. This
means that the bridge will forward some frames to LANs other than where
the destination nodes reside. But when the bridge has built a complete image
of the network topology, eg. has learnt which LAN each of the nodes belong
to, frames will only be forwarded on the correct ports. The entries in the
filtering database are equipped with a time stamp. This way, the bridge can
discover if a node is removed from the network, or moved from one LAN
segment to another. When the entry for a node gets too old, it is removed.
A new entry for the node is created once a frame from that node reaches the
bridge.

32 CHAPTER 3. BRIDGING

3.2.3 The Spanning Tree Protocol

In an extended LAN, there will usually be several bridges interconnecting
the different segments. This leads to the possibility that there are loops in
the network, meaning that there is more than one path from one node in the
network to another, as shown in figure 3.3. To avoid having several copies of
a frame reaching a node using different paths, the bridges exchange topology
information using the Spanning Tree Protocol. This protocol was originally
developed by Digital Equipment Corporation [26], and later adopted by the
802.1D standard. The purpose of the spanning tree protocol is to extract
a loop-free subset of the network topology, while still maintaining full con-
nectivity between all nodes. This is achieved through putting some of the
bridge ports in a blocking state if necessary. A port in a blocking state does
not receive or forward any frames.

802.17

802.17
B3

802.3

802.3

802.3

Root bridge

B1

B5

B4

B2

Figure 3.3: The spanning tree protocol makes the network cycle-free, by blocking
one of B2s ports and both of B5s ports

The spanning tree protocol starts by selecting a Root Bridge in the net-
work, based on bridge identifiers. Each bridge must have a unique identifier,
typically based on the MAC address of one of its ports. The bridge with the
lowest bridge identifier is selected as the Root Bridge. For each LAN seg-
ment, one of the connected bridges is then selected as a Designated Bridge.
The designated bridge is responsible for forwarding frames from the direction
of the Root to that LAN, and from that LAN in the direction of the Root.
When every LAN is connected to the root through a designated bridge, all
the bridge ports that are not in use are redundant. These ports are put in
a blocking state, and do not participate in the forwarding of traffic. Such

3.3. SOURCE ROUTE BRIDGING 33

ports are named Alternate Ports, and may be activated in case of a topology
change. A topology change in this context occurs if a bridge or one of its
ports goes down, or a new bridge is added to the network. Every time a
topology change is detected, the spanning tree calculation must be repeated.

Figure 3.3 shows a bridged network consisting of different kinds of IEEE
802 networks. To make the network loop-free, the spanning tree protocol has
put some of the bridge ports in a blocking state. Bridge B1 has taken on the
role as root, and the bridges with the least path-cost to the root have been
appointed designated bridges for the various LAN segments.

For some time now, almost all bridging software has used a newer ver-
sion of the spanning tree protocol called the Rapid Spanning Tree Protocol
(RSTP), which allows faster reconfiguration of the network in the event of
a topology change [31]. This algorithm is now optional, but will probably
be the only valid choice in the next revision of the IEEE 802.1D standard,
expected some time in 2003 [13].

3.3 Source Route Bridging

As seen above, in transparent bridging, all the logic needed to bridge several
LAN segments is kept in the bridges. The attached stations do not have
to worry about bridging, they behave the same as when connected through
a regular LAN. Source route bridging utilises a different strategy. Here,
most of the logic is stripped from the bridges, and put into the normal end
nodes. The sending node is responsible for calculating the complete path
to the destination, and include this in the transmitted frames. Source route
bridging has no equivalent to the spanning tree protocol used in transparent
bridging. It allows multiple paths between two nodes to exist, and leaves it
to the end nodes to choose between these.

IBM developed Token Ring in the seventies, as their main LAN technol-
ogy. It was later submitted to IEEE, and standardised as IEEE 802.5. To
bridge Token Rings, IBM developed source route bridging. This algorithm
was originally proposed to IEEE as a standard for bridging between all LANs.
This did not gain enough support, and instead transparent bridging emerged
as the standard bridging method in LANs. However, source route bridging
has played an important role as a technology for bridging of Token Ring
networks. The source route bridging functionality is explained through an
example below.

34 CHAPTER 3. BRIDGING

3.3.1 Source route bridging example

Consider a situation where an end node in a source route bridged network
wants to transmit to another end node residing on a different LAN segment.
The first thing it must do, is to compute a path for the frame to travel. In
figure 3.4, assume that host A wants to transmit to host B. Initially, it does
not know whether host B resides on the same LAN as itself. To find out, it
first sends out a test frame. If the test frame returns without indication that
host B has seen it, host A concludes that it belongs to a remote LAN.

A

B

Bridge 1

Bridge 3

Bridge 4

Bridge 2

LAN 1

LAN 2

LAN 3

LAN 4

Figure 3.4: A source route bridged network consisting of four LAN segments and
four bridges

To determine the exact location of host B, host A sends out an explorer
frame. The explorer frame is forwarded by all bridges on the LAN (bridges
1 and 2 in this example), and routing information is added to the explorer
frame as it passes. The explorer frame finally reaches host B (through bridges
3 and 4). Host B responds to each of the two frames received individually,
using the accumulated routing information in the frames.

Host A thus receives two answers to the explorer frame, each representing
a different path to host B:

• LAN 1 to bridge 1 to LAN 2 to bridge 3 to LAN 4

• LAN 1 to bridge 2 to LAN 3 to bridge 4 to LAN 4

Host A then has to choose which of these paths it wants to use for the
transmission. IEEE 802.5 does not specify how this choice should be made.

3.4. THE LIMITATIONS OF BRIDGING 35

Normally, host A would use the path contained in the first frame received.
This is reasonable - the frame probably returned first because it travelled the
shortest or least congested path.

When a path is chosen, it is inserted into a Routing Information Field in
all frames sent from host A to host B. Only frames destined for a remote LAN
segment contain such a routing information field. The presence of this field is
marked by setting a bit in the frame header called the Routing Information
Identifier. The bridges in the network inspect this bit, and extract routing
information from the Routing Information Field if it is set.

Today, source route bridging has been replaced by a newer algorithm
called source route transparent bridging (SRT). This technology provides
a mean to interconnect ring networks using source route bridging as their
bridging technology to other LANs using transparent bridging. Source route
transparent was first developed by IBM around 1990, and is today specified
in the 802.1D standard. In such a mixed bridging environment, stations
depending on source route bridging as their bridging mechanism, may only
communicate with other source route bridging stations. This is evident, since
other stations will not be able to respond to an explorer frame as described
above. Even with the emergence of this new algorithm, source route bridging
is still often used in older systems.

3.4 The limitations of bridging

Transparent and source route bridging both belong to the IEEE 802 family,
yet they still have different fields of application. Ethernet-like network tech-
nologies typically use transparent bridging, while source route bridging in the
form described above is, to my knowledge, exclusively found in Token Ring
environments. Each of these strategies have their strengths and weaknesses.

Transparent bridging has the most general approach, and is used to bridge
all kinds of 802 LANs. Its major advantage is contained in its name - it is
transparent. The end nodes do not have to worry about bridging, all the logic
needed for the interconnection is contained in the bridge itself. This makes it
easy to change the topology of the network, by inserting/moving/removing
nodes or bridges. One of the drawbacks of transparent bridging, is that a
network reconfiguration might trigger a so-called broadcast storm. When
the spanning tree is changed by the spanning tree protocol, this forces all
bridges to clear their filtering databases. The potentially vast number of
broadcasts needed to rebuild these tables, can significantly limit network
performance in the learning period that follows. Hence, transparent bridging
is not well suited in networks with frequent topology changes. Also, in a

36 CHAPTER 3. BRIDGING

bridged network containing loops, some bridges will be put in a blocked state
by the spanning tree protocol. These ports are then unable to help spreading
the traffic over all available paths. This gives a sub-optimal utilisation of the
network resources.

With source route bridging, no spanning tree exists, and the traffic may
be balanced between the available bridges. There is also no filtering database
in the bridges, so topology reconfigurations do not produce the same kinds
of broadcast storms. However, every node has to broadcast explorer frames
before they can transmit to a remote host. Hence, source route bridging
generally produces more broadcasting than does transparent bridging. With
source route bridging, each end node has to maintain a path to each re-
mote station that it wants to transmit to. This increases the demands on
the end nodes in the network. It also creates much redundant information
in the network as a whole, since the same paths are learned by each host
individually.

In general, both of these bridging technologies have an issue with scale.
Bridging scales linearly, meaning that it provides no means to impose a
hierarchy on the extended LAN. Also, all broadcast frames are forwarded by
bridges. Broadcast frames meant only for the local LAN segment are thus
propagated through the whole network, possibly wasting network resources.
Due to these considerations, bridges are seldom used to interconnect more
than a few LANs, where in practice “a few” typically means “tens of” [28].

The scaling properties of bridged LANs can be improved by the use of
so-called virtual LANs (VLAN). The basic idea is to split a single extended
LAN into several seemingly independent LANs. It is, however, outside the
scope of this work to further discuss this.

3.5 Summary
In this section, we have looked at the two major strategies for bridging at
the MAC level; transparent and source route bridging.

In transparent bridging, the end nodes behave as in a normal LAN, all
the bridging logic is placed in the bridges. The bridges monitor the passing
frames, and builds an image of the network topology.

In source route bridging, the end nodes are responsible for calculating a
path to remote stations. It does this by sending out explorer frames that
gather an image of the topology. Source route bridging is today rendered
obsolete by the new source route transparent technology.

Chapter 4

Bridging RPR networks

With the background on RPR and bridging given in the previous chapters,
it is now time to combine the two into the main topic of this work; bridging
in RPR networks. This chapter explains the issues that must be addressed
to make this possible, and discusses two different solutions.

First, section 4.1 explains how bridging is complicated by the destination
stripping and spatial reuse properties of RPR. Then, section 4.2 explains
how these issues are resolved in the existing RPR draft standard, and which
other similar solutions have been discussed. These solutions have apparent
weaknesses, which are also pointed at. The enhanced bridging algorithm
described in section 4.3 is a response to these shortcomings. Several varia-
tions of the enhanced bridging strategy are possible. These are discussed,
with emphasis on the algorithm that is implemented in the simulation model
described in chapter 5.

4.1 The ideal case

Since IEEE started working on the RPR standard, it has been clear that a
way to do bridging must be provided [30]. Being developed within the IEEE
802 framework, RPR is required to be compliant with transparent bridging
as defined in 802.1D and 802.1Q. However, the ring nature of RPR makes
this a non-trivial task.

Figure 4.1 shows a topology of three RPR rings interconnected by bridges.
Consider a case where node X wants to send a frame to a remote node Y.
Ideally, the frame should follow the path shown in the figure. This path
secures the shortest travel for the frame, and, perhaps more importantly, the
frame does not waste any unnecessary bandwidth.

Transparent bridging is designed to work over a shared medium network.

37

38 CHAPTER 4. BRIDGING RPR NETWORKS

Ring 1 Ring 3

Ring 2

B 1 B 2

Y

X

Figure 4.1: Frames from node X to node Y should ideally follow the shortest path,
and never be broadcast on any ring

A shared medium network is a network in which all the attached nodes
have access to all the frames that are put onto the medium that connects
them. The most obvious examples of a shared medium network technology
is Ethernet/802.3. In Ethernet, frames are transmitted on a single cable,
shared by all the attached nodes. A bridge in such a network has access
to all transmitted frames, just like every other node. All that is needed to
implement bridging in such a network is the learning, filtering and forwarding
functionality in the bridge itself, and the spanning tree protocol to avoid
loops.

Things are not quite so easy in RPR. Since RPR is not a shared medium
network, a bridge does not automatically see all transmitted frames. On the
contrary, one of the important features in RPR is its spatial reuse properties,
as explained in section 2.2. To achieve maximum bandwidth utilisation, every
frame only traverses part of the ring before it is stripped by its destination.
Frames either destined for or transmitted by a node that is not local on the
ring, are referred to as remote frames. The destination stripping in RPR
makes it necessary to give these frames some kind of special treatment. A
way is needed to make sure a frame that should be bridged actually reaches
the bridge. Ideally, this should be done without losing the spatial reuse
properties of RPR.

Two fundamental strategies are possible to make sure that all remote
frames reach the intended bridge. One possibility is to make sure that all
remote frames are seen by all bridges. This is the strategy adopted in the
RPR draft standard, and will be called basic bridging in the following text.

4.2. BASIC BRIDGING IN RPR 39

Another option is to send remote frames directly to the bridge that is re-
sponsible for forwarding it towards its destination. This alternative strategy
is adopted by the enhanced bridging algorithm1.

The next two sections will discuss these two bridging strategies.

4.2 Basic bridging in RPR

Frames are normally stripped at their destination in RPR. This strategy can
obviously not be used for remote frames, since the destination node is not
on the ring. Remote frames must be picked up by a bridge and forwarded
to a remote network. As mentioned above, a way is needed to make sure
that these frames actually reach the bridge. In basic bridging, this is solved
by broadcasting all remote frames on the ring, so that they are seen by all
bridges. This way RPR imitates a shared medium network, where all frames
are visible to all nodes.

4.2.1 Promiscuous mode and its discontents

In one of the initial proposals to bridging in RPR, one imagined bridges to
be operating in a promiscuous mode [11]. Bridges would, according to this
proposal, pick up all passing frames, both local and remote, and copy them
to their bridging relay. As discussed in section 2.3, unicast frames that are
not destined for any of the local nodes on the ring, will continue around the
ring until it is stripped at its source. A bridge operating in promiscuous
mode would thus see all remote frames. Bridges operating in promiscuous
mode would clearly be quite busy, as they would have to process every single
frame passing by on the ring. This is, however, just what is done in a normal
Ethernet LAN. In an Ethernet, all frames passing a bridge is presented to the
bridge relay, which in turn makes a decision on whether to forward the frame
based on the information in the filtering database. The main reason why the
promiscuous mode method was not adopted, is the problems it encounters
with respect to the learning process in the bridge relay.

This problem becomes evident in the situation illustrated in figure 4.2.
With the strategy described above, frames from node A to node B would
be picked up correctly by bridge 1. Bridge 1 would then send these frames
directly to node B. Hence, bridges 2 and 3 would never see these frames,
and never learn the location of node A. If node B responds to node A, this
response would be picked up by bridges 2 and 3. Node A is unknown to these

1The terms basic and enhanced are adapted from a presentation given at the July 2002
meeting of the RPR working group [7].

40 CHAPTER 4. BRIDGING RPR NETWORKS

bridges, and they would relay this response on all their ports. We would
then have a situation where frames from node B to node A are persistently
broadcast over several networks, clearly an unwanted situation.

802 network

802 network

 1

 3

 2

A

B

Figure 4.2: Frames that are sent directly from bridge 1 to node B are never seen
by bridges 2 and 3. This prevents correct learning in the relay parts of bridges 2
and 3, and leads to persistent forwarding of frames from B to A by bridges 2 and
3.

4.2.2 Flooding

The problem above occurred when a remote frame was not seen by all the
bridges on the egress ring, because it was destination stripped at the receiver.
This illustrates the need for a special mechanism to make sure that remote
frames are always seen by all nodes on all rings, including the egress ring.
This mechanism is used in the current RPR draft standard (draft 2.1 [18]),
and is called flooding.

Flooding can be looked upon as a special kind of broadcast. A flooded
frame traverses the whole ring, and is thus visible to every node. It is not
stripped by the destination node, instead the ttl field in the header (discussed
in section 2.2) is used to limit the scope of a flooded frame.

A special bit in the RPR header is set to mark the frames as flooded.
Flooding can be either unidirectional or bidirectional. With unidirectional
flooding, the frame traverses the whole ring on one of the ringlets. In the
bidirectional case, shown in figure 4.3, separate copies are transmitted on
each ringlet. This helps balance the traffic load on the two ringlets, and
reduces the maximum time from a frame is transmitted until it has reached

4.2. BASIC BRIDGING IN RPR 41

5

4

3

2

1

6

ttl = 2

ttl = 3

Figure 4.3: The ttl of a flooded frame is set so that it reaches each node exactly
once. With bidirectional flooding, a separate copy of the frame is transmitted on
each ringlet.

all nodes on the ring. The ttl is in both cases set so that the frame reach
each node exactly once.

Bridges on an RPR ring inspect the flooding bit in the frame header. If
the flooding bit is set, the frame is copied and presented to the relay part of
the bridge. The relay then decides whether to forward the frame on some or
all of its ports.

Flooding remote frames on the ring solves the problem with the bridge re-
lay learning described above. To achieve this, remote frames must be flooded
on all rings they pass, including the egress ring. In addition, it eases the task
of the bridges, compared to the promiscuous mode solution. Instead of hav-
ing to treat every passing node on the ring, only flooded frames are now
presented to the bridge relay.

Note that the strategy of marking flooded frames with a special bit to
make the receiving nodes give them a special treatment, is also used in Source
Route Bridging. Recall from the discussion in section 3.3, that frames eligible
for bridging is marked with a special Routing Information Identifier bit. This
bit marks the presence of the Routing Information Field, which contains the
path information for the frame.

42 CHAPTER 4. BRIDGING RPR NETWORKS

The flooding approach is the bridging method that is referred to as basic
bridging in the following text. Basic bridging is at the time of writing the
only valid choice for bridging in RPR. It is possible that another bridging
strategy, more similar to the one described in section 4.3, will be allowed as
an option in a later version of the standard.

To sum it up, the main strategy of basic bridging is to make sure that all
remote frames are seen by all bridges. This is achieved by flooding. With
basic bridging, RPR can be said to act like a shared medium network for
remote traffic, while keeping its spatial reuse properties for local traffic. By
flooding all remote traffic on the ring, RPR makes sure that the frames reach
the bridges, and that the necessary learning processes can take place in the
bridge relays. However, flooding prevents spatial reuse for remote traffic, and
consumes much bandwidth resources. This leads to the desire to find more
bandwidth-efficient ways to do bridging.

4.3 An improved bridging algorithm

The efforts to make transparent bridging more efficient in RPR, has led to a
strategy called enhanced bridging. The basic ideas behind enhanced bridging
have been developed through discussions in the RPR working group and its
subcommittees. However, enhanced bridging has been ruled out of scope of
the current standardisation efforts. It is therefore not part of any current
draft standard. The algorithm described in this section are mainly based on
presentations given at the RPR working group summits [12, 6, 7].

The intuitive idea behind the enhanced bridging algorithm is to enable a
frame to travel the shortest path from the source to the destination, as shown
in figure 4.1 on page 38. The relaying bridges on the path is responsible for
stripping the frames from the ring, thus securing the spatial reuse properties.

4.3.1 SRCS tables

The purpose of enhanced bridging is to allow spatial reuse for remote traffic.
This is achieved by letting the end nodes address remote frames directly to
the bridge that is responsible for forwarding traffic to the specific receiver.
The end nodes then obviously need some way to keep an association between
a remote host and its designated bridge. Every node must keep and main-
tain a table that maps a remote address to a local (bridge) address. The
functionality that builds, maintains and uses these tables is known as the

4.3. AN IMPROVED BRIDGING ALGORITHM 43

A

Node Port

A
B
C
D

East
West

BE

F

E
F West

West
East
West

b1

b2

C

D

Global

Global

Global

Local

Local

Local

A

A

B

B

C

D

D

E

F

F

b1

b1

b1

b1

b1

b1

b1

b1

b2

b2

Figure 4.4: With enhanced bridging, all nodes are equipped with tables that map
global remote node addresses to the local bridge that is responsible for forwarding
frames towards that node

Spatial Reuse Control Sublayer (SRCS)2. The global-to-local mapping tables
are therefore termed SRCS tables in the following.

Figure 4.4 shows an example network with SRCS tables in the end nodes.
Recall from section 3.2 that a transparent bridge consists of an interface to
each of the networks it interconnects, called a port, and a relay unit that
forwards frames between the ports. The bridge ports can be seen as nodes
in their respective networks. Hence, each bridge port that belongs to an
enhanced bridging network contains a SRCS table, just like any other node
in the network. In addition, the bridges contain the normal filtering database
in their relay unit.

The idea of keeping SRCS tables in the end nodes gives enhanced bridging
some similarities with source route bridging as discussed in section 3.3. The
bridging functionality is no longer only held in the bridges, some logic to sup-
port bridging is required in the end nodes. Furthermore, with the enhanced
bridging algorithm, the end node provides the first step of a remote frame’s

2The term SRCS is adapted from a presentation given by the RPR working group’s
bridging ad-hoc subcommittee [7]

44 CHAPTER 4. BRIDGING RPR NETWORKS

path, by identifying the local bridge that is responsible for forwarding the
frame. With source route bridging, the sender is responsible for calculating
the complete path to the receiver. Enhanced bridging thus takes one step in
the direction of source route bridging, away from the transparent bridging
idea of “no bridging awareness in the end nodes”.

The SRCS tables are built dynamically, based on the traffic received by
the end nodes. A discussion of this learning process is given below, but first
a look at the enhanced bridging frame format.

4.3.2 Frame format

The enhanced bridging algorithm demands some changes in the RPR frame
format discussed in section 2.2. In addition to the original source and desti-
nation MAC addresses, some way to identify the local sender and destination
nodes on the ring is needed. This can be achieved in several different ways.

One possibility would be a tunnelling-like approach, where the original
RPR frame is encapsulated in a new frame. The outer frame is given the
bridge as its destination address. When the frame reaches the bridge, the
original frame is restored. The bridge will also have to insert its own address
as the source address in the frame header when the frame is relayed to the
new network. This strategy will not demand any changes in the frame format
for local traffic. Only remote frames will get the additional overhead of an
extra RPR header.

Another option is to insert a pair of extra addresses in the frame header
of all frames, to identify the local source and destination. This is the strategy
that is used in the simulation model described in section 5. Figure 4.5 shows
the RPR frame format with these extra fields inserted.

The local source address, called the Sending Station ID (SSID), is set to
the MAC address of the node that actually transmits the frame on the ring.
This can be either the original sender, in which case the SSID is equal to
the source address, or it can be the address of a bridge that relays the frame
onto the ring. The local destination address, called the Destination Station
ID (DSID), is set to the MAC address of the node that is responsible for
removing the frame from the ring. This can be either the destination node,
or a bridge. The DSID is used by bridges to determine whether they should
strip the frame or not.

In figure 4.5, 48 bit MAC addresses are used to identify the local sender
and receiver. This is convenient, since every node is already equipped with
this identifier. However, notice that the local station identifiers only have to
be unique within the ring. This means that the 48 bit SSID and DSID could
be replaced with 8 bit identifiers, to reduce the 12 bytes of extra overhead

4.3. AN IMPROVED BRIDGING ALGORITHM 45

ttlBase

extndRingControl

hec

protocolType

sdu

fcs

payload

trailer

1

1

6

6

2

2

4

n

ttl

baseRingControl

1

1

6

6

header
dsid

ssid

destination address

source address

Figure 4.5: Enhanced bridging demands some way of identifying the local sender
and destination nodes. This figure shows a possible way to achieve this.

put on every frame.
Note that local frames do not use the SSID and DSID fields in the header.

These fields thus give an unnecessary overhead on local traffic. This can be
avoided by always letting the source and destination addresses in the frame
header be local addresses. The global source and destination addresses of
remote frames are instead put at the beginning of the frame payload. A bit
in the extndRingControl field of the header can be used to mark the presence
of these extra address fields in remote frames. When a remote frame arrives
at a bridge, the global addresses found in the payload are used to give the
new source and destination addresses to the frame when it is forwarded to a
new network. This strategy implies that there are in fact two different RPR
frame formats - one for local and one for remote frames.

The purpose of the DSID field, is to allow remote frames to be unicasted
to the correct bridge, when this is known in advance. The SSID field is needed
for learning purposes, as described below. The important thing here is that
some way to identify the local sender and receiver is needed. An interesting
proposal provides a way to derive the information needed about the local
sender and receiver, while minimising the header overhead and sticking to a
single frame format [8]. In this proposal, the 48 bit source and destination

46 CHAPTER 4. BRIDGING RPR NETWORKS

MAC addresses used in the frame header are always global node addresses. In
addition, an eight bit sending station identifier is used to determine the local
sender. The main purpose of this field is to protect against frame duplication
and reordering in case of a protection event, as discussed in section 2.4. Each
node on the ring is assigned such a local station identifier during topology
discovery. There is no field in the header for the local destination with
this proposal. Instead the local destination is decided by using the ttl and
ttl_base fields discussed in section 2.2. Bridges pick up frames where the
ttl has reached zero, and determine if they should be forwarded to a remote
network. With this algorithm, the nodes no longer maintain a local-station-
to-remote-station address mapping in their SRCS tables, as described above.
Instead, they keep a mapping between remote hosts and the number of hops
to the local destination. When a frame is transmitted to a remote receiver,
the ttl and ttl_base parameters are set so that the frame exactly makes it
to the bridge. The bridge, noticing that the frame has a ttl of zero, copies
the frame to its relay, and makes a forwarding decision based on the relay
forwarding table.

4.3.3 The learning process

The SRCS tables described above are built dynamically, based on the traffic
received in the end nodes. This section describes the learning process based
on a frame format with SSID and DSID fields in the header, as described
above. This is the way learning is performed in the simulation model de-
scribed in section 5. A similar learning process would be needed with the
other frame formats discussed above.

The basic idea in the learning process is to compare the global source
address field of the incoming frames to the SSID field. A bridge that forwards
a frame, inserts its own MAC address as the SSID. The node that strips the
frame from the ring, will thus learn that frames transmitted by this specific
remote node, comes through that specific local bridge. Before the SRCS
tables are built, the nodes rely on flooding when transmitting remote frames.

For an example of how this learning process takes place, return now to
the scenario in figure 4.1 on page 38. Initially, end nodes X and Y both have
empty SRCS tables. When X wants to transmit to Y, it will find no entry
for Y in its SRCS table. It will therefore flood the frame over ring 1, just as
it would do with the basic bridging algorithm. The source address and the
SSID of the frame is set to X’s MAC address. Both the destination address
and the DSID is set to Y’s MAC address. Note that the DSID is not used in
this case, since the frame is flooded. Bridge B1, as well as any other bridge
on ring 1, will see that the frame is flooded, copy it to its relay, and forward

4.3. AN IMPROVED BRIDGING ALGORITHM 47

it on all ports. Since the ring 2-port of B1 does not have Y in its SRCS
table, it will flood the frame on ring 2. As it does so, B1 sets the SSID of the
frame to its own MAC address. Note here again that enhanced bridges keep
two separate kinds of tables. The filtering database resides in the relay part
of the bridge, and keeps the association between end nodes and the port to
which it belongs. This table is present in any 802.1D/Q compliant bridge.
The SRCS table resides in the MAC dependent part of the bridge, and keeps
the association between global and local node identifiers. Every node in an
RPR network that supports enhanced bridging has such a SRCS table.

The frame flooded by B1 is picked up by B2, which learns that frames
from end node X is sent through B1. B2 then inserts its own address as the
SSID, and sends the frame directly to node Y. Node Y learns that frames
from X goes through B2. Note that so far, no efficiency gain is achieved by
enhanced bridging compared to basic bridging, except that the frame was
not flooded on ring 3. The main gain comes only after the nodes on the
path have learned the mapping between the remote address and the local
node identifiers. When Y now wants to respond to X, no flooding will be
necessary. Node Y now has node X in its SRCS table, and so inserts the
address of X as the destination address, and the address of B2 as the DSID.
The frame is thus sent directly to B2, which forwards the frame to ring 2,
inserts its own address as the SSID, and inserts B1 as the DSID. The frame
can now be sent directly to bridge B1. B1 does the same as B2 did; it changes
the SSID and DSID to the address of B1 and X respectively, and it also learns
that frames from node Y goes through B2. Finally, B1 can send the frame
directly to X. When node X now receives the frame and learns that frames
from Y goes through B1, the learning process is completed. All subsequent
communication between nodes X and Y can now take place without any
flooding.

An important thing to understand, is that there are two separate learning
processes going on simultaneously in the above example. The one described,
is the learning of the mapping between global end station addresses, and
local station identifiers. This learning takes place in all the nodes supporting
enhanced bridging, both the end nodes and the bridges, and results in entries
in the SRCS tables. At the same time the bridges perform their learning of
host-to-port mappings as described in section 3.2, which enables them to
decide which frames are to be forwarded on which ports. This learning
results in entries in the filtering database in the bridge relay.

As seen from this example, some flooding is still necessary with the en-
hanced bridging algorithm before the SRCS tables have been built across
the network. The amount of flooding needed is investigated in scenario 1 in
section 6.1. Some steps can be taken that would possibly reduce the amount

48 CHAPTER 4. BRIDGING RPR NETWORKS

of flooding. First, it is reasonable to believe that many rings only contain
one or at least very few active bridges. An active bridge here means a bridge
whose port to this ring has not been blocked by the spanning tree algorithm
as discussed in section 3.2. The SRCS tables could then be equipped with a
default bridge address, decided during topology discovery. Frames destined
for remote nodes that did not match any of the other entries in the SRCS
table, would be sent to this default bridge. The bridge would then be respon-
sible for the further handling of the frame. If the bridge knew the location
of the destination node, the frame would be forwarded as normal. Else, the
bridge would flood the frame on all ports, including the one it arrived on.

Another possibility is to run a "global" topology discovery algorithm when
several RPR rings are connected by bridges. This way, the SRCS tables in
the end nodes could be built complete before any traffic was sent in the
network. This strategy would, however, generate more traffic in the network
when building and maintaining the global topology image.

4.4 Summary
This section has introduced the problems that arise when bridges are used to
interconnect RPR rings. The destination stripping used in RPR makes some
special treatment of remote traffic necessary, to ensure that these frames
reach the designated bridge.

The basic bridging algorithm currently in the RPR draft standard, solves
this by flooding all remote frames on the ring. Enhanced bridging avoids
the flooding after a learning period, by equipping the end nodes with SRCS
tables and sending remote frames directly to the bridges.

Chapter 5

The Java simulation model

The previous chapter discussed an enhanced bridging algorithm for RPR net-
works. The next major goal of this work is to evaluate the performance of
this algorithm, and compare it to the basic bridging algorithm. This is done
using a simulation model of an RPR network, written in the Java program-
ming language. The development of this model has been a substantial part
of the work in this project.

The simulation model described in this section was originally developed
by professor Stein Gjessing at Simula Research Laboratory. His model was
built to simulate traffic with different priorities on a single RPR ring. Basic
functionality like buffer handling and event scheduling is kept unchanged
from this original model. I have later extended this model to handle several
rings connected by bridges. A more detailed outline of which parts of the
original model have been kept unchanged and which parts have been altered
or added, is given towards the end of this chapter.

This chapter will give a detailed description of the simulation model.
First, section 5.1 briefly discusses some of the principles used in discrete
event simulation models. Then, section 5.2 gives an overview of how the
Java model is built, and how some of the different classes interact. This
section also explains how the implementation of enhanced bridging differs
from the basic bridging model. Section 5.3 provides a more detailed look
upon some of the most important classes in the model, with a description of
how they are related to the RPR standard. Finally, section 5.4 is given to
make clarify the relationship between this simulation model and the model
that existed before my work began.

49

50 CHAPTER 5. THE JAVA SIMULATION MODEL

5.1 Discrete event simulators

A simulator is a device used to reproduce under test conditions phenomena
that are likely to occur in the real world. Simulators are useful as tools in
many different settings; from modelling flows in oil pipes to simulating factory
assembly lines or training aircraft pilots. Such simulators give the advantage
of being able to predict a system’s behaviour without having to work on the
actual system. This can give considerable savings in terms of both money
and development time. Simulators can be either real world models such as
wind tunnels, or computerised models.

The simulator used in this work is a computer program written in the Java
programming language, used to simulate the behaviour of an RPR network.
This model is a discrete event simulator, where the changes in the system are
represented as separate events. This as opposed to continuous models, where
the time advances in a continuous fashion, based on a differential function.

Three essential parts of a computer simulation model are the entities that
are modelled, the relationship between these, and the simulation executive.
Entities are the real world elements that are the subject of investigation. For
the model here described, these include nodes, links and data frames. Note
that while nodes and links are permanent entities, frames are temporary
elements that are created and deleted during the simulation. The objective
of a simulation is often to observe the behaviour of the temporary entities as
they flow through the permanent ones.

The entities in a model are linked together by logical relationships and
statements. These relationships define the behaviour of the model. An ex-
ample of a logical statement can be “start transmitting if outgoing link is
free”.

Finally, a simulation executive is needed. The executive is responsible
for controlling the time advance of the simulation. Two basic approaches
are possible for controlling the time advance; time slicing and next event
[5]. With time slicing, the system moves forward in fixed time intervals.
The model is moved from one time step to the next, regardless of whether
anything will happen between the two. The next event approach is generally
more efficient, and is the one used in this work. Here, the model is advanced
from one significant event to the next, no matter how long time has elapsed
between the two. The simulation executive maintains a sorted queue of
the scheduled events, as shown in figure 5.1. Each event contains the time
at which it is to be executed, and a reference to the logic that should be
performed.

The executive goes in a loop, removing the event at the head of the queue,
and performing the associated logic. This event might in turn generate new

5.2. ABOUT THIS SIMULATION MODEL 51

thingsToDo();

Time: 5

thingsToDo(); thingsToDo(); thingsToDo();

Time: 8 Time: 9 Time: 25

simulationTime = 2

currentEvent

Executive

eventQueue

thingsToDo();

Time: 2

. . .

Figure 5.1: The simulation executive in a discrete event simulation model maintains
an ordered queue of events. It also keeps track of the simulation time.

events, which must be inserted into the queue. When one event has been
handled, the executive moves to the next event in the queue, and advances
the simulation clock to the time of this event.

In addition to the entities, the relations between these, and the executive,
a simulation model is also dependent on random number generators and a
mechanism for gathering the results of the simulation.

5.2 About this simulation model

The simulation model used in this work is a discrete vent simulator as de-
scribed above, using the next event approach for advancing the simulator
clock. The model is used to simulate traffic in RPR networks with different
topologies. The results from these simulations are then used to evaluate and
compare the two bridging strategies described in section 4. This is done by
modelling a number of RPR rings consisting of nodes connected with links.
These rings are then interconnected by bridges, and statistics are gathered
as frames are sent through the network.

The RPR nodes in the model can be of two different kinds. The first type
supports only basic bridging, and is referred to as a basic node in the following
text. The second type supports enhanced bridging, and is thus named an
enhanced node. The model allows these two kinds of nodes to coexist on
the ring. An RPR ring in this model thus consists of either basic nodes,
enhanced nodes, or a combination of the two. Figure 5.2 shows how the two
kinds of nodes are composed of several java classes. The major difference is
the Spatial Reuse Control Sublayer in the enhanced nodes. A more detailed
description of the various classes is given in the next section.

Bridges are used to interconnect the RPR rings in the model. The model

52 CHAPTER 5. THE JAVA SIMULATION MODEL

ApplicationHigh/Low.java

DualNodeEnhanced.java

Srcs.java

DualNodeBasic.java

Link.java

ApplicationHigh/Low.java

BasicNode.java BasicNode.java EnhancedNode.javaEnhancedNode.java
Link.java

Enhanced RPR stationBasic RPR station

Figure 5.2: The two different kinds of RPR nodes are built of several classes. The
most significant difference between the two is the class Srcs.java in the enhanced
nodes.

allows up to four bridges to exist on a ring, and each bridge can interconnect
either two or three rings. These limitations are of a purely practical nature,
and can easily be overcome if a more exotic topology is wanted. A bridge in
the model consists of one node from each ring it interconnects, and a relay
unit that performs the forwarding of frames from one ring to another.

The simulation model described in this work is a Java program of over four
thousand code lines; hence it contains errors. There are probably shortcom-
ings in the way the RPR specification has been transformed into a simulation
model. And there are certainly programming errors distributed around the
code, that might cause the model to misbehave. More extensive testing and
verification of the model would have been advantageous. However, the model
has been run with quite a few different inputs and configurations during the
work with this thesis, producing meaningful results. Single frames have been
followed through the model, and are seen to behave as expected and accord-
ing to the specification. Tests have been made to check that frames arrive at
their correct destination and in correct order. Furthermore, the simulation
results presented in section 6 seems to be reasonable, at least explainable. It
is therefore my opinion that this model is a quite credible basis for drawing
conclusions about the performance of the enhanced bridging algorithm.

In total, the simulator model consists of about thirty java classes. Many
of these describe different entities found in a real world computer network,
such as nodes, links, buffers, packets etc. The methods in these classes also
make up the logical relationship between the entities. Other classes take

5.3. THE IMPORTANT CLASSES 53

care of the execution of the simulation itself, and the gathering of statistics.
The next section will give an overview of how the most important classes are
constructed and related.

5.3 The important classes

The goal of this section is to give a detailed description of some of the central
classes in the simulator. Helper-classes and other classes that are not central
to understand the implementation of the model are omitted. UML notation
is used to show the relations between the different classes. Readers who are
interested in further implementation details, please refer to the source code
available at the URL given in chapter 1.

The class descriptions start with a look at the simulation executive. It
then takes on the main classes describing the entities in the network and
the relationships between these. Finally, the reporting functionality of the
simulation model is discussed.

5.3.1 Kernel.java

The simulation executive is contained in the class called Kernel. This class
maintains a queue of scheduled events, and the simulator clock that shows
the current time. The event queue is arranged as a binary tree, the root
being the first event to take place. Examples of events can be that a new
frame is ready for transmission from the MAC client, a frame has arrived at
the end of a link, or a frame has completely entered or left a buffer. Every
schedulable class must extend the abstract class Unit, and contain a method
named act. When the simulator clock reaches the time at which an event is
scheduled, the act method of the class in question is called.

Kernel also contains the method simulate, which starts the simulation.
It goes through the event queue, calling the act method of each scheduled
event until a given stop time is reached.

Kernel Unit1 1..*

Figure 5.3: The Kernel class maintains a queue of schedulable objects, which all
must be subclasses of the abstract class Unit.

54 CHAPTER 5. THE JAVA SIMULATION MODEL

5.3.2 Packet.java

An RPR frame is modelled in the class Packet. A Packet is the only tem-
porary entity in the model. Packets are created by the application classes
described below, and spends their life flowing between the permanent entities
in the model. The Packet class is not in direct correspondence with the RPR
frame format described in section 2.2. It only contains information that is
needed for the simulations described in chapter 6.

Frames eligible for enhanced bridging will need extra fields in the RPR
header to decide the local sender and destination addresses, as discussed in
section 4.3. In the Packet class, a boolean value is used to decide whether a
frame is sent from an enhanced node, and hence contains these fields. The
equivalent of this boolean value is found in the extRingControl field of the
RPR frame. Packet also contains values to represent other relevant fields of
the RPR header, such as the size of the frame, which service class it belongs
to, the timeToLive value of the frame, and whether the frame is flooded or
not.

In addition, the Packet class contains information that is not part of the
RPR frame format, but is used in the simulator to gather statistics. These
include the time of creation and information on when the frame enters and
leaves buffers. Since Packet is a schedulable class, it also contains an act
method.

5.3.3 ApplicationHigh.java and ApplicationLow.java

As mentioned in section 2.3, RPR allows three different classes of traffic, with
different priority characteristics. In the simulator model, only two priority
levels are implemented. The classes ApplicationHigh and ApplicationLow
play the roles of traffic generators, and generate frames with high and low
priority respectively. Each RPR node can have any number of such applica-
tions associated with it.

Unit
1

0..*

0..*
ApplicationHigh

ApplicationLow

DualNode

Figure 5.4: Each instance of ApplicationHigh or ApplicationLow belongs to a spe-
cific DualNode object. Since they are schedulable, they must extend Unit.

5.3. THE IMPORTANT CLASSES 55

When the act method is called in an ApplicationHigh or ApplicationLow
object, a new Packet object is initialised. Sender and receiver addresses
and other parameters are set, and the frame is transmitted. The class then
reschedules itself to the time of the next transmission. The size of the frames
and the time between each transmission can either be static, or given by a
chosen random distribution.

5.3.4 DualNode.java

When a Packet is generated, it is sent to the MAC layer for transmission.
The MAC layer of a station is represented by the DualNode class. Much of
the functionality in the MAC data path described in section 2.3 is separate
for each ringlet. This functionality is collected in the Node class described
below. A DualNode consists of two such Node classes, one for the inner
and one for the outer ringlet. In addition, DualNode has functionality for
choosing which ringlet to transmit on, and for flooding frames over the ring.
One of the other MAC control sublayer functions described in section 2.4,
fairness, is mainly implemented in the class FlowControl. The flow control
functionality was part of Stein Gjessing’s original model, and has been left
almost unchanged. Other functions found in the MAC control sublayer, such
as protection and topology discovery, are not part of the model.

Node

2
1

2..30..1

DualNodeEnhanced

DualNode

DualNodeBasic

Relay

Figure 5.5: DualNode has two subclasses, to represent basic and enhanced RPR
stations respectively. It also contains two Node objects, one for each ringlet. Fi-
nally, DualNodes that are part of a bridge are associated with a Relay.

The simulator is used to simulate traffic in a network implementing en-
hanced bridging, basic bridging, or a combination of the two. The func-
tionality of DualNode is slightly different in the enhanced and basic case.
DualNode is hence implemented as an abstract class, an instance of the class
being either a DualNodeBasic or a DualNodeEnhanced. The main difference
between these is that an enhanced station contains a Spatial Reuse Control
Sublayer (SRCS), described below.

56 CHAPTER 5. THE JAVA SIMULATION MODEL

A DualNode object can be turned into a port in a bridge at initialisation
by calling the method turnIntoBridge. The DualNode will then be associated
with a Relay object, as described below.

5.3.5 Node.java

After DualNode has decided which ringlet to transmit the Packet on, it is
passed on to a Node. The Node class implements MAC data path func-
tionality, dealing with frame reception, transit, and transmission at one of
the ringlets. The Node class implements a dual transit buffer data path, as
discussed in section 2.3.

DualNode Unit

Node Link

BasicNode EnhancedNodeBasicBridgeNode

1 1

EnhancedBridgeNode

Figure 5.6: The abstract class Node has four subclasses. It is also associated with
a Link, onto which it transmits frames.

As with DualNode, the functionality in Node is dependent on whether
or not it supports enhanced bridging. In addition, a Node should behave
differently if it is part of a bridge. This leads to a structure where the
abstract class Node is extended by the four classes BasicNode, EnhancedNode,
BasicBridgeNode, and EnhancedBridgeNode. The difference between these
classes is the stripper method, which is called when a Packet arrives at a
node. Bridge nodes might pass a copy of the Packet to the bridge relay, while
enhanced nodes pass Packets destined for this node to the SRCS described
below for learning.

The rest of the Node functionality is the same for all the four subclasses.
They all contain the method outputSelector, which is responsible for picking
the next frame to be sent from the node. This can be a high or low priority
frame from one of the transit queues, or a frame added by this node.

The goal of the simulations described in this work is not to test the error
recovery capabilities of RPR. The Node class does therefore not contain any

5.3. THE IMPORTANT CLASSES 57

error recovery functionality. It does, however, implement Virtual Output
Queueing as described in section 2.4. Each Node thus contains one high
priority transmit queue, plus one low priority queue for each other node on
the ring.

5.3.6 Link.java

Each Node object is associated with an outgoing Link. The links are used
to connect the nodes on the ring. Link is a passive component in the model,
meaning that it has no act method, and can not be scheduled in the simulator
kernel. The most important characteristic of a Link is its length, which
decides how much time a Packet needs to traverse it.

5.3.7 Srcs.java

All enhanced nodes contain a Spatial Reuse Control Sublayer (SRCS). All
traffic to and from the MAC client of an enhanced node must pass through
this sublayer. The purpose of the SRCS is to make possible spatial reuse of
bridged traffic, through inserting source- and destination station identifiers
as explained in section 4.3. The SRCS also keeps the table that maps remote
MAC addresses to station identifiers that are local to the ring.

1
Srcs

1
DualNodeEnhanced

Figure 5.7: Srcs is a part of the DualNodes that support enhanced bridging

Srcs receives Packets from the ring through the receive method. This is
where the learning operation takes place. The method inspects the global
and local sender ids of the frame, and updates the mapping table if necessary.
The frame is then passed to the MAC client represented by an Application
class described above, or to the bridge relay if this node is a bridge.

Add traffic from this node to the ring passes through the SRCS via the
put method. Here, the mapping table is used to insert a local destination id
if needed. The Packets are also marked as coming from an enhanced sender,
to make other nodes aware of the presence of local sender and destination
fields.

5.3.8 Relay.java

When a Packet reaches a bridge, it is passed from the MAC layer and over
to the relay part of the bridge. As mentioned in section 3.2, the functions

58 CHAPTER 5. THE JAVA SIMULATION MODEL

performed in the bridge relay are independent of the MAC technology. So,
the Relay makes no distinction between enhanced and basic Packets.

Relay offers a put method, that receives Packet objects from one of the
attached nodes. If the Packet comes from a hitherto unknown node, the
Relay updates its forwarding table. Based on this forwarding table and the
destination address kept in the Packet object, the Relay makes a decision
about which ports the frame should be forwarded to.

A bridge as defined in IEEE 802.1D consists of a Relay and any number
of ports, at least two. In my model, the number of ports is limited to three;
a Relay can be attached to two or three DualNode objects.

5.3.9 Reporter.java

Different kinds of statistics are wanted as output from the simulations. De-
pending on the purpose of the simulation, one might be interested in regis-
tering that a frame has reached its destination, a frame is flooded, a frame
has traversed a link, a table is full, or any other event. The role of the Re-
porter class is to gather such information, and to write it to files that can
later be analysed. To achieve this, Reporter offers a variety of methods that
can be called at any point during the simulation. Examples of such methods
are reportP, registering that a frame has traversed a link, and reportFlood,
registering that a frame has been flooded on a ring. Reporter writes different
statistics to files, which later can be further processed or plotted in graphs.

5.4 About the development of this model

As stated in the introduction to this chapter, parts of this simulation model
existed before my work on this project began. The original model was de-
veloped by professor Stein Gjessing at Simula Research Laboratory in Oslo.
His original model was built to simulate traffic on a single RPR ring. Major
parts of this model has been kept virtually unchanged. This includes the
simulation executive in Kernel.java, the classes that handle the buffers in the
various nodes, and the fairness functionality.

My own contribution to the model has been to extend it to allow scenarios
with multiple RPR rings connected by bridges. This new functionality has
demanded changes and additions in many of the classes, and the splitting of
the Node and DualNode classes into several subclasses. Furthermore, some
new classes have been needed to represent entities such as rings, bridges,
relays and SRCS sublayers.

5.5. SUMMARY 59

Even if most of the classes have been changed to some extent, the basic
structure with Node-, DualNode-, Link- and Application objects have been
kept. This basic structure, and the existence of a simulation executive, has
made the development of the existing model much easier, and has made it
possible to finish this work within the intended time limit.

5.5 Summary
The model described in this chapter is used as a tool for evaluating the en-
hanced bridging algorithm. The model is a discrete event simulation model,
with an executive that maintains an ordered event queue.

In addition to the simulation executive, the model consists of a number of
Java classes representing the real world entities found in an RPR network. All
schedulable classes contain an act method, which is called by the simulation
executive when the scheduled time is reached. The model also contains classes
for gathering statistics from the simulations, and write these data to files.

60 CHAPTER 5. THE JAVA SIMULATION MODEL

Chapter 6

Simulations and results

Chapter 4 gave a description of two different strategies for doing bridging
in RPR networks. Basic bridging is the straightforward approach. It stays
almost true to the transparent bridging principle that all the bridging logic
should be contained in the bridges. The end nodes always flood remote
frames over the ring, to make sure they are seen by all bridges.

Enhanced bridging goes further in moving bridging functionality from the
bridges themselves and into the end nodes. The end nodes use their Spatial
Reuse Control Sublayer to find the address of the first bridge on a remote
frame’s path. The frame can then be sent directly to that bridge. This way,
enhanced bridging moves one step in the direction of source route bridging,
as discussed in section 3.3. With source route bridging, the sender node is
responsible for calculating the whole path to the destination, and include it
in each remote frame.

The simulations described in this section are performed to evaluate the
different behaviour of these two bridging strategies. Specifically, there are
three aspects that this work tries to shed some light on:

• The enhanced bridging algorithm reduces the amount of traffic in a
network by maintaining the spatial reuse properties for remote traffic.
How significant is this traffic reduction? And how long is the learning
period before this reduction is achieved?

• To allow spatial reuse of remote traffic, the enhanced bridging algorithm
depends on remote-to-local mapping tables in the end nodes. How is
the traffic in the network affected if these tables are of limited size?

• The reduced traffic on an RPR ring achieved by enhanced bridging
means that the probability that a link gets congested declines. This
in turn has a positive effect on the latency and jitter characteristics of

61

62 CHAPTER 6. SIMULATIONS AND RESULTS

the traffic. How is the local traffic on the ring affected by the choice of
bridging algorithm?

To investigate these questions, three different network scenarios are cre-
ated and simulated. The performance metrics that are extracted from these
simulations, will be helpful to provide some possible answers.

Note that the simulation model does not contain an implementation of
the spanning tree protocol discussed in section 3.2. This algorithm is used to
make a bridged network free of cycles. The exchange of information between
bridges to accomplish this is independent of which MAC method is used in
the individual LANs. Whether the basic or the enhanced bridging algorithm
is used, does not affect the spanning tree protocol. All the scenarios discussed
in this section use cycle-free topologies. This is a reasonable choice - cycles
would have been removed by the spanning tree protocol as soon as redundant
paths were discovered.

6.1 Scenario 1: A simple flow

The apparent advantage of enhanced bridging, is reducing the amount of
flooding in an RPR network. Enhanced bridging allows frames to be sent
directly to the bridge, after an initial period of learning. The purpose of
this simulation is to compare the amount of traffic generated by a simple
data flow, when the basic and enhanced bridging algorithms are used. The
simulation is run twice. In the first case, all the nodes involved support en-
hanced bridging, while in the second case, basic bridging is the only strategy
supported.

The simulation and results described here, are almost identical to the ones
given in a presentation at the September 2002 meeting of the RPR working
group in New Orleans [20].

6.1.1 Topology

The topology used in this simulation is shown in figure 6.1. Four identical
rings are connected by bridges. The rings each have eight nodes, including
the bridges. The links that connect the nodes in the simulations are about
500 meters, giving a total ring span of about 4 kilometres. The simulations
have also been run with link lengths of 5 kilometres, giving very similar
results. The available link capacity is about 8 Gbps, almost the speed of an
OC-192 optical fibre without the SONET overhead.

6.1. SCENARIO 1: A SIMPLE FLOW 63

n1 n2

b1

b3

b2AB C

D

Figure 6.1: Two nodes communicate over a bridged network consisting of four RPR
rings connected by three bridges.

6.1.2 Traffic pattern

The traffic flow in this simulation is deliberately kept very simple, so that the
resulting statistics should be easy to read. The purpose is not to provide a
realistic real-life traffic scenario, but to isolate a single data exchange between
a pair of nodes. Only two nodes are active during the simulation, all the
other nodes simply participate in the forwarding of frames. On a real ring,
there would necessarily be a small amount of background traffic, due to the
operations of the MAC control sublayer. These are ignored in this simulation,
leaving only the data flow of interest.

Time / ns0 6000 12000

Figure 6.2: Node n1 sends 1kB data frames to node n2 at a constant rate equal to
one third of the link capacity.

In the simulation, node n1 sends a continuous flow of low priority data
to the remote node n2. The frames sent have a size of 1kB, and are sent
at a rate that equals one third of the link capacity. They are sent at equal

64 CHAPTER 6. SIMULATIONS AND RESULTS

intervals, as illustrated in figure 6.2. Upon receipt of each frame from node
n1, node n2 returns a small “ack” frame. The size of these frames are 80B.
Thus, we really have two flows in this simulation, a flow of 1kB “data frames”
from n1 to n2, and a flow of 80B “acks” in the opposite direction. This gives
a TCP-like traffic pattern.

Note that no random numbers are used to generate the traffic in this
scenario, so the simulation generates exactly the same output each time it is
re-run. Hence, there is no statistical error in the results, and it is therefore
not necessary to run the simulation several times to increase the statistical
validity of the output.

6.1.3 The metrics

The goal of this simulation is to measure the difference in traffic load with
basic and enhanced bridging. Two different metrics are chosen to illustrate
this.

Figure 6.3 shows the total number of floods on any of the four rings, in
intervals of 10 µs. A flood is performed either by the source node, or by a
bridge forwarding the frame onto the next ring. That is, the figure illustrates
how many times any of the nodes, bridge or end node alike, floods a frame
on any of the rings during the given time interval. The relatively short
time interval of 10 µs gives a curve that is not very smooth, and even small
variations are visible. This may not be ideal - a stable situation can be made
to appear more unstable than it really is. However, the short time intervals
are needed to show how the traffic varies in the short period of time while
the network is still in a learning state, before the SRCS tables in the bridges
and end nodes are built complete.

The other performance metric chosen, illustrated in figure 6.4, says some-
thing about the total throughput in the network. The graph shows the
number of frames that traverse a link somewhere in the network. A count is
made every time any node on any of the four rings receives a frame from its
upstream neighbour. The goal is to give a measure of the overall throughput
in the network, caused by the single traffic flow. The time interval used is
the same as for the flooding plot, 10 µs.

6.1.4 Analysis of the results

Consider the graph in figure 6.3, showing the number of floods in the network.
Following the time line from the left to the right, we can see how enhanced
bridging reduces the number of floods in the network, after an initial period

6.1. SCENARIO 1: A SIMPLE FLOW 65

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

F
lo

od
s

Time / microseconds

Floods - enhanced and basic bridging

Basic
Enhanced

Figure 6.3: The graph shows how the number of floods per 10 µs interval for the
basic and enhanced bridging algorithms.

of learning. At the beginning of the simulation, all the SRCS tables in the
bridges and the enhanced nodes are empty.

Node n1 starts transmitting frames to node n2 at time zero. These frames
are flooded on ring B, forwarded by bridge b1, and flooded on ring A. This
is the same for basic and enhanced bridging, since no learning has yet taken
place in the end nodes. When the frames reach b3, they are flooded on ring
D, since b3 has no information on the position of n2. During this initial
period, we see the number of floods rise sharply, as the pipe fills up with
more and more frames from n1. At time 20, the first frame reaches bridge
b2. From here, we can see a difference between the two bridging strategies.
Basic bridging will cause b2 to flood the frames on ring C, for the reasons
discussed in section 4.2. Enhanced bridging allows b2 to send the frames
directly to n2, giving a lower flooding count.

Focus first on the graph for the enhanced bridging algorithm. At time
30, the first frame from n1 reaches n2, and n2 starts returning acks. The
enhanced bridging algorithm allows these frames to be addressed directly
to bridge b2, so no increase in the flooding count is experienced. The acks
from n2 are never flooded on any of the rings with enhanced bridging, since
the location of n1 is now known all along the path. At time 50, the first
ack reaches b1. b1 then learns that frames for n2 should be addressed to
b2, and can stop flooding these frames on ring A. This gives a sharp fall in
the flooding count for enhanced bridging. When the flooding of frames from

66 CHAPTER 6. SIMULATIONS AND RESULTS

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

T
ot

al
 th

ro
ug

hp
ut

 /
ki

lo
by

te
s

Time / microseconds

Throughput - enhanced and basic bridging

Basic
Enhanced

Figure 6.4: The graph shows how the number of bytes traversing a link in the
network per 10 µs interval.

n1 on ring A stops, these frames will no longer reach b3. Consequently, no
more frames are flooded on ring D. At time 60, the first ack from n2 reaches
n1. This completes the learning process for enhanced bridging, and no more
flooding occurs.

Turn now to the graph for the basic algorithm. When the first frame
from n1 reaches n2 at time 30, the returned acks must be flooded on ring C,
A and B. They are never flooded on ring D, because the filtering database
in the relay part of bridge b3 has previously learnt the location of n1. Once
the acks reach b3 at time 45, it also learns the location of n2, and stops
forwarding frames from n1. Note that this happens earlier with basic than
with enhanced bridging. Since enhanced bridging does not flood the acks on
ring A, they will never reach b3. Bridge b3 will therefore continue to forward
frames from n1 to n2 as long as these are flooded on ring A. As seen in the
graph, the flooding count does not decrease with basic bridging when the
flooding on ring D stops. This is because the acks from n2 to n1 start being
flooded on ring B at time 50. These two events - the end of flooding on ring
D and the start of flooding on ring B - makes the total flooding count stay
relatively stable. At time 60 the first ack from node n2 reaches n1. The
n1-n2-n1 pipe is now filled with frames, and no more learning occurs in the
bridge relays. The flooding count stays the same for basic bridging until the
simulation stops.

The flooding count makes no distinction between 1000 byte “data” frames

6.1. SCENARIO 1: A SIMPLE FLOW 67

and 80 byte “ack” frames. It does therefore not give a true picture of the load
on the network. This is better illustrated in figure 6.4. This figure shows the
total throughput in the network. The figure indicates that there is a close
relation between the throughput and the number of floods in the network.
The difference between the two bridging algorithms becomes apparent when
the traffic reaches ring C at time 30. The increase in throughput with basic
bridging ends when b3 stops forwarding frames for n2 at time 45. The fall
in the throughput as no more frames are flooded on ring D, is not equalised
by the acks flooded on ring B, since these acks are so much smaller.

For the enhanced algorithm, the throughput takes a dive when the first
ack reach bridge b1 at time 50, and data frames stop being flooded on rings
A and D.

The number of floods stabilises for both bridging algorithms at time 60.
Hence, the load also stabilises once the flooded frames in transit reach their
final destinations.

6.1.5 Discussion

The graphs in figures 6.3 and 6.4 show that the potential gain in bandwidth
efficiency for remote traffic is significant with enhanced bridging. In this
scenario, enhanced bridging gives a 56% reduction in the total throughput
in the network, after the initial learning period.

A period of learning is needed before the enhanced bridging algorithm
achieves spatial reuse for remote traffic. This learning period ends after one
round-trip-time in the communication between nodes n1 and n2. When a
frame from n1 has reached n2, and the first reply message has returned to
n1, all the necessary learning in bridges as well as in end nodes is finished.

The active nodes and relaying bridges in this scenario are placed at the
opposite ends of the respective rings. This means that a frame that travels
the shortest path from n1 to n2 still has to traverse half of ring B, then half of
ring A, and finally half of ring C. This is a worst-case scenario for enhanced
bridging, giving a total node hop count of twelve for each frame. If the
active nodes were placed otherwise on the rings, the difference in through-
put between basic and enhanced bridging would further increase. Thus, the
potential efficiency gain of a single flow through a bridged network is even
larger than what appears in figure 6.4. When traffic can be sent directly
to the bridges without flooding, no frame will normally1 traverse more than
half the circumference on any ring. The overall bandwidth consumed by a

1The RPR draft standard allows the MAC client to choose the “longest” path around
a ring when transmitting on the ring. This is, however, not normally the case.

68 CHAPTER 6. SIMULATIONS AND RESULTS

bridged traffic flow is thus always more than halved by the enhanced bridging
algorithm.

6.2 Scenario 2: Filling the SRCS tables

The previous scenario illustrated the advantage of the enhanced bridging
algorithm - the reduced amount of flooding that gives a better utilisation of
the available bandwidth. The price to pay for this advantage is first of all the
need for more RAM in the end nodes. To avoid flooding and allow spatial
reuse, every end node must keep a mapping between remote node addresses
and a local bridge address. In the simulator model discussed in section 5,
these tables reside in the Spatial Reuse Control Sublayer (SRCS) in the nodes
that support enhanced bridging. The tables containing the remote-to-local
node addresses are thus referred to as SRCS tables.

The SRCS table contains one record for each remote host the node has
received traffic from. In other words, the size of this table potentially grows
linearly with the total number of nodes in the bridged network, if the node
receives traffic from all other nodes. The number of nodes in a bridged
network can grow to several thousand. These tables must be stored in each
node and will demand a certain amount of available fast memory.

The goal of this simulation is to investigate the traffic behaviour in a
network where the SRCS tables in the end nodes are of limited size. The
idea is to let the SRCS tables work as a kind of a cache. A least recently
used (LRU) algorithm can be used to select the oldest entry in the table
for removal when the table is full. If the entries are organised in a circular
list, this LRU algorithm can be implemented by providing each entry with a
recently used bit. This bit is set to one each time the node receives a frame
from the node corresponding to this entry, or when a frame is sent to this
node. When an entry must be removed from the table, a pointer is moved
around the circular list, setting the recently used bit to zero as it passes.
The first entry whose recently used bit is already zero, is discarded. When a
remote receiver is not found in the sender’s SRCS table, the frame must be
flooded. This flooding must continue until a reply is received from the node
in question, and a new entry can be made in the SRCS table.

6.2.1 Topology

In the previous scenario, the topology consisted of four rings with eight nodes
in each ring. With such a topology, no node has to keep more than 24
entries in its SRCS table - one entry for each remote node. The topology

6.2. SCENARIO 2: FILLING THE SRCS TABLES 69

in this scenario contains a large number of nodes, spread over eight rings as
shown in figure 6.5. Rings A through F are thought of as large access rings,
with 200 end nodes connected to each of them. The link lengths in these
rings are approximately 200 metres, giving a total ring length of about 40
kilometres. Rings M1 and M2 connect the access rings. They contain no
active end nodes themselves, only bridges whose only purpose is forwarding
frames between the access rings. The link lengths of these rings are greater,
about 20 kilometres, giving a total ring span of about 80 kilometres. The
link capacity on the rings is the same as in the previous scenario, 8 Gbps.

With this topology, each end node on the access rings needs an SRCS
table size of 1000 to save an entry for each remote frames.

A

B

C

D

E

F

M1 M2
b0b1

b2

b3

b4

b5

b6

Figure 6.5: Six smaller rings A through F are attached to two main rings M1 and
M2. Each access ring contains 200 nodes.

6.2.2 Traffic pattern

The purpose of this simulation is to analyse the behaviour of the enhanced
bridging algorithm with limited SRCS table sizes in the end nodes. The
hypothesis is that the size of these tables becomes a performance limiting
factor when a node sends and receives traffic from a large number of other
nodes. This scenario thus contains a large number of active nodes. Every

70 CHAPTER 6. SIMULATIONS AND RESULTS

node at the access rings sends frames to any other node in a random fashion.
It does this by first randomly drawing a node to send to, and then send
between one and three frames to this node. It then draws a new receiver.
The random receiver sending pattern is a worst case scenario with respect to
the SRCS tables. If a node communicates with all other nodes, it needs an
entry for all other nodes in this table.

In this scenario, all nodes send 500 byte low priority frames. The time in-
terval between each transmission is a random number, uniformly distributed
between 0 and 300 µs. On average, each node transmits a 500 byte frame
every 150 µs, giving an effective send rate of approximately 3.3 Mbyte/s for
each node.

Every end node in the network must keep and maintain an SRCS table. A
bridge acts like a node in all the networks it interconnects. It must therefore
keep an SRCS table for each of its ports. In addition, the relay part of the
bridge keeps its usual filtering database with host-to-port mappings. Figure
6.6 shows the placement of the different tables kept in bridge b0 in this
scenario.

(Bridge Protocol Entity, Bridge Management o.l.)
Higher layer entities

Relay
(MAC method independent functions)

M2 port

Remote
station

Local
station

Recently
used

Station Port

Remote
station

Local
station

Recently
used

C34 b3 0

1

0

0

F2

D169

E18 1

0A169

B2

b1

b1

b2

F16

A182

b6

b5

b4

b6

M1 port

1

1

B52

A166

D69

M1

M1

M2

... ...

... ...

...

Figure 6.6: Bridge b0 maintains a separate SRCS table for M1 and M2. Note that
all entries in the M1 table must come from rings A-C, while all entries in the M2
table must come from rings D-F. In addition, the relay part of the bridge contains
the normal filtering database.

Normally, the SRCS tables of all nodes would initially be empty. As seen

6.2. SCENARIO 2: FILLING THE SRCS TABLES 71

in the previous simulation, a number of floods is necessary with the enhanced
bridging algorithm even without limited SRCS table sizes. This flooding
occurs before the learning processes in the end nodes have converged, and
the SRCS tables have been built. With 1200 active nodes, as in this scenario,
the time before this stable state is reached becomes very long. The purpose
of this simulation is not to see how the number of floods is reduced as the
SRCS tables are built in the end nodes. This was illustrated in the previous
scenario. Instead, this simulation seeks to investigate at which level the
number of floods stabilises, depending on the size of the SRCS tables. Hence,
the traffic characteristics in the initial learning period is not of interest. In
this simulation, the end nodes are therefore equipped with non-empty SRCS
tables at the start of the simulation time. The tables are filled up with entries
for a randomly chosen set of remote nodes. Thus, the extra flooding needed
in the initial learning period is eliminated in this scenario.

As emphasised in section 4.3, there are two learning processes taking
place in an enhanced bridging network. In addition to the learning in all
the end nodes, there is also the normal learning process in the bridge relays.
For the same reasons as stated above, the filtering database in the bridge
relays are also pre-filled in this scenario. The bridge relays have a complete
picture of the network at simulation startup, and will thus never perform any
unnecessary frame forwarding.

6.2.3 Collected data

Two key metrics are chosen to illustrate how the network performance is
affected by the SRCS table sizes. First, the flooding count is used in the same
way as in scenario 1. The main objective of the enhanced bridging algorithm
is to eliminate unnecessary flooding in the network, and the flooding count
therefore becomes a good measure for how well this algorithm works with
reduced SRCS table sizes. The flooded frames gives an increase in the traffic
load in the network. To show the significance of this increase, the second
metric used in this scenario is the traffic throughput in two selected nodes.
The flooding count and the measured throughput will be discussed separately
below, before an overall discussion is provided at the end of this section.

6.2.4 Flooding

Figure 6.7 shows how the number of floods varies over time in a network with
nodes that can keep 350 or 700 entries in their SRCS tables. As in scenario
1, the “number of floods” means that every time a frame is flooded over any
one of the rings, a count is made. The time period over which the number of

72 CHAPTER 6. SIMULATIONS AND RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500

N
um

be
r

of
 f

lo
od

s

Time / microseconds

Flooding count - SRCS table size 350 and 700

350
700

Figure 6.7: After the initial learning period, the amount of flooding is relatively
stable over time. The graph shows the flooding count over time when the SRCS
tables can keep 350 and 700 entries.

floods is counted, is 100000 simulator time units, equalling 100 µs. As seen
from the graph, the number of floods is relatively stable over time. This is
as expected. No initial learning period is needed, and the probability that a
remote destination node is not in the sending node’s SRCS table is constant.

The peak in the flooding count at the very beginning of the time period,
is due to the sending pattern of the active end nodes. When the simulation
starts, every node transmits its first frame almost immediately. After that,
the time before the next frame is transmitted is randomly drawn as explained
above. It thus takes some time before the transmit times of all the nodes are
uniformly spread over the time line.

In figure 6.8, the average number of floods per 100 µs time period is
shown for different SRCS table sizes, ranging from 0 to 1200. This average is
calculated for each table size as the arithmetic mean of the flooding counts
measured for that particular table size. For each table size, the number of
floods is measured the same way as for the examples shown in figure 6.7.
The average value in this series of measures is then calculated, and results in
one value in figure 6.8. To avoid the initial flooding peak seen in figure 6.7,
the first three values are omitted in this calculation.

The two graphs in figure 6.8 illustrates two different possibilities in the
scenario. In the upper graph (6.8a), the SRCS tables in the bridges are
variable, just as in the normal end nodes. In the lower graph (6.8b), these

6.2. SCENARIO 2: FILLING THE SRCS TABLES 73

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200

N
um

be
r

of
 f

lo
od

s

SRCS table size

Variable SRCS table sizes in the bridges

total
central rings
access nodes

access bridges

(a)

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200

N
um

be
r

of
 f

lo
od

s

SRCS table size in end nodes

Unlimited SRCS table sizes in the bridges

total
central rings
access nodes

access bridges

(b)

Figure 6.8: The plots show how the number of floods in the network is reduced
with growing SRCS table size. The right plot shows that when the size of the SRCS
tables in the bridges is unlimited, no flooding takes place on rings M1 and M2

tables are of “unlimited” size, meaning large enough to keep entries for all
the remote nodes in the network. The idea here is that the bridges are more
important than the other nodes in this context, because they flood frames
sourced by many other nodes. The SRCS table sizes in the bridges will thus
be more important to the overall network performance.

Figure 6.8 shows the total number of floods in the network, but also

74 CHAPTER 6. SIMULATIONS AND RESULTS

the flooding count for different kinds of nodes. The flooding count is given
separately for the end nodes on the access rings (access nodes), the bridge
interfaces on the access rings (access bridges), and the bridge interfaces on
rings M1 and M2 (central rings).

Figure 6.8a, shows the number of floods in the network when the SRCS
table size in the bridges vary in the same way as in the end nodes. The total
number of floods in the network is the sum of the floods from the end nodes
in rings A to F, and the frames flooded by the bridges on rings M1 and M2.
The bridges only flood frames onto the access rings when the SRCS table
size is zero, as will be explained below. The flooding count decreases steadily
with increasing SRCS table size. When the table size reaches 1000, no more
flooding will occur in the network, as all remote nodes are kept in the SRCS
tables. Note that the graph for the number of floods made on rings M1 and
M2 (central rings) makes a break when the SRCS table size reaches 600. This
is due to the learning process in bridge b0. b0 receives traffic from 600 nodes
on each of its ports, and the learning process thus completes when the SRCS
table can keep 600 entries.

In figure 6.8b, the bridges are equipped with SRCS tables that are large
enough to keep an entry for all the nodes in the network. The plot shows
that the bridges no longer flood frames on rings M1 and M2. Only the end
nodes on rings A to F now flood frames. Hence, the “total” graph in figure
6.8b is the same as the “access nodes” graph. The exception again is SRCS
table size 0, when traffic must be flooded on the access rings.

The flooding count is noticeably higher for a SRCS table size of 0 than for
one of 50. This is the case in both of the plots in figure 6.8, and comes from
an increased flooding from the bridge nodes. To find an explanation for this,
recall from the discussion in section 4.2 that bridges using the basic bridging
strategy always must flood frames on all rings to ensure correct learning in
the bridge relays. This is also true for “enhanced” bridging with SRCS table
size 0. Enhanced bridge nodes normally send the frames directly to the local
receiver on the egress ring, without any flooding. But since the receiver node
cannot store the address of the local sender (bridge) in the SRCS table, it
will have to flood the reply. This would lead to the same bridge learning
problems as described for basic bridging in section 4.2. A SRCS table size
of zero thus gives the same flooding and throughput characteristics as would
basic bridging. Once the SRCS tables in the end nodes get a size greater than
zero, this problem does no longer occur, and bridges may send the frames
directly to the local receiver. Even if the size of the SRCS table is small, the
node will be able to reply without flooding to the nodes that it most recently
received traffic from. There can exist traffic scenarios where this strategy can
lead to additional flooding, and thus give a poorer utilisation of the network

6.2. SCENARIO 2: FILLING THE SRCS TABLES 75

resources. This is, however, not the case with the topology described in this
scenario.

We note that the flooding count for the access bridges equals the count
for the end nodes for SRCS table size 0 in figure 6.8b. This is as expected;
a remote frame that is flooded by the sender on the ingress ring, must also
be flooded by the relaying bridge on the egress ring. Figure 6.8a, however,
shows a lower flooding count for the access bridges than for the end nodes.
The huge amount of flooding on rings M1 and M2 leads to buffer overflow in
bridge b0, and frames are discarded. If no frames were discarded this value
would, as in the plot to the right, be equal to the end node flooding count.

6.2.5 Throughput

As seen in scenario 1, there is a close relation between the amount of flooding
in the network and the traffic load. Flooding causes more frames to be sent
over each link in the network on average. Figure 6.9 shows the throughput for
two selected nodes. The throughput in a node means the combined through-
put of the two incoming links in this node. As with the flooding above, figure
6.9a shows the case with variable SRCS table sizes in the bridges, while figure
6.9b shows the case where the bridges have “unlimited” SRCS table sizes.

The first measured node resides on ring A, the second node is the ring
M1 interface of bridge b0. The node on ring A is situated 50 hops from the
bridge. This way, remote frames from a quarter of the nodes on the ring will
pass through it in the case of enhanced bridging with “unlimited” SRCS table
sizes. The node thus experiences a traffic throughput that is the average of
all the nodes on the access rings.

Looking first at the throughput in the ring A node, we see that this is the
same in the two plots. The intuition behind this is that only end nodes flood
frames on the access rings when the SRCS table size is greater than zero, as
discussed above. The throughput on the access rings are thus not affected
by the size of the SRCS table size in the bridges. The exception again, is
for table size zero. In this situation, frames must be flooded onto the access
rings by the relaying bridges, and causes increased traffic. Just like for the
flooding count, the throughput on the access rings in the zero-table case is
not the same in the two plots. As discussed above, the huge amount of traffic
when the bridges are forced to flood frames on rings M1 and M2 causes buffer
overflow in bridge b0. This leads to packet loss, and reduces the number of
frames flooded onto the access rings.

Turning now to the throughput in bridge b0, we see that this value is
far from the same in the two plots. When the bridges have unlimited SRCS
table sizes, the throughput in b0 is stable, independent of the SRCS table

76 CHAPTER 6. SIMULATIONS AND RESULTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t /

 f
ra

m
es

SRCS table size

Variable SRCS table sizes in the bridges

Bridge b0
Ring A node

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t /

 f
ra

m
es

SRCS table size in end nodes

Unlimited SRCS table sizes in the bridges

Bridge b0
Ring A node

(b)

Figure 6.9: The plots show that the throughput on the access rings decreases with
increasing SRCS table size. This decrease is the same whether the SRCS table size
in the bridges are limited or not. With infinite SRCS table sizes in the bridges, no
flooding occurs on rings M1 and M2, so the throughput in b0 is stable.

sizes in the end nodes. No flooding takes place on rings M1 and M2, since
only bridges with unlimited SRCS table sizes are attached to these rings.
This is not the case in the graph to the left, where the SRCS table size in
the bridges vary along with the tables in the end nodes. In this case, the
throughput in bridge b0 decreases with increasing SRCS table size, as less

6.2. SCENARIO 2: FILLING THE SRCS TABLES 77

flooding is needed on ring M1. When the SRCS table size reaches 1000, all
nodes that the bridges on rings M1 and M2 receive traffic from are kept in
the tables. No more flooding is needed on these rings, and further increasing
the SRCS table size does not reduce the amount of traffic. Note that there is
no reduction in the throughput in b0 when the SCRS table size is increased
from 0 to 100. This is again caused by overflow in one of the bridges. 400
frames of 500 bytes passing through node b0 each 100 µs interval, means that
the throughput in each of the ringlets is 1Gbyte/s. This is the link speed in
this scenario, and no further increase in throughput is possible.

6.2.6 Discussion

This scenario has illustrated how the traffic in a bridged RPR network is
affected by the size of the SRCS table size in the bridges and end nodes. We
have seen that reducing the size of these tables leads to more flooding, and
thus an increased traffic load in the network. A few further observations are
worth noting.

The situation with zero-sized SRCS tables in both the bridges and the
end nodes, means that we have basic bridging on all rings. In this case, of
course, all remote traffic is flooded on all rings. In this situation, the traffic
load becomes too heavy in this scenario, and forces frames to be discarded
in bridge b0.

The situation with infinite SRCS table sizes in the bridges and zero-
sized tables in the end nodes, corresponds to having basic bridging in the
access rings, and enhanced bridging on rings M1 and M2. This scenario thus
illustrates how these two bridging strategies can co-exist in the same network.
In this case, the traffic throughput is reduced by 45% in bridge b0, compared
to the all-basic situation.

Finally, unlimited SRCS table sizes in both the bridges and the end nodes,
means that we have “pure” enhanced bridging on all the rings. In this sce-
nario, this gives a reduction in the throughput of 45% in bridge b0, and 73%
in the measured node on ring A compared to the all-basic situation. Note
that the reduction in throughput is the same in bridge b0, regardless of which
bridging algorithm is used in the access rings.

The motivation for reducing the SRCS table sizes in the first place, was to
reduce the amount of extra memory needed in the nodes in an RPR network.
The size of the SRCS tables increases linearly with the number of nodes in
a bridged network. The amount of data stored in each entry does not have
to be large. Enough data must be stored to keep the MAC address of the
remote node, and identify the bridge that is the local destination for traffic
for that node. Some control information associated with each entry might

78 CHAPTER 6. SIMULATIONS AND RESULTS

also be wanted, in addition to the mentioned recently used bit which allows
old values to be discarded when the SRCS table is full. For instance, a time
stamp on each entry could be needed, so that erroneous entries will eventually
be removed in case of a topology change. With six byte MAC addresses
used to identify both local and remote nodes, and eight bytes reserved for
control information, each entry in the SRCS tables would demand 20 bytes
of memory. Bridged networks can be of considerable size, but they encounter
some scaling problems when they become very large, as mentioned in section
3.4. For all practical purposes, a bridged network consisting of more than
10000 nodes would seem like a bad idea - the practical limit is probably well
below this number. In a network consisting of 10000 nodes, using 20 byte
entries in the SRCS tables, each node would need 200 kilobytes of memory
to keep these tables.

The simulated scenario confirms that reducing the SRCS table sizes to
save memory makes a bridged network less effective with respect to band-
width utilisation. The graphs in figure 6.9 suggest that there is a linear
connection between the SRCS table size and the traffic load produced by a
node on the ring.

More stable traffic sessions between pairs of nodes could probably make
better use of the cache-like SRCS tables than in this scenario. Running this
simulation with a more realistic traffic pattern would probably give a better
“cache hit rate”, and thus better bandwidth utilisation. Still, there is no
doubt that the network performance would be affected by reduced SRCS
table sizes. The relatively small amount of memory needed would normally
seem like a price well worth paying for avoiding this efficiency reduction.

6.3 Scenario 3: Bridging impact on service level

The first and second scenarios both described situations that are probably
far from a real-life traffic scenario. This last scenario moves more in the
direction of a realistic setting. An effort is made to make the traffic on the
ring look like the traffic found in a typical network today.

The goal of this scenario is to show how the choice of bridging strategy
affects the local traffic on an RPR ring. The simulations performed indicate
that the reduced amount of traffic produced with the enhanced bridging
algorithm gives lower latency for the best effort traffic on the ring.

6.3. SCENARIO 3: BRIDGING IMPACT ON SERVICE LEVEL 79

6.3.1 Self similar traffic

Studies of traffic traces in an Ethernet environment show that this traffic is
statistically self-similar [21]. The same is true for wide-area/Internet traffic
[25]. The intuitive characteristic of this traffic is that there is no natural
length of a “burst”. Independent of the time scale of the measures, similar-
looking traffic bursts in the traffic traces are observed. Both local and remote
(bridged) Ethernet traffic shows self-similar characteristics, as well as exter-
nal TCP traffic. Mathematically, the degree of self-similarity in a traffic
trace is expressed by the Hurst parameter. The Hurst parameter is a value
between 0.5 and 1.0, and the degree of self-similarity increases as the Hurst
parameter approaches 1.0. Through analysing a huge amount of Ethernet
traffic, Leland et al. [21] estimated the Hurst parameter for such traffic to be
about 0.9.

The self-similar nature of network traffic has consequences for the mod-
elling of networks [25]. Traditional formal models used in simulations are
often based on Poisson probability distributions, which produce traffic that
is very different from the self-similar traffic found in actual network traces.
A way to model traffic with a more self-similar nature is discussed below.

Internet/WAN

Flow F

Ring A Ring B
b

2

3

4

5

6

7

R
1

10 ON/OFF packet sources

Figure 6.10: The active nodes in this scenario are connected to the outside world
through a router placed on the other side of a bridge.

80 CHAPTER 6. SIMULATIONS AND RESULTS

6.3.2 Topology

The network topology used in this scenario is shown in figure 6.10. The
active nodes in this configuration are placed on ring A. These are connected
to the outside world through node R, which is placed on ring B. The two
rings are connected by a bridge, named b. This way, all traffic between the
nodes on ring A and the Internet must pass through bridge b.

Each of the rings consist of eight nodes. These are linked with cables of
about 1000 metres, giving a total ring span of about 8 km. The links have a
capacity of 8 Gbps, like in both the previous scenarios.

6.3.3 Traffic pattern

The main objective of this scenario is to illustrate how the choice of bridging
strategy influences the local traffic on an RPR ring. This is done by letting
nodes 1, 3, 5 and 6 on ring A produce self-similar traffic destined for node
R on ring B. At the same time, node 4 sends a continuous flow of 500 byte
frames at 20% of the link capacity to node 7. This constant stream of frames
is named flow F. All the traffic in this scenario is low priority traffic using
the best effort class C service class discussed in section 2.3.

Self-similar traffic can be modelled by superpositioning several ON/OFF
packet sources, if the length of the ON and OFF periods of these sources
have infinite variance [34]. Probability distribution functions with high or
infinite variance are often called heavy-tailed distributions, due to the shape
of their graph. One such heavy-tailed distribution is the Pareto distribution,
shown in equation (6.1). In this function α is known as the shape param-
eter and decides the thickness of the “tail”, while the location parameter b
decides the scale of the x-axis. The expected value of a Pareto-distributed
random variable is given in (6.2). Note that an α value smaller than 1.0
gives an undefined (infinite) expected value. A nice feature of the Pareto
distribution is that there is a simple relation between the α parameter and
the Hurst parameter describing the degree of self-similarity of the generated
traffic (H = (3− α)/2)

P (x) =
αbα

xα+1
x ≥ b (6.1)

E(X) =
αb

α− 1
α > 1 (6.2)

Returning to this scenario, each of the active nodes on ring A have ten
independent ON/OFF sources. The length of the ON/OFF periods of these
sources are Pareto distributed with an α value of 1.2. This choice of α gives

6.3. SCENARIO 3: BRIDGING IMPACT ON SERVICE LEVEL 81

a Hurst parameter of 0.9, which is the value estimated for Ethernet traffic in
[21]. The b parameter for the ON periods is set to 40. This gives a minimum
frame size of 40 bytes, chosen because it is equivalent to the minimum TCP
packet size. The long-tailed nature of the Pareto distribution will sometimes
result in ON periods giving frames that are much longer than 1522 bytes,
which is the maximum frame size in RPR networks not supporting jumbo
frames as discussed in section 2.2. Such frames are split into several 1500
bytes frames.

The b parameter for the OFF period is used to regulate the load in the
network. A load of 0.5 means that the forty ON/OFF sources in the four
active nodes in total transmit frames half of the time. By using the expected
values of the ON and OFF periods, it can be shown that the b parameter
corresponding to a desired load L is given by (6.3). Note here that due to the
dual ring and spatial reuse properties of RPR, a load of 0.5 does not mean
that a link is busy half of the time, unless all nodes send traffic over the same
span of the same ringlet at the same time.

bOFF = bON(
1

Li
− 1) where L =

N∑

i=1

Li and αOFF = αON

(6.3)

Figure 6.11 shows the self-similar traffic produced by the ON/OFF senders
in nodes 1, 3, 5 and 6. The plots show the number of bytes passing node 7
in both directions per time unit. The measures are made with a load of 0.3,
and using the basic bridging algorithm. Figure 6.11 shows how self-similar
traffic is bursty on several time scales. In contrast, Poisson distributed traffic
would give smoother plots when the time scale was increased.

In this scenario, nodes 1, 3, 5 and 6 send traffic to router R, which acts as
a gateway to the outside world. However, no traffic is returned from router
R, except for a response to the first frame received from each of the senders
to allow the initial learning. This does not give a very realistic traffic scenario
- one would expect at least as much traffic returning from the Internet to
the end nodes. The reason why this traffic is left out of the simulation, is
that this traffic would never affect the frames in flow F. Using bidirectional
flooding as discussed in section 4.2, traffic forwarded on ring A, by bridge
b, will always use the opposite ringlet on this span of the ring. This traffic
could therefore not cause congestion that would have impact on the latency
from node 4 to node 7.

82 CHAPTER 6. SIMULATIONS AND RESULTS

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400

B
yt

es

Time in microseconds

1 microsecond time scale

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

B
yt

es

Time in microseconds

10 microsecond time scale

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
yt

es

Time in microseconds

100 microsecond time scale

Figure 6.11: These plots show how self-similar traffic produced by nodes 1, 3, 5
and 6 is bursty on different time scales.

6.3. SCENARIO 3: BRIDGING IMPACT ON SERVICE LEVEL 83

6.3.4 Collected data

In this simulation, the latency is measured for the frames in flow F. The
goal is to find out how this latency is influenced by the traffic load in the
network and the choice of bridging strategy. Latency in this scenario is
measured as the time it takes from a frame is at the head of the sender
node’s MAC client add queue, to the frame is received by the MAC client
at the destination. This time will vary depending on how long the frames
have to wait for transmission in the ingress buffer in node 4, and the transit
buffers in nodes 5 and 6.

Node 4 sends a constant stream of 500 byte frames to node 7 at 20%
of the link capacity. This sending goes on for about 4 ms. The latency of
each frame is recorded when it arrives at node 7. Figure 6.12 shows how
the latency varies for the frames with different traffic loads and bridging
strategies. Most of the frames are gathered in the low end of the scale, but
the number of frames with a significantly higher latency is not negligible.
The arrow in figure 6.12 points out the 90th percentile (also called the 0.9
quantile) for the data set. The 90th percentile denotes the value on the x
axis so that 90% of the measures are smaller than this value. This value gives
a good indication of the latency properties for the data stream in question,
since a few extreme values will not inflict on the result. As the collected
data shows, the latency can never drop below 15 µs. This is the aggregate
propagation delay from node 4 to 7. Frames that are not held back in any
buffers along the way will achieve this minimum latency.

The six plots in figure 6.12 shows that the latency and jitter characteris-
tics of the traffic depends on the traffic load in the network, and the choice
of bridging strategy. A higher traffic load results in more periods with con-
gestion and thus higher latency for some of the traffic. In the upper plot in
figure 6.13, the 90th percentile for the latency is plotted for different network
loads, with both basic and enhanced bridging. Each point on the graphs
represents the average value for the 90th percentile found by repeating the
simulation 20 times with a different seed in the random generator.

The 20 measured values for the 90th percentile do not seem to follow
a normal distribution. Hence, it is not a simple task to calculate a confi-
dence interval for the 90th percentile using the arithmetic mean of the 20
values as an estimator. However, using instead the median as an estimator,
a confidence interval can easily be found. The lower plot in figure 6.13 shows
the 90th percentile estimated this way, with a 95% confidence interval. The
size of the confidence intervals show that the variance in the measured 90th
percentile is high for some of the loads.

84 CHAPTER 6. SIMULATIONS AND RESULTS

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Basic bridging, load = 0.3

1595

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Enhanced bridging, load = 0.3

1814

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Basic bridging, load = 0.6

948

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Enhanced bridging, load = 0.6

1597

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Basic bridging, load = 1.0

156

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100

Fr
am

es

Time in microseconds

Enhanced bridging, load = 1.0

897

90th percentile

Figure 6.12: The fraction of frames that experience a low latency drops with in-
creasing traffic load. Each bar in these plots represent a 100 ns time interval, and
a total of 1960 frames was measured.

6.3. SCENARIO 3: BRIDGING IMPACT ON SERVICE LEVEL 85

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

L
at

en
cy

 /
µs

Load

90th percentile latency from node 4 to node 7 - arithmetic mean

Basic bridging
Enhanced bridging

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

L
at

en
cy

 /
µs

Load

90th percentile latency from node 4 to node 7 - median

Basic bridging
Enhanced bridging

Figure 6.13: The latency from node 4 to node 7 increases when the load on the
network grows. The enhanced bridging algorithm gives noticeably lower latency
than the basic algorithm. The upper plot shows the 90th percentile as the arith-
metic mean of the 20 simulated values. In the lower plot, the median is used as an
estimator for the 90th percentile. This allows the calculation of a 95% confidence
interval.

86 CHAPTER 6. SIMULATIONS AND RESULTS

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 3000 3200 3400 3600 3800 4000

B
yt

es

Time in microseconds

Traffic load

 14
 16
 18
 20
 22
 24
 26
 28

 3000 3200 3400 3600 3800 4000

L
at

en
cy

 in
 m

ic
ro

se
co

nd
s

Time in microseconds

Latency of arriving frames

Figure 6.14: There seems to be a clear connection between the number of bytes
arriving at node 7, and the latency of the frames it receives from node 4. These
measures are made over the same time period, with a load of 0.4 using basic
bridging.

6.3.5 Analysis and discussion

Not surprisingly, the results presented in figure 6.13 suggests that there is a
clear connection between the traffic load in an RPR network and the latency
characteristics. This connection is perhaps even more visible in figure 6.14.
Here, the latency of the arriving frames are plotted on the same time scale
as the traffic load as seen from node 7. This figure shows that the latency in
flow F increases in periods when the traffic load is high.

With increasing traffic load in the network, the difference between the
basic and the enhanced bridging algorithm becomes significant. As shown
in scenario 1, enhanced bridging reduces the amount of traffic on the ring.
In this scenario, flow F goes on the outer ringlet. It has to compete for the
bandwidth on this particular ringlet span with different other traffic flows.
With enhanced bridging, only frames from nodes 5 and 6 will utilise the
same bandwidth. Traffic from nodes 1 and 3 will use the inner ringlet to
reach bridge b. In the basic case, all remote traffic from nodes 1, 3, 5 and 6
will be bidirectionally flooded on the ring. This means that frames from all
four senders will pass over some or all of the outer ringlet between nodes 4
and 7. This explains why basic bridging gives a higher traffic load on these
links, and thus higher latency.

Note here that the placement of the active senders will influence the
simulation results. This is true for both the active node in flow F, and the
four other traffic-generating nodes. The fact that frames in flow F always
move towards the bridge, allows us to ignore traffic from the outside world
forwarded onto ring A by bridge b. As explained above, this traffic will

6.4. SUMMARY 87

normally use the opposite ringlet between nodes 4 and 7. Moving the active
sender in flow F to another location on the ring, could change this situation.
Also, moving the other active nodes would change the amount of traffic
competing with flow F for the bandwidth from node 4 to 7.

The simulations here described, show that there is a connection between
the choice of bridging mode and the latency properties of best effort traffic on
the ring. Enhanced bridging allows more traffic to be sent over the ring before
the increase in latency and jitter becomes significant. With the traffic pattern
used in this scenario, figure 6.13 shows that encanced bridging allows roughly
twice as much remote traffic to be sent through the network before the 90th
percentile latency for flow F becomes the same as with basic bridging.

Thus, enhanced bridging can implicitly give better quality of service prop-
erties to the best effort traffic class. As discussed in section 2.3, RPR offers
the class A and class B services to traffic with special quality of service re-
quirements. The time-critical class A traffic may use reserved bandwidth,
and its own high-priority transit queue in the nodes. This traffic is therefore
less likely to experience any difference in latency depending on the choice of
bridging mechanism.

6.4 Summary
This section has described three simulation scenarios where bridges are used
to interconnect RPR rings.

The first scenario focus on the learning process that takes place in the
bridges and end nodes with the enhanced bridging algorithm. Using a simple
exchange between two nodes in a bridged network, it is shown how an initial
period of flooding is needed before the learning process converges.

The second scenario focus on the effects of reducing the SRCS table sizes
in the enhanced end nodes. This simulation shows that reducing the SRCS
table size in the end nodes reduces the efficiency gain provided by enhanced
bridging.

Finally, the last scenario focus on how the choice of bridging algorithm af-
fects the local traffic on the ring. It is shown that the reduction in traffic load
achieved by enhanced bridging gives better jitter and latency characteristics
for the local traffic on the ring.

88 CHAPTER 6. SIMULATIONS AND RESULTS

Chapter 7

Conclusions and further work

The topic of this work was bridging in RPR networks. Two different bridging
algorithms for RPR was discussed in chapter 4. The basic bridging algorithm
is used in the current RPR draft standard, and relies on flooding to make
sure that remote frames are seen by the bridges on a ring. The enhanced
bridging algorithm maintains SRCS tables in the bridges and end nodes, so
that remote frames can be addressed directly to the bridges. This is done to
reduce the amount of flooding in the network, and thus give better bandwidth
utilisation.

The Java simulation model described in chapter 5 was used to compare
and evaluate the performance of the two bridging strategies. Three traffic
scenarios was constructed and simulated. Chapter 6 described each of these
three scenarios, and discussed the results.

7.1 Results

The three scenarios in chapter 6 focused on different aspects of the enhanced
bridging algorithm.

Scenario 1 confirmed that enhanced bridging achieves spatial reuse for
remote traffic, after an initial period of learning. When the learning process
converges, no more flooding is seen in the communication between a pair of
nodes. The learning process in a traffic session between a pair of nodes A
and B is complete once a frame from node A has reached node B, and a reply
has returned to node A. By eliminating the need for flooding, we have shown
that enhanced bridging at least halves the traffic load produced by a bridged
traffic flow.

The enhanced bridging algorithm relies on SRCS tables in the end nodes
and bridges. Scenario 2 demonstrated that these tables can be used as a

89

90 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

cache, where only the newest entries are kept when the table is full. The sim-
ulations showed that reducing the SRCS table sizes gives a higher amount of
flooding in the network and thus reduces the advantages of enhanced bridg-
ing. With the uniform sending pattern used in this scenario, the simulations
indicated a linear connection between the SRCS table size and the traffic
load produced by a node on the ring. This sending pattern is a worst case
scenario for enhanced bridging with reduced SRCS table sizes. A more re-
alistic traffic pattern would probably give better results for such cache style
tables. This scenario also illustrated that basic and enhanced bridging can be
used on adjacent rings, without reducing the efficiency gain on the enhanced
bridging ring.

The simulations performed in scenario 3 suggested that the choice of
bridging algorithm also affects the local traffic on the ring. The reduced
traffic load in the network when the enhanced bridging algorithm was used,
had a positive effect on the latency and jitter characteristics of the traffic
on the ring. Using simulations of self-similar remote traffic, we have shown
that with enhanced bridging, a higher traffic load can be put on the network
before the the latency and jitter of the local traffic increases substantially.
The traffic pattern used in scenario 3 allowed about twice as much traffic to
be transmitted on the network before the basic bridging latency levels were
reached.

7.2 Problem statement revisited

The goal stated in the introduction of this work was to discuss an enhanced
bridging algorithm for RPR, and to evaluate the performance of this algo-
rithm. This has at least partially been achieved.

The simulation results presented in chapter 6 clearly show that the en-
hanced bridging algorithm has performance advantages over basic bridging.
The reduced amount of flooding gives a lower traffic load in the network, and
thus more efficient use of the available bandwidth.

However, the simulations presented in this work do not give a sufficient
basis to draw general conclusions about the size of the efficiency gains given
by enhanced bridging. The effect of the enhanced bridging algorithm will
depend on the traffic pattern in the network in question. All the scenarios
described in chapter 6 rely heavily on bridges. In a scenario where only a
small fraction of the traffic is bridged, the increased demands on the nodes in
the network may be judged too steep a price to pay for the resulting efficiency
gain. More simulation results and analysis are needed before the costs can
be weighed against the benefits in such scenarios.

7.3. FURTHER WORK 91

What can be said, is that enhanced bridging allows spatial reuse of remote
traffic, and thus gives a lower traffic load on all the RPR rings involved in
a unicast traffic session. The price to pay for this is first of all the need for
more fast memory in the end nodes and bridges to keep the SRCS tables.

7.3 Further work

Scenario 2 describes the effect of reducing the SRCS table sizes in the end
nodes and bridges in an RPR network. However, the traffic pattern used in
this scenario is not well suited to take advantage of such cache-like SRCS
tables. An interesting experiment would be to set up a more realistic traffic
scenario to evaluate the idea of reduced SRCS tables. In the real world, some
servers would certainly be more popular than others, because they contain a
popular service or acts as a gateway to a larger network. Such popular nodes
would need large SRCS tables, while less loaded nodes could do with smaller
tables. The self-similar nature of network traffic should also be taken into
account in such a traffic scenario. This will probably affect the rate at which
the entries in the SRCS tables are discarded, and thus the cache hit rate.

The enhanced bridging strategy described in this work demands an initial
period of learning before spatial reuse for remote traffic is possible. During
this period, frames are flooded through the network, just as they are with
basic bridging. This could be avoided by running a global topology discovery
algorithm in scenarios where several RPR rings are connected by bridges. In
this case, each node would maintain a topology image of all other nodes
in the network, both the local and the remote ones. This strategy would
lead to more traffic being sent when the topology image is built, and when
the image is updated after a protection event or a timeout. The advantage
would be that once the image is complete, the data traffic in the network
would never have to be flooded. A node would learn the location of remote
nodes at startup, and would not be dependent on receiving traffic before
flooding can be avoided. The bridge nodes would probably get a special role
in such a global topology discovery, to avoid each node having to broadcast its
topology information through the entire network. Developing, implementing
and evaluating a global discovery algorithm for RPR could be a topic for
further research.

A discussion on the side of this work, is whether transparent bridging is at
all an appropriate way to interconnect RPR and other 802 networks. Chapter
4 mentions that transparent bridging was originally designed to operate in
shared medium networks like Ethernet. As demonstrated in this work, things
become more complicated in networks such as RPR, where spatial reuse is an

92 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

important characteristic. Being an IEEE 802 standard, RPR is required to
support transparent bridging. But it is not a priori given that this is a wise
choice of interconnection mechanism between RPR networks. Perhaps could
a layer three router perform the same task at a lower cost. In this case, each
remote frame would demand more processing in the router, since it operates
on IP addresses. A router would also require setting and maintaining routing
tables, thus increasing the management complexity of the network. On the
other hand, spatial reuse would be secured without extra demands on the
nodes on the RPR ring, and local traffic would not be affected. It has not
been the aim of this work to analyse the costs of routing traffic between
RPR networks. I can therefore not draw any conclusions on the advantages
of routing versus bridging in an RPR setting. This could be an interesting
subject for further studies.

Bibliography

[1] ANSI. ANSI T1.105.06-1996 Synchronous Optical Network (SONET) -
Physical Layer Specification (Revision of ANSI T1.106-1988), 1996.

[2] ANSI/IEEE. ANSI/IEEE Std. 802.5, 1989 Edition, 1989. IEEE stan-
dard for Token Ring.

[3] ANSI/IEEE. ANSI/IEEE Std. 802.11, 2000 Edition, 2000. IEEE stan-
dard for Wireless LAN.

[4] ANSI/IEEE. ANSI/IEEE Std. 802.3, 2000 Edition, 2000. IEEE stan-
dard for Ethernet.

[5] Peter Ball. Introduction to discrete event simulation. In Proceedings of
the 2nd DYCOMANS workshop on "Management and Control : Tools
in Action", pages 367–376, Algarve, Portugal, May 1996.

[6] Robert Castellano. Basic bridging compliance requirements for draft 1.2.
Presentation at RPR WG meeting in Hawaii, November 2002. Available
at http://grouper.ieee.org/groups/802/17/proceedings.htm.

[7] Robert Castellano. Enhanced bridging - spatial reuse of 802.17 bridge
traffic. Presentation at RPR WG meeting in Vancouver, July 2002.
Available at http://grouper.ieee.org/groups/802/17/proceedings.htm.

[8] Robert Castellano. Frame control bit consolidation - brave proposal.
Presentation at RPR WG meeting in Atlanta, January 2003. Available
at http://grouper.ieee.org/groups/802/17/proceedings.htm.

[9] Stein Gjessing and Fredrik Davik. Avoiding head of line blocking using
an enhanced fairness algorithm. Proceedings IEEE International Con-
ference on Telecommunication (ICT 2002), June 2002.

[10] David B. Gustavson. Scalable coherent interface. In COMPCON Spring
’89. Thirty-Fourth IEEE Computer Society International Conference:
Intellectual Leverage, Digest of Papers, pages 536–538, Feb 1989.

93

94 BIBLIOGRAPHY

[11] Marc Holness. Bridging on 802.17 lan with 802.1d/q compliance. Pre-
sentation at RPR WG meeting in Ottawa, May 2002. Available at
http://grouper.ieee.org/groups/802/17/proceedings.htm.

[12] Marc Holness. Rpr frame transmission proposal. Presentation
at RPR WG meeting in Hawaii, November 2002. Available at
http://grouper.ieee.org/groups/802/17/proceedings.htm.

[13] IEEE. P802.1d project authorization request.
http://www.ieee802.org/1/mirror/8021/docs2002/P802.1D revision
PAR-revised.pdf.

[14] IEEE. IEEE Std 1596, 1992. IEEE standard for Scalable Coherent
Interface.

[15] IEEE. IEEE Std. 802.1Q-1998, Draft Standard for Local and Metropoli-
tan Area Networks: Virtual Bridged Local Area Networks, 1998. IEEE
standard for transparent bridges in virtual LANs.

[16] IEEE. ISO/IEC 15802-3: 1998 [ANSI/IEEE Std. 802.1D, 1998 Edi-
tion], Information technology - Telecommunications and information ex-
change between systems - Local and metropolitan area networks - Com-
mon specifications - Part 3: Media Acess Control (MAC) bridges, 1998.
IEEE standard for transparent bridges.

[17] IEEE. IEEE Std 1394a, 2000. IEEE standard for Firewire 400.

[18] IEEE. IEEE draft P802.17/D2.1, February 2003. Draft 2.1 of the RPR
standard.

[19] ISO. ISO/IEC 7498-1 1994, Information technology - Open System In-
terconnection - Basic reference model: The BasicModel, 1994.

[20] Amund Kvalbein and Fredrik Davik. Simulation results
for enhanced vs. basic bridging. Presentation at RPR
WG meeting in New Orleans, Sept 2002. Available at
http://grouper.ieee.org/groups/802/17/proceedings.htm.

[21] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wil-
son. On the self-similar nature of ethernet traffic. In Deepinder P.
Sidhu, editor, ACM SIGCOMM, pages 183–193, San Francisco, Califor-
nia, 1993.

[22] J. Moy. Ospf version 2. Technical Report RFC 2328, IETF, April 1998.

BIBLIOGRAPHY 95

[23] R.M. Needham and A.J. Herbert. The Cambridge Distributed Comput-
ing System. Addison Wesley, London, 1982.

[24] Fabio Panziere and Santosh K. Shrivastava. A structured description
of protocols for the cambridge ring. Technical report, University of
Newcastle upon Tyne, Dec 1981.

[25] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, June
1995.

[26] Radia Perlman. A protocol for distributed computation of a spanning
tree in an extended lan. Ninth Data Communications Symposium, 1985.

[27] Larry L. Peterson and Bruce S. Davies. Computer Networks, pages 172–
174. Morgan Kaufmann Publishers, San Francisco, 2000.

[28] Larry L. Peterson and Bruce S. Davies. Computer Networks, pages 196–
197. Morgan Kaufmann Publishers, San Francisco, 2000.

[29] Floyd E Ross. An overview of fddi: the fiber distributed data interface.
IEEE Journal on Selected Areas in Communications, 7(7):1043–1051,
Sept 1989.

[30] RPRWG. Resilient packet ring 5 criteria. Available at
http://www.ieee802.org/17/documents/standards/5criteria.pdf.

[31] Mike Seaman. Loop cutting in the original and
rapid spanning tree algorithms, 1999. Available at
http://www.ieee802.org/1/mirror/8021/docs99/loop_cutting08.pdf.

[32] Bruce Tolley. Ethernet in the first mile setting the standard
for fast broadband access. Cisco White paper. Available at
http://www.cisco.com/warp/public/cc/so/neso/efmsol/efm_wp.pdf.

[33] D. Tsiang and G. Suwala. The cisco srp mac layer protocol. Technical
Report RFC 2892, IETF, August 2000.

[34] Walter Willinger, Murad Taqqu, Robert Sherman, and Daniel Wilson.
Self-similarity through high-variability: Statistical analysis of ethernet
lan traffic at the source level. IEEE/ACM Transactions on Networking,
5(1):71–86, February 1997.

96 BIBLIOGRAPHY

Appendix A

Dictionary

This dictionary contains selected terms and acronyms used in this work.
Some of the terms may have a different meaning in a different context.

Basic bridging Denotes the bridging strategy used in the current RPR
draft standard. Relies on flooding to make sure that remote frames are
seen by all bridges.

Buffer insertion Strategy used to regulate transmission in ring networks.
Frames in transit are inserted into a buffer while the node transmits
on the link.

Destination stripping Strategy where the destination node is responsible
for removing frames from the transmission medium.

EFM (Ethernet in the First Mile). Initiative in the IEEE to promote Ether-
net as a network technology used between a subscriber and the service
provider.

Enhanced bridging Denotes an improved bridging algorithm for RPR,
which allows spatial reuse of remote traffic.

Filtering database Table kept in the relay part of a transparent bridge.
Maps MAC addresses of end nodes to one of the bridge ports.

Flooding Special kind of broadcast used in RPR to make sure that a frame
reaches every node on the ring. Flooding can be either unidirectional,
using only one ringlet, or bidirectional, using both.

IEEE (Institute of Electrical and Electronics Engineers). Organisation do-
ing work in a wide range of engineering fields. IEEE is maintaining

97

98 APPENDIX A. DICTIONARY

several important standards in the field of local and metropolitan area
networks. These are gathered in the family of 802 standards.

IETF (Internet Engineering Task Force).

ISS (Internal Sublayer Services). Interface used for communication between
the MAC layer and a bridge relay..

LAN (Local Area Network).

LRU (Least Recently Used). Algorithm used to select the oldest entry in a
caching or paging system.

MAC address (Media Access Control). A globally unique address given to
a piece of hardware. Issued by the IEEE. Used for communication at
the MAC layer.

MAC layer Denotes the protocol that controls access to the transmission
medium in an 802 network. MAC addresses are used to distinguish the
nodes.

MAN (Metropolitan Area Network).

MTU (Maximum Transmission Unit). The size of the largest packet that
can be sent over a physical network.

OSI (Open Systems Interconnect). Model that describes the layering struc-
ture in a communications system.

Promiscuous mode Bridge operating mode used in early RPR draft stan-
dard proposals. Bridges operating in promiscuous mode would present
every frame passing on the ring to its relay unit.

Remote frame Frame either transmitted by or destined for a node that is
not in the local network segment.

RIF (Routing Information Field). Field in Token Ring frames to used to
describe the path of the frame.

RII (Routing Information Identifier). Bit in the Token Ring frame header
used to mark the presence of a RIF.

Ringlet Denotes one of the logical rings in a ring network with several links
between the nodes.

99

RSTP (Rapid Spanning Tree Protocol). A later version of STP that enables
faster reconfiguration of the network.

SDU (Service Data Unit). The part of a data frame that is used to carry
client data.

SRB (Source Route Bridging). An alternative bridging technology used in
Token Rings. The source is responsible for calculating the whole path
to the remote destination, and include it in every transmitted frame.

Spatial reuse When frames are stripped from the transmission medium by
the destination node in a ring network, this allows the remaining part
of the ringlet to be re-used by other traffic. This is termed spatial reuse.

SRCS (Spatial Reuse Control Sublayer). Functionality in an RPR node
supporting enhanced bridging. Responsible for maintaining a table of
mappings between global and local node identifiers, and use this table
to allow spatial reuse.

SRP (Spatial Reuse Protocol). Protocol used to achieve a fair sharing of
the bandwidth in a ring network. The precursor of RPR, developed by
Cisco Systems in the late nineties.

SRT (Source Route Transparent). The successor of SRB, which allows the
co-existence of the transparent and source route bridging strategies in
a network.

Steering Protection mechanism used in RPR. The sending node uses its
topology image to choose the right ringlet for transmission, so that a
point of error can be avoided.

STP (Spanning Tree Protocol). Algorithm used by the Bridging Protocol
Entity to ensure that a bridged LAN is cycle-free.

VLAN (Virtual LAN). Traffic in a network can be made to appear to belong
to a private LAN, by marking it with identifying tags.

VOQ (Virtual Output Queueing). Technique used to avoid head-of-line
blocking in queues with multiple outputs. Used in RPR to improve
bandwidth utilisation.

WAN (Wide Area Network).

100 APPENDIX A. DICTIONARY

Wrapping Protection mechanism used in RPR and other dual ring net-
works. Frames reaching a point of failure are wrapped back on the
opposite ringlet.

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Simulation model
	1.4 The structure of this paper

	2 Resilient Packet Ring
	2.1 RPR in context
	2.1.1 Network topologies
	2.1.2 Existing ring technologies
	2.1.3 Why RPR?
	2.1.4 Access scenarios
	2.1.5 A word on IEEE 802

	2.2 Major design issues
	2.2.1 RPR frame format

	2.3 The MAC data path
	2.3.1 Frame transmission
	2.3.2 Frame reception
	2.3.3 Stripping frames from the ring

	2.4 The MAC control sublayer
	2.4.1 Protection
	2.4.2 Fairness
	2.4.3 Ringlet selection
	2.4.4 Topology discovery
	2.4.5 Operations, Administration and Maintenance (OAM)

	2.5 Summary

	3 Bridging
	3.1 Bridging in context
	3.2 Transparent bridging
	3.2.1 Conceptual model of a transparent bridge
	3.2.2 Transparent bridging example
	3.2.3 The Spanning Tree Protocol

	3.3 Source Route Bridging
	3.3.1 Source route bridging example

	3.4 The limitations of bridging
	3.5 Summary

	4 Bridging RPR networks
	4.1 The ideal case
	4.2 Basic bridging in RPR
	4.2.1 Promiscuous mode and its discontents
	4.2.2 Flooding

	4.3 An improved bridging algorithm
	4.3.1 SRCS tables
	4.3.2 Frame format
	4.3.3 The learning process

	4.4 Summary

	5 The Java simulation model
	5.1 Discrete event simulators
	5.2 About this simulation model
	5.3 The important classes
	5.3.1 Kernel.java
	5.3.2 Packet.java
	5.3.3 ApplicationHigh.java and ApplicationLow.java
	5.3.4 DualNode.java
	5.3.5 Node.java
	5.3.6 Link.java
	5.3.7 Srcs.java
	5.3.8 Relay.java
	5.3.9 Reporter.java

	5.4 About the development of this model
	5.5 Summary

	6 Simulations and results
	6.1 Scenario 1: A simple flow
	6.1.1 Topology
	6.1.2 Traffic pattern
	6.1.3 The metrics
	6.1.4 Analysis of the results
	6.1.5 Discussion

	6.2 Scenario 2: Filling the SRCS tables
	6.2.1 Topology
	6.2.2 Traffic pattern
	6.2.3 Collected data
	6.2.4 Flooding
	6.2.5 Throughput
	6.2.6 Discussion

	6.3 Scenario 3: Bridging impact on service level
	6.3.1 Self similar traffic
	6.3.2 Topology
	6.3.3 Traffic pattern
	6.3.4 Collected data
	6.3.5 Analysis and discussion

	6.4 Summary

	7 Conclusions and further work
	7.1 Results
	7.2 Problem statement revisited
	7.3 Further work

	Bibliography
	A Dictionary

