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Abstract 
 

Streamflow data from gauged catchments plays an important role for water resources 

management applications such as water resource planning, flood risk management and 

assessment of the impact of environmental- and climate change. A hydrological model 

successful at predicting in ungauged basins is needed for hydrological estimation for the 

million basins around the globe that are ungauged and has a great potential for better 

predicting the hydrological consequences of climate change.  

This study aimed at evaluating the DDD model and its performance on predictions in 

ungauged basins, as well as comparing and evaluating different regionalization methods on 

catchments in Norway. Regionalization is defined as methods that allow for the transfer of 

hydrological information from gauged catchments to ungauged catchments. The comparison 

of methods was done at two levels, as a whole over Norway, as well as regionally for 

catchments in specific regions over Norway. This study shows that the new and improved 

DDD model is good at predicting hydrology in ungauged basins, with average Kling-Gupta 

efficiency values ranging from 0.7 up to 0.77 for the different regionalization methods. The 

different regionalization methods perform satisfactorily, with good KGE scores.    

The best regionalization method to use was the multiple regression method, in which the 

average KGE value were 0.77, compared to 0.72 and 0.7 for the output average and 

parameter average, respectively.  
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1 Introduction 

Streamflow data from gauged catchments plays an important role for water resources 

management applications such as water resource planning, flood risk management and 

assessment of the impact of environmental change (Blöschl & Montanari, 2010). However, 

there is also needs for streamflow data in ungauged catchments, where no measurement 

equipment has been set up. To predict runoff at such ungauged sites has long been 

recognized as one of the major challenges in scientific and operational hydrology (Skaugen, 

2018). A hydrological model successful at predicting runoff in ungauged basins is needed for 

hydrological estimations for the millions of basins around the globe that are ungauged. These 

basins need a good estimation on runoff, to not only check if the area is suited for things like 

a hydropower plant, but also to check the consequences of climate change. For catchments 

with streamflow data available, the runoff is commonly predicted by a hydrological model 

calibrated using the observed input and streamflow data. Having said that, many hydrological 

models does not directly work in catchments where the observed runoff data is unavailable 

for model calibration (He et al., 2011). Since most of the catchments around the world lack 

proper discharge measurements, the International Association of Hydrological Sciences 

(IAHS) launched a “Decade on Predictions in Ungauged Basins (PUB): 2003-2012” with the 

goal of improving the PUB (Sivapalan et al., 2003).  

Throughout the decade, a wide range of new methods were developed to predict discharge 

in catchments lacking streamflow data (e.g., Merz & Blöschl, 2004 & Parajka et al., 2007). 

Meeting the challenge of predictions in ungauged basins (PUB) largely depends on the ability 

to extrapolate hydrologically relevant information from gauged catchments to the ungauged 

catchments, a process called regionalization. The gauged catchments are often called donor 

catchments whilst the ungauged catchments are called target catchments. Regionalization 

methods are considered the most standard approach to predicting runoff in ungauged basins 

(Hrachowitz et al., 2013). In this study two regionalization methods were used, physical 

similarity and regression. Physical similarity assumes that catchments with similar physical 

characteristics have similar hydrological response (Kokkonen et al., 2003). Therefore, 

hydrological prediction in ungauged basins using physical similarity borrows information from 

physically similar catchments. In this method, the model parameter set from the most 

physically similar donor catchments is transferred to the target catchment, using a similarity 

index (McIntyre et al., 2005). In the regression-based method functions are established 

between the model parameters and the catchment characteristics for the donor catchments. 

The assumption behind the regression is that there is a linear relationship between the 
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hydrological model parameters and the catchment characteristics, and that this relationship 

can be transferred from gauged to ungauged catchments (Poissant et al., 2017).  

 

A review of the decade by Hrachowitz (2013) have been published and points out that even 

though not all goals for the decade has been reached, several insights on hydrological 

processes, data quality and use, principles of hydrological modeling and assessments of 

uncertainty were found. One of the important insights learned was the advantages of 

parameter parsimonious models for the PUB. A common problem in hydrological modeling is 

overparameterization, which makes parameter identification very difficult (Kirchner, 2006). 

This is obviously a huge problem in predictions for ungauged basins as the model 

parameters are often determined from catchment characteristics or hydrological information 

from other gauged basins (Yadav et al., 2007). Several studies, such as Seibert (1999) and 

Young (2006), discussed the advantages of having few, clearly identifiable model 

parameters.  

 

Several approaches have been suggested and tried to make progress in predicting 

ungauged basins. Seibert (1999) used the Swedish Hydrologiska Byråns Vattenbalans 

model (HBV; Sælthun 1996), to investigate the regionalization of model parameters. The 

HBV model was calibrated for 11 catchments in Sweden, and the task was to relate the 

model parameters to catchment characteristics. He found out that only six of the 13 model 

parameters could be related to the catchment characteristics. It was further pointed out that 

the parameter uncertainty complicated the regionalization, and the suggestion was to include 

additional observed data into the calibration process. Including additional observed data into 

the calibration process was seen as a way to constrain the model parameters further. Other 

studies have also attempted such a procedure using the HBV model. Bergström et al. (2002) 

found a decrease in precision of the run-off simulation when water quality data is included in 

the calibration, while Parajka & Blöschl (2008) found a small increase in precision when 

optical satellite scenes of snow cover were included in the calibration. Merz & Blöschl (2004) 

did a large-scale study where they wanted to regionalize the model parameters of the HBV 

model. When the HBV-model was calibrated for 308 catchments in Austria, only weak 

correlations were found between the model parameters and the catchment characteristics, 

and their conclusion was that it is extremely difficult, if at all possible to find universal 

relationships between the catchment characteristics and the model parameters. Young 

(2006) used a large dataset of 260 catchments in the United Kingdom to look at the 

regionalization in the Probability-Distributed Moisture (PDM) model (Moore, 1985). This 

model only had six model parameters to regionalize compared to the 13 in the HBV model. 

The study looked at two regionalization methods, relating model parameters to the 
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catchment characteristics using regression and nearest neighbor method. The regression of 

the model parameters had the best results, and the fact that there were fewer model 

parameters in the PDM model could have played a role in this. Yadav et al. (2007) 

recognized that the structural errors in conceptual models and the non-identifiability of model 

parameters could pose a serious threat against the ability of these models to give good PUB 

with regionalized parameters. 

 

The Distance Distribution Dynamics (DDD) model (Skaugen & Onof, 2014) is a parameter 

parsimonious model, which hopefully can relate model parameters to catchment 

characteristics. A parameter parsimonious model is a model that attains a desired level of 

goodness of fit using as few parameters as possible (Vandekerckhove et al., 2015). That 

means that a parsimonious model explain data with a minimum of parameters. Skaugen et 

al. (2015) used the DDD model to make predictions in ungauged basins in Norway. Model 

parameters were estimated using the multiple regression method. The study showed that the 

DDD model works well with regionalized parameters and achieved good results for the 

predictions. Tsegaw (2019) also used the DDD model in predictions of ungauged basins, 

however that was done on an hourly time resolution compared to the daily resolution which is 

being done in this study. That study did not only use the multiple regression method, but also 

included the regionalization method called physical similarity. The DDD model worked well 

using both regionalization methods. Yang et al. (2018 & 2020) looked at different 

regionalization methods for different hydrological models and showed that having fewer 

model parameters could benefit the prediction in ungauged basins. 

In this study, DDD model parameters have been regionalized in order to predict runoff at 

ungauged catchments all over Norway for a 24-hourly resolution. This study continuous the 

work done in Skaugen et al. (2015). Since that study in 2015 the DDD model has been 

further developed and more processes in the model, such as snowmelt and 

evapotranspiration, has an improved calibration-free physical founding. Both snowmelt and 

evapotranspiration are now calculated using an energy balance approach, with proxy models 

for the energy balance elements driven by temperature and precipitation (Skaugen et al., 

2020). Comparatively, evapotranspiration used to be calculated using a degree-day factor.  

The objectives for the study are the following: 

• Evaluating the DDD models performance on predictions in ungauged basins. 

• Evaluating whether the multiple regression method or the physical similarity method is 

better for predicting ungauged basins in the DDD model.  

• Analyzing the difference of the two different sub-methods in the physical similarity 

method, output average method and the parameter average method.  
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2 Study Area and Data 

2.1 Study Area 

 

Figure 1: Map of all runoff stations used in study, the donor stations are in blue and the target stations are in yellow. 
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All the 107 catchments in this study are located in Norway. Norway is a country situated in 

northern Europe, along the northwestern part of the Scandinavian peninsula covering an 

area of about 385 000 km2  (excluding Svalbard and Jan Mayen). Norway has a long, rugged 

coastline, with altitudes ranging from 58o to 71oN. Additionally, the elevation spans from sea 

level to 2469 m.a.sl. The climatic conditions vary considerably within the country, from a wet 

maritime climate along the coastline to a drier climate in the interior. The mean temperatures 

range from around 7oC in the southern part to about -2oC in the north, as well as the high-

altitude areas in the central parts of the country. The average annual precipitation also has 

large spatial variations, with a countrywide average of about 1000 mm/year (Yang et al., 

2018). In the southwestern part of Norway, the average annual precipitation exceeding 3500 

mm/year, while the inland region to the east only receives about 700 mm/year. Due to this 

the hydrographs in Norway have quite distinct spatial patterns.  

2.1.1 Hydrological Regions 
 

To divide Norway into regions, Gottschalk et al. (1979) was used as a roadmap. The basis 

for the division is when and how the high flow and the low flow occurs. The high flow was 

divided into three categories, H1 to H3, depending on when the high flow occurred. H1 is 

dominated by snowmelt, with the high flow in the spring and early summer, H2 has a 

secondary high flow in the autumn due to a high amount of rainwater, and H3 is totally 

dominated by rain, high flow in the late autumn and early winter. The low water was divided 

the same way with L1 being low water in the winter due to snow accumulation, L2 occurs 

when the two months with the lowest flow not belonging to the same time of the year, and L3 

happens when the low flow is in the summer due to high evaporation and low precipitation 

(Gottschalk, 1979). 

As seen in Figure 2, Gottschalk divided Norway into 5 different runoff regions. The different 

regions each got their own name, a mountainous region (H1L1 in Figure 2), an inland region 

(H2L1) , a transition region (H2L2), a Trøndelag region (H2L3), and a coastal region (H3L3). 

The mountain region is the inner and northeast parts of Norway, the inland region is between 

the mountain region and the west coast, the transition region follows a narrow band outside 

the inland region and covers parts of the southern inlands. The Trøndelag region covers 

parts of Møre and Trøndelag, and the coastal region follows the frontier coast of Norway. At 

the Norwegian west coast there is a rapid, but a gradual change when moving inland. This 

means that regions such as the transition region and the Trøndelag region are very narrow.  
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Figure 2: Map of runoff regions in the Nordic countries (Taken from Gottschalk et al. (1979)).  

For each of the five regions, one donor and one target catchment were selected. This was 

done to get a better overview of how the regionalization methods work for the different runoff 

regimes in Norway. 
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Figure 3: Location of the 5 donor and 5 target catchments chosen for regional checks. The donor catchments are in blue and 
the target catchments are in yellow.  

The catchments chosen for each of the regions are shown in Figure 3. Due to the possible 

inaccuracies of choosing simply based on location, all hydrographs of the catchments were 

visually inspected. The catchments were then placed into the region who best fulfilled the 

definitions in Gottschalk (1979). Additionally, every target catchment was placed into a 

region, this was done to get an overview of the spatial distribution of the results. The regions 

and how many catchments they contain can be seen in Table 1.  
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Table 1: Overview of the catchments used for regional validation.  

Region Donor Catchment Target Catchment  # of targets 

Coastal (H3L3) 26.29 24.8 4 

Transition (H2L2) 18.1 26.20 4 

Trøndelag (H2L3) 133.7 148.2 1 

Inland (H2L1) 12.114 22.16 8 

Mountain (H1L1) 73.27 12.70 8 

 

The number of catchments in each region varies greatly. From eight in the mountain and 

inland region to only one in the Trøndelag region. This is explained by the fact that much of 

Norway’s geography, and thus its catchments, is dominated by the mountainous regions and 

the inland region. As seen in Figure 1, the majority of the target catchments used in this 

study covers the southern part of Norway, the part with the most mountains and inland. 

Some catchments fall under the other regions. The Trøndelag region was originally defined, 

in the Gottschalk (1979) paper as the Baltic region, for regions with similar runoff regimes as 

the Baltic states, but its definition also covers part of the coast in the central parts of Norway, 

more specifically Trøndelag, and is only covered by one catchment in this study.  
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Figure 4: Mean monthly precipitation, temperature, and discharge for the inland and the transition regions.  

Figure 4 shows the mean monthly precipitation, temperature, and discharge for the two 

stations in the inland and the transition regions. The inland regions high flow is in the spring, 

during the snowmelt season, but is defined by the second or third highest monthly runoff 

taking place in the autumn. This can be seen as the September discharge is the largest high 

flow after the snowmelt. During the winter, the flow is lower, due to precipitation being stored 

as snow. This is seen as the lowest flows occurs in December, January, and February. 

The transition region is also defined as having the second or third highest runoff in the 

autumn, which can be seen in Figure 4 as the mean monthly discharge in November is the 

second highest discharge. The transition region is also defined as having the two months 
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with the lowest discharge not belonging to the same time of the year. This can be seen in 

Figure 4 as June and February have the lowest flows.  
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Figure 5: Mean monthly precipitation, temperature, and discharge for the coastal, mountain and the Trøndelag regions.  

Figure 5 shows the mean monthly precipitation, temperature, and discharge for the coastal 

region, mountain region and the Trøndelag region. The coastal regions high flows are 

dominated by rain, the highest discharge takes place in the autumn and early winter, in this 
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case November and December. The low flow on the other hand happens in the summer and 

is caused by a combination of low precipitation and high evaporation. In Figure 5 the low 

flows occur in June and July.  

The mountain region has its high flow dominated by snowmelt, the three months with the 

highest discharge belong to the late spring and early summer. The low flow occurs in the 

winter and is caused by snow accumulation, with virtually no runoff in the winter months.  

The Trøndelag region is defined by having its second or third highest flow in the autumn due 

to rain, with the highest coming in the snowmelting season. The low flow occurs in the 

summer, due to low precipitation and high evaporation, which here can be seen with low 

flows in July and August.  

2.2 Data 

In this study 107 gauged donor catchments, used for regionalization, and 25 ungauged target 

catchments have been used. The stations are located all over Norway, with most of the 

target catchments in the southern half of Norway. All of these stations have continuous 

meteorological and discharge data during the period 1999-2018, and this period is thus used 

in this study. The size of the catchments varies from 2,84 km2 to 5543,98 km2, and 85 out of 

the 107 catchments are under 500 km2. Figure 1 shows the location of the center for each 

catchment.  

 

Time series of precipitation, temperature and discharge are the main input data for running 

and calibrating the model. Precipitation and temperature data are extracted from a 1x1 km 

gridded product of the Norwegian Meteorological Institute, with 24-hourly temporal resolution 

the seNorge_2018v20.05 (Lussana, 2020).  

24-hourly discharge data has been obtained from the Norwegian Water Resources and 

Energy Directorates (NVE) Hydra II database.  
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3 Methods 

 

Figure 6: The model structure of the Distance Distribution Dynamics model. In the representation of the subsurface water 
reservoir M (bottom left), the dotted horizontal line is the actual level Z of soil moisture in D. The ratio of (G(t) + Z(t))/D 
controls the release of excess water to S and hence to discharge. Note that D, S and Z are functions of time, while M is fixed. 
In the dynamic module (right), the superpositioned hillslope unit hydrograph is convoluted with the river network unit 
hydrograph to give runoff. Sketch borrowed from Skaugen & Onof (2014).  

Figure 6 shows a schematic overview of the model structure in the DDD model, which is 

further explained below.   

3.1 The Model Structure. 

The DDD model (Skaugen & Onof, 2014; Skaugen et al. 2015) is a physically based, rainfall-

runoff model written in the Julia programming language (Shah et al., 2017) and currently runs 

operationally with daily and 3-hourly timesteps at the Norwegian flood forecasting service at 

NVE. It is also an example of a parameter parsimonious model. The inputs to the model are 

precipitation and temperature data. The DDD model is an extension of the unit hydrograph 

method (Skaugen & Onof, 2014). The unit hydrograph of a catchment is defined as the direct 

runoff hydrograph resulting from one unit volume of excess rainfall at a constant intensity and 

uniformly distributed over the catchment area for a duration of time (Ramirez, 2000). The 

duration of the unit hydrograph, or the response time, is the time it takes for the water that is 

the furthest away from the outlet to reach the outlet.  

 

The two main modules of the DDD model are the hydrological module and the runoff 

dynamics module (Skaugen & Onof, 2014). The hydrological module estimates the amount 
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of water that enters the runoff dynamics module, and the runoff dynamics module uses 

distance distribution analysis to describe the transport of water in the catchment, from 

hillslope to river network and from the river network to the outlet (Stavang, 2019).  

3.2 Hydrologic Module 

The volume capacity of the subsurface water reservoir, M [mm], is shared between an 

unsaturated zone with volume D [mm], called the soil moisture zone and a saturated zone 

with volume SS [mm], called the groundwater zone (Skaugen & Onof, 2014). The actual 

volume of water present in the unsaturated zone D, is called Z [mm]. The subsurface state 

variables are updated after evaluating whether the current soil moisture Z(t), together with 

the input of rain, snowmelt, and discharge.  

Firstly, in the DDD model, the precipitation is distributed to the 10 elevation zones of equal 

area defined for each catchment. To distinguish between precipitation as snow or rain the 

following is computed, 

𝐼𝑓 𝑇 > 𝑇𝑋, 𝑃𝑟𝑎𝑖𝑛 = 𝑃 ∗ 𝑝𝑘𝑜𝑟𝑟, 𝑃𝑆𝑛𝑜𝑤 = 0 (1)  

𝐼𝑓 𝑇 < 𝑇𝑋, 𝑃𝑟𝑎𝑖𝑛 = 0, 𝑃𝑆𝑛𝑜𝑤 = 𝑃 ∗ 𝑠𝑘𝑜𝑟𝑟 (2)  

In which, T [oC] is the observed temperature, TX [oC] is the temperature threshold for 

determining is precipitation is snow or rain, P [mm] is the amount of precipitation and the 

pkorr [-] and skorr [-] model parameters are the correction factors for precipitation as rain and 

snow, respectively.  

Input of water can, additionally to precipitation, come from  snowmelt. The estimation of 

meltwater is done using an energy balance equation.   

𝑆𝑊𝐸 =  
𝐾+𝐻+𝐿𝑛𝑒𝑡+𝐿𝐸+𝐺𝐻+𝑅−𝐶𝐶

𝜆𝐹𝜌𝑊
(3)  

In which SWE [m] is the change in the snowpack’s water equivalent, K [kJm-2] is the net 

shortwave radiation, H [kJm-2] is the sensible heat exchange, Lnet [kJm-2] is the net longwave 

radiation, LE [kJm-2] is the latent heat exchange, GH [kJm-2] is the heat from the ground, R 

[kJm-2] is the heat from the precipitation and CC [kJm-2] is the snowpack heat storage. λF  

[kJkg-1] is the latent heat fusion and ρW [1000 kgm-3] is the density of water (Dunne, 1976).  

To estimate the potential evapotranspiration, EP [mm day-1], the DDD model uses the 

Priestley-Taylor method.  

 

𝐸𝑃 = 𝑎𝑃𝑇 ∗ (
𝛿

𝛿+𝑦
) ∗ (𝐾 + 𝐿𝑛𝑒𝑡) ∗ (

1000

𝐿𝐸∗𝜌𝑊
) (4)  
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Wherein, aPT [-] is the empirical Priestley-Taylor constant, 𝛿 [kPa °C-1] is the slope of 

saturation vapor pressure-temperature relation, y [kPa °C-1]is the psychometric constant, K 

[kJm-2] is the net shortwave radiation, Lnet [kJm-2] is the net longwave radiation, LE [kJm-2] is 

the latent heat exchange, and ρW [1000 kgm-3] is the density of water (Priestley & Taylor, 

1972). 

The actual evapotranspiration, EA [mm day-1], is the evaporation potential, scaled non-linearly 

by the amount of water that is in the subsurface (Skaugen et al., 2020). 

𝐸𝑎 = min (𝐸𝑃 , 𝐸𝑃(1 − exp (−4 ∗
𝑀 − 𝐷 + 𝑍 + 𝐺

𝑀
))) (5) 

Where M [mm] is the capacity of the subsurface, D [mm] is the unsaturated zone, Z [mm] is 

the soil moisture and G [mm] is the precipitation/snowmelt. Having a non-linear method to 

calculate the actual evapotranspiration as a function of the degree of soil saturation has 

previously been proposed by Chanzy and Bruckler (1993), Arnell (2002) and Skaugen et al. 

(2020).  

When the input water, I, reaches the unsaturated zone, D, the water is added to the volume 

Z. The movement of water from D to SS happens when the actual water content, Z, reaches 

the field capacity, R, of 0.3 of the capacity of D. The field capacity is fixed at 30 % (R=0.3) of 

D(t) (Skaugen & Onof, 2014). 

𝑑𝑍

𝑑𝑡
= 𝐺(𝑡) − 𝑋(𝑡)   (6) 

Where X is the excess water transferred to the saturated zone, when the field capacity of 0.3 

is reached.  

𝑋(𝑡) = 𝑀𝑎𝑥 {
𝐺(𝑡) + 𝑍(𝑡)

𝐷(𝑡)
− 𝑅, 0}𝐷(𝑡) (7) 

The excess water, X, is then added to the volume of the saturated zone, SS.  

𝑑𝑆𝑠
𝑑𝑡

= 𝑋(𝑡) − 𝑄(𝑡) − 𝐸𝑎(𝑡) (8) 

In which Q is the water output from the saturated zone.  
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3.3 Runoff Dynamics Module 

To assess the direct runoff, Q, at the outlet, the convolution integral of the excess water from 

the hillslope Qh and the unit hydrograph of the river network, ur, is used.  

𝑄(𝑡) = ∫ 𝑄ℎ(𝜏)𝑢𝑟(𝑡 −
𝑡

0

𝜏)𝑑𝜏 (9) 

Where Qh is the excess water contributed by the hillslope. It is estimated using the 

convolution integral of excess water, X, and the unit hydrograph of the hillslope, uh.  

𝑄ℎ(𝑡) = ∫ 𝑋(𝜏)𝑢ℎ(𝑡 −
𝑡

0

𝜏)𝑑𝜏 (10) 

3.3.1 Deriving the Unit Hydrograph for Hillslope 
The unit hydrograph is derived from recession analysis and distance distribution. The 

distance distribution is defined as the distribution of distances from points in the catchment to 

the river network (Stavang, 2019). The distribution is modelled as an exponential distribution 

with a cumulative distribution function.   

𝑈ℎ(𝑑) = 1 − 𝑒−Ψ(𝑑−𝑑0) (11) 

In which Ψ is the parameter of the exponential function. If the velocity of water down a 

hillslope is constant, then Δd is the distance travelled by the water during timestep Δt 

(Skaugen & Onof, 2014). The distance distribution then becomes a distribution of travel 

times, where the response time is th, max, which is defined in equation 15.   

𝑈ℎ(𝑡) = 1 − 𝑒−Ψ(𝑡−𝑡0) (12) 

The derivative of Uh is the unit hydrograph of the hillslope, uh, where Ψ is the parameter of 

the exponential function. The unit hydrograph is then defined as 

𝑢ℎ(𝑡) = Ψ𝑒−Ψ(𝑡−𝑡0) (13) 

3.3.2 Deriving the Unit Hydrograph for Each Subsurface Saturation Level 
The DDD model assumes different levels of saturation, i=1,2,…,I, based on the distribution of 

Λ. The saturation levels all have different velocities and recession characteristics. The level 

specific unit hydrograph is, 

𝑢ℎ,𝑖(𝑡) = 𝜆𝑖𝑒
−𝜆𝑖(𝑡−𝑡0) (14) 

Where λi is the specific recession characteristics of that saturation level. The uh,i is then 

further cut into intervals, fi = 1,2,…,Fi, to acquire the weights, μi,j , that each level contributes 

at each time step. For each level, the number of intervals is,  
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𝑓𝑖 =
𝑡ℎ,𝑖,𝑚𝑎𝑥

𝛥𝑡
(15) 

Where th, i, max is defined as  

𝑡ℎ,𝑖,𝑚𝑎𝑥 =
𝑑𝑚𝑎𝑥

𝑣(𝑖)ℎ
(16) 

In which dmax is the maximum distance in the distance distribution and v(i)h is the level 

specific celerity. The maximum amount of time intervals, fi, is the time it takes for the wave 

furthest away to reach the river network. The weight of each time interval is defined as 

𝜇𝑖,𝑓 = ∫ 𝑢ℎ,𝑖(𝑡)𝑑𝑡
(𝑓)𝛥𝑡

(𝑓−1)𝛥𝑡

(17) 

The sum of all weights should be equal to 1. The runoff from each interval and saturation 

level is then,  

𝑄ℎ(𝑓𝛥𝑡) =
1

𝐼
∑ 𝑋(𝛥𝑡)ξ

i,j
𝜇𝑖,𝑗

𝐼

𝑖=1
(18) 

Where ξ are the weights distributing X to each saturation level, i, and interval, f, depending on the 

degree of saturation for each level.  

3.3.3 Estimating Celerity of Subsurface Flow 
To estimate the celerities needed for estimations of the temporal scale of the travel time 

distribution, and thus the unit hydrographs, associated with the different levels of saturation, 

the runoff series has to be investigated. Specifically, the recession data is investigated under 

the assumption that one can observe the superpositioned runoff response composed of 

contributions from several different saturation levels (Skaugen & Onof, 2014). Furthermore, 

one can assume that this hydrograph too can be approximated by an exponential unit 

hydrograph. The exponential recession curve has been a quite popular choice for runoff 

modelling and base-flow recession for many decades, also the assumption of considering 

runoff recession as superpositioned exponential unit hydrographs has a long history 

(Tallaksen, 1995). The procedure where the superpositioned unit hydrographs are 

parameterized from levels of saturation was first used by Skaugen & Onof (2014).  

The recession runoff can be modelled as Q(t) = Q0Λe-Λ(t-t0), where Q0 is the peak discharge 

immediately before the recession starts. Therefore, one can determine the parameter Λ from 

equation 19.  

Λ =
log(𝑄(𝑡)) − log (𝑄(𝑡 + 𝛥𝑡))

𝛥𝑡
(19) 
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A high value for Λ implies a large change in storage and a high celerity and vice versa. The 

parameter Λ is therefore the slope per Δt of the recession. Since the mean of the distance 

distribution is 𝑑 , the mean of the travel time distribution is 
𝑑 

𝑣ℎ
. Furthermore, the exponential 

unit hydrograph with mean 𝛥𝑡
1

𝛬
 conveys the same travel time distribution, so that one can 

write, 

𝛥𝑡
1

𝛬
=

𝑑 

𝑣ℎ
(20) 

Where 𝑑̅ is the mean of the distance distribution vh [m/s] is the celerity and Λ is the slope of 

the recession curve. The celerity is thus associated with Λ as  

𝑣ℎ =
𝛬𝑑 

𝛥𝑡
(21) 

Because one can assume that the variability of Λ is due to the different levels of saturation in 

the catchment, it follows that events during saturated conditions will give out the highest 

values of Λ, and by equation 20, also the highest values of the celerity vh. If the highest level 

of saturation defines the subsurface water reservoir M, one can let the probability space of 

the distribution of Λ also represent the saturation level of the reservoir M, 

𝐹(𝛬) =
𝑆

𝑀
(22) 

Since M is divided into saturation levels, i=1,2,…,I, one can let the probability F(Λ) detect 

which levels, L, yields runoff,  

𝐿 = 𝐺 𝑥 𝐹(𝛬) (23) 

Which has to include all levels up to I due to the fact that levels are saturated from below. If 

F(Λ) = 1, the subsurface soil reservoir is fully saturated and L=G.  

If, on the other hand, there is a saturation shortage, F(Λ) < 1, only the levels i= 1,2,…,L 

produces runoff.  

If the distribution of Λ is estimated by an exponential distribution, and Λi is estimated so that 

F(Λi)=i/I, Λi is then considered to be the parameter of the unit hydrograph resulting from the 

super-positioning of the unit hydrographs for all levels below and up to i: 

𝛬𝑖𝑒
−𝛬𝑖(𝑡−𝑡𝑜) = 𝑤1𝜆1𝑒

−𝜆1(𝑡−𝑡𝑜) +𝑤2𝜆2𝑒
−𝜆2(𝑡−𝑡𝑜) +⋯+ 𝑤𝑖+1𝜆𝑖+1𝑒

−𝜆𝑖+1(𝑡−𝑡𝑜) (24) 

The variables, w, are weights corresponding with each saturation level. The weights show 

the discharge produced by the level specific unit hydrographs, the response for each level for 

a given saturation. In each level the discharge is directly proportional to the celerity, which is 

again proportional with λ, so equal weights for different levels are not appropriate, but should 
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rather increase with increasing saturation levels. To estimate the weights, for each level i, 

one can use the empirical distribution of Λ which is derived from observed recession and can 

be seen in equation 25.  

𝑤 =
𝛬𝑖

∑ 𝛬𝑘
𝑖
𝑘=1

(25) 

The parameter λ for the different saturation levels can be estimated by solving equation 24 

for the increasing levels under the assumption that Λ1 = λ1. The celerity for the individual 

levels, vh(i) can be estimated by equation 21 using λi instead of Λ: 

𝑣ℎ(𝑖) =
𝜆𝑖𝑑 

𝛥𝑡
(26) 

3.3.4 Distribution of Saturation Level and Estimation of the Mean Storage 
In the DDD model, it is assumed that the variability in celerity for each level is due to the 

variation in storage and saturation degree. Higher saturation gives higher celerity. This is 

shown by a greater difference in runoff values in equation 19. Λ is modelled as a gamma 

distribution.  

𝑓(Λ) =
1

𝛽𝑎Γ(a)
𝛬𝑎−1𝑒

−
Λ
𝛽 ,      𝑎 > 0, 𝛽 > 0 (27) 

Where a is the shape parameter and β is the scale parameter of the gamma distribution. This 

distribution reflects the distribution of the saturation levels, so the saturation levels are also 

showed as a gamma distribution.  

𝑓(𝑆𝑠) =
1

𝜂𝑎Γ(a)
𝑆𝑠
𝑎−1𝑒

−
𝑆𝑠
𝜂 ,      𝑎 > 0, 𝜂 > 0 (28) 

Where η = β/c and c=Λ̅ /ms. a is the shape parameter, η is the scale parameter and ms is the 

mean storage. The mean storage is calculated through the daily excess water transferred to 

the saturated zone, X, which depends on the mean annual discharge (MAD) [m3s-1] and the 

area of the catchment [m2].  

𝑋 =
1000 ∗ 𝑀𝐴𝐷 ∗ 86 400 𝑠𝑒𝑐

𝑎𝑟𝑒𝑎
(29) 

The total sum of X after F days is if a steady state is reached, 

𝐹 ∗ 𝑋 = 𝑆𝑠𝑠 + 𝑄𝑠𝑠 (30) 

Wherein Qss is the total runoff after F days and Sss is the water still in the soil and therefore 

the mean storage, ms.  
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𝑄𝑠𝑠 =∑ ∑ 𝑋 ∗ 𝜇(
𝑘

𝑓=1

𝐹

𝑘=1
Λ̅)𝑗 (31) 

𝑆𝑠𝑠 =∑ ∑ 𝑋 ∗ 𝜇(
𝐹

𝑓=𝑘+1

𝐹−1

𝑘=1
Λ̅)𝑗 (32) 

The distribution of each level, Si, is estimated as quantiles of f(Ss) where the subsurface 

capacity, M, is the 99 % quantile of the distribution of Ss.  

𝑆𝑖
𝑀
= ∫

1

𝜂𝑎Γ(a)
𝑆𝑠
𝑎−1𝑒

−
𝑆𝑠
𝜂

𝑆𝑖

0

𝑑𝑆𝑆 (33) 

3.3.5 Deriving the Unit Hydrograph of the River Network 
The same principles as presented above can be implemented for the derivation of the river 

network hydrograph, Ur. The distance distribution of points in the river network to the outlet of 

the catchment is determined as the distance from point in the river network to the outlet. One 

can then use the mean celerity of the river network, vr, to transform the function to a 

distribution of travel times. The unit hydrograph of the river, ur, is the derivative of the 

cumulative distribution function of travel with 

𝑡𝑟,𝑚𝑎𝑥 =
𝑅𝑑 𝑚𝑎𝑥

𝑣𝑟𝑅𝑑𝑚𝑎𝑥
(34) 

Where vr is the mean celerity of the river network, Rd max is the maximum distance measured 

from the outlet to the river network.  

As the max distance from the points in the network to the outlet.  

𝑈𝑟(𝑡) = ∫ 𝑢𝑟(𝑡)𝑑𝑡
𝑆𝑖

0

, 𝑈𝑟(𝑡𝑟,𝑚𝑎𝑥) = 1 (35) 

Where Ur is the river network hydrograph and ur is the unit hydrograph of the river.  

3.4 Model Parameters and Calibration 

Model parameters in the DDD model include estimations from GIS analysis, fixed values, 

and regionalized parameters. All the parameters and how they are determined are shown in 

Table 2.  

Table 2: Overview of the parameters in the DDD model 

Parameter Description Method of Estimation 

Hypsographic Curve 11 values describing the 
quantiles, 0, 10,…, 100 

GIS 

Mean Elevation Mean elevation of the 
catchment 

GIS 

Pkorr Correction factor for 
precipitation 

Regionalization 
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Skorr Correction factor for 
precipitation as snow 

Regionalization 

U Mean windspeed Regionalization 

Pro Maximum liquid water 
content of snow 

Regionalization 

TX Threshold temperature 
rain/snow 

Regionalization 

CGLAC Degree-day factor for glacial 
melt 

Regionalization 

a0  Parameter for new spatial 
distribution of SWE, shape 
parameter 

Estimated from observed 
spatial variability of 
precipitation 

d Parameter for new spatial 
distribution of SWE, 
decorrelation length 

Estimated from observed 
spatial variability of 
precipitation 

MAD Long term mean annual 
discharge 

GIS 

Area Catchment area GIS 

maxLbog Max distance of marshland 
portion of hillslope 

GIS 

midLbog Mean distance of marshland 
portion of hillslope 

GIS 

BogFrac Areal fraction of marshland GIS 

zsoil Areal fraction for soils (area 
with distance zero to the 
river) 

GIS 

zbog Areal fraction for marsh land 
(area with distance zero to 
the river) 

GIS 

R Parameter defining field 
capacity 

GIS 

GshInt Shape parameter Regionalization 

GscInt Scale parameter Regionalization 

rv Celerity for riverflow Fixed/Regionalization 

midFL Mean distance for river 
network 

GIS 

stdFL Standard deviation of 
distance for river network 

GIS 

maxFL Max distance for river 
network 

GIS 

maxDL Max distance of non-marsh 
land of hillslope 

GIS 

midDL Mean distance of non-marsh 
land of hillslope 

GIS 

Glacfrac Fraction of glaciers in 
catchment 

GIS 

midGL Mean distance for glacier GIS 

stdGL Standard deviation of 
distance for glacier  

GIS 

maxGL Max distance for glacier GIS 

Glacier Areal fraction of glaciers in 
10 elevation zones 

GIS 
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As seen in Table 2, most of the model parameters are estimated using GIS, but eight 

parameters need to be estimated from the relationship between model parameters and 

catchment characteristics. The parameter rv could also be estimated using regionalization 

but is a fixed value due to the celerity of the riverflow having little to no effect on the results 

on a 24-hourly scale.  

 

The calibration of the model is performed using the global optimization package 

BlackBoxoptim. The Kling-Gupta efficiency criteria (KGE) has been used as an objective 

function for the calibration (Gupta et al., 2009). The KGE formula used in this study is: 

𝐾𝐺𝐸 = 1 − ((𝑠𝑞𝑟𝑡(𝑟 − 1)2 + (𝑦 − 1)2 + (𝛽 − 1)2) (36) 

 

With r being the linear correlation coefficient between Q[sim] and Q[obs], 𝑦 =
𝐶𝑉[𝑠𝑖𝑚]

𝐶𝑉[𝑜𝑏𝑠]
 and 𝛽 =

𝜇[𝑠𝑖𝑚]

𝜇[𝑜𝑏𝑠]
. KGE ranges from a perfect score of 1 to negative infinity and assesses the error in the 

mean bias and bias in the variance, in addition to the correlation between observed and 

simulated values. The widely used Nash-Sutcliffe efficiency criterion only assesses the 

correlation, while factors such as the bias must be assessed separately.  

𝐵𝑖𝑎𝑠 =
𝑄𝑆𝑖𝑚 − 𝑄𝑂𝑏𝑠

𝑄𝑂𝑏𝑠
(37) 

 

Both KGE and bias, which is the ratio of the mean simulated to observed discharge, has 

been used to evaluate the calibration results and the PUB results. 

 

3.5 Sensitivity of Calibrated Parameters 

Sensitivity analysis is the study of how output response of a model is affected by input 

uncertainty (Zhang et al., 2015). As most of the parameters are determined by GIS, there are 

only eight parameters needed to be analyzed for sensitivity.   

Parameter sensitivity plots was also produced for several of the catchments in the study. 

This is essentially a plot with KGE values on the y-axis and relative error of parameter values 

on the x-axis. The relative error is found by this equation:  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑎𝑡 − 𝑎𝑜𝑝𝑡
𝑎𝑜𝑝𝑡

 (38) 

Where aopt is the optimal parameter value and at is the parameter value that is being 

evaluated. In this study this was done by varying the optimal parameter by 10 %, both 

increasing and decreasing, up until 50 %.  
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Dottyplots were also created for all catchments. A dottyplot illustrates the variation in KGE as 

a function of the variation of the model parameters for each catchment (Tegegne et al., 

2017). A sharp curve (big difference in KGE with changing model parameter value) shows 

that a parameter is strongly influencing the model performance, while a flatter curve (small 

difference in KGE with changing model parameter value) shows weak influence of the model 

parameter on the model performance.  

 

3.6 Correlation Analysis 

An exploratory correlation analysis between the catchment characteristics and the model 

parameters were carried out for the dataset. 

In this study, the spearman rank correlation was used. The spearman rank correlation is a 

nonparametric measure of rank correlation, and one of the oldest and most well-known 

nonparametric procedures (Artusi et al., 2002). The rank correlation coefficient, rs, is 

expressed as 

𝑟𝑠 = 1 −
6∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 (39) 

In which n is the number of measurements and di is the ranked difference between the ith 

measurements for the variates (Zar, 1972). The Spearman rank correlation is being used 

here because it is a robust correlation method and presupposes no fixed shape of possible 

functional relationship (Seibert, 1999). In addition to the correlation, the p-value of each 

correlation was also evaluated. A very low p-value means that such an extreme observed 

outcome would be very unlikely under the null hypothesis. Low p-values means that there is 

a small chance of the results being random.   

 

3.7 Regionalization Methods 

Predictions of streamflow by hydrological models in ungauged basins are essentially data 

driven. The models need to be calibrated with observed flow data. When applying these 

models to ungauged catchments, the challenge is that no flow data is available and hence no 

calibration is possible. Therefore, hydrologists have been attempting to develop strategies to 

estimate the model parameters without using calibration (Oudin et al., 2008). Regionalization 

originated in the process of regime classification and catchment grouping (Gottschalk et al., 

1979) and was later extended, in the rainfall-runoff modeling context, to the transfer of 

parameters from gauged catchments to ungauged catchments. The concept of 

regionalization has also evolved into a term which covers all methods aimed at estimating 

model parameter values on any ungauged catchment in a definable region of consistent 

hydrological response (Oudin et al., 2008).  
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3.7.1 Multiple Regression 

Arguably the most popular approach when it comes to regionalization is the multiple 

regression (MR) method (Wilkerson & Merwade, 2010). In this method, functions are 

established between the model parameters and the catchment characteristics for the donor 

catchments. These functions coupled with the catchment characteristics from the target 

catchments are used for the prediction of the ungauged catchments. To use regression 

methods, it is assumed that there is a well-behaved relationship between the catchment 

characteristics and the model parameters. In addition, it is assumed that the catchment 

characteristics used in the regression provide information that is relevant to the hydrological 

behavior at the ungauged sites (Merz et al., 2006). This study assumes that the catchment 

characteristics and the model parameters in the DDD model are related. The relationships 

(multiple regression functions), which is built for the gauged basins are then transferred to 

the ungauged catchments (Yang et al., 2020). 

The multiple regression equations, which is used to relate catchment characteristics to model 

parameters, are trained using the calibrated model parameters of the 107 gauged 

catchments. To do this a stepwise regression procedure is used for building the regression 

model. The model was built by adding and removing catchment characteristics in a stepwise 

manner until there are no compelling reason to add or remove catchment characteristics 

anymore.  

Both linear and non-linear (logarithmic) relationships between the model parameters and the 

catchment characteristics are tested in the regression model.  

3.7.2 Physical Similarity 

The physical similarity method is based on the idea that catchments far apart, with similar 

attributes could show similar hydrologic behavior (Acreman & Sinclair, 1968; Gottschalk, 

1985; Nathan & McMahon, 1990; Parajka et al, 2005). The method consists of transferring 

hydrological information from gauged catchments, known as donors, to the ungauged target 

catchments as catchment descriptors. In this study, the physical similarity index from Burn & 

Boorman (1993) is used (Yang et al., 2018).  

𝑆𝐼𝑡𝑑 =∑
|𝐶𝐷𝑑,𝑖 − 𝐶𝐷𝑡,𝑖|

∆𝐶𝐷𝑖
 

𝑘

𝑖=1

(40) 

Where CD is the catchment characteristics, k is the total number of catchment descriptors, d 

is the donor catchment, t is the target catchment, and ∆𝐶𝐷𝑖 is the range of the ith catchment 

descriptor. Multiple donor catchments works better than one for this method (Kjeldsen et al., 

2014). There are two options to combine the information from the donor catchments to the 

ungauged catchment (McIntyre et al., 2005).  
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The first option is the parameter averaging method, in which the model parameters from the 

donor catchments are averaged and then used in the model for the target catchment. While 

for the second option, the output averaging method, the model is run with the parameters 

from the donor catchment on the target catchment, and the outputs of the model are then 

averaged. 

The maximum number of donor catchments used in the physical similarity method, is chosen 

to be 5. This is less than the number of donor catchments used by many previous studies 

(Oudin et al., 2008; Arsenault et al., 2015), but according to Bao et al. (2012) and Yang et al. 

(2018) more than 5 donor catchments do not increase the accuracy significantly.    

4 Results 

4.1 Relations between Catchment Characteristics and Model Parameters 

The correlations between the model parameters and catchment characteristics are not very 

high, as seen in Table 3, but several are found to be significant. The most striking 

correlations are found between Pkorr and forest cover (skog), as well as bare rock % (sn_fj). 

Between u and specific discharge (SpQ) and between GscInt and precipitation (P), all 

includes correlations over 0.6.  

Table 3: Correlation between model parameters and catchment characteristics, only significant correlations at p 
value < 0.01 and 0.05 are shown.  

 

Figure 7a shows that the correlation of the catchment characteristics, while Figure 7b shows 

the significant correlations. The correlations are generally not very high but includes quite a 

few significant correlations. The most striking correlations is between area and catchment 
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length (L.), mean annual discharge (MAD) and area, and mean annual discharge and 

catchment length.  

 

Figure 7a: Correlations between the Catchment Characteristics. 

 

Figure 7b: Correlation of the catchment characteristics, only significant correlations with p-value < 0.01 

Figure 8a shows the correlation between the model parameters, while Figure 8b shows the 

significant correlations. The correlations between the model parameters are not very high but 

includes significant correlations. Skorr is strongly correlated with both Pkorr and TX, 

positively and negatively respectively.  
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Figure 8a: Correlation of the model parameters.  

 

Figure 8b: Correlation of the model parameters, only significant correlations with p-value < 0.01 
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4.2 Parameter Sensitivity 

Figure 9 shows the sensitivity plot for station 12.70 (Etna). It is clear that the Pkorr parameter 

is the most sensitive, followed by Skorr. On the other hand, TX, and pro shows very little 

sensitivity. GscInt, GshInt and u are somewhere in the middle, closer to the least sensitive 

parameters.  

 

Figure 9: Sensitivity plot for station 12.70 (Etna), x-axis shows variation in parameter values by percent, from 10 % up to 50 
%.   

Figure 10 shows a dottyplot for the mountain region. The Figure shows much the same as 

Figure 9. Pkorr and Skorr being the most sensitive parameters, with well-defined curves. The 

dottyplot also shows a weak defined curve for the u parameter. The rest of the parameters 

shows no defined curve. The pro parameter has a flat curve here, but still follows the other 

parameters with good KGE values for several different pro values.  
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Figure 10: Dottyplot for station 12.70 (Etna).  

Figure 11 shows the dottyplot for the catchment in the inland region. Much of the same can 

be seen as in Figure 10. A defined curve for the skorr and pkorr parameters, although not as 

defined for the skorr parameter, with less defined curves for the other parameters. The pro 

parameter is quite interesting, but show good KGE values for different values of pro.  
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Figure 112: Dottyplot for station 22.16 (Myglevatn). 

Figure 12 show the dottyplot for a coastal catchment. Here the skorr parameter shows a less 

defined curve than in the other dottyplots. This is likely due to the fact that snowfall is a less 

hydrologically relevant event in the coastal regions of Norway. Most of the precipitation falls 

as rain, and thus the pkorr curve is more well-defined. The other plots look similar to the 

preceding dottyplots.   
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Figure 12: Dottyplot for station 24.8 (Moska). 

Figure 13 shows the dottyplot for a catchment in the transition region. Again, the skorr 

parameter shows a less defined curve, this is most likely due to the precipitation falling as 

rain in this region. Pkorr is again the most defined curve, with all other plots looking similar to 

the preceding ones.  
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Figure 13: Dottyplot for station 26.20 (Aardal). 

Figure 14 shows a dottyplot for a catchment in the Trøndelag region. The pkorr parameter is 

most defined, with a less defined curve for the skorr parameter. All other parameters look 

similarly flat, with lots of different values reaching a high KGE value.  
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Figure 14: Dottyplot for station 148.2 (Mevatnet). 

The dottyplots were quite similar in a lot of ways. The biggest difference is the skorr 

parameter, which had a noticeable curve for the regions with the biggest temperature 

difference, the inland and mountain regions, and a less definable curve for the warmer 

regions. This is due to the fact that less of the precipitation falls as snow in the warmer 

regions, and thus the pkorr parameter is more important for model performance.  
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4.3 Regionalization 

4.3.1 Multiple Regression 

The multiple regression equations were regressed from the model parameters and 

catchment characteristics of the 107 donor catchments. The multiple regression equations 

are shown in equations 41-48, with the subsequent coefficient of determination (R2) values 

in Table 3. The R2 score is defined as the proportion of the variance in the dependent 

variable that is predictable from independent variables (Hogg and Ledolter, 1992). The 

multiple regression equations contain two, three, or in one case four catchment 

characteristics.  

𝐺𝑠𝑐𝐼𝑛𝑡 = exp (−3.13273 − 0.29724 log(𝐹𝑒𝑙𝑡𝑙) − 0.106 log(𝐸𝐿. ) + 0.83762 log(𝑃)) (41) 

𝐺𝑠ℎ𝐼𝑛𝑡 = 0.142 + 0.0103 log(𝑆𝑝𝑄) − 0.03311 log(𝐸𝐿. ) − 0.0003912log (ℎ𝑓𝑒𝑙𝑡) (42) 

𝑃𝑘𝑜𝑟𝑟 = exp(−0.98214 + 0.44176 log(𝑆𝑝𝑄) − 0.51571 log(𝑃)) (43) 

𝑆𝑘𝑜𝑟𝑟 = exp
(0.0838134 − 0.0003421(ℎ𝑓𝑒𝑙𝑡) + 0.449802(𝐸𝐿. ) + 0.0040812 log(𝑆𝑛𝐹𝑗)

−0.0717631log (𝑃))
(44) 

𝑈 = −0.6437 + 0.83661 log(𝑆𝑝𝑄) + 0.13944 log(𝑀𝑦𝑟. ) − 0.12529log (𝑆𝑘𝑜𝑔) (45) 

𝑃𝑟𝑜 = exp(−4.02088 + 0.29397 log(𝐹𝑒𝑙𝑡𝑙) − 0.14403 log(𝑆𝑛_𝑓𝑗)) (46) 

𝑇𝑋 = −1.941724 + 0.014716(𝑆𝑝𝑄) + 0.011695 (𝑆𝑘𝑜𝑔) (47) 

𝐶𝐺𝑙𝑎𝑐 = 8.8296 + 0.1951𝑙𝑜𝑔(𝐸𝐿. ) − 0.6755𝑙𝑜𝑔(𝐹𝑒𝑙𝑡𝑙. ) (48) 

 

Table 4 shows the R2 score and the interval for the regressed equations. The R2 score is 

generally quite low, but comparable to Skaugen et al. (2015). Since the values of the 

catchment characteristics have distinct values for every single catchment, it is a good 

measure of the robustness of the equations to check the intervals they put out. If the multiple 

regression equation produces parameters that are behavioral, i.e., no illegal values for the 

parameters such as, for example, negative values for the gamma distribution, the multiple 

regression equations are more robust. The interval for the regressed parameters looks good 

for every parameter, with sensible values for the highest and lowest value for each 

parameter.  

 

Table 4: Model parameters and their R2 score for the multiple regression equations.  

Model Parameter R2-score Interval for the regressed 

parameters 

GscInt 0.47 0.017 – 0.155 

GshInt 0.43 1.444 – 1.467 

Pkorr 0.51 0.832 – 1.254 
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Skorr 0.41 0.681 – 1.777 

U 0.40 1.422 – 3.871 

Pro 0.26 0.012 – 0.052 

TX 0.34 -1.540 – 0.583 

CGLAC 0.27 5.170 – 7.863 

 

Table 5 shows the calibrated values and the values predicted with the multiple regression 

method. The multiple regression method yields good KGE values, even though the R2 score 

of the equations themselves are not the greatest. 

As stated in Thiemig et al. (2013), 0.75 ≤ KGE < 0.9 is good, 0.5 ≤ KGE < 0.75 is 

intermediate and 0.0 ≤ KGE < 0.5 is poor. 15 of the catchments are in the good category, 10 

are in the intermediate category and no catchments have KGE values under 0.5. The 

difference between the calibrated KGE and the KGE from the regression method is less than 

0.1 for 15 catchments.  

The bias is also generally good, with most catchments being within the 10 % interval. 

However, catchment 15.79 has a bias of 1.29 and 75.23 has a bias of 0.82. These two 

stations also have the lowest KGE values.  

The catchments in bold are the catchments selected for the regional study. As one can see 

all the representatives from each region have KGE scores over 0.75 and thus all the 

catchments scores good on the regression method. This means that the multiple regression 

method is not spatially varied. The inland region (22.16) scores the worst with a KGE score 

of 0.83, while the Trøndelag region (148.2) and the transition region (26.20) scores the best, 

both with a KGE score of 0.89.  

 

Table 5: Model results with both calibration and multiple regression, values in KGE, with Bias in parentheses.  

Station ID Calibration Regression 

2.32 0.87 (1.00) 0.61 (0.85) 

2.463 0.90 (1.00) 0.87 (1.08) 

12.70 0.92 (0.97) 0.86 (1.12) 

12.215 0.89 (0.99) 0.85 (0.89) 

15.79 0.90 (1.01) 0.59 (1.29) 

16.75 0.91 (1.03) 0.83 (1.13) 

16.193 0.82 (0.98) 0.73 (1.03) 

20.2 0.90 (1.01) 0.84 (0.97) 

22.16 0.91 (0.99) 0.83 (0.91) 

24.8 0.94 (0.99) 0.86 (1.10) 

24.9 0.91 (1.02) 0.89 (1.04) 
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25.24 0.87 (0.99) 0.60 (1.08) 

25.32 0.78 (0.98) 0.72 (1.03) 

26.20 0.91 (1.00) 0.89 (0.95) 

27.16 0.84 (0.99) 0.69 (1.11) 

35.16 0.89 (1.00) 0.81 (1.12) 

42.2 0.79 (1.02) 0.62 (0.86) 

48.5 0.89 (0.99) 0.88 (1.05) 

55.5 0.79 (0.99) 0.67 (0.97) 

62.5 0.92 (1.02)  0.80 (0.91) 

75.23 0.83 (1.01) 0.66 (0.82) 

122.11 0.90 (1.00) 0.81 (0.96) 

148.2 0.95 (1.01) 0.89 (1.08) 

165.6 0.77 (1.00) 0.66 (1.00) 

212.27 0.92 (0.99) 0.77 (1.04) 

Average 0.88 0.77 

 

4.3.2 Physical Similarity 

 
Physical similarity lists were created for each target catchment. For each target catchment 

the list consists of all the donor catchments and the physical similarity index value. The five 

catchments that are most similar (lowest similarity index) are chosen to be used in the 

predictions. The plots created were quite similar for all catchments, a few very similar 

catchments and quite a few that have a high similarity index.  

Table 6 shows the results from the output average method and Table 7 shows the results 

from the parameter average method. The two methods are very similar, with the output 

average method averaging a slightly higher KGE value for increasing donor catchments. 

Nevertheless, the results are not significantly better than the multiple regression method for 

either of the physical similarity methods.  

It is also worth noting that catchments with higher KGE values for the output average 

method, generally have quite high KGE for the parameter average method too.  

The model performance, KGE, will on average increase with increasing number of donor 

catchments.  

For the catchments chosen in the regional study, there are quite large differences in the KGE 

score. For both the output average method and the parameter average method, the 

mountain region (12.70) starts out with a high KGE value of about 0.8 for the most physically 

similar station, before the KGE starts decreasing to only an intermediate KGE score of about 

0.58 when all the five physical similarity stations are included. For the other regions it is 

usually the opposite, starting with a decent value, before increasing to a good KGE value for 
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the five most physically similar stations. Especially the Trøndelag region (148.2) has a very 

high KGE score, with all but one of the donor catchments’ physical similarity being over 0.9 

KGE score.  

  

Table 6: Model results from the physical similarity method, output average with increasing station numbers.  

Station ID 1 2 3 4 5 

2.32 0.20 0.24 0.18 0.33 0.39 

2.463 0.12 0.55 0.62 0.71 0.78 

12.70 0.80 0.71 0.61 0.53 0.58 

12.215 0.80 0.78 0.80 0.79 0.84 

15.79 0.71 0.75 0.75 0.81 0.80 

16.75 0.55 0.64 0.49 0.62 0.71 

16.193 0.79 0.80 0.79 0.77 0.77 

20.2 0.84 0.84 0.87 0.86 0.84 

22.16 0.79 0.72 0.80 0.83 0.85 

24.8 0.73 0.84 0.86 0.89 0.89 

24.9 0.67 0.79 0.86 0.88 0.84 

25.24 0.77 0.80 0.73 0.75 0.70 

25.32 0.72 0.74 0.73 0.65 0.69 

26.20 0.69 0.77 0.90 0.91 0.89 

27.16 0.63 0.76 0.69 0.61 0.64 

35.16 0.80 0.78 0.72 0.75 0.77 

42.2 0.57 0.61 0.64 0.64 0.67 

48.5 0.73 0.76 0.81 0.89 0.91 

55.5 0.37 0.43 0.51 0.48 0.48 

62.5 0.72 0.88 0.80 0.69 0.73 

75.23 0.55 0.55 0.65 0.65 0.62 

122.11 0.55 0.62 0.63 0.76 0.79 

148.2 0.89 0.87 0.82 0.87 0.91 

165.6 0.32 0.43 0.52 0.54 0.52 

212.27 0.56 0.36 0.30 0.27 0.43 

Average 0.64 0.68 0.68 0.70 0.72 

 
Table 7: Model results from the physical similarity method, parameter average with increasing station numbers.  

Station ID 1 2 3 4 5 

2.32 0.20 0.19 0.09 0.14 0.20 

2.463 0.12 0.83 0.77 0.83 0.81 

12.70 0.80 0.71 0.62 0.52 0.57 

12.215 0.80 0.81 0.82 0.82 0.88 

15.79 0.71 0.75 0.75 0.81 0.78 

16.75 0.55 0.61 0.46 0.55 0.65 

16.193 0.79 0.79 0.79 0.77 0.76 

20.2 0.84 0.81 0.83 0.83 0.81 

22.16 0.79 0.73 0.83 0.86 0.88 

24.8 0.73 0.84 0.85 0.88 0.89 

24.9 0.67 0.77 0.84 0.86 0.82 
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25.24 0.77 0.78 0.66 0.69 0.63 

25.32 0.72 0.73 0.72 0.66 0.70 

26.20 0.69 0.85 0.81 0.82 0.87 

27.16 0.63 0.75 0.67 0.61 0.65 

35.16 0.80 0.81 0.72 0.72 0.74 

42.2 0.57 0.62 0.64 0.64 0.67 

48.5 0.73 0.76 0.82 0.88 0.89 

55.5 0.37 0.43 0.51 0.48 0.49 

62.5 0.72 0.91 0.87 0.81 0.83 

75.23 0.55 0.60 0.70 0.69 0.67 

122.11 0.55 0.62 0.59 0.66 0.69 

148.2 0.89 0.87 0.78 0.83 0.91 

165.6 0.32 0.46 0.53 0.56 0.54 

212.27 0.56 0.12 0.13 0.12 0.17 

Average 0.64 0.68 0.67 0.68 0.70 

 

Figure 15 shows a comparison between the output average method and the parameter 

average method. The two methods are very comparable and show little to no difference for 

the five donor catchments used for each target catchment. The output average method is 

slightly better for almost every donor station added to the physical similarity method, except 

the second one added, but the difference between the results is small.  

 

Figure 15: Comparison of the output average method and the parameter average method.  
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4.4 Comparison of Regionalization Methods 

Table 8 shows a full comparison of all regionalization methods. The calibration has the 

highest KGE, followed by regression and then the two physical similarity methods, output 

average and parameter average. Out of the 25 target catchments in this study, 12 performed 

best when using the multiple regression method, five performed best using the output 

average method, four performed best using the parameter average method and four 

catchments had a tie.  

All the catchments that represent their region has very high KGE values, except for the 

physical similarity for the mountain region (12.70). The best results come for the Trøndelag 

region, with all KGE values around or over 0.9. For the mountain region, the highest 

performance came with the multiple regression method, and for the transition region the best 

performance came with both the multiple regression and output average. For the Trøndelag, 

inland and coastal regions the best performance came with the physical similarity method. 

For the inland region, the output average performed the best, but for the Trøndelag and 

coastal it was a tie as both physical similarity methods performed equal.  

Table 8: Comparison of all methods, output average and parameter average for the 5th station.  

Station ID Calibration Regression Output Average Parameter Average 

2.32 0.87 0.61 0.39 0.2 

2.463 0.9 0.87 0.78 0.81 

12.70 0.92 0.86 0.58 0.57 

12.215 0.89 0.85 0.84 0.88 

15.79 0.9 0.59 0.8 0.78 

16.75 0.91 0.83 0.71 0.65 

16.193 0.82 0.73 0.77 0.76 

20.2 0.9 0.84 0.84 0.81 

22.16 0.91 0.83 0.85 0.88 

24.8 0.94 0.86 0.89 0.89 

24.9 0.91 0.89 0.84 0.82 

25.24 0.87 0.6 0.7 0.63 

25.32 0.78 0.72 0.69 0.7 

26.20 0.91 0.89 0.89 0.87 

27.16 0.84 0.69 0.64 0.65 

35.16 0.89 0.81 0.77 0.74 

42.2 0.79 0.62 0.67 0.67 

48.5 0.89 0.88 0.91 0.89 

55.5 0.79 0.67 0.48 0.49 

62.5 0.92 0.8 0.73 0.83 
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75.23 0.83 0.66 0.62 0.67 

122.11 0.9 0.81 0.79 0.69 

148.2 0.95 0.89 0.91 0.91 

165.6 0.77 0.66 0.52 0.54 

212.27 0.92 0.77 0.43 0.17 

Average 0.88 0.77 0.72 0.70 

 

Table 9 shows the spatial distribution of the regionalization methods. For every region, 

except the Trøndelag region, the multiple regression method is the best performing method. 

Behind the multiple regression method, the output average method and the parameter 

average method follows, respectively. The one exception to this, the Trøndelag region, only 

includes one catchment and will therefore be a result with a lot more uncertainty.  

 

Table 9: Spatial distribution of regionalization methods. 

Regions Calibration Regression Output Average Parameter Average 

Mountain 0.89 0.75 0.69 0.64 

Inland 0.87 0.78 0.73 0.72 

Coastal 0.86 0.76 0.73 0.73 

Transition 0.86 0.78 0.72 0.71 

Trøndelag 0.95 0.89 0.91 0.91 

 

Figure 16a shows the observed discharge for station 12.70, with the simulated discharge 

from the three regionalization methods from the start of 2000 to the end of 2002. As one can 

see the discharge is very similar for all the methods, however especially in the 2001 spring 

floods one can see a difference in the methods. The parameter average method peaks at 

about 120 m3/s, while the multiple regression method does not even break 100 m3/s. The 

peak in discharge is almost always overshot by the parameter average method. On the other 

hand, for the recession after a peak, very clear at the end of 2000, all methods will slightly 

undershoot until base flow is reached.  

Figure 16b shows the mean monthly hydrograph for all methods and the observed runoff. 

The first few winter months are very similar for all methods, as for a catchment in a 

mountainous region this is the time for snow accumulation, and little to no runoff is seen. 

Coming into April one can see that all methods increase in runoff, with the observed runoff 

having the lowest increase. This continuous to the peak, in May, when all methods reach 

their peak. The observed runoff peaks at about 45 m3/s, while the multiple regression method 

reaches about 50 m3/s. The two physical similarity methods both peak at over 60 m3/s, and 

thus shows much the same as in Figure 16a. For the spring floods, all methods therefore 
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overshoots. When the spring flood is over and the runoff decreases, the runoff decreases for 

all regionalization methods as well as the observed runoff. All methods drop down to an 

acceptable level, before slightly increasing again in the month of August. This slight increase 

in runoff in August is not as strong in the observed runoff. Towards the end of the year all 

methods follow the observed runoff, before ending the year with similar runoff to the 

observed runoff.  

 

Figure 16a: Comparison of the 3 regionalization methods and the observed discharge for station 12.70 , mountain region. 
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Figure 16b: Mean monthly hydrograph for station 12.70, for all regionalization methods and observed runoff. 

Figure 17a shows the observed runoff for station 22.16, with the simulated discharge from 

the three regionalization methods from the start of 2000 to the end of 2002. The runoff is very 

similar for all the methods, with only one clear error. During the spring of 2001, the observed 

runoff is quite a lot higher than for any of the regionalization methods. On the contrary, all 

other peaks are similar for the methods and the observed runoff. The parameter average 

method will also for this catchment slightly overshoot some peaks. This is especially clear in 

the middle parts of 2001, with several smaller peaks in runoff being noticeably too big for the 

parameter average method.  

Figure 17b shows the mean monthly hydrograph for all methods and the observed runoff. 

Generally, the multiple regression method slightly undershoots the observed runoff. For the 

two physical similarity methods, they both perform better. For the first three months of the 

year, all methods perform similarly, missing the observed runoff slightly when the runoff 

increases in February and March. For the first peak in April, the parameter average method 

is nearly spot on the observed runoff, while the output average method is just slightly smaller. 

The multiple regression method misses this peak by quite a lot. When the runoff decreases 

nearing the summer, all methods decrease by the right amount. For the trough in June, both 

of the physical similarity methods matches this well, while the multiple regression method is 

too low again. The increase in runoff towards the rain flood in early winter is well matched by 

all methods. For the second, and larger, peak in November, the two physical similarity 
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methods are very similar and just slightly more runoff than the observed runoff. The multiple 

regression method again undershoots.  

 

Figure 17a: Comparison of the 3 regionalization methods and the observed discharge for station 22.16, inland region. 

 

Figure 17b: Mean monthly hydrograph for station 22.16,  for all regionalization methods and observed runoff. 
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Figure 18a shows the observed runoff for station 24.8, with the simulated runoff from the 

three regionalization methods from the start of 2000 to the end of 2002. Again, all the 

methods look pretty good, with only slight misses of the peaks in early 2000 and in late 2001. 

It is also worth noting that for a runoff event in early 2001, all methods miss both the increase 

in runoff as well as the recession. The next runoff event is then very similar again.  

Figure 18b shows the mean monthly hydrograph for all methods and the observed runoff. For 

this monthly hydrograph, the methods seem to slightly overshoot the observed runoff. For the 

first two months, all the regionalization methods are very similar, while the observed runoff is 

higher than the methods. For the next months, the multiple regression method increases 

more than the other methods, and noticeably more than the observed runoff. In April, the 

methods show a peak, while the observed runoff continuous the drop off in runoff. The peak 

is bigger in the multiple regression method than the two physical similarity methods. The 

observed runoff shows a trough in the summer, when the evapotranspiration is so large that 

the runoff is almost non-existent. The observed runoff does however drop down to a lower 

level than for any of the regionalization methods. The methods are very similar for the trough, 

as well as for the increase in runoff come autumn. Nevertheless, the observed runoff is 

noticeably lower than the regionalization methods. When a new peak is reached in 

November all methods are similar to the observed runoff, before decreasing more than the 

observed runoff in December.  
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Figure 18a: Comparison of the 3 regionalization methods and the observed discharge for station 24.8, coastal region.  

 

Figure 18b: Mean monthly hydrograph for station 24.8, for all regionalization methods and observed runoff. 
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Figure 19a shows the observed runoff for station 26.20, with the simulated runoff from the 

three regionalization methods from the start of 2000 to the end of 2002. All methods look 

fairly good, again the parameter average method has problem with overshooting the biggest 

peak discharge. A noticeable event happens in the middle part of 2000, with the observed 

runoff dropping down to almost 0 m3/s, while the regionalization methods keep a steady 

runoff going.  

Figure 19b shows the mean monthly hydrograph for all methods and the observed runoff. For 

the first three months, the regionalization methods follow the observed runoff very closely, 

with a slight undershooting for the February and March months. For the peak in April, all 

methods overshoot the observed runoff, with the parameter average method being the 

method with the biggest runoff peak. For the trough in the summer months, all methods are 

similar to the observed runoff, with the multiple regression method having a trough lower 

than the other methods and the observed runoff. For the increase in runoff after the summer, 

the multiple regression method has the best simulated runoff, being very similar to the 

observed runoff. The two physical similarity methods are both showing a slightly too high 

simulated runoff. For the peak in November, the multiple regression method shows a very 

similar runoff to the observed, while the two physical similarity methods have a slightly too 

large peak.  

 

Figure 19a: Comparison of the 3 regionalization methods and the observed discharge for station 26.20, transition region.  
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Figure 19b: Mean monthly hydrograph for station 26.20,  for all regionalization methods and observed runoff. 

Figure 20a shows the observed runoff for station 148.2, with the simulated runoff from the 

three regionalization methods from the start of 2000 to the end of 2002. Due to the fact that 

this catchment has the best KGE values of all the catchments chosen for their specific 

region, the plot also looks the best here. All methods catch all peaks and troughs and 

generally looks very good. Though the output average method shows a larger peak in the 

early 2000, and a general recession which is too slow. 

Figure 20b shows the mean monthly hydrograph for all methods and the observed runoff. 

Starting off in January, the two physical similarity methods show a slightly smaller simulated 

runoff, than the observed runoff, while the multiple regression method is very similar to the 

observed runoff. For the peak in April however, the two physical similarity performs slightly 

better than the multiple regression method, with the output average method showing a very 

similar simulated runoff to that of the observed runoff. All methods look good on the 

recession toward the trough in July, with both the simulated runoff from the multiple 

regression method and the output average method hitting the trough from the observed 

runoff. The simulated runoff from the parameter average method slightly undershoots the 

observed runoff. In August, all methods show a sharp increase in simulated runoff, while the 

observed runoff is still quite low. The regionalization methods all follow the observed runoff 

up until the peak in September, with all methods slight overshooting the peak. Here the 

output average methods are closest, followed by the parameter average method and the 
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multiple regression method, respectively. Towards the end of the year all regionalization 

methods show a decrease in simulated runoff, while the observed runoff keeps on slightly 

increasing. The two physical similarity methods show the biggest drop in simulated runoff, 

while the multiple regression methods’ simulated runoff is the closest to the observed runoff. 

 

Figure 20a: Comparison of the 3 regionalization methods and the observed discharge for station 148.2, Trøndelag region.  
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Figure 20b: Mean monthly hydrograph for station 148.2,  for all regionalization methods and observed runoff. 

 

5 Discussion 

5.1 Correlation 

 
As seen in Table 3, the correlation analysis of the relationship between the catchment 

characteristics and model parameters shows significant, but not very high correlations. The 

highest correlations are those between the  pkorr model parameter and the geographic 

catchment characteristics, especially the positive bare rock percentage and negative forest 

percentage. This is expected as a dense forest cover will more than likely intercept some of 

the precipitation, and thus the negative correlation makes sense. All model parameters are 

significantly correlated to at least one catchment characteristics. This differs greatly from 

studies using parameter rich hydrological models such as the HBV-model, namely Seibert 

(1999) and Merz & Blöschl (2004) where a few to none of the model parameters was 

correlated with catchment characteristics. However, in Skaugen et al. (2009), which used the 

DDD model too, all model parameters were correlated to catchment characteristics.  

As seen in Figure 7, the correlations between the catchment characteristics have quite a few 

significant correlations. All these correlations are reasonable, such as the strong positive 

correlation between the area of a catchment and the length of the catchment and the strong 
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negative correlation between percentage of forest and percentage of bare rock.  

For the model parameters themselves, there is very few significant correlations. From Figure 

8 one can see that the only two correlations that are significant are the positive correlation 

between the skorr and pkorr parameters and the negative correlation between skorr and TX. 

This is expected, if the TX value is high, less of the precipitation falls as snow and less 

precipitation in the form of snow needs to be corrected. If a catchment needs a lot of 

correction to its precipitation as rainfall, it is also quite logical that the catchment also needs 

that correction when the precipitation falls as snow.  

5.2 Model Parameter Sensitivity 

 
The model parameters which are most sensitive to changes in values are the pkorr and the 

skorr model parameters. As illustrated in Figures 9-14, one can see that these two 

parameters contribute the most to the changes in KGE, when the model parameters vary. 

However, one important thing to note is the fact that this is not the same for all regions in 

Norway. The pkorr parameter looked the same for every region, but the skorr parameter had 

a lot less impact on the model performance in the warmer regions near the coast. This is 

likely due to the fact that the western coast of Norway receives little to no snowfall during the 

winter, and thus changes in the correction factor for snow has little to say for the overall 

model performance. Additionally, it is important to remember that a lot of the mountainous 

catchments are dominated by glaciers, here the precipitation has less to say on the 

discharge and almost all of the discharge comes from meltwater. The meltwater will only flow 

out of the glacier when the energy input from the atmosphere is sufficient, as the glacier is 

always full of water.  

5.3 Regionalization 

 

5.3.1 Multiple Regression 

 
The multiple regression method performs satisfactory in regionalizing the model parameters, 

even with quite low R2 score for the individual equations. The average KGE for the multiple 

regression method is 0.77 compared to the average calibrated KGE score of 0.88. 

As seen in Table 4, the regressed model parameters perform well for every catchment. 

Therefore, it seems that the regression method does not work great at finding the individual 

parameters but works well on finding a set of parameters that gives a good result. From 

Figures 9-14, one can see that the pkorr and skorr parameters are the most sensitive, while 

the others have a range of parameters that can work well in the model. As seen in Table 3, 

the pkorr and skorr equations have higher R2 values than most other parameters, especially 

pkorr have a quite high R2. Thus, equations for skorr and pkorr being fairly robust helps the 
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multiple regression to good model results, even though some of the other equations are not 

as strong.  

The five representative catchments, one for each region, that was selected perform quite well 

for the multiple regression method. With a range from 0.83 to 0.89 KGE, all regions 

performed well with the mountain region being the lowest score, and the Trøndelag and 

transition regions both obtain a KGE value of 0.89.  

The performance of the multiple regression method in this study strengthens the statement 

that linking hydrological model parameters to catchment characteristics can be used to 

predict discharge at ungauged catchments(Magette et al., 1976). The good predictions by 

the multiple regression method also agrees with the recent results of Skaugen et al. (2015) 

and Tsegaw et al. (2019), both using the DDD model on Norwegian catchments.  

5.3.2 Physical Similarity 

 
The physical similarity method also performs relatively well. Tables 6 and 7 shows the KGE 

values of the model results from the two methods, while Figure 15 shows how the model 

results change when more donor catchments are added. The output average method 

performs slightly better for all numbers of donor catchments. This result contradicts many 

previous studies such as Parajka et al. (2005); Oudin et al. (2008); Zhang & Chiew (2009); 

Yang et al. (2018) and Yang et al. (2020), where the physical similarity method outperformed 

the multiple regression method, often by quite a lot. In this study the results are much closer, 

and the multiple regression method even exceeds the physical similarity method. The main 

difference between this study and the previous studies is the hydrological model used. The 

other studies all used models such as the HBV-model, while this study used a parsimonious 

model, the DDD model. The DDD model also has fewer model parameters to regionalize, 

with only 7 compared to other models which can have up to 17 parameters to regionalize 

(Yang et al., 2020). 

This could be a good explanation as in Yang et al. (2020), different models with different 

number of parameters needing regionalization are compared. The difference in performance 

between the output average and parameter average method increased with increasing 

number of parameters. With the DDD model being a parsimonious model and has relatively 

few parameters to regionalize, the results do seem to make some sense.  

There is no large, abrupt increase in KGE with increasing donor catchments, but relatively 

small increases with each donor catchment added. This supports the findings of Yang et al. 

(2020) in which small increases to the model performance was seen, but no significant 

increases to when exceeding 5 donor catchments was observed.  
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For the different regions, the physical similarity method showed divergent results. Catchment 

12.70, the representative of the mountain region, showed a clear decrease in KGE score with 

increasing donor stations. On the other hand, all other regions showed an increasing KGE 

score when approaching five donor catchments, and always the best result with the full five 

donor catchments. The transition region, catchment 148.2, showed the best result, with a 

KGE score of 0.91 for both the output average method and the parameter average method.  

5.4 Comparison of Regionalization Methods 

 
Table 8 shows the model results from all the different regionalization methods and the 

calibration. The calibration unsurprisingly has the highest KGE value, followed by multiple 

regression and then the two physical similarity methods. The fact that the multiple regression 

method gives better model results than the physical similarity contrasts what is seen in Oudin 

et al. (2005) and Yang et al. (2018 & 2020), in which the multiple regression method 

performs the worst out of all the regionalization methods. This is most likely due to the choice 

of model structure and the number of and the physical realism of the model parameters, as 

the Yang study shows that the multiple regression method is closest to the physical similarity 

method in models with few and physically meaningful parameters.  

However, in Tsegaw et al. (2019) which also uses the DDD model, the multiple regression 

method gives better model performance than the physical similarity method. This can be a 

further indication that for a parsimonious model, such as the DDD model, with fewer model 

parameters needing regionalization, the multiple regression method works the best.  

This is further shown in Young (2006), which used a large dataset of 260 catchments in the 

United Kingdom to look at the regionalization in the Probability-Distributed Moisture (PDM) 

model. This model too had six model parameters to regionalize, and the study looked at two 

regionalization methods, relating model parameters to the catchment characteristics using 

regression and nearest neighbor method. The regression of the model parameters had the 

best results, and the fact that there were fewer model parameters that needed regionalization 

in that study too, could indicate that for models with fewer model parameters to regionalize, 

the regression method is the best. 

Out of the 25 target catchments, 12 performed best using the multiple regression method, 

while only nine performed best for the physical similarity. The other four had a tied result. 

This once again indicates that the best performing method was the multiple regression 

method.  

The five target catchment selected to represent their region all had very high KGE values for 

all methods, except for the mountain region, which performed very poorly using either of the 

physical similarity methods. One interesting thing to note is the fact that out of the remaining 

four target catchments, all had equal or higher KGE values for the physical similarity 
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methods.  

The hydrographs and mean monthly hydrographs in Figures 16-20 shows that the 

regionalization methods perform quite well for catchments in all different regions. The biggest 

thing to notice is the physical similarity and their simulated runoff slightly missing some peak 

runoffs. This is especially clear in Figure 16b, for a mountainous region. Since the only real 

runoff comes from the melting of snow in the late spring, and the two physical similarity 

methods missing this peak by quite a lot, the KGE values for this catchment is relatively low. 

For the other catchments, with more peaks and troughs, this is not as noticeable. However, 

for both Figures 18 and 20, the multiple regression method is the method which overshoots 

the observed runoff.   

For further studies into the predictions of ungauged basins in Norway, there are some parts 

that could be done better. One could use a machine learning algorithm to perfect the multiple 

regression equation. This would likely create even better multiple regression equations, such 

as seen in Wu et al. (2018). Even though that study is not related to hydrology, it shows that 

a machine learning algorithm can create very robust multiple regression equations.  

Even though the module describing dynamics in the DDD model is primarily parametrized 

from observed features of the catchment, the DDD model is still, undoubtably, a simplification 

of reality. With abundant calibrated model parameters, that will to their best to compensate 

for errors, flawed structures are very difficult to identify (Kirchner, 2006). Reducing the 

number of model parameters to calibrate and will provide structural errors, that are easier to 

identify. Even though the number of model parameters that needs calibration in the DDD 

model is quite heavily reduced, there are still several model parameters which concerns the 

adjustment of input data, namely precipitation. That means that there is still room for a 

potentially better version of the DDD model.  

6 Conclusion 

This study aimed at evaluating the DDD model and its performance on predictions in 

ungauged basins, as well as comparing and evaluating the different regionalization methods 

on catchments in Norway. The comparison of methods was done at two levels, as a whole 

over Norway, as well as regionally over catchments in specific regions over Norway.  

This study shows that the new and improved DDD model is very good at predicting hydrology 

in ungauged basins, with average KGE values ranging from 0.7 up to 0.77 for the different 

regionalization methods. As stated in Thiemig et al. (2013), 0.75 ≤ KGE < 0.9 is good, 0.5 ≤ 

KGE < 0.75 is intermediate and 0.0 ≤ KGE < 0.5 is poor, so the performance of the DDD 

model is in the high intermediate to the lower side of good performances.  

The best regionalization method to use was the multiple regression method, in which the 
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average KGE value were 0.77, compared to 0.72 and 0.7 for the output average and 

parameter average, respectively.  
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