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Abstract 

Altitudinal tree- and forest lines (TFLs) are two boundaries (but often abbreviated with one 

word to save space) in the transition zone that separates closed forest from treeless tundra in 

alpine regions. Due to the last century’s trend of advancing TFLs there is a growing need to 

understand and predict their distributions. In this study, we aimed to: (1) identify climatic 

predictors of TFLs in south Norway dominated by mountain birch (Betula pubescens ssp. 

czerepanovii); (2) analyse elevational changes and estimate distributional changes from 1917 

to 2017; and (3) discuss the most likely explanations for the observed changes. The maximum 

entropy algorithm was used for distribution modelling of past and present TFLs with wall-to-

wall coverage of 40 explanatory variables (EVs) with 100100 m resolution and presence-only 

data collected in situ from the study area covering 69 000 km2 from 60°26 to 62°43 N and 6°58 

to 12°13 E. Stepwise forward selection with the likelihood ratio test for nested models was used 

to obtain present TFL models with and without topographical variables, evaluated by AUC-

ROC and AUC-PR with independently collected evaluation data. Model coefficients were 

estimated for past TFL models with fixed EVs derived from modelling of present TFLs and 

evaluated by 4-fold cross-validation. Inverse distance weighting with the elevation of the 

highest local predictions from past and present TFL models without topographic variables as 

interpolation attributes was used to obtain interpolated raster layers. Through comparison with 

a digital elevation model, areas above and below TFLs were identified, and the resulting binary 

maps were used to estimate changes in distribution. In addition, elevational changes were 

analysed statistically. We found that: (1) the present treeline distribution was predicted by mean 

temperature of the warmest quarter, maximum temperature in November, slope inclination and 

snow water equivalent in March, while mean temperature of the warmest quarter, minimum 

temperature in November and slope inclination predicted the forest line distribution; (2) TFLs 

significantly moved upslope from 1917 to 2017 with treelines and forest lines moving on 

average 0.53 and 0.36 m/year, respectively. The estimated reduction of 6 688 km2 in areas 

above the treeline (27.6% decline) from 1917 to 2017 was much higher than the estimated 1 

137 km2 reduction of areas above the forest line (5.3% decline) but might be affected by the 

data quality of past TFL observations; (3) the observed changes are most likely a result of 

climate and land use changes, but it is hard to separate their relative influences. Potential 

consequences of the observed changes for climate and biodiversity are discussed briefly. 
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Introduction 

Mountain areas worldwide have been largely impacted by changes in land use and climate the 

last century (Gehrig‐Fasel et al. 2007, IPCC 2013, Cudlín et al. 2017, Li and Li 2017), which 

have contributed to changes in the distribution of forest and mountain ecosystems, 

conventionally approximated by monitoring boundary shifts (Harsch et al. 2009, Rees et al. 

2020). Tree- and forest lines (TFLs) – the altitudinal or latitudinal positions above which trees 

and forests, respectively, are absent – are such boundaries, and they represent the transition 

zone that separates closed forest from treeless tundra (Elliott 2016).  

Globally, TFL distributions are strongly correlated with summer temperature, and thus, they 

are assumed to be good climatic indicators (Jobbágy and Jackson 2000, Körner and Paulsen 

2004). At smaller scales, factors controlling TFL distribution encompass a broad range of 

abiotic, biotic and historical factors, often working in combination (Holtmeier and Broll 2007). 

The distribution of TFLs in south Norway also correlate strongly with summer temperature but 

other climatically limiting factors in the region are less known (Bryn 2008). Identification of 

climatic and ecological predictors may generate new hypotheses of factors limiting distributions 

(Dormann et al. 2012) and thereby improve predictions of past and future TFL dynamics. 

Historically, elevations of TFLs in Fennoscandia were higher than today throughout much of 

the Holocene, although fluctuating since trees colonized after the Last Ice Age (Bjune 2005, 

Kullman 2013). Macrofossils from Jotunheimen in south Norway indicate that treelines in the 

area most likely became climatically depressed from around 8900 BP, while human land use 

started to gain more importance in the area around 2000 BP (Bjune 2005). As a result of past 

land use many TFLs in Norway are still situated at positions below their climatic potential (Bryn 

and Daugstad 2001). Empirical studies from Norway indicate that TFLs have mainly been 

advancing, but in some locations, they have been stable or declining the last century (Bryn and 

Potthoff 2018), and regionally, they are moving slower than expected from changes in 

temperature (Dalen and Hofgaard 2005, Rannow 2013). Coinciding with elevational changes, 

intensity of summer farming in the mountains has declined in many areas (Bryn and Daugstad 

2001), while annual temperature has increased (Hanssen-Bauer et al. 2006). Therefore, 

abandonment of agricultural land and climate change are considered the two main driving 

forces of the observed elevational changes (Bryn 2008). However, their relative importance is 

unknown and due to time lags in establishment, TFLs respond to environmental changes in a 
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non-linear fashion, which makes it hard to disentangle and quantify the effects of these two 

driving forces (Malanson 2001).  

TFL advance is thought to initiate substantial feedback mechanisms because closed forest and 

treeless tundra ecosystems have completely different effects on surface albedo, carbon storage 

and turnover, evapotranspiration and release of biogenic volatile organic compounds, (de Wit 

et al. 2014, Rydsaa et al. 2017). Changes in TFL distribution might also have negative 

consequences for alpine biodiversity because TFL rise entails shrinkage of alpine ecosystems, 

increasing the extinction probability of alpine species (Moen et al. 2004). Although several 

studies report elevational changes of TFLs in the 20th century (Kullman 2010a, Bryn and 

Potthoff 2018, Trant et al. 2020), we do not know how these observations translate into changes 

in areas above and below TFLs. Such estimates do not yet exist from south Norway but are 

needed because they allow calculations of the radiative forcing from TFL induced climate 

feedbacks, and assessments of the potential impacts on alpine biodiversity. 

Areal estimates of changes in distribution and identification of ecological predictors can be 

investigated with distribution modelling, commonly used for predicting distributions in past, 

present and future conditions (Guisan and Zimmermann 2000). They are commonly used to 

model the distribution of targets like species, communities, species diversity or land-cover types 

(Halvorsen 2012), and not continuous lines in the landscape, which are modelled in this study 

and are what TFLs theoretically represent (see Bryn et al. (2013) for an exception). In 

correlative distribution modelling a target’s distribution is predicted from a statistical 

relationship between target occurrence data and explanatory variables within a given area, 

followed by projecting the resulting distribution onto geographical space (Elith and Leathwick 

2009). These methods have some properties that might be problematic for their use to model 

past and present TFL distributions. They assume that the target is in equilibrium with the 

environment and that the explanatory variables are capturing relevant mechanisms that affect 

the target’s distribution, which refers to the types of explanatory variables, as well as their 

temporal and spatial scale (Dormann et al. 2012). Moreover, for extrapolation of models, 

explanatory variables that affect the target’s distribution directly might be preferable because 

they can change differently than their proxies in time and space (Austin 2002).  

Distribution models often rely on information about where a target is present and absent (Mateo 

et al. 2010), but methods that only require presence observations, like MaxEnt, have gained 

popularity in recent years due to the lack of absence observations in many data sets (Graham et 

al. 2004), such as Resvoll-Holmsen’s (1918) field observations of TFL elevations in south-east 
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Norway. Data collected in the field, have higher spatial precision than the aerial photos and 

satellite data often used in studies on TFL dynamics (Harsch et al. 2009). In addition, old data 

sets enable detection of changes in slow processes that occur over long time periods (Tingley 

and Beissinger 2009), such as TFL dynamics.  

Aims 

The objective of this thesis is to improve the understanding of TFL dynamics through modelling 

of their past and present distributions in south Norway. The main questions are: 

1. What are the climatic and ecological predictors of TFLs? 

2. What changes have occurred in TFL elevation and what are the estimated changes in 

distributional area?  

3. What can explain the changes in TFL distribution? 
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Material & Methods 

Study area 

The study area extends from 6°58 to 12°13 E and 60°26 to 62°43 N with a total area of 

approximately 69 000 km2 and was chosen based on observations from Resvoll-Holmsen 

(1918) and more recently collected data from south Norway (mentioned in detail in section 

“Training data” below) (Figure 2). The mean elevation of the landscape is 922±389 m a.s.l. and 

mountain heights generally decrease in all directions from the highest point in the middle of the 

study area, at Galdhøpiggen, 2 469 m a.s.l. TFLs in south Norway are primarily formed by 

mountain birch (Betula pubescens ssp. czerepanovii), while Norway spruce (Picea abies), Scots 

pine (Pinus sylvestris) and rowan (Sorbus aucuparia) sometimes form TFLs locally. The 

uppermost forests are mostly dominated by mountain birch and usually extend vertically more 

than 50 m (Odland 1992). According to Resvoll-Holmsen (1918), logging of mountain forests 

followed by maintenance of their positions by grazing had been extensive in the region in the 

1910s. The mountain forest in the region is primarily situated on deposits of glacial till but soil 

conditions depend more on the bedrock, which mainly consists of gabbro in Jotunheimen and 

Tron, gneiss in Dovre and sparagmites in Rondane and Femunden (Ramberg et al. 2008). The 

study area spans four bioclimatic sections from markedly oceanic in the western most parts to 

slightly continental eastwards and five bioclimatic regions from the boreonemoral zone, 

especially in south and at the lowest elevations, to the alpine zone at the highest (Bakkestuen et 

al. 2008). The mean annual precipitation ranges from 318 mm in east to 2204 mm in western 

parts, while the mean annual temperature ranges from -6.4°C at high elevations to 7.2°C at 

lowland locations. 

Data collection (ref. Figure 3, step 1) 

For the statistical analysis of elevational changes 57 treelines and 47 forest lines were remapped 

in the field between July and October from 2013 to 2017 in the mountains/valleys and aspects 

previously mapped by Resvoll-Holmsen (1918). Aas (1969), who like Resvoll-Holmsen (1918) 

measured elevation with a barometer, had previously remapped 37 of the treelines and 28 of 

the forest lines and these were also used in the analysis. In the remapping, we measured aspect 

with a compass at each observation point, divided into eight sectors of equal range, representing 

north, north-east, east, etc. Only the uppermost tree or forest was mapped in each aspect and 

coordinates and elevation was registered with a GPS. All characteristics (species, elevation, 
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aspect, coordinates) of a forest were defined based on its uppermost tree. The georeferenced 

positions of all observations (from our remapping) used in the statistical analysis of elevational 

changes are depicted in Figure 1. 

Definitions (ref. Figure 3, step 1) 

Resvoll-Holmsen (1918) and Aas (1969) adopted Normann’s treeline definition: “the highest 

point where predominantly upright, single trunked birch (or other species), higher than a man 

is found”, while they categorized forest lines as “the highest limit of continuous forest”. During 

remapping, the most important criteria considered for classification of trees were that they had 

a height of at least 2.5 m measured vertically from the ground and a tree crown established 

above the snow cover in winter periods. Forests were defined as groups of at least 15 trees, 

where only trees within 15 m of the other trees in a group were considered part of it. All criteria 

are listed in the unpublished guidelines from Bryn (2020) for mapping of TFLs (see Appendix 

for the guidelines). 

Training data (ref. Figure 3, step 1 and 3) 

Presence-only data for distribution modelling of present TFLs consisted of remapped 

georeferenced observations (see the section “Data collection” above, and Figure 1) and 

additional TFLs mapped in the field between July and October from 2013 to 2020 (Figure 2 

shows a subset of the data, due to filtering described later). Some of the data were collected as 

part of another remapping project and the other were mapped for the first time, but all 

observations used as presences were collected by registering the same variables with the same 

definitions of TFLs (see the section “Definitions” above). Although the data used for 

distribution modelling and analysis of elevational changes also included observations from 

other years than 2017, that year was regarded as the most recent year in the results for all 

analysis due to practical purposes. As presences for distribution modelling of past TFLs, data 

from Resvoll-Holmsen (1918) were georeferenced with assistance from a digital elevation 

model (DEM) with 1010 m resolution following the same procedure as Bryn and Potthoff 

(2017). Past TFL presence points were assumed to be located in the nearest grid cell relative to 

their corresponding remapped TFL presence points, provided that they were in the same 

mountain/valley, aspect and elevation as reported in Resvoll-Holmsen (1918). Uncertainties 

were measured as the distance from the presence points to their most distant possible positions, 

given the same mountain/valley, aspect and elevation. Analyses of past treelines, past forest 

lines, present treelines and present forest lines were further handled separately with the same 
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procedure, unless otherwise specified. Presence points were rasterized in a grid covering the 

entire study area with 100100 m resolution with maximum one presence point inside each grid 

cell. To reduce potential influences of sampling bias, the data was filtered by lowering the 

density of presence points geographically (Vollering et al. 2019a). From presence points within 

a subjectively chosen distance of 2 km in both latitude and longitude of other presence points, 

the presence point situated at the lowest annual temperature was retained, as it more likely 

represent a climatic tree- or forest line, which by definition are limited by temperature (Odland 

1992). Presence points for 40 past treelines, 36 past forest lines, 115 present treelines and 109 

present forest lines remained after filtering (Figure 2). Each modelled target was divided into a 

separate training data set with a 1:3 ratio of presences to randomly generated pseudo-absences 

(Støa et al. 2018) and five replicates were made for each set obtaining 20 training data sets in 

total. MaxEnt models generated with a ratio of 1:1 presences to pseudo-absences perform 

slightly worse than models generated with a ratio of 1:9 or lower (Grimmett et al. 2020), but a 

higher number of replicates compensates by increasing model performance when the presence 

to pseudo-absence ratio is high (Barbet‐Massin et al. 2012). 

Evaluation data (ref. Figure 3, step 2 and 3) 

To evaluate present TFL models, georeferenced observations of 389 treelines and 354 forest 

lines in the study area were gathered from the citizen science project Natur i endring 

(www.naturiendring.no, accessed 11.01.21). These data were registered with a mobile 

application between February and October from 2018 to 2020 (Bryn et al. 2019) and were 

independently collected from the training data. Registering occurs through a questioning 

procedure to ensure that TFLs are classified according to the unpublished guidelines of TFL 

mapping from Bryn (2020) which also was used in this study. A recent analysis of the data 

showed that treelines and forest lines were classified correctly 57.7% and 63.2% of the times, 

respectively, while the altitudinal errors in terms of distance from the true line were 14.64 m 

for treelines and 8.84 m for forest lines (Torma 2019). Presence points were rasterized in a 

100100 m resolution grid covering the entire study area with maximum one presence point 

inside each grid cell and from presence points within a distance of 5 km in both latitude and 

longitude of other presence points, the presence point situated at lowest annual temperature was 

retained. Lower distance threshold for removal of close samples was used due to the higher 

classification error in the evaluation data. Presence points within 2 km in longitude and latitude 

of presence points in the training data were also removed to make the evaluation data more 

independent of the training data. Filtering reduced the sample sizes to 107 observations of 



8 

 

treelines and 53 forest lines (Figure 2). Five replicates of each separate data set for treelines and 

forest lines were generated with a 1:3 ratio presences to randomly generated pseudo-absences. 

 

 

Figure 1. Location of the study area in south Norway based on a digital elevation model (DEM) derived from the Norwegian 

Mapping Authority with 100100 m resolution. Observations of tree- and forest lines used in the analysis of elevational changes 

are marked with different symbols and elevation relative to sea level is indicated on a continuous scale, where whiter shades 

represent higher elevations. Note that many of these observations are the same as those depicted in Figure 2. Coordinate 

reference system: WGS 84/UTM zone 33N. 
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Figure 2. Location of the study area in south Norway based on a digital elevation model (DEM) derived from the Norwegian 

Mapping Authority with 100100 m resolution. Observations of tree- and forest lines used for distribution modelling marked 

with different symbols and elevation relative to sea level is indicated on a continuous scale, where whiter shades represent 

higher elevations. Note that many of these observations are the same as those depicted in Figure 1. Coordinate reference system: 

WGS 84/UTM zone 33N.
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Explanatory data (ref. Figure 3, step 4 and 5) 

125 explanatory variables (EVs) covering the entire study area were derived from Horvath et 

al. (2019). These consist of climatic (monthly variables for mean temperature, extreme 

temperature and precipitation and 19 BIOLCLIM variables (Fick and Hijmans 2017) generated 

from these) and snow variables (monthly variables for snow covered area and snow water 

equivalent) obtained from interpolated weather station data (Lussana et al. 2016, Lussana et al. 

2018) with 11 km resolution recorded daily between 2004 and 2014. They also include 

topographic variables derived from a DEM (upscaled to 100100 m from 5050 m) obtained 

from the Norwegian Mapping Authority, and geological and land cover variables. All the other 

EVs, except the topographical were further interpolated to 100100 by Horvath et al. (2019). 

EVs considered uninformative were excluded along with all the categorical variables, which 

were mapped at low resolution. Uninformative EVs includes for example snow covered area in 

January that was 100% for almost all presence observations of TFLs. Kendall’s rank correlation 

coefficients of 1000 random values from the entire study area were calculated for all pairs of 

remaining EVs and the less relevant EV from all pairs with |τ| > 0.7 was excluded. Here, the 

degree to which the EV could be directly causing a response was considered. For instance, 

temperature was regarded as more direct than altitude because temperature is directly related to 

plant physiological processes (Tranquillini 1964), whereas altitude only serves as a proxy for 

the adiabatic change of atmospheric temperature (Körner 2007). Others, like the mean 

temperature of the warmest quarter were preferred based on literature (Helland 1912). The 

remaining set of 40 EVs consisted of snow, climatic and topographic types. 

Model fitting and selection (ref. Figure 3, step 6-9) 

Model fitting and selection was executed on all replicates of present and past TFL training data 

sets, 20 in total. Models were parameterized with the maximum entropy method using the 

“MIAmaxent” package (version 1.2.0) (Vollering et al. 2019b) in R version 4.0.3 (R Core Team 

2021). The model selection consists of two steps, first selecting sets of derived variables (DVs) 

to represent each EV, then selecting from these sets of DVs to obtain a set of DVs that predict 

the distribution of the modelled target in the final model. DVs are single parameter 

transformation types of EVs, supposed to represent realistic response curves, or truncated ones 

(Halvorsen 2013). These are useful because species (but also TFLs= do not respond in a linear 

fashion to most variables, assuming that they are measured across the entire range of the 

species’ tolerance. Instead, they are more likely to occur around an optimum value and decline 
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towards higher and lower values (Halvorsen 2012). Frequency of observed presence (FOP) 

plots were made to guide the decision about which types of DVs to include (Vollering et al. 

2019b). These plots show the FOP at selected intervals for a given EV in the data set, with a 

local regression line fitted to the points. They also include the estimated kernel density of values 

of the plotted EV in the data set, which at low density is an indication of high model uncertainty 

(Vollering et al. 2019b). Guided by the FOP plots, but also to avoid overfitted models only 

linear (L), monotonous (M) and three deviation types (D1, D2, D05: decreasing kurtosis from 

left to right) of DVs for each EV were fitted. The different deviation types represent unimodal 

responses with an optimum at the EV value with the highest frequency of presence, while the 

linear and monotonous type represent truncated response curves (Halvorsen et al. 2015). In 

both steps of the model selection, DVs were selected with a stepwise forward selection 

procedure using residual variation explained as selection criteria until reaching a significance 

threshold for the model, thereby obtaining parsimonious sets of DVs (Halvorsen 2013). Here, 

the likelihood ratio test for nested models was used to quantify residual variation explained by 

DVs and model significance. Low significance threshold (α = 0.001) was used as the frequency 

of type I error (i.e., rejection of a true null hypothesis) increases with number of parallel tests 

in each step (Blanchet et al. 2008). The model output – probability ratio output (PRO) - 

indicates the probability of presence in each grid cell relative to the other grid cells in the study 

area (Halvorsen 2013) and are therefore not comparable among models.  

In addition to using the entire set of EVs, model selection was also performed using a set of 

only snow and climatic variables to obtain a set of DVs for EVs for present and past TFL models 

used to estimate changes in area. Topographic variables, like slope inclination, curvature and 

topographic position index were left out because the uncertainty in the positions of past TFLs 

was substantially higher in longitudinal and latitudinal compared to altitudinal direction. In 

these directions, the topographic variables vary strongly on smaller scales, whereas the snow 

and climatic variables vary mostly with altitude. Because EVs for past conditions were lacking, 

we were unable to extrapolate the present models to past environmental conditions, which is 

usually done when predicting past or future distributions (for examples, see Svenning et al. 

(2008), Fløjgaard et al. (2009) or Jaeschke et al. (2013)). Instead, EVs with the same temporal 

range were used to predict present and past TFLs but with different presence points. Estimation 

of model coefficients for past TFL models with fixed EVs obtained from modelling of present 

TFLs without topographic variables was carried out with the same procedure as for present TFL 

modelling.  
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Model evaluation (ref. Figure 3, step 10) 

The predictive power of each final model of present TFLs was determined by calculating the 

area under the receiver operator curve (AUC-ROC) and the area under the receiver precision-

recall curve (AUC-PR) for all five replicates of the evaluation data sets. The resulting AUC-

ROC and AUC-PR scores were separately averaged for each final model, and the model with 

highest average AUC-ROC score was assumed to represent the best model. When using 

presence-only data, AUC-ROC is a measure of the model’s ability to discriminate presence 

from pseudo-absence observations (Halvorsen 2013). The discrimination ability increases from 

slightly higher than 0 to slightly lower than 1, calculated on presence-only data, where 0.5 is 

no better than random (Phillips et al. 2009). Although AUC-PR was ignored when selecting 

among models, it was calculated as an alternative model performance measure to AUC-ROC, 

because AUC-ROC scores tend to inflate when the modelled targets are rare, whereas AUC-

PR are independent of the number of true absence observations (Sofaer et al. 2019). AUC-PR 

is a measure of precision (the ratio of correctly predicted presences to all predicted presences) 

as a function of recall (the ratio of correctly predicted presences to all observed presences), and 

theoretically, model performance increases from 0 to 1, where scores equal to the sample 

prevalence (the ratio of presence observations to total observations) is no better than random 

(Sofaer et al. 2019). However, the minimum score of AUC-PR also depends on sample 

prevalence and is 0.137 when it equals 0.25 as in all our data sets, calculated with equations 

from Boyd et al. (2012). Since the data sets have identical prevalence AUC-PR is comparable 

among models (Boyd et al. 2012).  

Because independently collected occurrence data from 1917 was lacking, past TFL models 

were evaluated by 4-fold cross-validation (Fushiki 2011). This method consists of, without 

replacement, splitting the training data set randomly into four subsets of equal size with the 

same ratio of presence to pseudo-absence observations. Three of the subsets are then used to 

estimate model coefficients for models with fixed parameters, and the following model is used 

to predict values for the observation points in the remaining validation subset. This is repeated 

until all subsets have been used for validation and the sum of prediction errors for all validation 

test subsets is the total prediction error, used to measure model performance. The lowest total 

prediction errors were used to determine which of the final past TFL models were best. 
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Estimation of changes in area (ref. Figure 3, step 11 and 12) 

To estimate changes in land cover of TFLs, grid cells with the highest prediction value within 

2020 km grids wall-to-wall covering the entire study region were extracted from the best 

models of present TFLs without topographic variables and past TFLs. Although the model 

output is not comparable among models, we assume that the highest local prediction values in 

each map represent the most likely elevation of TFLs locally. The elevation of TFLs in all grid 

cells (100100 m) in the study area was interpolated using elevation from the extracted cells, 

obtained from a DEM, as interpolation attribute with inverse distance weighting (IDW) (Lu and 

Wong 2008) in QGIS version 3.16.3 (QGIS Development Team 2021). With IDW, values in 

unsampled grid cells are interpolated under the assumption that they are more similar to values 

of sampled nearby grid cells rather than distant ones, and the similarity decays with distance. 

The strength of this decay is determined by and inversely related to a distance coefficient 

weight, which is usually determined a priori (Lu and Wong 2008). Therefore, the same weight 

(P=3.5) was used in interpolation of all models, which was determined by experimenting. To 

obtain binary maps of TFL distributions the resulting interpolated raster layer was subtracted 

from the DEM raster layer, and all grid cells with values above and below zero were regarded 

as above and below the TFLs, respectively. Raster layers with changes in area were generated 

by subtracting the raster layers of binary transformations of past TFL models from the raster 

layers of binary transformations of present TFL models (modelled without topographic 

variables). Changes in area were estimated by subtracting the number of grid cells with advance 

from the number of grid cells with decline in the raster layer. Areas above and below the TFLs 

were calculated from the binary raster maps and percent reduction of areas above the TFLs was 

calculated by dividing the area above each line by net changes in land cover of the 

corresponding TFL. 
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Figure 3. Aims and conceptual model of the methodology related to distribution modelling. Colours indicate groups with steps 

involved in data collection and preparation (blue), statistical modelling (yellow) and further use of the model (green), similar 

to Halvorsen (2012). The steps do not always follow a linear order. TFL = tree- and forest line, EV = explanatory variable, DV 

= derived variable 

 

Statistical analysis of elevational changes 

Mean and standard deviation of changes in elevation of remapped TFLs was calculated and 

mean elevational changes were tested for significance with a two-tailed Student’s t-test (Al-

Achi 2019). Elevational movement per year was calculated as the mean elevational change 

divided by the average number of years between first and second registry. Percentage advance 

and decline was also calculated, while stability, defined as 0 m elevational change, was ignored 

as it only comprised a small proportion.



15 

 

Results 

The main findings of this study were that TFLs in south Norway generally advanced upslope 

from 1917 to 2017. The climatic and topographic variables were able to predict the present TFL 

distribution in the study area reasonably well, which were shown to depend strongly on 

temperature. We also estimated large changes in the distribution of treelines between 1917 and 

2017, and somewhat smaller changes in forest line distribution. 

Modelled distributions 

The present distribution of treelines modelled with topographic variables was predicted by 

mean temperature of the warmest quarter, maximum temperature in November, snow water 

equivalent in March and slope inclination in the respective order of decreasing fraction of total 

variation accounted for (FTVA) in the model (Table 1). All derived variables (DVs) were of 

the D2 type, and thus, treelines responded unimodally to all the predictors (Table 1; Figure 4). 

The frequency of observed presence (FOP) plots for almost all the explanatory variables (EVs) 

had high estimated kernel density in the range where probability ratio output (PRO) values were 

high (Figure 4a-c and 5a-c). An exception was slope inclination, where the density was low in 

the upper range (Figure 4d and 5d), which makes the model less reliable in this range (Vollering 

et al. 2019b). With decreasing order in terms of FTVA, the forest line distribution modelled 

with topographic variables in 2017 was predicted by mean temperature of the warmest quarter, 

slope inclination and minimum temperature in November, which also were represented by DVs 

of the D2 type (Table 1). As for treelines, all the EVs had high estimated kernel density in the 

range with high PRO values in the model (Figure 6a, 6c, 7a and 7c), except for slope inclination 

that had low data density in the upper range (Figure 6b and 7b).  

The distributions of both present TFL models were explained almost exclusively by 

temperature predictors when they were modelled without topographic variables (Table 1). 

Notably, the minimum temperature in November from the distribution of forest lines, was 

replaced by the maximum temperature in November when topographic variables were excluded 

(Table 1). Past and present treelines modelled without topographic variables were situated at a 

position where the current mean temperature of the warmest quarter is 9.9°C and 8.8°C, 

respectively, whereas it is 9.4°C in the location of past forest lines and 9.2°C in that of present 

forest lines modelled without topographic variables (Table 1). The current maximum 

temperature in November and snow water equivalent in March is higher in the locations of past 
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than present treelines modelled without topographical variables, while past forest lines were 

situated at a position where the current maximum temperature in November is lower compared 

to what it is in their positions today (Table 1).  

Snow water equivalent in March lowered PRO values around the glacier Jostedalsbreen, west 

in the study area in all treeline models (Figure 8, Appendix: Figure S1 and S7). In all models, 

the magnitude of PRO values was unequally distributed with a similar pattern across the study 

area, with high PRO values in a transect from south-west to north-east of the study region, 

whereas outside this transect they were generally low (Figure 8 and 9; and Appendix: Figure 

S1, S4, S7 and S10). Due to the lack of slope inclination as a predictor, the modelling of present 

TFLs without topographic variables and past TFLs resulted in predictions of less spatial small-

scale variation (Appendix: Figure S1, S4, S7 and S10).  

Present treelines and present forest lines modelled with topographic variables obtained AUC-

ROC scores of 0.800 and 0.791, respectively (Table 2). When topographic variables were 

excluded from modelling AUC-ROC scores decreased slightly and the resulting scores for 

treelines and forest lines were 0.788 and 0.768, respectively (Table 2). AUC-PR scores 

coincided well with AUC-ROC scores, and all the best models evaluated by AUC-ROC, except 

the present treeline model without topographic variables, also scored highest with AUC-PR 

(Appendix: Table S4, S8, S12 and S16). 
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Table 1. Explanatory variables, their estimated optima, transformations and fraction of total variation accounted for (FTVA) 

in the final models of past and present tree- and forest lines (with and without topographic variables) in south Norway. L = 

linear, M = monotonous, D = deviation (D1, D2 or D05) 

Present treelines (with topographic variables) 

Explanatory variables Current conditions at georeferenced positions  Transformation FTVA 

Mean temperature of warmest quarter 8.8°C D2 0.648 

Maximum temperature in November 6.1°C D2 0.192 

Snow water equivalent in March 2608.0 mm D2 0.096 

Slope inclination 0.5 (ratio) D2 0.064 

Present treelines (without topographic variables) 

Mean temperature of warmest quarter 8.8°C D2 0.692 

Maximum temperature in November 6.1°C D2 0.205 

Snow water equivalent in March 2608.0 mm D2 0.103 

Past treelines (without topographic variables) 

Mean temperature of warmest quarter 9.9°C D2 - 

Maximum temperature in November 6.9°C D2 - 

Snow water equivalent in March 2805.2 mm D2 - 

Present forest lines (with topographic variables) 

Mean temperature of warmest quarter 8.9°C D2 0.810 

Slope inclination 0.6 (ratio) D2 0.100 

Minimum temperature in November -20.5°C D2 0.090 

Present forest lines (without topographic variables) 

Mean temperature of warmest quarter 9.2°C D2 0.782 

Maximum temperature in November 6.4°C D2 0.218 

Past forest lines (without topographic variables) 

Mean temperature of warmest quarter 9.4°C D2 - 

Maximum temperature in November 6.2°C D2 - 
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Figure 4. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter, (b) maximum temperature in November, (c) snow water equivalent in March and (d) slope inclination in the 

model of present treelines, modelled with topographic variables (see Table 1 for details, and Figure 5 for frequency of observed 

presence (FOP) plots). 

a) b) 

d) c) 
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Figure 5. Frequency of observed presence (FOP) plots of present treelines modelled with topographic variables (see Table 1 

for details, and Figure 4 for modelled response of the predictors) for the (a) mean temperature of the warmest quarter, (b) 

maximum temperature in November, (c) snow water equivalent in March and (d) slope inclination presented as black dots. The 

red line is fitted to the points by a local regression with the MIAmaxent package and the density of values for each explanatory 

variable in the data set is presented in grey. 

c) 

a) 

d) 

b) 
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Figure 6. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter, (b) slope inclination and (c) minimum temperature in November in the model of present forest lines, modelled 

with topographic variables (see Table 1 for details, and Figure 7 for frequency of observed presence (FOP) plots).  

b) 

c) 

a) 
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Figure 7. Frequency of observed presence (FOP) plots of present forest lines modelled with topographic variables (see Table 

1 for details, and Figure 6 for modelled response of the predictors) for the (a) mean temperature of the warmest quarter, (b) 

slope inclination and (c) minimum temperature in November presented as black dots. The red line is fitted to the points by a 

local regression with the MIAmaxent package and the density of values for each explanatory variable in the data set is presented 

in grey. 

a) 

c) 

b) 
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Figure 8. Modelled distribution of present treelines with topographic variables (see details in Table 1, Figure 4 for modelled 

response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a continuous scale, where 

white indicates low relative probability of presence and green indicates high. Because the values are relative, a given value in 

this model may not correspond to the same value from another model. Coordinate reference system: WGS 84/UTM zone 33N. 
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Figure 9. Modelled distribution of present forest lines with topographic variables (see details in Table 1, and Figure 6 for 

modelled response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a continuous 

scale, where white indicates low relative probability of presence and green indicates high. Because the values are relative, a 

given value in this model may not correspond to the same value from another model. Coordinate reference system: WGS 

84/UTM zone 33N. 

 

Table 2. Model performance of final models of past and present tree- and forest lines, with and without topographic variables 

(see Table 1 for details). Present tree- and forest line models were evaluated by the area under the receiver operator 

characteristic (AUC-ROC) and the area under the precision-recall curve (AUC-PR), while past tree- and forest line models 

were evaluated by total prediction error. 

 Present 

treelines 

Present forest 

lines 

Present treelines 

(without topographic 

variables) 

Present forest lines 

(without topographic 

variables) 

Past 

treelines 

Past forest 

lines 

Total prediction 

error 
- - - - 99.28 106.55 

AUC-ROC 0.800 0.791 0.788 0.768 - - 

AUC-PR 0.562 0.493 0.530 0.462 - - 
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Distributional changes 

From 1917 to 2017 the treeline land cover was estimated to increase from 43 086 to 49 774 

km2, corresponding to a net increase in land cover of 6 688 km2, and a reduction of 27.6% areas 

above the treeline (Table 3). The forest line land cover in 1917 was estimated to be 46 057 km2 

(larger than the treeline land cover in 1917) and increased to 47 194 km2 in 2017 (Table 3). 

Both due to less advance and more decline the net land cover increase of forest lines was smaller 

in comparison to that of treelines, in total 1 137 km2, which was a 5.3% decline in areas above 

the forest line (Table 3). Treeline land cover increased almost throughout the entire study region 

and most of the decline were in small areas at the margins (Figure 11). The largest declines in 

forest line land cover were mainly in south-east, whereas advances were distributed throughout 

the region (Figure 12). In mountain areas where there has been a change of land cover, TFL 

land covers have changed less in steeper than gentler slopes. (Figure 11 and 12). 

 

Table 3. Estimates of areas above and below tree- and forest lines in 1917 and 2017, changes in land cover of tree- and forest 

lines and areas above them, between the two time points (see Appendix: Figure S13 for binary maps used for these estimates). 

  Areas below (km2) Areas above (km2) Areal 

expansion 

(km2) 

Areal 

declin

e 

(km2) 

Net land 

cover 

increase 

(km2) 

Percent 

decline of 

area above 

lines (%) 
  1917 2017 1917 2017 

Treelines 43 086 49 774 24 266 17 578 6 841 153 6 688 27.6 

Forest lines 46 057 47 194 21 296 20 158 1 989 859 1 137 5.3 
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Figure 11. Changes in treeline distribution in south Norway from 1917 to 2017 with advance indicated in green, grey as no 

change and decline in red (see Table 3 for estimates). The map is based on differences between past and present treeline models, 

modelled without topographic variables (see Appendix: Figure S1 and S7), where values are relative. Thus, the models are not 

comparable, but the maps (Appendix: Figure S13) used to calculate changes are, under the assumption that the highest local 

prediction values in each model represent the most likely elevation of tree- and forest lines locally. Coordinate reference system: 

WGS 84/UTM zone 33N.  
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Figure 12. Changes in forest line distribution in south Norway from 1917 to 2017 with advance indicated in green, grey as no 

change and decline in red (see Table 3 for estimates). The map is based on differences between past and present forest line 

models, modelled without topographic variables (see Appendix: Figure S4 and S11), where values are relative. Thus, the 

models are not comparable, but the maps (Appendix: Figure S13) used to calculate changes are, under the assumption that the 

highest local prediction values in each model represent the most likely elevation of tree- and forest lines locally. Coordinate 

reference system: WGS 84/UTM zone 33N. 

 

Elevational changes 

On average, treelines (51±44 m, Student’s t-test: p < 0.001, 0.53 m/year) and forest lines (36±41 

m, Student’s t-test: p < 0.05, 0.36 m/year) in the region have advanced upslope from 1917 to 

2017. Although there was high variation in elevational changes for individual TFLs, few 

declined (Table 4). The largest elevational advances and declines for individual treelines were 

192 m and 33 m, while they were 145 m and 38 m for individual forest lines. Large differences 

were observed between the first to second and the second to third mapping, with no significant 
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trend in TFL movement between 1917 and 1967 and a nearly equal percentage of advance and 

decline in TFL elevation (Table 4). From 1967 to 2017 treelines (47±36 m, Student’s t-test: p 

< 0.05, 0.99 m/year) and forest lines (30±27 m, Student’s t-test: p < 0.005, 0.62 m/year) 

advanced strongly, and almost all individual TFLs advanced (Table 4). In all periods, treelines 

advanced upwards at a higher rate than forest lines, and there was high variation in TFL 

movement with at least some percent decline (Table 4). 

 

Table 4. Statistical analyses of elevational changes in treelines and forest lines between 1917 and 2017 in south Norway. Note 

that percentage advance and decline of forest lines from 1917 to 1967 only adds up to 97% due to 3% stability, defined as 0 m 

elevational movement. 

Treelines 

Period (year) n Mean SD p-value Movement/year % advance % decline 

1917-1967 37 3.89 37.10 . 0.08 54 46 

1967-2017 37 47.27 36.07 * 0.99 97 3 

1917-2017 57 51.49 43.64 *** 0.53 91 9 

Forest lines 

Period (year) n Mean SD p-value Movement/year % advance % decline 

1917-1967 28 -4.86 39.69  -0.10 43 54 

1967-2017 28 29.86 26.93 ** 0.62 96 4 

1917-2017 47 35.72 41.13 * 0.36 81 19 

p-values calculated for mean elevational changes (two-tailed Student’s t-tests):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Discussion 

Several indicators of improved growth conditions have been reported in mountains worldwide 

the last century, which includes increased stand density, and enhanced growth and recruitment 

of trees (Camarero and Gutiérrez 2004, Gehrig‐Fasel et al. 2007, Hofgaard et al. 2009, Gaire 

et al. 2014). Another trend is the advance of TFLs in the northern Hemisphere (Harsch et al. 

2009, Rees et al. 2020), including Norway (Bryn and Potthoff 2018), which is supported by our 

analysis of TFL elevational changes and estimations of their distributional changes in south 

Norway since Resvoll-Holmsen mapped TFLs in 1917. 

Ecology of TFLs 

It is generally accepted that summer temperature is fundamental to TFL distribution from local 

to global scales (Körner 1998, Holtmeier and Broll 2005). The growth limitation hypothesis 

suggests that trees due to low temperature are limited by conversion of non-structural 

carbohydrates into supportive tissues (Körner and Paulsen 2004). In Norway, summer 

temperature has also been identified as the primary controlling factor of TFL distribution, which 

has shown strong correlation with several summer temperature indicators like the mean 

temperature of the three warmest months, mean temperature of the warmest quarter and the 

maximum temperature of the warmest month (Helland 1912, Aas 1969, Bryn 2008).  

Outside the growing season, the effect of temperature for the survival of trees have been well 

documented, but is thought to be less important for determining TFL distribution (Körner 

1998). In northern Alaska and the Alps, radial growth of tree rings in the treeline ecotone the 

last two centuries was positively correlated with the autumn temperature of the previous year 

(Garfinkel and Brubaker 1980, Oberhuber 2004). Oberhuber (2004) suggests that warm 

temperatures in the previous autumn might promote carbon storage and growth of mycorrhizal 

roots by impeding soil freezing. In addition, autumn temperature may serve as a proxy for 

freeze-thaw cycles (Charrier et al. 2014) or accumulation of photosynthates for the following 

growing season (Garfinkel and Brubaker 1980). However, many of these factors are primarily 

relevant for evergreen trees, which only formed 6% of the treelines and none of the forest lines 

used as presence observations in modelling. More investigation is needed to understand the 

relationship between autumn temperature and deciduous TFLs.  

Inclusion of slope inclination allowed the models to predict more heterogenous TFL 

distributions at smaller scales and predicted the highest suitabilities at medium inclinations. 
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Trees and forests at low inclinations are more susceptible to human impact and grazers, as they 

are often more accessible (Kjällgren and Kullman 1998, Wehn et al. 2011). At high inclinations 

trees and forests might be prevented from establishing due to frequent disturbances from mass 

wasting or avalanches (Holtmeier and Broll 2005). Slope inclination might also serve as a proxy 

for solar radiation, wind exposure, soil conditions, soil moisture and snow distribution patterns 

(Holtmeier and Broll 2012). Possibly, the predictor captures suitable microclimates that the 

other variables are unable to because slope inclination is upscaled from 5050 m, whereas the 

snow and climatic variables are interpolated from weather stations in Norway. 

The treeline models differed most notably from the forest line models in that snow water 

equivalent in March was selected as a predictor, which caused low predictions in the area 

around Jostedalsbreen, west in the study region. The amount of snow might affect treeline 

distribution positively or negatively by modifying soil moisture through snow melt, soil 

temperature or wind exposure. It also affects the risk of disturbances like snow breakage, snow 

avalanches snow fungi infections, and grazing (Holtmeier 2009). As forest line trees are less 

exposed to local climatic conditions than treeline trees, they are less dependent on snow cover 

for establishment in favourable microclimates (Holtmeier and Broll 2005), possibly explaining 

the absence of snow predictors in the forest line model. However, most of the snow-related 

factors that might affect treeline distribution would more likely be captured by the topographic 

variables, which are upscaled and not downscaled, like snow water equivalent in March. An 

additional explanation for why snow water equivalent in March predicts treeline distribution is 

that there are no presence observations in both treeline evaluation and training data sets from 

the area around Jostedalsbreen, which might cause this variable to gain additional explaining 

power by predicting absences in areas with known presence and reward the resulting models 

with inflated AUC scores. At Jostedalsbreen however, the amounts of snow are limiting to 

treelines, but absence in this area is also predicted by temperature predictors, and 

geographically speaking, snow water equivalent in March is therefore probably redundant for 

predictions at Jostedalsbreen.
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Potential causes for TFL advance 

In Norway, the observed movement of TFLs in the last century is thought to primarily be a 

result of regrowth in abandoned agricultural land, and not climate change (Bryn 2008, Rössler 

et al. 2008, Wehn et al. 2012). Summer farming, which includes grazing from livestock, logging 

and fodder collection, was extensive in the middle of the 19th century and large areas of 

subalpine birch forest were removed as a consequence. Since then, the intensity has decreased 

steadily (Bryn and Daugstad 2001) but still large parts of the study area had been affected by 

human land use in 1917, according to Resvoll-Holmsen (1918). From 1949 to 1974 the grazing 

period in the mountains for sheep, cow, cattle, horse and goat decreased with altogether 33% 

(Austrheim et al. 2008). From 1939 to 1995 numbers of sheep grazing outfield increased with 

23%, while goats and cattle numbers decreased with 46% and 76%, respectively (Drabløs 

1997). Forest lines in Jotunheimen, earlier suppressed by goats and cattle, advanced in response 

to similar changes in the composition of outfield grazers from 1960 to 2002 (Wehn et al. 2011). 

Our data indicated that TFLs did not rise significantly on average from 1917 to 1967 with about 

half of both individual TFLs advancing and declining. At many of the sampling sites land use 

changes had probably occurred too late for TFLs to respond by 1967 as Aas (1969) attributed 

observations of decline and stability of TFLs between 1917 and 1967 to grazing, clearing of 

forests, in addition to TFLs already being positioned close to the summit. He concluded that all 

climatically determined TFLs were stable or had risen as a response to improved climate in the 

1930s to 1940s, which we did not detect in our results, because we included all his observations. 

Annual temperature in the study area increased slightly (0.3-0.6 degrees) from 1900-1935, 

followed by a decrease (0.5-1.0 degrees) from 1935-1970 and a strong increase (1.1-1.2 

degrees) from 1970-2004 (Hanssen-Bauer et al. 2006). Almost exclusive advance of TFLs and 

higher movement rates from 1967 to 2017 is therefore probably a combination of higher 

increases of temperature and reduced domestic outfield grazing in the last half of the century. 

However, to separate the influence of changes in climate and land use on the last century’s TFL 

dynamics is hard, as in other studies (Bryn and Potthoff 2018) because the study area has been 

subjected to changes in both processes simultaneously. 

Model reliability and potential improvements 

The present TFL models, modelled without topographic variables and used for estimation of 

changes in area, obtained AUC-ROC values of 0.788 and 0.768, respectively, which according 

to Araújo et al. (2005) indicates “fair” model performances in geographical space. The model 
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selection emphasizes the temperature dependence of TFL distribution, although it might be 

somewhat influenced by modelling constraints. Model selection is influenced by the choice of 

pseudo-absences, because by choosing pseudo-absences with a broad environmental range 

compared to the environmental range of the presences the AUC-ROC gets inflated due to the 

improvement of the model’s ability to predict “true” absences (Stokland et al. 2011). 

Temperature variables can easily sort out pseudo-absences far above and far below TFLs, which 

might have increased their chance of being selected. Therefore, the models might be good at 

predicting TFL distributions on a large scale, but less so at smaller scales, where for example 

topography is considered important (Holtmeier and Broll 2005). Because choosing pseudo-

absences with a narrower environmental range might be worse for investigation of large-scale 

patterns, the choice of pseudo-absences is a matter of modelling purpose (Stokland et al. 2011).  

In all models, the magnitude of predictions was concentrated in certain parts of the study area, 

most notably with higher values in a transect from south-west to north-east where sampling 

density was high, compared to areas with no sampling, in north-west. Increased sampling in 

areas with low sampling size would potentially improve the model in areas where relative 

probabilities of presence were low. These inabilities to extrapolate into areas with low sampling 

size might be a result of modelling with explanatory variables that do not affect TFL 

distributions directly. Microtopography and landforms are important for site conditions (e.g., 

wind, snow relocation and solar radiation), but interactions with other factors may alter the 

suitability of a topographic position. For example, differences in amount of radiation due to 

topography are ameliorated in oceanic relative to continental climates due to increased wind 

and cloudiness (Holtmeier and Broll 2012). In this hypothetical example topography is a proxy 

for the amount of radiation, and the optimal topographical position changes with continentality, 

whereas the optimal amount of radiation does not. Here, using explanatory variables that affect 

TFL distribution more directly instead of proxies might improve the extrapolation ability of the 

model in space, but also in time (Guisan and Zimmermann 2000, Dormann et al. 2012).  

Ideally, distribution modelling is carried out with explanatory variables that are measured at the 

relevant temporal and spatial scale and are causally related to the distribution of the modelled 

target (Araújo et al. 2019). Some, or possibly all distribution models fall short of these 

assumptions (Barry and Elith 2006), including ours. TFLs in Fennoscandia are most likely 

influenced by a complex assemblage of factors like soil temperature, snow distribution patterns, 

nutrient and moisture availability, herbivory, competition, wind exposure and former land use 

(Moen et al. 2008). Proxies for biotic interactions are hard to obtain at all, while some of the 
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other factors were accounted for indirectly by the explanatory variables in this study, although 

they might have been more appropriate at smaller scales.  

Delayed responses to climate change 

That distribution modelling is performed with explanatory variables measured at the relevant 

temporal scale necessitates that the modelled TFLs are in equilibrium with the environment, 

which is less likely in a rapidly changing climate (Guisan and Thuiller 2005). Historical 

disturbances also cause disequilibrium (Barry and Elith 2006), and the impact on the modelled 

response of TFLs to summer and autumn temperature is that they do not represent the TFLs 

true response to the explanatory variables, and the models represent empirical rather than 

climatic TFLs (Guisan and Thuiller 2005). The climatic and snow variables used for modelling 

represent the period 2004 to 2014 and the models therefore assume that TFLs respond within 

about a decade to changes in the environment, represented by the predictors.  

Time lags in mountain forest development varies considerably in space and may take anywhere 

from a few decades to at least more than a century (Bugmann and Pfister 2000, Lloyd and Fastie 

2003). Forest development and expansion depends on positive feedbacks with establishment of 

trees initially, giving shelter, absorbing heat and trapping snow and seeds (Kullman 2010a), and 

forest lines are therefore expected to respond considerably slower than treelines to changes in 

the environment (Rannow 2013). As some of the factors responsible for time lags involved in 

treeline advance Körner (2012) acknowledges competition with alpine plants, short periods 

with cold temperature leading to decline, and the time needed for a young individual to become 

a tree according to definitions. Several studies on TFL dynamics the last century in the northern 

Hemisphere have reported that TFLs are moving slower than expected from changes in summer 

temperature (Harsch et al. 2009, Rannow 2013, Dial et al. 2016, Rees et al. 2020, Lu et al. 

2021). Assuming TFLs move exclusively with increases in summer temperature, which 

increased with approximately 0.2-0.5°C in the study region between 1900 and 2004 (Hanssen-

Bauer et al. 2006), our observed TFLs would rise with about 35-85 m, assuming an adiabatic 

lapse rate of 0.6 degrees per 100 m (as in Kullman and Öberg (2009)). Our analysis of 

elevational changes showed that TFLs on average and several individual TFLs advanced 

substantially higher than this. Moreover, the current mean temperature of the warmest quarter 

in areas where past treelines were georeferenced are 1.1°C higher than in the locations they are 

today, whereas for forest lines their past georeferenced locations are 0.3°C higher than in the 

present locations at the current conditions. If the summer temperature changed more from 1917 
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to 2017 at TFL locations compared to other areas, we would also observe larger differences in 

the current summer temperature between the past and present georeferenced locations than what 

occurred elsewhere. However, changes in summer temperature have been rather uniform across 

the study area the last century (Hanssen-Bauer 2005), which might reflect a change in the 

distribution of forest lines that are within what is expected from changes in summer 

temperature, and a substantially larger expected change in the treeline distribution. The higher 

difference in current summer temperature between past and present georeferenced locations for 

treelines compared to forest lines, in addition to the higher elevational changes might therefore 

indicate the higher time lag for forest line than treeline movement. That treelines moved much 

quicker than expected from changes in summer temperature might seem like time lags are 

absent, although it is more likely an indication of the decreasing intensity of summer farming 

in the region the last century. Kullman and Öberg (2009) also observed treelines moving faster 

than expected from changes in temperature, although they attributed it to absence of climatic 

time lags. They suggest that smaller shifts are recorded in other studies due to the commonly 

low precision of TFL observations from the early part of the century and few sites with 

observations, which may explain why relatively high maximum shifts of individual TFLs were 

recorded in this study.  

Uncertainties in estimation of distributional changes 

The method of parameterizing past and present TFLs with different presence data but the same 

explanatory data is erroneous because it is equivalent to changing the ecological response of 

the modelled target between the models. However, it is analogous to modelling of past TFLs 

with explanatory variables that have changed uniformly across the study area, which is a more 

reasonable assumption indicated by climate analyses for the last century (Hanssen-Bauer 2005, 

Hanssen-Bauer et al. 2006). Still, temperature has increased less in the lowlands and oceanic 

areas in Norway, compared to the mountains and continental areas (Tveito 2014). In modelling 

of past TFLs explanatory variables representative for the relevant period would of course be 

preferred, but such downscaled climate projections do not exist. Estimation of parameters for 

past TFL models might therefore be affected by the use of inaccurate explanatory data.  

Due to the geometric shape of mountains, equivalent advances in elevation of treelines and 

forest lines leads to higher increases in land cover of forest lines, although the percentage of 

area reduced above lines will be higher for treelines (Körner 2007). Our estimation of changes 

in TFL distributions indicated that increases in land cover of treelines was much higher than 
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they were for forest lines. Although a quicker response of treelines compared to forest lines in 

a changing environment is expected (Rannow 2013), this might seem contradictory, considering 

that the TFLs responded with similar elevational changes in the same period. The differences 

between changes in elevation and distribution may be attributed to the use of different samples 

and lack of observations from certain areas in the past TFL training data, affecting the estimates 

of past TFL distributions. Observations of past treelines were more easterly distributed relative 

to past forest line observations, which may have caused the current mean temperature of the 

warmest quarter in georeferenced locations of past treelines to be higher than they were in those 

of past forest lines, since in south Norway, TFLs are generally situated at a higher summer 

temperature in the west than in the east (Aas 1964, Aas and Faarlund 1996). Assuming that the 

differences in temperature between these locations were the same in 1917 (Hanssen-Bauer 

2005), this indicates that treelines were situated at a higher summer temperature than forest 

lines in 1917, which would be remarkable. This error might also have been caused by high 

spatial uncertainty of the georeferenced past TFL observations, which was on average 2,3 km 

for treelines and 2 km for forest lines. This has further propagated into the area estimates, which 

show that the treeline land cover was smaller than the forest line land cover in 1917. However, 

we do not know if it is the changes in treeline or forest line distribution, or both that is over- or 

underestimated. 

The models estimate smaller changes in steep relative to gentle mountain slopes, which may be 

an effect of extrapolating with primarily temperature variables as predictors. Temperature 

increases more slowly with distance on gentle compared to steep slopes and consequently 

changes in parameter estimations between different models have larger effects on predictions 

in such areas. Still, it is in accordance with predictions since greater expansion of TFLs is 

expected at gentle relative to steep slopes This expectation is not entirely due to temperature 

increasing more slowly with distance at gentle slopes, but also because TFLs in many locations 

are limited at steep slopes by mass wasting and avalanches (Holtmeier and Broll 2012). 

Although predicting changes in TFLs almost exclusively with temperature variables has been 

regarded as too simplistic (Kullman 2010b), some confidence might be given to our estimates 

because TFLs correlated strongly with the mean of the warmest quarter in the 1910s (Helland 

1912), while our models indicate that they still do so.  
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Implications of TFL expansions 

TFL dynamics affects biodiversity and climate, although altitudinal relative to latitudinal TFL 

advance is expected to have greater impact on biodiversity, and smaller impact on climate in a 

global context. This is because alpine areas store less soil carbon and harbours more species per 

unit area than arctic areas (Walker et al. 2001). Regarding climate feedbacks initial altitudinal 

TFL advances have the most impact because the available land area of mountains shrinks with 

elevation (Körner 2007). The most important climatic consequences of advancing boreal forests 

are expected to arise from associated increases in evapotranspiration, carbon flux and uptake, 

reduction in surface albedo and increased release of biogenic volatile organic compounds 

(Bonan 2008). Increased evapotranspiration enhances snow and cloud cover, which generally 

have a stronger cooling effect on temperature than warming from the increased latent heat flux 

(Rydsaa et al. 2017). Enhanced carbon uptake cools the temperature, while reduced surface 

albedo contributes to warming, especially in areas with seasonal snow cover (de Wit et al. 

2014). The effect of surface albedo is clearly dominating at higher latitudes, suggesting that 

boreal forest advance represents a net positive climate feedback (de Wit et al. 2014, Rydsaa et 

al. 2017). Due to shedding of leaves in autumn, the influence of albedo is less in boreal forests 

dominated by deciduous compared to evergreen trees (Rydsaa et al. 2017). Although several 

studies from Norway have investigated climate feedbacks from advance of boreal forests, no 

studies so far have considered the most important feedbacks simultaneously. Quantification of 

the radiative forcing from advance of TFLs is crucial to improve climate models and the 

understanding of TFL dynamics.  

The high diversity of habitats in mountain ecosystems, which inhabit approximately 21% of the 

flowering plant species worldwide, is mainly attributed to rapid elevational changes over short 

distances and high topographic variation (Körner 2004). Changes in TFL distributions are 

assumed to be indicators of distributional changes of subalpine and alpine species as they are 

directly affected by trees and forests which alter site conditions (Holtmeier and Broll 2017). 

Moreover, ordination analysis has shown that species composition varies with distance from 

TFLs (Hofgaard and Wilmann 2002). Initial TFL rise are expected to increase species richness 

through advances of lowland species, but as alpine areas gradually shrink, the probability of 

extinction of alpine species are expected to increase (Moen et al. 2004). Klanderud and Birks 

(2003) observed increasing species richness and expansion of elevational limits of vascular 

plants in Jotunheimen from 1930 to 1998. They also found out that species with wide ecological 

and elevational range increased most in abundance and elevational extent, while species with 
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narrow ecological range, such as snow bed species, declined in abundance. Similar trends with 

elevational advances of vascular plants at the cost of snow bed communities have also been 

observed in Swedish Scandes (Kullman 2010b). In addition to the uncertainty of future changes 

of TFLs, the impact further TFL rise will potentially have for alpine biodiversity is highly 

unpredictable, especially since alpine plant species were able to survive periods of TFL 

elevation peaks of the Holocene, primarily in steep slopes and high-altitude mountains (Bruun 

and Moen 2003).  

Further research on TFL dynamics 

To improve the understanding of TFL dynamics, more focus is needed on the functional 

mechanisms limiting TFLs (Holtmeier and Broll 2020). Although correlation studies are unable 

to prove causation, they are useful for generating hypotheses, and our results indicated that the 

mean temperature of the warmest quarter, maximum and minimum temperature in November, 

snow water equivalent in March and slope inclination might serve as proxies for functional 

mechanisms limiting TFLs in the region. Identification of the responsible functional 

mechanisms might be better answered by experimental field and laboratory studies because 

variables that affect targets distributions more directly are often harder to obtain or less precise, 

and thus less appropriate for modelling studies (Guisan and Zimmermann 2000).  

As already discussed, the assumption that the modelled target is in equilibrium with the 

environment can cause problems for modelling of TFLs. Process-based distribution models 

should also be developed for TFLs as they have the advantage of being dynamic and as a 

consequence, they do not carry this assumption (Dormann et al. 2012). Another difference is 

that they commonly operate with parameters that affect distributions more directly than 

correlative distribution models (Beale and Lennon 2012).  

More research is also needed on delayed responses of TFLs to changes in climate. Mountain 

ecosystems were less impacted by humans further back in time, and palaeoecological and 

modelling studies are therefore suitable for detecting climatic lags on longer time scales (Körner 

2012). Short-term delays might be identified by field studies with more frequent revisitations, 

which would also make it easier to identify the relative importance of drivers of TFL dynamics. 

Conclusions 

We observed and estimated large TFL elevational and distributional changes in south Norway 

the last century. Old, high-resolution data sets, like Resvoll-Holmsen’s, used in this study are 
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essential for detection of changes in the distribution of TFLs, as they respond slowly to changes 

in the environment (Körner 2012). The results in this study were solely based on data collected 

in the field and only consist of locally uppermost TFLs, less likely to have been impacted by 

human land use (Körner 2012), which makes the data more appropriate for detecting changes 

in the distribution of climatically determined TFLs.  

The current distribution of treelines was predicted by mean temperature of the warmest quarter, 

maximum temperature in November, snow water equivalent in March and slope inclination, 

while mean temperature of the warmest quarter, slope inclination and minimum temperature in 

November predicted the forest line distribution. During the last century, treelines moved on 

average 0.53 m/year and the estimated increase in land cover was 6 688 km2, corresponding to 

a decline of areas above the treeline with 27.6%. In the same period, forest lines moved with 

on average with 0.36 m/year and expanded their land cover with 1 137 km2, a 5.3% reduction 

of areas above the forest line. Estimations of past TFL land cover might have been affected by 

lack of observations in certain areas, especially west in the region. Climate and land use changes 

are most likely the main drivers of the observed TFL dynamics, but it is hard to separate the 

relative influences of these factors on the observed changes in the study. Overall, the 

performance of the TFL distribution models is fair but at smaller scales and in areas outside a 

transect from south-west to north-east in the study region, where samples were lacking, they 

should be interpreted with more caution. 
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Appendices 

Table S1. Explanatory variables, their transformations, estimated coefficients and fraction of total variation accounted for 

(FTVA) for all present treeline models, modelled with topographic variables. Model 5 was chosen as the best model (details in 

Results: Table 1). L = linear, M = monotonous, D = deviation (D1, D2 or D05) 

Present treelines with topographic variables (model 1) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.4021 0.1402 - 

Mean temperature of warmest quarter  D2 -18.0449 3.2529 0.7 

Max temperature in November D2 -35.6984 9.418 0.191 

Relative Slope Position D2 -1.4887 0.3927 0.109 

Present treelines with topographic variables (model 2) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.615 0.1282 - 

Mean temperature of warmest quarter  D2 -11.81 3.1799 0.736 

Max temperature in November D2 -25.7207 6.7755 0.179 

Max temperature in February D2 -29.0646 9.0445 0.085 

Present treelines with topographic variables (model 3) 

  Transformation Estimate Standard error FTVA 

Intercept - -5.8773 0.362 - 

Mean temperature of warmest quarter  D2 -11.897 3.0847 0.627 

Max temperature in November D2 -15.0989 4.4619 0.191 

Slope inclination M 1.9873 0.4757 0.109 

Snow water equivalent in March D2 -36.4191 15.5912 0.073 

Present treelines with topographic variables (model 4) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.245 0.1473 - 

Mean temperature of warmest quarter  D2 -12.2395 2.8818 0.67 

Min temperature in November D2 -6.9891 1.9449 0.161 

Slope inclination D2 -1.5618 0.4288 0.098 

Max temperature in November D2 -15.8574 5.9738 0.071 

Present treelines with topographic variables (model 5) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.027 0.1659 - 

Mean temperature of warmest quarter  D2 -18.2672 3.8813 0.648 

Max temperature in November D2 -22.3564 6.6365 0.192 

Snow water equivalent in March D2 -39.2789 12.4535 0.096 

Slope inclination D2 -1.3524 0.3867 0.064 
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Table S2. Deviance residuals for all present treeline models, modelled with topographic variables. Model 5 was chosen as the 

best model (details in Results: Table 1). 

Present treelines modelled with topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.5419 -0.7608 -0.2269 -0.0002 3.7276 

Present treelines modelled with topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.3968 -0.8326 -0.223 -0.0001 3.9077 

Present treelines modelled with topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.7792 -0.7654 -0.2558 -0.0019 3.7657 

Present treelines modelled with topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.6432 -0.7386 -0.2566 -0.0015 3.8215 

Present treelines modelled with topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.7405 -0.7562 -0.1801 -0.0001 3.7465 

 

Table S3. Model properties for all present treeline models, modelled with topographic variables (see details in Table S1). 

Model 5 was chosen as the best model (details in Results: Table 1). 

Present treelines modelled with topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1432 571 

AIC 1440   

Fisher scoring iterations 9   

Present treelines modelled with topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1438.1 571 

AIC 1446.1   

Fisher scoring iterations 9   

Present treelines modelled with topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1431.2 570 

AIC 1441.2   

Fisher scoring iterations 9   

Present treelines modelled with topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1427.9 570 

AIC 1437.9   

Fisher scoring iterations 9   

Present treelines modelled with topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1407.1 570 

AIC 1417.1   

Fisher scoring iterations 9   

   



49 

 

Table S4. Single, mean and standard AUC-ROC and AUC-PR for all present treeline models, modelled with topographic 

variables (see details in Table S1), evaluated by each treeline evaluation data set. Model 5 was chosen as the best model (details 

in Results: Table 1). 

  Present treelines modelled with topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

  AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR 

Evaluation 1 0.725 0.433 0.742 0.486 0.786 0.560 0.746 0.510 0.798 0.580 

Evaluation 2 0.724 0.430 0.723 0.408 0.777 0.505 0.739 0.468 0.787 0.532 

Evaluation 3 0.758 0.475 0.757 0.489 0.799 0.564 0.760 0.520 0.808 0.590 

Evaluation 4 0.723 0.416 0.726 0.429 0.782 0.559 0.730 0.475 0.792 0.560 

Evaluation 5 0.749 0.433 0.765 0.463 0.807 0.550 0.767 0.496 0.813 0.548 

Mean 0.736 0.437 0.743 0.455 0.790 0.548 0.748 0.494 0.800 0.562 

SD 0.016 0.022 0.018 0.036 0.013 0.024 0.015 0.022 0.011 0.023 

 

Table S5. Explanatory variables, their transformations, estimated coefficients and fraction of total variation accounted for 

(FTVA) for all present forest line models, modelled with topographic variables. Model 5 was chosen as the best model (details 

in Results: Table 1). L = linear, M = monotonous, D = deviation (D1, D2 or D05) 

Present forest lines modelled with topographic variables (model 1) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.3762 0.1491 - 

Mean temperature of warmest quarter  D2 -16.8693 3.9514 0.703 

Slope inclination D2 -1.6239 0.3761 0.178 

Max temperature in November D2 -15.7683 4.8436 0.119 

Present forest lines modelled with topographic variables (model 2) 

  Transformation Estimate Standard error FTVA 

Intercept - -5.929 0.3532 - 

Mean temperature of warmest quarter  D2 -18.6059 3.7826 0.712 

Max temperature in November D2 -19.88 5.5592 0.198 

Slope inclination M 2.0327 0.5208 0.09 

Present forest lines modelled with topographic variables (model 3) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.4214 0.147 - 

Mean temperature of warmest quarter  D2 -16.5243 3.5921 0.767 

Max temperature in November D2 -17.0688 5.0696 0.155 

Slope inclination D2 -1.3426 0.3896 0.078 

Present forest lines modelled with topographic variables (model 4) 

  Transformation Estimate Standard error FTVA 

Intercept - -6.5059 0.5916 - 

Mean temperature of warmest quarter  D2 -17.1384 3.7924 0.68 

Max temperature in November D2 -18.0936 4.435 0.223 

Slope inclination M 4.7243 1.9033 0.097 

Slope inclination L -3.1875 1.9097 ^ 

Present forest lines modelled with topographic variables (model 5) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.3579 0.1526 - 

Mean temperature of warmest quarter  D2 -17.6087 3.4663 0.81 

Slope inclination D2 -1.6018 0.3905 0.1 

Min temperature in November D2 -6.9019 2.3524 0.09 
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Table S6. Deviance residuals for all present forest line models, modelled with topographic variables (see details in Table S5). 

Model 5 was chosen as the best model (details in Results: Table 1). 

Present forest lines modelled with topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.5696 -0.7793 -0.3212 -0.0026 3.9038 

Present forest lines modelled with topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.7973 -0.7879 -0.2337 -0.0006 3.8533 

Present forest lines modelled with topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.5392 -0.758 -0.3042 -0.0032 3.879 

Present forest lines modelled with topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.4969 -0.7668 -0.2894 -0.0007 3.9196 

Present forest lines modelled with topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.584 -0.7744 -0.3034 -0.0039 3.9784 

 

Table S7. Model properties for all present forest line models, modelled with topographic variables (see details in Table S5). 

Model 5 was chosen as the best model (details in Results: Table 1). 

Present forest lines modelled with topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1370.6 541 

AIC 1378.6   

Fisher scoring iterations 8   

Present forest lines modelled with topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1354.6 541 

AIC 1362.6   

Fisher scoring iterations 9   

Present forest lines modelled with topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1366.9 541 

AIC 1374.9   

Fisher scoring iterations 8   

Present forest lines modelled with topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1366.8 540 

AIC 1376.8   

Fisher scoring iterations 8   

Present forest lines modelled with topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1371.2 541 

AIC 1379.2   

Fisher scoring iterations 8   
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Table S8. Single, mean and standard AUC-ROC and AUC-PR for all present forest line models, modelled with topographic 

variables (see details in Table S5), evaluated by each forest line evaluation data set. Model 5 was chosen as the best model 

(details in Results: Table 1). 

  Present forest lines modelled with topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

  AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR 

Evaluation 1 0.782 0.562 0.796 0.598 0.763 0.526 0.776 0.553 0.795 0.523 

Evaluation 2 0.764 0.483 0.772 0.516 0.741 0.451 0.752 0.474 0.790 0.494 

Evaluation 3 0.783 0.527 0.797 0.557 0.765 0.506 0.777 0.521 0.785 0.444 

Evaluation 4 0.776 0.524 0.786 0.541 0.760 0.501 0.770 0.511 0.791 0.507 

Evaluation 5 0.783 0.521 0.790 0.545 0.774 0.521 0.783 0.528 0.794 0.496 

Mean 0.778 0.523 0.788 0.551 0.761 0.501 0.771 0.517 0.791 0.493 

SD 0.008 0.028 0.010 0.030 0.012 0.030 0.012 0.029 0.004 0.030 

 

Table S9. Explanatory variables, their transformations, estimated coefficients and fraction of total variation accounted for 

(FTVA) for all present treeline models, modelled without topographic variables. Model 5 was chosen as the best model (details 

in Results: Table 1) and used for estimation of changes in area. L = linear, M = monotonous, D = deviation (D1, D2 or D05) 

Present treelines modelled without topographic variables (model 1) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.7153 0.1247 - 

Mean temperature of warmest quarter  D2 -18.1494 3.2167 0.786 

Max temperature in November D2 -36.7703 9.3258 0.214 

Present treelines modelled without topographic variables (model 2) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.615 0.1282 - 

Mean temperature of warmest quarter  D2 -11.81 3.1799 0.736 

Max temperature in November D2 -25.7207 6.7755 0.179 

Max temperature in February D2 -29.0646 9.0445 0.085 

Present treelines modelled without topographic variables (model 3) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.5606 0.1448 - 

Mean temperature of warmest quarter  D2 -15.5902 3.0518 0.704 

Max temperature in November D2 -17.2076 4.6399 0.214 

Snow water equivalent in March D2 -41.8961 15.5031 0.082 

Present treelines modelled without topographic variables (model 4) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.5546 0.1316 - 

Mean temperature of warmest quarter  D2 -15.2167 2.9137 0.728 

Min temperature in November D2 -7.1245 1.961 0.175 

Max temperature in November D2 -18.4761 6.1046 0.097 

Present treelines modelled without topographic variables (model 5) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.3446 0.1493 - 

Mean temperature of warmest quarter  D2 -22.173 3.8465 0.692 

Max temperature in November D2 -25.0438 6.7889 0.205 

Snow water equivalent in March D2 -37.4189 12.4658 0.103 
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Table S10. Deviance residuals for all present treeline models, modelled without topographic variables. Model 5 was chosen as 

the best model (details in Results: Table 1) and used for estimation of changes in area. 

Present treelines modelled without topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.3285 -0.8421 -0.2608 -0.0002 3.8135 

Present treelines modelled without topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.3968 -0.8326 -0.223 -0.0001 3.9077 

Present treelines modelled without topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.3917 -0.8346 -0.2425 -0.0006 3.6972 

Present treelines modelled without topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.4349 -0.7996 -0.2686 -0.0006 3.7144 

Present treelines modelled without topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.551 -0.7954 -0.1717 0 3.7193 

 

Table S11. Model properties for all present treeline models, modelled without topographic variables. Model 5 was chosen as 

the best model (details in Results: Table 1) and used for estimation of changes in area. 

Present treelines modelled without topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1450.2 572 

AIC 1456.2   

Fisher scoring iterations 9   

Present treelines modelled without topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1438.1 571 

AIC 1446.1   

Fisher scoring iterations 9   

Present treelines modelled without topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1450.2 571 

AIC 1458.2   

Fisher scoring iterations 8   

Present treelines modelled without topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1442.7 571 

AIC 1450.7   

Fisher scoring iterations 9   

Present treelines modelled without topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 1608.3 574 

Residual deviance 1420.5 571 

AIC 1428.5   

Fisher scoring iterations 9   
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Table S12. Single, mean and standard AUC-ROC and AUC-PR for all present treeline models, modelled without topographic 

variables, evaluated by each treeline evaluation data set. Model 5 was chosen as the best model (details in Results: Table 1) 

and used for estimation of changes in area. 

  Present treelines modelled without topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

  AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR 

Evaluation 1 0.740 0.486 0.742 0.486 0.776 0.495 0.735 0.497 0.784 0.508 

Evaluation 2 0.732 0.445 0.723 0.408 0.764 0.496 0.731 0.437 0.776 0.533 

Evaluation 3 0.759 0.501 0.757 0.489 0.786 0.534 0.755 0.494 0.796 0.551 

Evaluation 4 0.735 0.452 0.726 0.429 0.768 0.503 0.717 0.426 0.778 0.506 

Evaluation 5 0.763 0.475 0.765 0.463 0.799 0.539 0.763 0.484 0.805 0.550 

Mean 0.746 0.472 0.743 0.455 0.778 0.514 0.740 0.467 0.788 0.530 

SD 0.014 0.024 0.018 0.036 0.014 0.021 0.019 0.034 0.012 0.022 

 

 

 

Figure S1. Modelled distribution of present treelines without topographic variables (model 5 in Table S9-12; see Figure S2 for 

modelled response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a continuous 

scale, where white indicates low relative probability of presence and green indicates high. Because the values are relative, a 

given value in this model may not correspond to the same value from another model, and area estimates are made under the 

assumption that the highest local predictions indicate areas with local maximum elevation of the model object. Coordinate 

reference system: WGS 84/UTM zone 33N. 
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Figure S2. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter, (b) maximum temperature in November and (c) snow water equivalent in March in the model of present 

treelines, modelled without topographic variables (see Table S9-12 model 5 for details, and Figure S3 for frequency of observed 

presence (FOP) plots). 

c) 

a) b) 



55 

 

 

 

 

Figure S3. Frequency of observed presence (FOP) plots of present treelines modelled without topographic variables (see model 

5 Table S9-12 for details, and Figure S2 for modelled response of the predictors) for the (a) mean temperature of the warmest 

quarter, (b) maximum temperature in November and (c) snow water equivalent in March presented as black dots. The red line 

is fitted to the points by a local regression with the MIAmaxent package and the density of values for each explanatory variable 

in the data set is presented in grey. 

c) 

a) b) 
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Table S13. Explanatory variables, their transformations, estimated coefficients and fraction of total variation accounted for 

(FTVA) for all present forest line models, modelled without topographic variables. Model 2 was chosen as the best model 

(details in Results: Table 1) and used for estimation of changes in area. L = linear, M = monotonous, D = deviation (D1, D2 or 

D05) 

Present forest lines modelled without topographic variables (model 1) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.8009 0.1292 - 

Mean temperature of warmest quarter  D2 -22.1883 4.1372 0.816 

Max temperature in November D2 -18.313 4.9166 0.184 

Present forest lines modelled without topographic variables (model 2) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.7093 0.1263 - 

Mean temperature of warmest quarter  D2 -21.5286 3.7799 0.782 

Max temperature in November D2 -22.6393 5.8582 0.218 

Present forest lines modelled without topographic variables (model 3) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.746 0.126 - 

Mean temperature of warmest quarter  D2 -21.204 3.605 0.832 

Max temperature in November D2 -19.198 5.208 0.168 

Present forest lines modelled without topographic variables (model 4) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.7293 0.1273 - 

Mean temperature of warmest quarter  D2 -21.5119 3.7602 0.753 

Max temperature in November D2 -19.214 4.5448 0.247 

Present forest lines modelled without topographic variables (model 5) 

  Transformation Estimate Standard error FTVA 

Intercept - -4.798 0.126 - 

Mean temperature of warmest quarter  D2 -21.03 3.581 0.9 

Max temperature in November D2 -15.865 5.441 0.1 

 

Table S14. Deviance residuals for all present forest line models, modelled without topographic variables. Model 2 was chosen 

as the best model (details in Results: Table 1) and used for estimation of changes in area. 

Present forest lines without topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.2793 -0.8588 -0.334 -0.0008 3.8301 

Present forest lines without topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.3393 -0.8704 -0.2408 -0.0002 3.7364 

Present forest lines without topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.3143 -0.8334 -0.2804 -0.0008 3.8286 

Present forest lines without topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.325 -0.8133 -0.3225 -0.0003 3.8193 

Present forest lines without topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.281 -0.8512 -0.2999 -0.001 3.878 
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Table S15. Model properties for all present forest line models, modelled without topographic variables. Model 2 was chosen 

as the best model (details in Results: Table 1) and used for estimation of changes in area. 

Present forest lines modelled without topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1391 542 

AIC 1397   

Fisher scoring iterations 8   

Present forest lines modelled without topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1371.2 542 

AIC 1377.2   

Fisher scoring iterations 8   

Present forest lines modelled without topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1379.7 542 

AIC 1385.7   

Fisher scoring iterations 8   

Present forest lines modelled without topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1382.2 542 

AIC 1388.2   

Fisher scoring iterations 8   

Present forest lines modelled without topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 1524.4 544 

Residual deviance 1387.9 542 

AIC 1393.9   

Fisher scoring iterations 8   

 

Table S16. Single, mean and standard AUC-ROC and AUC-PR for all present forest line models, modelled without topographic 

variables, evaluated by each forest line evaluation data set. Model 2 was chosen as the best model (details in Results: Table 1) 

and used for estimation of changes in area. 

  Present forest lines modelled without topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

  AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR 

Evaluation 1 0.766 0.458 0.774 0.477 0.746 0.434 0.756 0.462 0.736 0.404 

Evaluation 2 0.731 0.389 0.741 0.404 0.714 0.370 0.722 0.386 0.710 0.367 

Evaluation 3 0.782 0.490 0.794 0.544 0.763 0.481 0.774 0.528 0.753 0.446 

Evaluation 4 0.758 0.432 0.762 0.441 0.744 0.424 0.749 0.446 0.741 0.416 

Evaluation 5 0.768 0.437 0.770 0.443 0.756 0.433 0.760 0.442 0.752 0.426 

Mean 0.761 0.441 0.768 0.462 0.745 0.428 0.752 0.453 0.738 0.412 

SD 0.019 0.037 0.019 0.053 0.019 0.039 0.019 0.051 0.017 0.029 
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Figure S4. Modelled distribution of present forest lines without topographic variables (model 2 in Table S13-16; see Figure 

S5 for modelled response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a 

continuous scale, where white indicates low relative probability of presence and green indicates high. Because the values are 

relative, a given value in this model may not correspond to the same value from another model, and area estimates are made 

under the assumption that the highest local predictions indicate areas with local maximum elevation of the model object. 

Coordinate reference system: WGS 84/UTM zone 33N. 
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Figure S5. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter and (b) maximum temperature in November in the model of present forest lines, modelled without topographic 

variables (see Table S13-16 model 2 for details, and Figure S6 for frequency of observed presence (FOP) plots). 

 

 

 

Figure S6. Frequency of observed presence (FOP) plots of present forest lines modelled without topographic variables (see 

model 2 Table S13-16 for details, and Figure S5 for modelled response of the predictors) for the (a) mean temperature of the 

warmest quarter and (b) maximum temperature in November presented as black dots. The red line is fitted to the points by a 

local regression with the MIAmaxent package and the density of values for each explanatory variable in the data set is presented 

in grey. 

a) b) 

a) b) 
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Table S17. Explanatory variables, their transformations and estimated coefficients for all past treeline models. Model 4 was 

chosen as the best model (details in Results: Table 1) and used for estimation of changes in area. L = linear, M = monotonous, 

D = deviation (D1, D2 or D05) 

Past treelines modelled without topographic variables (model 1) 

  Transformation Estimate Standard error 

Intercept - -4.3491 0.2325 

Mean temperature of warmest quarter  D2 -20.2307 7.3478 

Max temperature in November D2 -25.9687 9.7014 

Snow water equivalent in March D2 -66.5156 34.0216 

Past treelines modelled without topographic variables (model 2) 

  Transformation Estimate Standard error 

Intercept - -4.2285 0.2543 

Mean temperature of warmest quarter  D2 -17.1175 5.0247 

Max temperature in November D2 -16.8251 7.6661 

Snow water equivalent in March D2 -8.8255 4.0394 

Past treelines modelled without topographic variables (model 3) 

  Transformation Estimate Standard error 

Intercept - -4.3834 0.2153 

Mean temperature of warmest quarter  D2 -21.9316 6.3196 

Max temperature in November D2 -15.6402 6.9251 

Snow water equivalent in March D2 -29.6239 14.6817 

Past treelines modelled without topographic variables (model 4) 

  Transformation Estimate Standard error 

Intercept - -4.5857 0.2161 

Mean temperature of warmest quarter  D2 -24.0823 9.2003 

Max temperature in November D2 -9.3026 4.4229 

Snow water equivalent in March D2 -21.1228 12.2045 

Past treelines modelled without topographic variables (model 5) 

  Transformation Estimate Standard error 

Intercept - -3.8309 0.3905 

Mean temperature of warmest quarter  D2 -32.4935 9.417 

Max temperature in November D2 -20.8872 8.634 

Snow water equivalent in March D2 -130.0242 61.428 

 

Table S18. Deviance residuals for all past treeline models, modelled without topographic variables. Model 4 was chosen as 

the best model (details in Results: Table 1) and used for estimation of changes in area. 

Past treelines modelled without topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.5583 -0.8246 -0.0743 0 3.513 

Past treelines modelled without topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.6491 -0.7573 -0.1457 -0.0001 3.62 

Past treelines modelled without topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.5652 -0.6593 -0.1684 0 3.6131 

Past treelines modelled without topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.42 -0.7954 -0.1218 -0.0001 3.5721 

Past treelines modelled without topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.6358 -0.844 -0.1212 0 3.6658 
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Table S19. Model properties for all past treeline models, modelled without topographic variables. Model 4 was chosen as the 

best model (details in Results: Table 1) and used for estimation of changes in area. 

Past treelines modelled without topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 559.42 199 

Residual deviance 487.94 196 

AIC 495.94   

Fisher scoring iterations 9   

Past treelines modelled without topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 559.42 199 

Residual deviance 488.61 196 

AIC 496.61   

Fisher scoring iterations 9   

Past treelines modelled without topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 559.42 199 

Residual deviance 486.85 196 

AIC 494.85   

Fisher scoring iterations 9   

Past treelines modelled without topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 559.42 199 

Residual deviance 495.77 196 

AIC 503.77   

Fisher scoring iterations 9   

Past treelines modelled without topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 559.42 199 

Residual deviance 492.12 196 

AIC 500.12   

Fisher scoring iterations 10   

 

Table S20. Total prediction error for all past treeline models, modelled without topographic variables, evaluated by 4-fold 

cross-validation. Model 4 was chosen as the best model (details in Results: Table 1) and used for estimation of changes in area. 

  Past treelines modelled without topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Total prediction error 120.17 123.50 127.42 99.28 140.97 
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Figure S7. Modelled distribution of past treelines without topographic variables (model 4 in Table S17-20; see Figure S8 for 

modelled response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a continuous 

scale, where white indicates low relative probability of presence and green indicates high. Because the values are relative, a 

given value in this model may not correspond to the same value from another model, and area estimates are made under the 

assumption that the highest local predictions indicate areas with local maximum elevation of the model object. Coordinate 

reference system: WGS 84/UTM zone 33N. 
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Figure S8. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter, (b) maximum temperature in November and (c) snow water equivalent in March in the model of past treelines, 

modelled without topographic variables (see Table S17-20 model 4 for details, and Figure S9 for frequency of observed 

presence (FOP) plots). 

c) 

a) b) 
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Figure S9. Frequency of observed presence (FOP) plots of past treelines modelled without topographic variables (see model 4 

Table S17-20 for details, and Figure S8 for modelled response of the predictors) for the (a) mean temperature of the warmest 

quarter, (b) maximum temperature in November and (c) snow water equivalent in March presented as black dots. The red line 

is fitted to the points by a local regression with the MIAmaxent package and the density of values for each explanatory variable 

in the data set is presented in grey. 

c) 

a) b) 
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Table S21. Explanatory variables, their transformations and estimated coefficients for all past forest line models, modelled 

without topographic variables. Model 1 was chosen as the best model (details in Results: Table 1) and used for estimation of 

changes in area. L = linear, M = monotonous, D = deviation (D1, D2 or D05) 

Past forest lines modelled without topographic variables (model 1) 

  Transformation Estimate Standard error 

Intercept - -4.5702 0.2133 

Mean temperature of warmest quarter  D2 -36.3087 12.1306 

Max temperature in November D2 -28.06 12.9777 

Past forest lines modelled without topographic variables (model 2) 

  Transformation Estimate Standard error 

Intercept - -4.4832 0.2176 

Mean temperature of warmest quarter  D2 -35.3791 10.8754 

Max temperature in November D2 -15.5606 8.5136 

Past forest lines modelled without topographic variables (model 3) 

  Transformation Estimate Standard error 

Intercept - -4.4893 0.2024 

Mean temperature of warmest quarter  D2 -34.8612 10.3549 

Max temperature in November D2 -25.4277 11.1068 

Past forest lines modelled without topographic variables (model 4) 

  Transformation Estimate Standard error 

Intercept - -4.5452 0.2077 

Mean temperature of warmest quarter  D2 -44.4331 13.1415 

Max temperature in November D2 -19.4759 9.6964 

Past forest lines modelled without topographic variables (model 5) 

  Transformation Estimate Standard error 

Intercept - -4.6388 0.2087 

Mean temperature of warmest quarter  D2 -45.1153 14.2037 

Max temperature in November D2 -12.7324 5.8861 

 

Table S22. Deviance residuals for all past forest line models, modelled without topographic variables. Model 1 was chosen as 

the best model (details in Results: Table 1) and used for estimation of changes in area. 

Past forest lines modelled without topographic variables (model 1) 

Min 1st quartile Median 3rd quartile Max 

-1.4221 -0.7988 -0.1016 0 3.6883 

Past forest lines modelled without topographic variables (model 2) 

Min 1st quartile Median 3rd quartile Max 

-1.4989 -0.7448 -0.0636 0 3.5688 

Past forest lines modelled without topographic variables (model 3) 

Min 1st quartile Median 3rd quartile Max 

-1.4918 -0.6134 -0.0693 0 3.5215 

Past forest lines modelled without topographic variables (model 4) 

Min 1st quartile Median 3rd quartile Max 

-1.4516 -0.7185 -0.0539 0 3.6039 

Past forest lines modelled without topographic variables (model 5) 

Min 1st quartile Median 3rd quartile Max 

-1.3809 -0.7864 -0.1026 0 3.7354 
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Table S23. Model properties for all past forest line models, modelled without topographic variables. Model 1 was chosen as 

the best model (details in Results: Table 1) and used for estimation of changes in area. 

Past forest lines modelled without topographic variables (model 1) 

  Value Degrees of freedom 

Null deviance 503.48 179 

Residual deviance 437.42 177 

AIC 443.42   

Fisher scoring iterations 9   

Past forest lines modelled without topographic variables (model 2) 

  Value Degrees of freedom 

Null deviance 503.48 179 

Residual deviance 434.33 177 

AIC 440.33   

Fisher scoring iterations 9   

Past forest lines modelled without topographic variables (model 3) 

  Value Degrees of freedom 

Null deviance 503.48 179 

Residual deviance 431.74 177 

AIC 437.74   

Fisher scoring iterations 9   

Past forest lines modelled without topographic variables (model 4) 

  Value Degrees of freedom 

Null deviance 503.48 179 

Residual deviance 435.24 177 

AIC 441.24   

Fisher scoring iterations 10   

Past forest lines modelled without topographic variables (model 5) 

  Value Degrees of freedom 

Null deviance 503.48 179 

Residual deviance 441.98 177 

AIC 447.98   

Fisher scoring iterations 9   

 

Table S24. Total prediction error for all past forest line models, modelled without topographic variables, evaluated by 4-fold 

cross-validation. Model 1 was chosen as the best model (details in Results: Table 1) and used for estimation of changes in area. 

  Past forest lines modelled without topographic variables 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Total prediction error 109.406 112.0539 118.0767 111.6726 110.0859 
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Figure S10. Modelled distribution of past treelines without topographic variables (model 1 in Table S21-24; see Figure S12 

for modelled response of the predictors) in south Norway with probability ratio output (PRO) values indicated on a continuous 

scale, where white indicates low relative probability of presence and green indicates high. Because the values are relative, a 

given value in this model may not correspond to the same value from another model, and area estimates are made under the 

assumption that the highest local predictions indicate areas with local maximum elevation of the model object. Coordinate 

reference system: WGS 84/UTM zone 33N. 
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Figure S11. Response plots showing probability ratio output (PRO) values as a red line for the (a) mean temperature of the 

warmest quarter and (b) maximum temperature in November in the model of past forest lines, modelled without topographic 

variables (see Table S21-24 model 1 for details, and Figure S12 for frequency of observed presence (FOP) plots). 

 

 

 

 

Figure S12. Frequency of observed presence (FOP) plots of past forest lines modelled without topographic variables (see 

model 1 Table S21-24 for details, and Figure S11 for modelled response of the predictors) for the (a) mean temperature of the 

warmest quarter and (b) maximum temperature in November presented as black dots. The red line is fitted to the points by a 

local regression with the MIAmaxent package and the density of values for each explanatory variable in the data set is presented 

in grey. 

 

a) b) 

a) b) 
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Figure S13. Binary maps of (a) past treelines, (b) present treelines, (c) past forest lines and (d) present forest lines in south 

Norway made by transformation of continuous probability ratio output into a binary scale where areas above the tree- and forest 

lines are indicated in white, and areas below are indicated in white. The maps are based on past and present tree- and forest 

line models, modelled without topographic variables (see Figure S1, S4, S7 and S10), where values are relative. Thus, the 

models are not comparable, but the maps are, under the assumption that the highest local prediction values in each model 

represent the most likely elevation of tree- and forest lines locally. Coordinate reference system: WGS 84/UTM zone 33N.  

c) 

a) 

d) 

b) 
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Veileder for kartlegging av tre- og skoggrenser 

Anders Bryn 2013-2020 

 

Litt om å hva som menes med tre, og da med fokus på fjellbjørk: 

Et tre er en fysiognomisk enhet – ikke en artsenhet eller tilsvarende. Det vil alltids finnes individer 

høyere opp enn de vi skal måle inn. Det er derfor viktig å tenke på hvorfor vi måler akkurat trær, og 

hva det da vil si å være et tre i grenseområdene mot fjellet.  

• De skal stikke opp over snøen om vinteren og utsettes for klimatiske prosesser hele året – 

inkludert vinteren.  

• De skal utsettes for atmosfærisk klima – ikke bakkenært klima. Normalt ligger meteorologiske 

stasjoner i Norge 2 m over bakken, men da på lokaliteter uten vegetasjon (eller med 

krypende vegetasjon under 10 cm). Normalt vil vegetasjonen i tre- og skoggrensa være på 

omkring 30 - 70 cm eller noe mer. Derfor bruker nesten alle forskere definisjoner på trær 

som > 2.5 m (mange 3 m og noen 3.5 m). Det er avstanden fra øvre tette vegetasjonsdekke 

som gjelder for å unngå bakkenært klima. 

• I gjentaksstudier kan man også argumentere for at de skal oppleves som trær, ettersom 

definisjonene ser ut til å være rimelig subjektive.  

I gamle studier brukes ofte lengdemålet «mannshøyde», og dette er ikke entydig definert. Fram mot 

1900-tallet regnes en mannshøyde til 170-175 cm, mens den etter 1900 øker gradvis mot 180 cm. Følger 

man favnen fram til 1887, blir høyden omkring 180 cm. 

Ifølge Børre Aas ble dette tolket som et høydekrav til 2 m, men da som fast stamme i 2 meters høyde. 

Den totale høyden vil da i nesten alle tilfeller være høyere. Min erfaring er at trær som regel er høyere 

2.5 m, og at det ikke er en gradvis nedgang i trærnes høyde som funksjon av meter over havet. Det 

som avgjør er om trærne har kommet seg over snødekket og etablert seg «der» med en tydelig krone 

– og da er de som regel høyere enn 2 m. 

Min erfaring er helt parallell til det Søren Ve skriver i 1940, og som de fleste andre som jobber med 

tre- og skoggrenser erfarer: 

«Normann (1895-1901) definerte slik: «- den øverste høide over havet, hvor der forekommer oprette i 

regelen enstammede og mer end mandshøie birker». Tengwall (1920, s. 319) segjer at ein må ha 

inngåande kjennskap til korleis dei økologiske faktorar utformar bjørki i kvart einskilt tilfelle for å 

kunna avgjera um ei bjørk skal reknast for tre eller buske. Men etter mi røynsle er det sjeldan at ein 

på desse kantar råkar meir enn mannshøge bjørker som ikkje kan reknast for tre. Dei aller fleste som 

ikkje har karakteren av tre – tunne skot med fåe sidegreiner -, vil som regel vera mindre enn 

mannshøge. Det er difor nærmast Normann sin definisjon eg har halde meg til.» 
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Formål: 

Formålet i denne fasen er å forstå regional variasjon, ikke lokal variasjon. Lokal variasjon vil registreres 

systematisk etter at den regionale variasjonen er registrert og undersøkt. 

• Gjenta registreringer for å studere endringer, med særlig vekt på å tall-feste 

endringshastigheter 

• Separere tre- fra skoggrenser, slik at endringshastighetene kan beskrives for henholdsvis den 

fysiognomiske enheten tre og for økosystemet skog (slik skog er definert her) 

• Etablere nye registreringer for klimatiske tre- og skoggrenser, slik at vi kan studere 

koblingene mellom klima og tre- og skoggrenser 

• Etablere nye registreringer for klimatiske tre- og skoggrenser, slik at andre kan bruke våre 

registreringer til gjentak om «noen» år (sannsynligvis 25 eller 50 år) 

• Etablere et grunnlag for systematisk overvåking av tre- og skoggrenser. Vi skal ikke starte 

overvåkingen i denne fasen, men skaffe data for å kunne etablere en overvåking 

Normalt vil det måtte registreres fra 5 – 15 trær per tregrenselokalitet, og tilsvarende per 

skoggrenselokalitet. Jeg har registrert opp til 50 punkter på en lokalitet(et fjell – et stedsnavn hos Aas) 

– hvor alle ulike eksposisjoner kommer i spill, og da ble det likevel bare ett gjentaks-punkt registrert. 

Dette gjør at mengden variabler som registreres i hvert punkt, må holdes på et absolutt minimum, 

men fange opp det som er nødvendig for å forstå regional variasjon. 

I denne første fasen var det viktigere å gjennomføre alle gjentak, heller enn å registrere nye lokaliteter 

eller nye eksposisjoner. Nå som mange av studielokalitetene er gjentatt, er det viktigere å registrere 

nye lokaliteter, dvs tre- og skoggrenser på nye fjell. Det er derfor viktig å se på klokka og 

framdriftsbehovet underveis i sesongen, og beregne hvor mye tid du kan gjøre per lokalitet (fjell). 

Normalt bør en klare en til to lokaliteter (fjell, eller stedsnavn) per dag, noen ganger flere, men 

innimellom bare en lokalitet. 

Det er ikke om å gjøre å bekrefte endringer eller stillstand. Det er om å gjøre å dokumentere hvilke 

endringer som har skjedd. Se på hver lokalitet (fjell) med nye øyne. Avvik fra egne forventninger må 

påregnes. 

• Inger har i tillegg formål om å dokumentere NiN-typene ved klimatiske tre- og skoggrenser. 

Dette bikker over mot lokal variasjon, og kan være en god test for overgang til overvåking 

(fra regional til lokal) 

• Anders registrerer tre- og skoggrenser på Sunnmøre for både fjellbjørk, gran og furu. 

• Adam leter konsekvent etter de høyeste tre- og skoggrensene på nye fjell, fjell som Hanna 

Resvoll-Holmsen og Børre Aas ikke har registrert på. Dette skyldes at de høyeste tre- og 

skoggrensene nå kan ligge andre steder enn de gjorde for 100 år siden. 

Det som er avgjørende er å prøve å forstå hva Resvoll-Holmsen, Aas, og Ve har definert som et tre og 

skog, for å re-kartlegge dette. Samtidig bør vi legge igjen en mer objektiv definisjon for våre data, slik 
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at det blir lettere å avgjøre hva et tre er for de som kommer etter oss. Det er dette kompromisset dere 

finner igjen i min definisjon av hva et tre er. 

Alle registrerer med appen Natur i endring, i tillegg til vanlige registreringer med skjema, GPS og 

kamera (m GPS). Dette sikrer data, og gir oss mulighet til å publisere bedre på Natur i endring dataene. 

 

Litt om det å gjenfinne en lokalitet: 

Det er vanskelig å vite nøyaktig hvor de har registrert tidligere. Prøv å tenke på tilgang, topografi m.m. 

når dere leter opp lokaliteter. Et godt utgangspunkt kan være å lese seg fram til hvor de har gått fra, 

eller tenke seg fram til beste sted å gå fra (på den tiden de registrerte). Dette er og blir en subjektiv 

øvelse. 

Dersom du mener at det er nødvendig å justere høydene til Ve, Resvoll-Holmsen eller Aas, så skal dette 

kun gjøres dersom du er helt sikker på at tidligere målinger er feil. Ulike tilfeller: 

• Gamle målinger går høyere enn selve topp-punktet på fjellet, hvilket er umulig. Da må man 

inn å justere innlesingspunkt / kalibreringspunkt fra gamle gradteigskart. Slike lokaliteter må 

beskrives i kommentarfeltet. Høyden reduseres tilsvarende feilen i opprinnelig gradteigskart. 

• Gamle og vitale trær som er eldre enn de tidligere registreringene, og som finnes høyere opp 

enn det som Ve, Resvoll-Holmsen eller Aas har angitt. Bruk trebor for å forsikre deg om at 

treet er minst 20 år eldre enn forrige registreringstidspunkt i brysthøyde. For Aas er dette 

mulig, men det er trolig vanskelig for Resvoll-Holmsen og Ve, ettersom trærne i de tilfellene 

vil måtte være svært gamle. 

• Bjørk brytes normalt ned rimelig raskt (sammenliknet med f. eks furu). Likevel har jeg funnet 

døde trær på bakken over tidligere registrerte tregrenser. Da bør lokalitet registreres fullt ut, 

og så kan vi vurdere om tregrensemålingene fra gammelt av skal heves. 

• Du står på en lokalitet som Ve, Resvoll-Holmsen eller Aas ikke oppdaget, men som er 

betraktelig høyere. Dette er vanskelig å vurdere, og her må en være konservativ. 

o Ligger lokaliteten slik til i terrenget at den er lett å overse? 

o Ligger lokaliteten bak en rygg / kam i terrenget f. eks? 

o Er det store gamle trær på lokaliteten? Bruk treboret ved behov.... 

o Er det fysiske barriærer bort til lokaliteten som gjør at den kanskje ikke ble besøkt? 

 

Tredefinisjon: 

• Normalt skal de være enkelt stammet / en-stammet, men dersom fler-stammet – da bør den 

sentrale stammen være > 2.5 m høy (total lengde er ikke interessant) 

• Trærne bør være opprette, men nederste del kan være krypende / bøyd før den strekker seg 

• Stammen i brysthøyde (1.3 – 1.5 m over bakken) skal ikke være for fleksibel eller bøyelig (ikke 

tynn) 

• Trærne bør ikke være buskformet:  

o dette er en variabel fysiognomisk gruppe som kan ta mange former 
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o oftest < 2.5 m i tregrensenivå, men særlig vier kan få høye former 

• Trærne skal stikke opp over snøen om vinteren og ha etablert en «krone» over snøen.  

o Krona trenger ikke å være bred. Tvert imot er den ofte smal, og det er ok 

o Hvis krona ender i «pisk» uten grønne blader, skal den helst ikke telle med (med 

mindre alle andre kriterier er tilfredsstilt). 

o Dersom «pisken» henger, skal den ikke strekkes ved lengdemåling 

• Toppen skal / bør ikke være buskformet 

• Stammen skal / bør ikke ha mange sidegreiner 

• Fast enkeltstamme skal være «mannshøy», før den går over i ett eller flere fleksible 

toppskudd;  

o total høyde normalt > 2.5 m høy, men ikke alltid 

o diameter i brysthøyde normalt > 5 cm, men mindre (3 cm) kan aksepteres dersom 

alle andre kriterier er tilfredsstilt 

• Men trehøyde måles, og trær under 2.5 måles også inn – så langt ned som de oppfattes som 

trær:  

o 10 cm nøyaktighet under 2.5 m,  

o 50 cm nøyaktighet over 2.5 m høye trær. 

• Det er høyden treet har over bakkeplanet som teller – ikke lengden på krypende stammer. 

Når høyden måles, måles den fra bakken hvor rota er festet, også når treet er krypende. 

Dette er spesielt viktig i bratt terreng og der det er store snømengder. 

• Det er høyeste lokalitet som leses inn, stratifisert på 8 ulike hellingsretninger. Hellingsretning 

leses ikke av fra kart eller GPS, men fra kompass 

• Rotskudd fra basis kan aksepteres som tre når alle andre kriterier er tilfredsstilt.  

 

Skogdefinsjon 

Alle trær som inngår skal tilfredsstille kravet til å være trær (se over). Det er de absolutt høyest 

voksende skogteiger eller skogtunger som skal registreres. Det er det øverste treet (i m o.h.) i skogteigen 

som skal registreres. 

Det skal ikke være mer enn 15 meter avstand mellom trærne målt fra stammen, med mindre trærne 

har store trekroner – da måles avstand fra ytterste kant av trekronene. Høyde inngår ikke i 

avstandsmålet, så i bratt terreng kan det godt være noe lenger målt ved bakken (opp mot 20-25 meter). 

Avstand anslås – det måles ikke. Det tar for lang tid! 

Skogteiger over sammenhengende skog skal registreres, men da skal det minst være 15 individuelle trær 

i populasjonen som utgjør skogen. Alle de 15 individene skal klart holde definisjonen til å være et tre 

(se over). De kan godt stå tett (og ha felles vegetativt opphav for lenge siden), men de bør kunne 

oppfattes som individer. 
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Registreringer av tregrense 

1. Øverste tre av fjellbjørk, på hver tidligere registrerte hellingsretning, skal alltid registreres. 

Dersom det finnes andre treslag som vokser høyere enn fjellbjørka, og som holder alle krav til 

å være et tre, så skal det høyest voksende individet av hvert treslag også registreres. Andre parametere 

registreres som for fjellbjørka. Treslag som kan forekomme høyere enn bjørka er fremst gran og rogn, 

men også furu, osp og gråor er i sjeldne tilfeller observert høyt. 

2. I tillegg skal det registreres øverste tre av fjellbjørk på andre hellingsretninger (nye) som er 

tilgjengelige m.h.t. gåavstand. Dette er for å etablere et bedre datasett, og å fylle inn de lokalt 

høyeste trærne. 

 

3. Dersom det er mulig, bør en også forsøke å registrere øverste tre av fjellbjørk på fjell i regionen 

som antakeligvis er høyere enn der det tidligere er registrert av Resvoll-Holmsen, Aas eller Ve. 

Dette må imidlertid vurderes av hver enkelt ved å se på kart, bruke kikkert osv. Det er viktigere å 

repetere målingene til de andre, enn å etablere nye (gjelder ikke Adam – han finner nye 

lokaliteter). Men for å legge igjen et bra utgangspunkt for andre, samt å finne klimatiske tre- og 

skoggrensenes, bør nye lokaliteter leses inn. Vi kan ikke ta for gitt av Resvoll-Holmsen, Ve og Aas 

leste inn kun klimatiske grenser (selv om de registrerte de høyeste i sin tid). 

 

4. Følgende variabler registreres ved hvert tre: 

a. Stedsnavn (lokalitetsnavn), dato for registrering og registratornavn 

b. Kode for punktet du leser inn 

i. Det kan bli mange trær per lokalitet med samme hellingsretning.  

ii. Lag et enkelt kodesystem med en meget kort tekststreng som lett tastes inn på 

GPS 

c. Treslag  

d. Altitude: Høyde (meter o.h.) som leses av fra GPS og fra aneroid barometer (husk å 

kalibrere barometer hver dag på morgenen). Barometer kalibreres kun ved kjente høyder. 

La GPS stå på hele tiden fra du går fra bilen / hytta. Høyde interpoleres i tillegg fra 

kartbasen i etterkant. 

e. Treets høyde: Total høyde på treet (men ikke lengde) – måles fra bakken der rota er 

festet uten å strekke ut toppen. Trær >2.5 m måles i 50 cm intervaller, trær <2.5 m 

måles i 10 cm intervaller. Ved bøyde eller krypende trær, måles høyden vertikalt fra 

toppen og ned til bakken. 

f. GPS usikkerhet i ± meter 

g. Koordinater: Lokalitetens koordinater og koordinatsystem brukt av GPS på punktet 

h. Hellingsretning (bruk kompass – ikke GPS eller kart – se lenger ned) 

i. Vegetasjonstyper: Alle registrerer vegetasjonstype etter Rekdal & Larsson (2005), 

inkludert alle tilgjengelige variabler. 

i. Det er treets økologi som er poenget. Står f. eks treet på en rygg med 

rabbevegetasjon, men med tydelige røtter i næringsrikt vann, da registreres både 

2c (rabbe) og 3b (høgstaudeeng).  

ii. Poenget er å registrere det som i hovedsak påvirker individet. Normalt vil det 

holde med å registrere en vegetasjonstype m variabler, men enkelte ganger er det 

nødvendig med 2. 
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iii. Variablene er viktige å registrere og følger standard instruks fra Rekdal & 

Larsson (2005) 

iv. Tregrenser registreres som åpne vegetasjonstyper (i gruppe 1, 2, 3, 9 eller 12) 

v. Skoggrenser registreres som skogdefinerte typer (i gruppe 4, 6, 7 eller 8) 

j. NiN-typer: Inger skal i tillegg registrere NiN-typer fra 1:5.000 målestokkområdet.  

i. Vi kan diskutere i felt hvilke eventuelle uLKM’er og variabler som kan registreres 

ved henholdsvis tregrensa og skoggrensa 

k. Ta foto av tre med GPS. Foto taes fra siden, ikke ovenfra eller nedenfra. Ta foto slik at 

lokaltopografi og vegetasjon blir tydelig i foto. Ikke stå for langt unna treet ved 

tregrenser, men ha større avstand ved skog, slik at hele øvre skogteigen kommer fram.  

l. Utvikling: Registrer om populasjon er i: 

i. Framgang (+): mange nye saplings (over 15 cm) på vei opp i umiddelbar nærhet 

eller over dagens grense. Årets nye individer teller ikke (germlings), og heller 

ikke individer under 15 cm høyde (seedlings). Disse kan ikke registreres 

systematisk i denne fasen. Nye individer bør være minst 15 cm høye (dvs 

saplings). Rotskudd fra det målte individet teller ikke, med mindre de er i ferd 

med å etablere seg som nye trær litt unna mor-individet. Er det helt «vill» 

spredning, dvs hundrevis av nye saplings på vei opp, så registreres dette som 

(++). 

ii. Tilbakegang (-): Bestand bestående av bare gamle trær, ingen rekruttering i 

umiddelbar nærhet. Tydelig tegn til sykdom, alderdom, skader, toppbrekk, døde 

trær på bakken, naturlige stubber m.m. Midlertidige skader gir ikke tilbakegang, 

men varig svekking av individ gir tilbakegang (tenk målerangrep, rustsopp m.m.) 

iii. Stillstand (0): ingen nye individer på vei opp i umiddelbar nærhet, men for øvrig 

friske og sunne trær uten synlige tegn til skader, sykdom m.m. 

m. Alder: Anslå treets alder subjektivt i 4 klasser etter beste evne (bruk trehøyde, diameter, 

barkstruktur, kronestruktur, forgreining m.m., men ikke bor for telling av vekstringer 

uten at dette er nødvendig for å endre tidligere høyde. Minimer bruken av trebor – det 

tar for lang tid): 

i. < 25 år 

ii. 25 – 50 år 

iii. 50 – 100 år 

iv. > 100 år 

n. Diameter i brysthøye: Mål diameter på stammen på det øverste treet ved brysthøye (1.3-

1.5 m over bakken) i cm 

o. Kommentarer: 

i. Tydelig og omfattende beiting på øvre individer noteres. Legg særlig merke til 

sau og elg. Normal småbeiting kan tas for gitt og skal ikke registreres. 

ii. Tydelig og omfattende soppangrep (rustsopper) og bjørkemålerangrep noteres 

(skill tidligere målerangrep fra dagens). Normale småskader kan tas for gitt og 

skal ikke registreres. 

iii. Dersom lokaliteten er usikker m.h.t. tidligere registrering, skal dette registreres. 
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Normale definisjoner ved tregrensa / skoggrensa 

• Germlings: årets nye spirer – dvs årets nye etableringsforsøk. Ikke mulig å observere 

systematisk i vår tilnærming. Alt fra 0 til 15 cm store, normalt mindre ved tregrensen. 

• Seedlings: de første åra rett etter etablering. Normalt ikke mulig å observere systematisk i vår 

tilnærming. Som oftest registrert som individer opp til 15 cm høye. 

• Saplings: buskforma individer over 15 cm, men under 2.5 meter (som oftest 3 eller 3.5 

meter). Holder ikke definisjonen av å være et tre (se over). Som oftest settes et krav om at 

hovedstamme skal være under 10 cm diameter i brysthøyde, men dette er for strengt for 

fjellbjørk i henhold til Resvoll-Holmsen, Ve og Aas sin definisjon. Jeg har brukt opp til 5 cm 

diameter i brysthøyde. 

• Trees: se definisjon over. Bør normalt ha >5 cm diameter i brysthøyde (dvs stiv stamme i 

brysthøyde), være > 2.5 m høyt, være rimelig rettvokst, være en-stammet eller med en klar 

sentral-stamme, ha en mer eller mindre etablert og tydelig krone, mangle tette smågreiner på 

stammen, mangle den lange topp-pisken osv osv 

 

Registreringer av skoggrense 

Alt det som registreres for trær skal også registreres for skogen. Alle tre-variablene registreres for det 

øverste treet i populasjonen. 

Vegetasjonstypene og variablene registreres som dominerende for de 5-10 øverste trærne. Dersom det 

varierer, så bruk vegetasjonstypen ved det øverste treet. Det er også her det vurderes om populasjonen 

er i framgang, stillstand eller tilbakegang. 

Vær oppmerksomme på skogens omtrentlige alder.  

 

Hellingsretning 

Både Resvoll-Holmsen, Aas og Ve har lest inn lokalitetenes hellingsretning, og det har de fleste andre 

som har gjennomført slike målinger også gjort. Dette skyldes antakelsen om at hellingsretning er viktig 

for tre- og skoggrensenes høyde. Jeg har fortsatt denne registreringen, men ikke registrert hvor bratt 

hellingen er. Bratthet vil avleses med hjelp av GIS fra høydemodeller i etterkant. Bratthet og 

hellingsretning kan kombineres til eksposisjon i GIS, samt innstråling (både diffus og direkte stråling). 

Alle, inkludert jeg, har delt hellingsretning inn i 8 klasser – de eksakte hellingsretningene avleder vi fra 

GIS i etterkant, slik at variabelen blir kontinuerlig: 
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Kategori Fra Til Senter 

Nord 337.5 22.5 360 / 0 

Nord-øst 22.5 67.5 45 

Øst 67.5 112.5 90 

Sør-øst 112.5 157.5 135 

Sør 157.5 202.5 180 

Sør-vest 202.5 247.5 225 

Vest 247.5 292.5 270 

Nord-vest 292.5 337.5 315 

 

Småtopografiske variasjoner teller ikke – det er dominerende hellingsretning som skal registreres. 

Trøbbelet består i hva småtopografisk variasjon er – den har særdeles mange former – og det går ikke 

an å beskrive alle. Her er noen utfordringer: 

• I nederoderte bekkedaler er dette vanskelig. Nederoderte bekkedaler med tydelig 

hellingspåvirkning gir opphav til endringer i hellingsretning. 

• I nedløpende slukeskere, morenerygger og berghammere er dette også vanskelig. Blir disse 

store og gir tydelig opphav til endrede vekstforhold for trærne, så skal hellingsretning 

registreres der treet står. 

• Små topografiske forsenkninger som gir lokal leside og jordfuktighet, og hvor trærne alltid 

står rotfesta i nedkant av forsenkningen. Disse følger ofte normal hellingsretning, men kan 

avvike 

 

Praktiske råd 

• Ta alltid back-up av GPS, helst som avskrifter direkte i felt, og som avskrifter på kvelden. Det 

er fort gjort å miste GPS’en, og da må alle registreringer være sikret med back-up. 

• Last opp foto fra kamera ofte. Det er fort gjort å miste kamera også. 

• Legg alltid inn bilen som waypoint i GPS, og track hele tiden. Dette er viktig i tilfelle det blir 

tåke, og veien hjem er bratt. Da kan du følge ditt eget spor (track) tilbake med GPS’en. Ha 

alltid med ett ekstra sett med batterier til GPS. 

• La GPS stå på hele tiden fra du kjører eller går fra telt el. hytte. Presisjonen øker når GPS 

står på hele tiden. Ved foto, må du vente til GPS-koordinater er inne på kamera, og dette tar 
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noe tid. Mitt kamera angir GPS presisjon kontinuerlig, slik at jeg ser når jeg tar foto med 

gode koordinater. Ikke alle kameraer har dette, og da bør du skru på kamera i det du 

kommer fram, gjøre registreringene, og så ta foto. Da er GPS i kamera ok. 

• Ha alltid noe ekstra mat og drikke liggende i bilen, samt tørre klær og ekstra sko m.m. Jeg 

pleier å ha en pose med epler i bilen hele tiden, samt ei full vannflaske. Ikke fyll vann fra 

bekker i områder med mye sau eller død lemen, og ikke fra breelver (grått vann). 

• Det er særdeles sjelden at den raskeste veien mellom to punkter er den rette linje. Prøv å 

følge stier og veier fram til du er i nærheten av dit du skal, før du bykser ut av stien. 

• Hold høyden mellom de ulike trærne. Jeg pleier å kartlegge tregrenser innover, og 

skoggrenser tilbake, så blir det mindre opp-og-ned gange. 

• Det er utfordrende å finne de øverste uteliggerne av trær. Bruk kikkert. Uteliggerne av 

tregrensa kan ligge et par hundre meter høyere enn skoggrensen. Spesielt vanskelig kan dette 

være i nesten flatt terreng. Da kan tregrensa ligge flere kilometer unna skoggrensa! 

• Snakk med lokalbefolkninga om følgende (dersom du treffer noen av dem): 

o Gamle stier og veier opp til fjells, dersom terrenget er krevende 

o Når setra og beitinga opphørte dersom lokalitet er nær setrer 

o Hvor mye sau (beitedyr) som går i fjellområdet hvor tre- og skoggrenser skal 

registreres 

o Hvilke områder som var avskoget tidligere, og når gjengroinga startet 

o Bygdelitteratur, gamle kart, tidligere registreringer m.m. 

o Men, ta alle svar med en forvissning om at «manns minne er kort», og at 

informasjonen ikke nødvendigvis er gjeldende for akkurat de områdene som Resvoll-

Holsem, Ve og Aas gikk i. 

 


