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Summary  

Oil production has been of great importance for Norway and its economy since it was 

discovered back in the 70s. It is estimated that oil production and the oil related industry are 

accountable for 25% of Norway’s Gross Domestic Product. Understanding the different 

variables that impact oil production in the country while predicting the levels of production 

can therefore result in better decision making process for the economy and society as whole. 

This is the goal of the Norwegian Petroleum Directorate (NPD), which collects data of oil 

production in the country and forecasts the oil production for the subsequent 12 months 

ahead, starting every December of each year.  

 

The objective of this thesis is to evaluate if statistical forecasting methods used to forecast oil 

production in Norway can result in a higher accuracy compared to the forecasts done by the 

NPD. The data collection process has been done through the NPD website, while all the 

evaluations for different forecast methods have been done by using RStudio and its core 

programming language R.  

 

This thesis focus on time series forecasting based on historical data rather than a deep 

understanding of the components affecting oil production. Different forecasting methods were 

constructed to find the method that performed the best for the data of interest. Forecasts for 

the monthly Norwegian oil production was fitted by the use of several simple forecast 

methods along with more advanced ARIMA models to investigate if the simple methods 

could give higher accuracy than the forecast given by the ARIMA models.  
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1. Introduction 

Crude oil is one of the most important export commodities for the Norwegian economy, and 

almost all the oil produced in Norway is exported. During 2019, a total of 248 Million NOK 

have been contributed to the Norwegian Gross Product Income (GPD), also being responsible 

for 27% of the total external trade in the same period (Norwegian Petroleum, 2020). 

 

The income from producing and exporting oil is central for the wealth of the country of 

Norway. If future oil production is predicted as accurately as possible, informed decisions 

about future transportation, investments, income and personnel can be planned. Forecasting is 

therefore an important aid to effective and strategic planning, and should be considered under 

decision-making for a business, as it can play an important part role in an economy’s 

management.  

 

Several components can affect the demand and production of Norwegian oil. This thesis will 

focus on time series forecasting based on the use of historical data of oil production rather 

than a deep understanding of the components affecting future oil production.  

 

Time series forecasting is the use of historical data to predict future values. By selecting the 

forecasting method that forecasts known data points of the series with the highest accuracy 

available, the probability of accurate forecasted values for the future increases. It is therefore 

important to compare different forecasting models to find the method that performs the best 

for the data of interest.  

 

The Norwegian Petroleum Directorate posted a forecast for Norwegian oil production for 

every month in 2018, obtained in December the year before (Norwegian Petroleum 

Directorate, 2019). This thesis aims to investigate if a more precise prediction for the same 

data points can be fitted.  
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1.1. The time series of interest  

The time series of interest in this thesis is the Norwegian monthly oil production from June 

1971 to December 2019, measured in million barrels. 

 

Figure 1.1: Time plot of Norwegian monthly oil production from 1971 to 2019 measured in million barrels. The 

plot illustrates that the production reached a peak in year 2000. The plot is constructed in RStudio (Appendix 

1.A). 

 

As illustrated in Figure 1.1, Norwegian oil production reached a peak in year 2000 with a 

production of 1140 barrels, and then declined until 2013. After 2014 the production has been 

increasing (Norwegian Petroleum, 2021).  

 

The time series was originally obtained in standard cubic metres of oil equivalents (Sm³ o.e.) 

and been transformed into million barrels in this study. The years 1971 - 2018 in the data will 

be used to estimate how well the forecasts performs on the time series of interest. The year 

2019 will be forecasted with the most accurate forecast method from this study.  

 

1.2. Thesis structure  
This thesis will start with an introduction of time series theory. Different variations and types 

of time series will be presented before introducing the forecast models and measures of 

accuracy that will be applied to compare the time series forecasts in this study.   
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Different time series forecasting models will be constructed in the software RStudio using 

programming language R to forecast Norwegian monthly oil production. Various cases of 

ARIMA models will be fitted to investigate which ARIMA model fits the data most 

appropriately according to the Akaike Information Criterion (AIC). To investigate if the time 

series needs differencing to obtain stationarity, the series will be investigated by 

decomposition and unit root tests. 

 

Forecasts from simple forecast methods will be compared with the advanced appropriate 

ARIMA model and the advanced forecast from the NPD to investigate if simple forecast 

methods can give lower forecast errors for this time series. If any advanced forecast methods 

give a higher error than the simple methods, they will not be considered. The most accurate 

forecast model will be selected comparing the forecasts by the accuracy measures mean 

absolute error (MAE) and mean squared error (MSE). The most accurate forecast model in 

this study will be selected to predict the last year of the time series of interest. 

 

2. Review of time series theory 

2.1. Time series  

A time series is a collection of observations arranged by the date of each observation 

(Hamilton, 1994, page 25). It is generally assumed that time is a discrete variable. A time 

series is discrete when observations are taken at specific times, generally with equal space 

between every observation (Kirchgässner & Wolters, 2007, page 1). The time series for 

variable y data beginning at time t = 1 , and ending at another t = T can be presented as: 

 

(𝑦1, 𝑦2, 𝑦3  … 𝑦𝑇)     (2.1) 

 

2.2. Types of variation  

A traditional method for analysing time series contains separating variations in the series into 

the components trend, seasonal variation and other cyclic variation. Any remaining variation 

can be referred to as irregular fluctuations.  
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2.2.1. Trend  

A trend is defined as a long-term change in the mean level of the series (Chatfield, 2004, 

page 26). The difficulty of defining a trend is deciding what is meant by “long-term”. The 

number of observations available in the data will be taken into account when making a 

subjective assessment of what long term change is in the time series of interest (Springer, 

2008). 

 

2.2.2. Seasonal variation  

Seasonal variation can be defined as the changes that is repeated regularly through periods. 

These variations usually have the same or similar pattern year after year. When data is 

reported daily, weekly, monthly or quarterly, it is possible to look for seasonal variations. The 

data of interest is monthly, and it is therefore possible to investigate for seasonal variation in 

this data (Springer, 2008). 

 

2.2.3. Cyclic variation  

Cyclical variations comes from increases and decreases recurring after periods at irregular 

times. The four phases of a business cycle, a recession, depression, recovery or boom can 

cause these variations (Springer, 2008). 

 

2.2.4. Irregular fluctuations  

Irregular fluctuations are results of unpredictable forces. These forces operate randomly and 

do not have any definite pattern. These fluctuations can come from earthquakes, strikes or 

pandemics (Springer, 2008). 

 

2.3. Stationarity time series  

A time series is said to be weakly stationary or second order stationary if the mean 𝜇𝑡 and the 

autocovariance 𝛾𝑗𝑡 does not depend on the date t: 

𝐸(𝑌𝑡) =  𝜇                                     For all t 

E(𝑌𝑡 −  𝜇)( 𝑌𝑡−𝑗 −  𝜇) =  𝛾𝑗𝑡         for all t and j   
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(Hamilton, 1994, page 46). 

A time series is said to be strictly stationarity if the joint distribution of 

(𝑌𝑡  , 𝑌𝑡+𝑗1  , 𝑌𝑡+𝑗2
 , … , 𝑌𝑡+𝑗𝑛  )  only depends on the intervals separating the dates 

(𝑗1, 𝑗2 , … , 𝑗𝑛 )  and not the date t itself for any values on j (Hamilton, 1994, page 46). Many 

of the properties of stationary processes only depend on the structure of the process that are 

specified by its first and second order moments. In this text the term “stationarity” will 

imply weak stationarity. 

A time series is stationary if there is no systematic change in the mean from trend, if there is 

no systematic change in variance, and if strictly periodic variations have been removed 

(Chatfield, 2004, page 13). Trend and seasonal variation affect the mean and variance of the 

time series differently through time, and time series with trends or seasonality are therefore 

not stationary. A stationary time series will have no predictable patterns in a long-term 

perspective, and time series plots will therefore be roughly horizontal with constant variance. 

Since the property of stationarity is defined for a model, there are no time-series that is 

stationary when talking in strict terms (Chatfield, 2004, page 13). The phrase “stationary 

time-series” will in this thesis be referred to as time-series data that contain characteristics 

that implies that a stationary model can be fitted properly.  

A times series can also have variation from cyclic behaviour that will show variation in the 

time plots of the series. If the variation in the series comes from cyclic behaviour, the mean 

and variance will not be affected since it is no trend or seasonality present. A time series with 

variation from cyclic behaviour can therefore be stationary (Hyndman & Athanasopoulos, 

2018, chapter 8.1). 

 

2.3.1. White noise 

White noise is a purely random process defined as a sequence of independent and identically 

distributed (i.i.d) random variables (Chatfield, 2004, page 221). A white noise times series is 

stationary, and therefore the first and second order moments, mean and variance, does not 

depend on the time the series are observed (Hamilton, 1994, page 50).  
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A white noise series will have no predictable patterns, and time series plots of white noise 

will therefore be roughly horizontal with constant variance.  

 

 

Figure 2.1: Time plot for white noise. The plot illustrates no predictable patterns in the time series. 

  The plot is constructed in RStudio (Appendix 2.A). 

 

It is expected that each autocorrelation is close to zero for white noise series. Due to 

random variation, the autocorrelation will not be exactly equal to zero. Autocorrelation can 

be represented by the autocorrelation function (ACF) plot. The ACF plot in Figure 2.2 is an 

autocorrelation function illustrating how well the present value of the series is related with its 

past values. The autocorrelation function will therefore investigate for autocorrelation 

between present production and the production at different times. The dotted blue lines in 

Figure 2.2 are at value ±2/√T, where T is the number of observations in the time series. 

Values outside the dotted lines are significantly different from zero (Chatfield, 2004, page 

27). 

 

With no autocorrelation, 95% of the spikes in the autocorrelation function plot is expected 

to lie within the blue dotted bounds in Figure 2.2. If one or more large spikes are outside 

these limits, or if more than 5% of the spikes are outside these limits, the series is probably 

not white noise (Hyndman & Athanasopoulos, 2018, chapter 2.9). 
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Figure 2.2: Autocorrelation function plot for white noise series. All spikes lie within the significance bounds, 

implying no autocorrelation between the observations. The plot is constructed in RStudio (Appendix 2.B). 

 

All the autocorrelation coefficients lie within the blue dotted lines, which confirms that the 

data in this example are white noise and stationary.  

 

2.4. Non-stationarity and differencing  

The use of non-stationary data in time series models can produce unreliable and spurious 

results. Spurious results implies that series seems to be correlated, but are not in reality. 

High residual autocorrelation can be signs of spurious regression (Ventosa-

Santaulària, 2009, page 2). Unreliable and spurious results can lead to poor forecasting and 

understanding of the data. Forecasts with spurious regression will not in general work well 

in long-term forecasts, but can still give accurate short-term forecasts. 

 

An important consideration when estimating an ARMA model, is that all the variables in 

the model must be stationary before modelling. To choose to estimate the model when the 

data is non-stationary can give inconsistent parameter estimates, and can again lead to 

meaningless forecasts. Non-stationary time series therefore needs to be transformed into 

stationary data by differencing to obtain a reliable result in long-term forecasting.  
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The differenced series equals the change between the observations in the original time 

series. By computing the differences between the observations, the mean of a time series 

can be stabilized by removing the changes in the level of the time series. This stabilization 

can reduce or remove seasonality and trend, and therefore help to obtain stationary time 

series (Brockwell & Davis, 1991, page 19). 

 

2.4.1. Random walk  

The random walk is a simple non-stationary time series. A random walk has the ability to fit a 

wide range of data despite its simplicity.  

 

A random walk with no constant is a time series 𝑦𝑡 where  

 

𝑦𝑡  =  𝑦𝑡−1 + 𝜀𝑡      (2.2) 

 

𝑦𝑡  is the production at present time  

𝑦𝑡−1  is the production at a previous time  

And εt  is a white noise series where all values are independent and identically distributed 

(IID) with a zero mean. It is assumed that 𝜀𝑡  is a Gaussian white noise, which implies 

 𝜀𝑡 ~ N(0,q).  

 

A random walk model with a drift is characterized by an upward or downward trend and 

unforeseen changes in direction. A random walk with drift can be represented as: 

 

𝑦𝑡  =  𝑎 + 𝑦𝑡−1 + 𝜀𝑡      (2.3) 

 

Where 𝛼 =  𝐸(𝑦𝑡 − 𝑦𝑡−1 )  Represents the time trend of the production,  𝑦𝑡 is the drift of the 

model (Iordanova, 2020). 
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Figure 2.3: Time plot of random walk series. The Plot illustrates a predictable pattern of trend in the series.  

The plot is constructed in RStudio (Appendix 2.C). 

 

For random walk series it is expected that one or more large spikes are outside the 

significance limits in the autocorrelation function plot (Iordanova, 2020).  

 

 

Figure 2.4: Autocorrelation function plot for white noise series. All spikes lie outside the significance bounds, 

implying autocorrelation between the observations. The plot is constructed in RStudio (Appendix 2.D). 
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All the autocorrelation coefficients lie outside the blue dotted lines, which confirms that the 

data in this example are not stationary. A random walk can therefore be considered as a 

special type of an ARIMA model where both p and q equals zero, and d equals one. This 

forms a ARIMA(0,1,0) model. 

 

2.5. ARIMA modelling 

ARIMA modelling is a well-known and much used tool for forecasting time series. This 

section will investigate different variations from the class of ARIMA models. ARIMA is an 

acronym for Autoregressive Integrated Moving Average. The model includes a number of 

autoregressive (AR) terms p, a degree of differencing d that removes non-stationarity (d), and 

a number of moving-average (MA) terms q. The model can therefore be specified as an 

ARIMA(p,d,q) model (Hyndman & Athanasopoulos, 2018, chapter 8.1). 

 

2.5.1. Autoregressive processes AR(p) 

A time series is autoregressive when the present values in the series can be obtained by using 

previous values (Salvi, 2019). An autoregressive model (AR) can be considered as a special 

case of an ARIMA model, with the parameters q and d equals zero; ARIMA(p,0,0). The 

equation (2.4) illustrated an AR(p) process, where p is the number of autoregressive terms:  

 

𝑦𝑡  =   𝜑1 𝑦t−1 + ⋯ + 𝜑p 𝑦t−p + 𝜀𝑡      (2.4) 

 

For simplicity, p is given the value one: 

 

𝑦𝑡  =  𝜑1 𝑦t−1 + 𝜀𝑡       (2.5) 

Equation 2.5 represents the first order AR process, also called AR(1), and implies that the 

variable y only depends on its past values. This implies that the variable is explained by its 

own previous lag. 

The 𝜑 is the coefficient of interest when determining stationarity. If 𝜑 is lower than one, the 

shocks in the variable 𝑦  will be transitory and therefore disappear over time. A coefficient 

with a value lower than one therefore implies stationarity for the time series (Özcan & Öztürk, 
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2019, chapter 8.1). 𝜀𝑡  is a purely random process with mean zero and variance 𝜎𝜀
2 

(Chatfield, 2004, page 65). 

When the coefficient 𝜑 equals one, shocks in 𝑦  are permanent and will not disappear over 

time. This implies presence of a unit root in the series, also called non-stationarity. When 

the coefficient 𝜑 takes a value higher than one, the series will explode (Özcan & Öztürk, 

2019, chapter 8.1). 

 

2.5.2. Moving average processes MA(q) 

A moving average process defines the present value of a time series as a linear combination of 

past errors. The MA(q) model can be considered as an ARIMA model where p and d equals 

zero; ARIMA(0,0,q):  

𝑦𝑡  =  𝜀𝑡 + 𝜃1 𝜀t−1 + … + 𝜃𝑞𝜀t−q       (2.6) 

 

Where 𝜀𝑡  is a purely random process with mean zero and variance 𝜎𝜀
2, also called white 

noise. 𝜃𝑖 are a constant and 𝜇 is the mean. q is the number of moving-average terms.  

 

when q = 1 , the first-order moving average process MA(1): 

 

𝑦𝑡  =  𝜀𝑡 + 𝜃1 𝜀t−1        (2.7) 

 

Where 𝜃𝑖  and 𝜇 could be any real number.  

 

The phrase “moving average” comes from the fact that 𝑦𝑡 is constructed from the weighted 

sum of the two latest values of 𝜀  (Hamilton, 1994, page 48). 

 

2.5.3. Autoregressive moving average models ARMA(p,q) 

By combining MA and AR processes, a useful class of time series models can be formed. A 

mixed autoregressive/moving-average process with p AR terms and q MA terms is called an 

ARMA process of order (p,q), and is given by: 

 

𝑦𝑡  =  𝜑1 𝑦t−1 + ⋯ + 𝜑p 𝑦t−p + 𝜀𝑡 + 𝜃1 𝜀t−1 + … +  𝜃𝑞𝜀t−q     (2.8) 
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The importance of ARMA processes lies in the fact that stationary time series can be 

generally only approximated in a proper way in an ARMA process with fewer parameters 

involved than a pure AR or MA process. This is an example of the Principle of Parsimony, 

which implies that it is wished to find a model that gives an adequate representation of the 

data with as few variables as possible (Brockwell & Davis, 1991, page 320). 

 

2.5.4. Integrated ARMA models ARIMA(p,d,q) 

Most time series are non-stationary in practice. In order to fit a stationary model, it is 

necessary to remove non-stationary sources of variation. Differencing is used to make non-

stationary time series stationary.  

 

The differenced series equals the change between the observations in the original series. 

When the time-series are non-stationary in the mean, we can difference the series to generate 

stationarity by eliminating trend and seasonal variation (Brockwell & Davis, 1991, page 47). 

The use of differencing can therefore extend the ARMA(p,q) model into the ARIMA(p,d,q) to 

handle non-stationary time series.  

 

The first difference operator ∇1  is defined by: 

 

∇1𝑦𝑡  = 𝑦t − 𝑦t−1  =  (1 − 𝐵)𝑦t         (2.9)  

 

Where B is the backward shift operator, also called lag-operator. 

 

B𝑦t = 𝑦t−1        (2.10) 

 

The full ARIMA(p,d,q) model is given by:  

 

∇𝑑𝑦𝑡 =  𝜑1 ∇
𝑑𝑦t−1 + … + 𝜑p ∇

𝑑𝑦t−p + 𝜀𝑡 + 𝜃1 𝜀t−1 + … +  𝜃𝑞𝜀t−q        (2.11)  

 

Where d is the number of first-differencing necessary to obtain stationarity in the model 

(Chatfield, 2004, page 48). 
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2.5.5. Seasonal ARIMA models 

The representation of ARIMA models have been restricted to non-seasonal models until now. 

ARIMA models also have the possibility to handle seasonal series. Seasonal series are 

characterized by a fluctuation pattern in the autocorrelation function. Instead of assuming that 

oscillations are due to equal cycles in the time series, the seasonal ARIMA allows for 

randomness in the seasonal pattern form one cycle to the next (Brockwell & Davis, 1991, 

page 320). 

 

A seasonal ARIMA model is formed by including a seasonal term, (P,D,Q)m, in addition to 

the ARIMA(p,d,q) model already represented. The full seasonal model can be represented as: 

 

ARIMA(p,d,q)(P,D,Q)m.  

 

Where m is the number of observations per year, which is months for the data of interest in 

this thesis, and m is therefore given the value 12. The uppercase P, D and Q refer to the 

autoregressive, differencing and moving average terms for the seasonal part of the ARIMA 

model.  

 

The seasonal components of this model are similar to the non-seasonal part of the model, but 

also includes backshifts of the seasonal period (Hyndman & Athanasopoulos, 2018, chapter 

8.9). The ARIMA(3,1,2)(3,1,2 )12 model can be written: 

 

(1 − 𝜑1 𝐵) (1 − 𝜑1 𝐵
12)(1 − 𝐵)(1 − 𝐵12)𝑦𝑡 = (1 + 𝜃1 𝐵) (1 + 𝜃1 𝐵

12)𝜀𝑡     (2.12) 

 

2.6. Measuring forecast accuracy   

It is important to evaluate forecast accuracy to obtain an estimation of how believable a 

forecast for the future could be. Even if an accurate forecast on known data points do not 

guarantee the same accuracy on forecasts for the future, calculating the level of error in earlier 

forecasts can help us say something about the error in future forecasts.  

 

When measuring forecast accuracy, it is common practice to separate the time series of 

interest into a training and test set. The training part of the series is used to estimate 

parameters and residuals of forecasting methods (AIC), and the test part of the data is used 
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to evaluate the forecast accuracy. The first part of the time series, the training part, will be 

used to train the forecasting methods to forecast the second part of the time series, the test part. 

 

The accuracy of a forecast can only be determined by considering how well a model 

performs on new data that were not used when fitting the model. The measure AIC will 

therefore not be sufficient to determine accuracy. AIC can only be used to compare models 

from the same class. In this thesis it will be compared models from different classes, and 

other measures will therefore be calculated (Hyndman & Athanasopoulos, 2018, chapter 

9.4). 

 

The measures mean absolute error (MAE) and mean squared error (MSE) will be used to 

compare forecast accuracy in this thesis. A lower error implies a more accurate forecast in all 

the methods presented in this section. 

 

2.6.1. Mean absolute error 

The mean absolute error is a measure of errors between predicted values and actual values. 

This algorithm measures the average of the absolute deviation between these values. Every 

forecast error will get the same weight in this measure (Kirchgässner & Wolters, 2007, page 

86). This method is therefore preferred when overall deviation is wanted to be lowest possible 

over time, and few big errors are not a major concern for the result.  

The mean absolute error can be calculated as:  

 

𝑀𝐴𝐸 =    
1

𝑇
 ∑|𝜀𝑖 |    (2.13) 

Where 𝜀𝑖  = true value - predicted value  

∑ is the sum of all data points, and T is the number of observations in the series. 

 

2.6.2. Mean squared error  

MSE is short for mean squared error and measures the average of the squared differences 

between the predicted values and true values (Kirchgässner & Wolters, 2007, page 86). 
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The mean squared error can be calculated as:  

𝑀𝑆𝐸 =  
1

𝑇
∑(𝜀𝑖 )

2
      (2.14)  

Due to the fact that the errors in MSE are squared, this measure will give large errors a 

stronger weight than in MAE. This measure is therefore preferred when big errors are a major 

concern for affecting the result of the forecast (Kirchgässner & Wolters, 2007, page 86).  

 

3. Model selection in ARIMA modelling 

This section will focus on selecting the appropriate order of the ARIMA model. AIC is an 

acronym for the Akaike Information Criterion, and is a mathematical method to evaluate how 

well a model fits the data it was generated from. AIC is used to compare different models and 

determine which model that is the best fit for the data, by determining the relative information 

value of the model using the maximum likelihood estimate and the number of parameters in 

the model. The forecast model that performs the best usually has the lowest AIC (Bevans, 

2020). AIC can be calculated as:  

 

𝐴𝐼𝐶 = 2𝐾 − 2ln (𝐿)     (3.1)  

 

Where K is the number of parameters, and L is the log-likelihood estimate. The log-likelihood 

is the logarithm of the probability that the observed date are coming from the estimated model 

(Bevans, 2020). 

 

Unlike the accuracy measures MAE and MSE in section 2.6, AIC does only measure how 

well the model residuals fits the training data, and do not compare forecasted values with the 

test part of the time series to find accuracy. When comparing different ARIMA models in 

this section, AIC will be used as a measurement because it is less time consuming than 

calculating the accuracy measures MAE and MSE.  

 

Various cases of ARIMA models will be fitted in this section to investigate which ARIMA 

model fits the data most appropriately according to AIC values. To investigate if the time 
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series needs differencing to obtain stationarity, the series will be investigated by 

decomposition and unit root tests in the start of this section.  

 

3.1. Decomposition 

To investigate if the time series of interest has any clear trend, seasonality, or cyclic 

behaviour, the time series is decomposed with the function decompose(). Decomposing is to 

separate elements of the time series into simpler compounds. Extracting these components 

from a time series is done to help improve understanding of the time series and improve 

forecast accuracy (Brockwell & Davis, 1991, page 14). After splitting the time series in parts 

illustrating different pattern categories, it will be easier to look for trend, seasonality and 

cycles.  

 

Figure 3.1: The decomposed time series. The plot illustrates trend and seasonal variation. The series was 

decomposed with the function decompose() and plotted in RStudio (Appendix 3.A) 
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Figure 3.1 illustrates that there is a trend in the time series. The figure also contains variation 

in the seasonal row of the plot. This variation can be by cycles, and not seasonality that makes 

data non-stationary. The figure above does not provide enough information to conclude with 

the number of differencing that is required to make the data stationary. A test for stationarity 

will therefore be proceeded with before concluding with appropriate number of differencing. 

 

3.2. Selecting the value of d  

The value of d in the ARIMA(p,d,q) model should be equal to the number of differencing 

required to make the time-series stationary. Unit roots can cause unpredictable results in a 

time series analysis. Unit root tests will therefore be computed to determine if differencing is 

required to obtain stationarity in the time series. If a time-series contains one unit root, I(1), 

the series needs to be differenced once to obtain stationarity. If the series contains two unit 

roots, I(2), the series would need to be differenced twice to obtain stationarity (Özcan & 

Öztürk, 2019, chapter 8.1). 

 

Different tests can measure the properties of a time-series differently, and it can therefore be 

useful to use several tests to confirm the results. The augmented Dickey-Fuller (ADF) test and 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test will be computed to determine the 

appropriate number of differencing required to obtain stationarity in the time series.  

 

Typically for most unit root tests, both the ADF and the KPSS test has a high type I error, 

which means to reject the null hypothesis when it is actually true. A method to correct with 

potential high Type I error is to use both the KPSS test and the ADF test to test for 

stationarity. If the result from both tests suggests that the time series is stationary, it probably 

is (Wang, 2006, page 33). 

 

3.2.1. Dickey-Fuller test  

The Dickey-Fuller test was developed and popularized by Dickey and Fuller in 1979 (Dickey 

& Fuller, 1979). The null hypothesis of a Dickey Fuller test is that there is a unit root in the 

autoregressive model, which implies that the data series is non-stationary. The general 

alternative hypothesis is that the data is stationarity or trend stationarity, depending on what 

type of test being used (Özcan & Öztürk, 2019, chapter 8.1). 
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Consider the time series equation below to understand a Dickey Fuller test:  

𝑦𝑡  =  𝜑1 𝑦t−1 + 𝜀𝑡         (3.2)  

This equation represents the first order autoregressive process, also called AR(1), and 

implies that the variable y only depends on its past values. This means that the variable is 

explained by its own previous lag.  

The 𝜑 is the coefficient of interest when determining stationarity. If 𝜑 is lower than one, the 

shocks in the variable 𝑦  will be transitory and therefore disappear over time. This implies 

stationarity for the time series. When the coefficient 𝜑 equals one, shocks in 𝑦  are permanent 

and will not disappear over time. This implies presence of a unit root in the series, and 

therefore not stationarity (Özcan & Öztürk, 2019, chapter 8.1). 

The general Dickey-Fuller (DF) test is a simple approach to test for a unit root, but cannot 

capture the complicated structure times series often have in practice. This is due to the 

estimate of 𝜑 can act inappropriate under the null hypothesis that 𝜑 = 1 because of non-

stationarity. An augmented Dickey-Fuller (ADF) test is therefore preferred for the time series 

in this thesis (StatsDirect, 2020).   

 

3.2.2. Augmented Dickey-Fuller test  

The ADF test is a more powerful unit root rest that can handle more complex models than the 

Dickey-Fuller test. Similar to the original Dickey-Fuller test, an augmented Dickey-Fuller test 

has a null hypothesis that the series contains a unit root, which implies non-stationarity 

 

The p-value of the hypothesis test is the limit for which significance level the test will have to 

reject the null hypothesis (H0). A p-value lower than 0.05 will result in a rejection of the null 

hypothesis that assumes that the series contains a unit root. For a series to be stationary, the p-

value of the test should be lower than 0.05 (Özcan & Öztürk, 2019, chapter 8.1). 

The hypotheses of interest in an ADF-test are: 

H0 : φ = 1 (unit root ) ⇒ yt ∼I(1)  

H1 : |φ| < 1 ⇒ yt ∼ I(0)  
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An augmented Dickey-Fuller test is constructed to test for the presence of a unit root in the 

time series. The output of the test can be found in Appendix 3.B. It can be seen in Appendix 

3.B that the p-value of the test equals 0.99, which is greater than 0.05. The null hypothesis 

fails to reject at a 95% confidence interval and cannot conclude that |φ| < 1 (stationarity).  

Due to the fact that it cannot be concluded with stationarity from the ADF-test, the time series 

are first-differenced once with the function diff(), shown in Appendix 3.C.  

An augmented Dickey-Fuller test on the differenced time series is constructed to investigate if 

it can be concluded to reject the presence of a unit root after first-differencing the data once. 

Results of the test can be found in Appendix 3.D. As shown in Appendix 3.D, the p-value in 

the hypothesis test for the differenced data is 0.01. This value is below 0.05, and the null 

hypothesis that the data contains a unit root can be rejected with a 95% confidence interval. 

The augmented Dickey-Fuller rejects the presence of a unit root in the first-differenced time 

series, which implies stationarity.  

 

3.2.3. KPSS Unit root test 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test investigates with linear regression if a 

time series is stationary around a linear trend or mean, or is non-stationary due to a unit root 

(Kwaiatkowski et al., 1992). Unlike the ADF-test, the KPSS hypothesis test has the null 

hypothesis that the data is stationary, which implies no need for differencing. The alternative 

hypothesis is equal to that the data is not stationary (Wang, 2006, page 33). 

To be able to confirm that the time series needs one first differencing to obtain stationarity, 

the null hypothesis of stationarity has to be rejected on the original series, and fail to reject the 

null hypothesis when unit root testing the differenced series. The null hypothesis will be 

rejected if the value of the t-statistic is higher than the critical values for the chosen significant 

level.  

 

The significant level of the statistical test is the probability that the event could have occurred. 

A low significant level implies a low probability of the event occurring is quite small, the 

event can be called significant (Riffenburgh, 2012, page 325). 
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A KPSS unit root test on the original series can be found in Appendix 3.E. As shown in 

Appendix 3.E, the value of the test-statistic is 4.6988, which is higher than the 1% critical 

value of the test. This indicates that the null hypothesis is rejected at all significance levels. 

This proves that the data is not stationary, and that applying differencing on the time series is 

necessary to remove one or more-unit roots. One first-differencing is therefore applied to the 

time series.  

             

 

Figure 3.2: The differenced time series. The plot illustrates the difference between the observations in the 

original time series, and are therefore negative due to a decrease between observations. The series was 

differenced with the function diff() and plotted in RStuido (Appendix 3.C) 

 

After the time series is differenced, several of the values of oil production in Figure 3.2 are 

negative. This is because the values of the series are now the difference between the 

observations in the original series, and can therefore be negative from a decrease between the 

observations.  

 

A KPSS unit root test is constructed on the differenced time series in Appendix 3.F, that 

illustrates the value of the test-statistic for the differenced data is 0.3347. This is lower 

than all critical values listed, and therefore indicates failing to reject the null hypothesis 

that the data is stationary. It is therefore assumed that the first differenced data is stationary 

when using a KPSS unit root test.  
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As an alternative to trying different differences and tests, the functions ndiffs() and 

nsdiffs() can be used to determine the number of differences needed to obtain stationarity in 

the data. This automates the searching of the number of differences needed. The function 

ndiffs() determines the appropriate number of first differences that is necessary to make the 

time series stationary, and the function nsdiffs() determines the appropriate number of 

seasonal differencing. First-differencing removes linear trend in a time-series, and seasonal 

differencing removes seasonal variation (Holmes et al., 2021, chapter 5.5). 

 

The automated testing of appropriate number of first differences is represented in Appendix 

3.G, and the given output “1” implies that one first-differencing is needed to obtain 

stationarity in the time series. A test for appropriate number of seasonal differencing required 

to obtain stationarity can also be found in Appendix 3.G. The given output “0” from the test 

implies that no seasonal differencing is needed to obtain stationarity in the time series.  

 

To test if any additional differencing is necessary, the functions ndiffs() and nsdiffs() was 

used on the differenced time series in Appendix 3.H. The received output “0” of both 

procedures confirms that no first differencing or seasonal differencing is needed to make the 

differenced time series stationary, and that one first-differencing is sufficient to obtain 

stationarity for this series. 

 

One first differencing is applied on the time series with the function diff(), and the value of d  

in the ARIMA model is therefore one, forming a ARIMA(p,1,q) model.  

 

3.2.4. Selecting the value of D  

When fitting a seasonal ARIMA(p,d,q)(P,D,Q)12 model to the data, the value of the seasonal 

differencing D also needs to be interpreted. The value of D should be equal to number of 

seasonal differences needed to obtain stationarity in the time series.  

 

A test for appropriate number of seasonal differences required to obtain stationarity can be 

found in Appendix 3.G. The given output “0” from the test implies that no seasonal 

differencing is needed to obtain stationarity in the time series. D is given the value zero, 

forming a ARIMA(p,1,q)(P,0,Q)12  model.   
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3.3. Inspecting the autocorrelation function   

A correlogram can be helpful to identify suitable classes of models for the time series, 

especially for selecting the most appropriate type of an autoregressive integrated moving 

average model. The use of the ACF and PACF plots can help finding the order of the auto 

regressive (AR) and moving average (MA) in several time series.  

 

The ACF plot is an autocorrelation function illustrating how well the present value of the 

series is related with its past values. The autocorrelation function will therefore investigate for 

autocorrelation between present production and the production at different times. PACF is 

short for the partial autocorrelation function, and illustrates the correlation between the 

residuals (Salvi, 2019).   

 

3.3.1. Determining the order of a MA process 

If a moving average process is considered to be appropriate for the time series of interest, the 

autocorrelation function could be able to illustrate the value of q. The theoretical 

autocorrelation function cuts off at lag q for a MA(q) process.  

 

To look for the lag beyond the first spike that are close to zero is a common strategy to 

determine the order of an moving average process .The partial autocorrelation function 

(PACF) is usually less helpful for identifying MA models because of the partial functions 

attenuated from, which means that the lags would slowly die out instead of cut off quickly. 

This makes it harder to interpret where the function tends to zero (Chatfield, 2004, page 62). 

 

3.3.2. Determining the order of an AR process 

It can be tricky to determine the order of an AR process from the sample autocorrelation 

function. For a first-order autoregressive process, AR(1), the theoretical autocorrelation 

function decreases exponentially with a sample function of similar shape. Processes of higher 

orders can have an autocorrelation function that contains sinusoidal or damped exponential 

functions that will make the order hard to identify (Chatfield, 2004, page 62). The spikes in an 

autocorrelation function tends slower to zero for an AR or ARMA than a MA process, due to 

the fact that the ACF for these processes will rather attenuate than cut off.  
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The partial autocorrelation function can therefore be useful to determine the order of the AR 

process. A partial autocorrelation function of a moving average process often cuts off at lag p, 

so the value of p is devoted to the spike beyond the first lag that are not significantly different 

from zero (Chatfield, 2004, page 62). Figure 3.3 illustrates the autocorrelation function for the 

series. Spikes outside the dotted blue lines are significantly different from zero. 

 

 

Figure 3.3: Autocorrelation function for the original time series. The plot illustrates significant correlation 

between the lags. The plot is constructed in RStudio (Appendix 3.I). 

 

The autocorrelation function in Figure 3.3 does not decay quickly along the lags, and show 

significant correlation between the lags. This is typical for times series that contains trend. An 

autocorrelation function where the lags does not tend to zero quickly indicates non-

stationarity and implies a need for differencing. The ACF-plot for the non-differenced series 

in Figure 3.3 therefore confirms non-stationarity in the series.  

 

The sample autocorrelation function is only meaningful for data from a stationary time series 

model. Any trend should therefore by removed before observing the ACF plot (Chatfield, 

2004, page 27). The autocorrelation for the first differenced series will therefore be 

investigated to say something about the appropriate parameters for the autoregressive and 

moving average processes. Figure 3.4 illustrates the autocorrelation function, the partial 

autocorrelation function and the time plot for the differenced series.  
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Figure 3.4: The time plot, autocorrelation function (ACF) and the partial autocorrelation function (PACF) for 

the differenced time series. There are less significant lags for the differenced series than the original series. The 

plot is constructed in RStudio (Appendix 3.I). 

 

As illustrated in Figure 3.4, the series still include significant spikes in the ACF-plot after 

differencing. This can make the process of selecting the parameters p and q difficult. A 

known procedure to determine the parameters for the autoregressive and Moving average 

processes is by investigating the ACF- and PACF-plots for the processes. Considerable 

experience is required to interpret autocorrelation coefficients. This thesis will therefore focus 

on comparing residuals from the different forecast models to determine the appropriate model 

for time series of interest. ARIMA models with different p and q values will be fitted and 

compared, and the model with the lowest AIC will be chosen as the optimal ARIMA model. 

 

3.3.3. Maximum likelihood estimation  

After the values of p,d and q are determined, the parameters 𝜑 and θ needs to be estimated. 

When the program R estimates the ARIMA model, maximum likelihood estimation (MLE) is 

applied. The technique finds the parameter values that maximizes the probability of obtaining 
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the data observed. Maximum likelihood estimation is similar to the least squares estimates for 

ARIMA models, which minimizes the squared sum of errors ∑ 𝜀𝑖 
2
 (Hyndman, & 

Athanasopoulos, 2018, chapter 8.6).  

For simple time series regression models, MLE and least square estimation often gives the 

same parameter estimates. ARIMA models are more complicated to estimate than regressions, 

and different techniques can therefore give different parameter estimates for these models.  

When maximum likelihood estimation is used in R, the value of the log likelihood of the data 

is reported, which is the logarithm of the probability that the observed data is obtained from 

the estimated model. R attempts to maximize the log likelihood when determining parameter 

estimates for the given values of p,d,q.   

 

3.3.4. Seasonal differenced series 

If a time series have seasonal variation, the autocorrelation function will also contain 

oscillations that can disturb the result. For series with monthly variation, it can be expected 

that lag number six is large and negative, and lag number 12 is large and positive in the ACF 

plot. If the lags in the ACF-plot follows a sinusoidal pattern, it is generally assumed that there 

is seasonal variation in the data (Chatfield, 2004, page 27).   

If seasonal variation is removed from seasonal data, useful information can be provided by 

the autocorrelation function. It occurs to be oscillations that can remind of a sinusoidal pattern 

in Figure 3.4. Seasonal variation is therefore removed by seasonal differencing, and the 

autocorrelation plot is illustrated in Figure 3.5.  
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Figure 3.5: The autocorrelation function for the seasonal differenced series illustrates less significant spikes 

than the earlier autocorrelation plots. The plot is constructed in RStudio (Appendix 3.I). 

 

After seasonal differencing, there are still a presence of significant spikes in the series. This 

autocorrelation tends to zero after lag 12, which should lead to suspicion of seasonal variation 

in the series. An ARIMA model that includes a seasonal term can therefore seem to be more 

appropriate for these time series than a non-seasonal model.   

 

3.4. The automated ARIMA model 

Determining the values for p, d and q is not straight-forward, and the appropriate order of 

processes will vary from time series to time series. The function auto.arima() can simplify the 

process by selecting these values for us. The function fits the best ARIMA model for the time 

series model by conducting a search over possible models within the constraints provided 

(Hyndman & Khandakar, 2008, page 35). 

 

3.4.1. The non-seasonal automated ARIMA 

An adjustment of the auto.arima() function that restricts the search of models to only allow 

non-seasonal alternatives is applied in the first automated forecast. The forecast for 2018 with 

the suggested non-seasonal model is illustrated in Figure 3.6. Observations before 2014 are 

cut from the plot to focus on the forecasted values. A plot containing all the observations in 

the time series with the forecasted values can be found in Appendix 3.J. 



 

  27 

 

 

 

 

Figure 3.6: Forecast of the automated non-seasonal ARIMA model. Due to the seasonal restriction in the 

function, no seasonal variation can be seen in the forecast. The plot is constructed in RStudio (Appendix 3.J). 

 

When a forecast is obtained, the middle of the range of possible values the future 

production could take with a given probability are estimated, called a prediction interval. If 

a 95% prediction interval is chosen, a random observation from the future will be within 

the prediction interval 95 of 100 times (Hyndman, & Athanasopoulos, 2018, chapter 3.1). 

The light blue shaded area in Figure 3.6 represents the 95% interval for monthly 

Norwegian oil production, and the darker blue shaded area represents the 80% interval. 

The blue line is the average of the possible future values, which is called the point 

forecasts.  

 

3.4.2. The seasonal automated ARIMA  

Allowing a seasonal term to be included when fitting the model makes the possibility to 

adjust for seasonal variations. Including a seasonal term can therefore give more accurate 
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predictions if the model includes a seasonal term. Figure 3.7 illustrates the automated 

seasonal ARIMA(p,d,q)(P,D,Q)12 model. 

 

 

Figure 3.7: Forecast of the automated seasonal ARIMA model. Seasonal variation is allowed this function, 

which explains the seasonal variation in the forecast. The plot is constructed in RStudio (Appendix 3.K). 

 

3.4.3. Selecting the appropriate ARIMA model manually  

The function auto.arima()can be useful, but an automated model can also be unreliable in few 

cases. Several ARIMA models with different p,d and q values are therefore fitted to 

investigate if any manual fitted ARIMA models can perform better on the data than the 

automated models for this time series.  

The automated models constructed with the auto.arima() function is illustrated in the top rows 

of Table 3.1. To investigate if any models could give a lower AIC value than the Auto 

ARIMA forecasts, several ARIMA models are fitted and compared with the automated 

models in Table 3.1. 
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Table 3.1: Comparing AIC between the ARIMA models to find the most appropriate ARIMA for this series. The 

values are found with RStudio. See example of AIC estimation in Appendix 3.L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in Table 3.1, the seasonal automated ARIMA(0,1,1)(0,0,2)12 has a lower AIC 

than the non-seasonal automated ARIMA(0,1,2). This implies that the series can contain 

seasonal variation, and that including a seasonal term in the model can help obtain more 

accurate predictions for the future.  

 

The seasonal automated ARIMA(0,1,1)(0,0,2)12 has the lowest AIC of all ARIMA models 

fitted in Table 3.1, and it is therefore concluded to be the best fitted ARIMA model for this 

time series. This model is selected as the optimal ARIMA model for this series, and will be 

compared in accuracy with the best benchmark forecasting method and the prediction of the 

Norwegian petroleum directorate in section 4.  

 

Model AIC 

(Auto) ARIMA(0,1,2) with drift  3130.19    

(Auto) ARIMA(0,1,1)(0,0,2)[12]                     3002.52 

ARIMA(0,0,0)   5409.7 

ARIMA(0,1,0)   3369.61 

ARIMA(1,0,0)   3379.72 

ARIMA(2,0,0)   3228.2 

ARIMA(0,0,1)   4811.29 

ARIMA(0,0,2)   4398.14 

ARIMA(1,1,0)   3215.82 

ARIMA(2,1,1)   3130.05 

ARIMA(3,1,2)   3133.72 

ARIMA(3,1,3)   3081.98 

ARIMA(3,1,12)   3059.5 

ARIMA(1,1,2)(0,0,2)[12]                     3219.27 

ARIMA(0,1,1)(0,0,1)[12]                   3045.21 

ARIMA(0,1,0)(0,0,2)[12]                     3219.27 

ARIMA(1,1,0)(0,0,2)[12] with drift      3097.05 
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3.5. Simple forecast methods  

Certain forecasting methods are surprisingly effective for their simplicity. The following 

simple forecasting methods will be used as a benchmark through this thesis. More 

advanced forecast methods will be compared with these simple methods to ensure that the 

new methods are achieving a higher accuracy than the accuracy achieved with the simpler 

models. If any advanced forecast methods have a higher error than the simple methods, 

they will not be considered.  

 

3.5.1. Mean method  

In the mean method, the sum of forecasted future values equals the average of the historical 

data (Hyndman, & Athanasopoulos, 2018, chapter 3.1). When the historical data is denoted by  

𝑦1, 𝑦2, 𝑦3  … 𝑦𝑇 , the forecast can be presented as: 

 

�̂�𝑇+ℎ|𝑇 =  �̅� = (𝑦1, 𝑦2, 𝑦3  … 𝑦𝑇)/𝑇     (3.3) 

 

Where �̂�𝑇+ℎ|𝑇 the estimate of is y𝑇+ℎ based on the historical data 𝑦1, 𝑦2, 𝑦3  … 𝑦𝑇 

 

3.5.2. Naïve method  

The naïve forecast method set all forecast values to be the equal to the last observation of the 

historical data: 

 

�̂�𝑇+ℎ|𝑇 =  𝑦T      (3.4) 

 

This method often works well on economic and financial time series. A naïve forecast is 

optimal when the data follow a random walk, and can therefore also be called random walk 

forecasts (Hyndman, & Athanasopoulos, 2018, chapter 3.1). 

 

3.5.3. Seasonal naïve method 

For seasonal data, it can be helpful to set each future forecast value equal to the same month 

of the last year: 

 

�̂�𝑇+ℎ|𝑇 =  y𝑇+ℎ−𝑚(𝑘+1)    (3.5) 
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Where m is the month and k is the integer part of (h-1)/m, which is the number of complete 

years in the forecast horizon before the date T+h. This implies that each forecasted future 

August is equal to the latest August in the historical data (Hyndman & Athanasopoulos, 

2018, chapter 3.1). 

 

3.5.4. Drift method 

Another variation of the random walk is to allow the forecast to increase or decrease over 

time, where the change over time is set to be the average change in the historical data. This 

change is called the drift.  

 

This method is identical to drawing a line between the first and last observations in the 

historical data and continuing the line into the future (Hyndman & Athanasopoulos, 2018, 

chapter 3.1). For a naïve method with drift, the best forecast of tomorrow's production is 

today's production plus a drift term:  

 

�̂�𝑇+ℎ|𝑇 = 𝑦𝑇 +
ℎ

𝑇−1
∑ (𝑦𝑡 − 𝑦𝑡−1)𝑇

𝑡=2 = 𝑦𝑇 + ℎ(
𝑦𝑇−𝑦1

𝑇−1
)     (3.6)  

 

3.6. Comparing the simple forecasts methods 

Figure 3.8 illustrates the different simple forecast methods with a forecast horizon of 12 

months. Earlier observations than the year 2016 are not illustrated in Figure 3.8 to focus on 

the representation of the forecasted data points.  
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Figure 3.8: Forecasts for every month in the year 2018 by the simple forecast methods. The plot is constructed 

in RStudio (Appendix 3.M). 

 

The accuracy of these benchmark forecast methods are compared with the most appropriate 

ARIMA forecast and the forecast from the Norwegian petroleum directorate in section 4. 

 

4. Comparing forecast accuracy 

Table 4.1 gives an overview of the accuracy of different forecasts of every month of the year 

2018 constructed in this study, along with the forecast obtained by the Norwegian Petroleum 

Directorate.  
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Table 4.1: Comparing the forecast accuracy between the simple forecast methods, the most appropriate ARIMA 

and the forecast by the NPD for monthly oil production in 2018. See example of MAE and MSE calculation in 

Appendix 4.A 

Method MAE MSE 

Mean 3.187363 15.90779 

Naïve 3.036304 14.91907 

Seasonal naïve 3.16667 16.84814 

Naïve with drift 3.578016 18.60098 

ARIMA(0,1,1)(0,0,2)𝟏𝟐 1.740171 6.341439 

Forecast from the NPD  2.035762 6.04833 

 

 

The forecast from the NPD obtained the lowest mean squared error (MSE) of all the forecasts 

in the Table 4.1. MSE gives large errors high weight due to the squared errors in the 

technique. This technique is preferred when it is preferred to deviate from high errors 

rather than obtaining the forecast that predicts closest possible to the actual production.  

 

The forecast obtained by the ARIMA(0,1,1)(0,0,2)𝟏𝟐 model obtained the lowest mean 

absolute error (MAE) of all the models in Table 4.1. MAE is a preferred technique when 

the goal of the forecast is to predict values closest possible to the actual production. In this 

study it is preferred to prioritize a model with overall closest forecasted values to the actual 

production. The forecast by the ARIMA(0,1,1)(0,0,2)𝟏𝟐 model is therefore selected as the 

most accurate forecast in this study.  

 

The seasonal ARIMA model is selected to predict the year 2019, that is the last year of the 

time series of interest. Figure 3.9 illustrates the monthly forecast for 2019 with a blue line 

compared to actual production illustrated with a red line. Earlier observations than year 2016 

are not illustrated in Figure 3.9 to focus on the representation of the forecasted data points.   
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Figure 3.9: Monthly forecast for the year 2019 by the most accurate forecast method in this study, the seasonal 

ARIMA, compared with actual production for 2019. The figure illustrates that most of the actual production lies 

within the prediction interval. The plot is constructed in RStudio (Appendix 4.B). 

 

The blue line in Figure 3.9 illustrates the forecast for 2019 by the most accurate model in 

this study, the seasonal automated ARIMA model. The red line represents actual 

production for 2019. It can be seen in Figure 3.9 that most of the actual production lies 

within the prediction interval, represented by the blue shaded areas.  

 

5. Discussion 

This thesis focused on time series forecasting based on historical data rather than a deep 

understanding of the components affecting oil production. Different time series forecasting 

models were constructed in the software RStudio using programming language R to forecast 

Norwegian monthly oil production to find the forecasting method that performed the best for 

the data of interest.  

 

Various cases of ARIMA models were fitted to investigate which ARIMA model fitted the 

data most appropriately according to the Akaike Information Criterion (AIC). 
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The most appropriate ARIMA model and the forecast from the Norwegian Petroleum 

Directorate were compared with simple forecast methods to ensure these advances methods 

were achieving a higher accuracy than the accuracy achieved with the simpler models. The 

measures mean absolute error (MAE) and mean squared error (MSE) were applied to 

compare accuracy between the different forecasts in this thesis. 

 

The simple forecast methods gave higher MAE and MSE than the most appropriate ARIMA 

model for the series and the forecast from the NPD, implying that the simple forecast methods 

were less accurate. The advanced forecast models were therefore compared in accuracy. 

The goal for this thesis was to construct a more accurate forecast than the prediction obtained 

by the Norwegian petroleum directorate. Due to the fact that the forecasts from the NPD and 

the ARIMA model gave the lowest error with different accuracy measures, the selection of 

the most accurate forecast was depending on the accuracy measure being used. Overall closest 

prediction to actual values was preferred rather than deviation from big errors in this study, 

which implied that the forecast from the ARIMA model was most accurate forecast. The goal 

to construct a more accurate forecast than the Norwegian Petroleum Directorate was therefore 

achieved according to the accuracy measure mean absolute error.  

It is also worth mentioning that the constructed ARIMA forecast uses less data to predict oil 

production than the forecast method from the NPD. This implies a higher transparency, which 

makes the forecast method easier to interpret.  
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7. Appendix  

1.A.  The time series plot: 

OilProduction %>%  

  autoplot(ylab="Oil production (million barrels)") 

 

 

2.A.  white noise series plot: 

set.seed(123) 

white.noise<-ts(rnorm(40)) 

autoplot(white.noise, ylab = "") + ggtitle("White noise") 

 

 

2.B.  Auto correlation plot for white noise: 

ggAcf(white.noise) 

 

 

2.C. Random walk: 

random.walk <- arima.sim(model= list(order=c(0,1,0)), n=100) 

autoplot(random.walk, ylab="", main="Random walk series") 

 

 

2.D. Auto correlation plot for Random walk: 

ggAcf(random.walk) 

 

 

3.A. Decomposed series: 

decomposed <- decompose(OilProduction) 

autoplot(decomposed) 

 

 

3.B. ADF-test of original series:  
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adf.test(OilProduction) 

 

Output from RStudio:  

 

 

 

 

 

 

 

 

 

 

3.C. First-differenced series: 

Oilprod.D1 <- diff(OilProduction, differences=1) 

Plot: 

Oilprod.D1 %>%  

  autoplot(main="The differenced time series") 

 

 

3.D.  ADF-test of differenced series: 

adf.test(Oilprod.D1, alternative = "stationary") 

 

Output from RStudio:  

 

 

 

 

 

 

 

 

 

 

Augmented Dickey-Fuller Test 

 

data:  OilProduction 

Dickey-Fuller = -0.11998, Lag order = 8, p-value = 0.99 

alternative hypothesis: stationary 

 

Warning message: 

In adf.test(OilProduction) : p-value greater than printed p-value 

 Augmented Dickey-Fuller Test 

 

data:  . 

Dickey-Fuller = -10.543, Lag order = 8, p-value = 0.01 

alternative hypothesis: stationary 

 

Warning message: 

In adf.test(.) : p-value smaller than printed p-value 
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3.E.  KPSS Unit root test for original series : 

Production %>%  ur.kpss() %>% summary() 

 

Output from RStudio:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.F. KPSS Unit root test for the differenced series: 

Oilprod.D1 %>%  ur.kpss() %>% summary() 

 

Output from RStudio:  

 

 

 

 

 

 

 

 

 

 

 

 

#######################  

# KPSS Unit Root Test #  

#######################  

 

Test is of type: mu with 6 lags.  

 

Value of test-statistic is: 4.6988  

 

Critical value for a significance level of:  

                         10pct  5pct  2.5pct  1pct 

critical values 0.347 0.463  0.574 0.739 

#######################  

# KPSS Unit Root Test #  

#######################  

 

Test is of type: mu with 6 lags.  

 

Value of test-statistic is: 0.3347  

 

Critical value for a significance level of:  

                        10pct  5pct 2.5pct  1pct 

critical values 0.347 0.463  0.574 0.739 



 

  42 

 

 

3.G. Test for appropriate number of differences on original series: 

 

ndiffs(OilProduction) 

Output from RStudio:  

[1] 1 

 

Seasonal differences:   

nsdiffs(OilProduction) 

Output from RStudio:  

[1] 0 

 

 

3.H Test for appropriate number of differences on differenced series: 

ndiffs(Oilprod.D1) 

Output from RStudio:  

[1] 0 

 

Seasonal differences:  

nsdiffs(Oilprod.D1) 

Output from RStudio:  

[1] 0 

 

 

3.I.  Auto correlation Plots: 

ggAcf(OilProduction) 

ggtsdisplay(Oilprod.D1) 

ggAcf(Oil.D12) 

 

 

3.J.  First splitting train and test part of the series: 

Train.oil <- window(OilProduction, start=c(1971,7), end=c(2017,12), frequency=12) 

Test.oil <- window(OilProduction, start=c(2018,1), end=c(2018,12), frequency=12) 
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Constructing an automated ARIMA forecast: 

Auto.arima<-auto.arima(Train.oil, seasonal=FALSE) 

autoforecast <- forecast(Auto.arima, h=12) 

 

Complete time series with forecast:   

autoforecast %>% 

  autoplot(ylab="Oil production (million barrels)") 

 

 

 

Cutted plot by the restriction “xlim”:  

autoplot(autoforecast, ylab = "Oil production", xlim=c(2014,2019)) 

 

 

3.K.  Automated ARIMA forecast model: 

Autoseasonal<-auto.arima(Train.oil, seasonal=TRUE) 

autoseasonalforecast <- forecast(Autoseasonal, h=12)  

 

Plot: 

autoseasonalforecast %>% 

autoplot(ylab="Oil production (million barrels)") 
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Complete time series with forecast:   

 

 

 

Cutted plot in thesis:  

autoplot(autoseasonalforecast, ylab = "Oil production", xlim=c(2014,2019)) 

 

 

3.L.  Find AIC by calling the name of the model in RStudio:  

 

For ARIMA(0,1,0): 

Arima010 <- Arima(Train.oil, order=c(0,1,0)) 

Arima010 

 

Output from RStudio:  

 

 

 

 

 

Series: Train.oil  

ARIMA(0,1,0)  

sigma^2 estimated as 24.73:  log likelihood=-1683.81 

AIC=3369.61   AICc=3369.62   BIC=3373.93 
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For the automated non-seasonal ARIMA:  

Auto.arima 

 

Output from RStudio:  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.M.   Comparing the simple forecast methods:  

autoplot(Train.oil) + 

  autolayer(meanf(Train.oil, h=12), 

            series="Mean", PI=FALSE) + 

  autolayer(naive(Train.oil, h=12), 

            series="Naïve", PI=FALSE) + 

  autolayer(snaive(Train.oil, h=12), 

            series="Seasonal naïve", PI=FALSE) + 

  autolayer(rwf(Train.oil, drift=TRUE, h=12), 

            series="Drift", PI=FALSE) + 

  ggtitle("Forecasts for monthly oil production") + 

  xlab("Time") + ylab("Million Barrels") + xlim(c(2016,2019)) +  

  guides(colour=guide_legend(title="Forecast")) 

 

 

Full time series with forecast horizon to 2025:  

Series: Train.oil  

ARIMA(0,1,2) with drift  

 

Coefficients: 

          ma1     ma2    drift 

       -0.7479  0.0835  0.0839 

s.e.   0.0437  0.0432  0.0569 

 

sigma^2 estimated as 15.99:  log likelihood=-1561.09 

AIC=3130.19   AICc=3130.26   BIC=3147.48 
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4.A.  Construction of forecast and transform into time series:  

meanforecast <- meanf(Train.oil,h=12) 

mean.ts <-ts(as.vector(unlist(meanforecast[5])),frequency=12,start=c(2018,1), 

end=c(2018,12)) 

 

Accuracy measures for that forecast:  

mse(Test.oil, mean.ts) 

mae(Test.oil, mean.ts) 

 

 

4.B. Construct new test and train part for the series:  

until.2019 <- window(OilProduction, start=c(1971,7), end=c(2018,12), frequency=12) 

just.2019 <- window(OilProduction, start=c(2019,1), end=c(2019,12), frequency=12) 

 

The seasonal automated ARIMA model: 

SARIMA<-auto.arima(until.2019, seasonal=TRUE) 

 

SARIMAforecast <- forecast(SARIMA, h=12)  

 

Plotting the forecast along with actual production: 
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SARIMAforecast %>%   

autoplot(ylab="Oil production (million barrels)",xlim=c(2016,2020), series= "ARIMA 

forecast") + autolayer((just.2019) , Series="Actual production") 
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