
Managing dependencies in large-scale
agile

A case study of coordination in distributed
teams

Henrik Aspenes Vedal

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Institute for Informatics
The faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2021

ii

Managing dependencies in large-scale
agile

A case study of coordination in distributed
teams

Henrik Aspenes Vedal

© 2021 Henrik Aspenes Vedal

Managing dependencies in large-scale agile

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Background: Coordination is very important in large-scale agile software development.
When software projects grow in size or work distributed, additional difficulties are often
introduced. Dependency management is therefore important for coordination in agile
teams. By understanding how coordination practices manage different dependencies in
distributed software development, organizations can introduce and adjust the practices
which best fit their coordination needs.
Objective: The objective of this study is to investigate how distributed teams in large-
scale agile manage dependencies to achieve effective coordination. This is done by identi-
fying practices that act as coordination mechanisms and examining what dependencies
they manage.
Method: In this qualitative multiple-case study, two distributed teams and their contexts
were examined. The two separate teams were referred to as team Alpha and team Bravo.
A total of 21 meetings were observed, and ten semi-structured interviews were held with
team Alpha. In team Bravo, a total of 7 semi-structured interviews were held. Chat logs
and documents from both teams were also a part of the collected data material.
Results: The findings of this study revealed 37 coordination mechanisms with 123 de-
pendencies in team Alpha and 34 coordination mechanisms with 108 dependencies in
team Bravo. These coordination mechanisms included agile and non-agile practices, and
managed knowledge, process, and resource dependencies. The most important coordin-
ation mechanisms were product owner, OKR workshop, and ad hoc communication,
which each managed a total of five dependencies. Working remotely further introduced
difficulties, which complicated meetings, tools, and ad hoc communication.
Conclusion: Using a dependency taxonomy proved very useful to identify coordination
mechanisms and dependencies in distributed teams in large-scale agile. The coordina-
tion mechanisms are presented with their best-matched dependencies. Practices such as
ad hoc communication, collaboration tools, daily standup, written slackup, retrospective
actions, sprint, and OKR workshop are presented and discussed. Coordinator roles such
as product owner, team lead, and data scientist are also discussed. All these mechanisms
are central for team Alpha and Bravo to coordinate effectively while working distributed.
Further, complications introduced with OKR, and the distributed situation, are discussed
with regards to dependency management. The findings of this study support previously
known challenges with distributed teams and contribute to a better understanding of
how to coordinate in distributed teams in large-scale agile more efficiently.

i

Acknowledgements

Writing this thesis has been a challenging yet very rewarding experience. It has been
incredibly motivating to have the opportunity to study subjects that I find interesting,
despite being performed remotely because of the pandemic. Completing this thesis
would not have been possible if it was not for a number of people. I would like
to sincerely thank my supervisor Viktoria Stray, and doctoral research fellow Marthe
Berntzen for invaluable guidance. With excellent advice, discussions, and directions, I
have been able to finish a thesis that I am proud of. I am also very grateful for the help of
Jan Henrik Gundelsby, who helped provide an excellent case.

Furthermore, I am very grateful for the participants in this multiple-case study. Their
welcomeness made me look forward to observations and interviews and really helped
the outcome of this thesis. Also, many thanks to the team leads for such quick responses
and friendly attitudes. It made the data collection process as efficient and easy as I could
hope for.

Lastly, I would like to share my gratitude to fellow students and my roommate. They
provided inspiration and joy throughout the entire process. A special thanks to my family
and friends for their support, and my sincerest gratitude to my girlfriend for being by my
side this entire time. Without your support, I would not be where I am today.

Henrik Aspenes Vedal
Oslo, May 2021

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The research project . 2

1.3 Research question . 2

1.4 Approach . 2

1.5 Structure . 3

2 Background 4

2.1 Software development . 4

2.1.1 Plan-driven development . 4

2.1.2 Agile development . 5

2.1.3 Large-scale agile . 5

2.2 Coordination . 7

2.2.1 Coordination theories . 7

2.2.2 Dependency taxonomy . 9

2.3 Agile teams . 11

2.3.1 Autonomous teams . 11

2.3.2 Distributed teams . 12

2.4 OKR . 12

2.4.1 Objectives . 13

2.4.2 Key results . 14

3 Method 15

3.1 Qualitative research . 15

3.1.1 Multiple-case study . 15

iii

3.1.2 Research site . 16

3.2 Data collection . 17

3.2.1 Observation . 18

3.2.2 Semi-structured interviews . 19

3.3 Data analysis . 20

3.4 Reliability and validity . 21

3.4.1 Reliability . 21

3.4.2 Validity . 22

4 Research context 23

4.1 Organization and project case . 23

4.2 Team Alpha . 24

4.2.1 Roles . 24

4.2.2 Meetings . 24

4.3 Team Bravo . 25

4.3.1 Roles . 26

4.3.2 Meetings . 26

4.4 Communication and tools . 27

5 Results 28

5.1 Dependencies and coordination mechanisms 28

5.1.1 Team Alpha . 29

5.1.2 Team Bravo . 31

5.2 Knowledge dependency . 32

5.2.1 Expertise dependency . 36

5.2.2 Requirement dependency . 37

5.2.3 Task allocation dependency . 38

5.2.4 Historical dependency . 39

iv

5.3 Process dependency . 40

5.3.1 Activity dependency . 42

5.3.2 Business process dependency . 43

5.4 Resource dependency . 44

5.4.1 Entity dependency . 45

5.4.2 Technical dependency . 47

6 Discussion 49

6.1 Dependencies and coordination mechanisms 49

6.1.1 Knowledge dependency . 49

6.1.2 Process dependency . 52

6.1.3 Resource dependency . 53

6.2 Dependency management in large-scale agile 55

6.3 Implications for theory . 56

6.3.1 Dependency taxonomy . 56

6.3.2 Limitations . 57

6.3.3 Validity . 57

6.4 Implications for practice . 57

7 Conclusion and future work 59

A Interview guide 65

v

List of Figures

2.1 A taxonomy of scale of agile software development projects 6

2.2 Example of cross-functional teams . 11

2.3 Figure displaying OKR through objectives and key results 13

3.1 Different case study types (COSMOS Corporation) 16

3.2 Timeline of research period . 17

4.1 Structure of the agency . 24

5.1 Dependency taxonomy of team Alpha . 29

5.2 Distribution of dependencies in team Alpha 30

5.3 Dependency taxonomy of team Bravo . 31

5.4 Distribution of dependencies in team Bravo 32

vi

List of Tables

2.1 Table of coordination strategy components (Strode, Huff, Hope and Link,
2012) . 9

2.2 Table of dependencies (Strode, 2016) . 10

3.1 Approach on the basic principles of data collection 18

3.2 An overview of the meetings observed in Team Alpha 19

3.3 Overview of interviews held in Team Alpha 20

3.4 Overview of interviews held in Team Bravo 20

4.1 Roles in team Alpha . 25

4.2 Meetings in team Alpha . 25

4.3 Roles in team Bravo . 26

4.4 Meetings in team Bravo . 27

5.1 Best matched coordination mechanisms for knowledge dependencies . . . 32

5.2 Best matched coordination mechanisms for expertise dependency 36

5.3 Best matched coordination mechanisms for requirement dependency . . . 38

5.4 Best matched coordination mechanisms for task allocation dependency . . 38

5.5 Best matched coordination mechanisms for historical dependency 40

5.6 Best matched coordination mechanisms for process dependencies 41

5.7 Best matched coordination mechanisms for activity dependency 42

5.8 Best matched coordination mechanisms for business process dependency 43

5.9 Best matched coordination mechanisms for resource dependencies 44

5.10 Best matched coordination mechanisms for entity dependency 46

5.11 Best matched coordination mechanisms for technical dependency 48

vii

Introduction

Cross-functional autonomous teams are to an increasing degree being used in IT
projects. Teams like these can be very much effective in organizations within markets
that are recognized with rapid changes. These companies must adapt to complex
environments, where the focus may change very fast to meet the customer’s needs.
The benefits of cross-functional autonomous teams lie in utilizing the competence
throughout the team, combined with more decentralized decision-making. This results
in a flatter governance structure, with distributed responsibility and more effective
decision-making. Meanwhile, there are still challenges that need to be addressed.

To this date, researchers within software engineering have addressed questions
related to leadership, coordination, organizational context, design of teams, and team
processes (Stray, Moe and Hoda, 2018). In large-scale agile software development, teams
are surrounded by a more significant development context that is often characterized by
a high number of dependencies (Dingsøyr, Moe and Seim, 2018). These dependencies are
challenging to plan for upfront, and coordination has been identified as a top challenge to
successful large-scale agile (Bass, 2019; Bass and Salameh, 2020). Therefore, teams need
to understand dependencies within their team and other teams and understand how to
efficiently manage or coordinate these dependencies (Malone and Crowston, 1994). To
further advance knowledge on these topics, this thesis will, in collaboration with SINTEF,
study how large-scale agile teams manage their dependencies.

1.1 Motivation

With experience from military service, followed by my years as a student, it is evident for
me that coordination and communication are important factors. As a part of a team in the
service, the ability to communicate commands, strategies, and your own opinion is the
foundation for its effectiveness and success. This is also something I learned as a student,
constantly in a situation where collaboration, tasks, and different dependencies are to
be managed at any point in time. Reflecting on these experiences, I truly acknowledge
the importance of good communication and coordination, over time also developing an
interest in the subject. These factors are also contributors of motivation when working in
a development team and relevant for the software industry, which also makes it relevant
as a research matter. Therefore I have chosen to study coordination in autonomous teams
for this master thesis.

1

1.2 The research project

As one of Europe’s largest research facilities, SINTEF performs thousands of projects
each year for customers of all sizes. Dating back to 1950, their research has laid the
foundation for innovation in nationalities across the globe, which has resulted in them
being one of today’s leading institutes of research. With expertise within fields from
the deep oceans to deep space, SINTEF contributes to value creation and increased
competitiveness within public and private sectors (SINTEF, 2020).

For autonomous cross-functional teams to be effective in today’s and future value
creation processes, characterized by complex processes and high uncertainty, new know-
ledge is needed on how such teams work. It is necessary to find out how autonomous
cross-functional teams can work in different industries and across industries and test new
models for team organization where the expertise and benefits of the Norwegian working
culture are utilized in the best possible way. Funded by Forskningsrådets BIA-program,
SINTEF initiated in 2017 a research project in cooperation with four business partners:
Kantega, Knowit, Skandiabanken and Storebrand. The project’s focus was to address
three core themes concerning team autonomy: leadership, coordination, and knowledge
management (SINTEF, 2020).

1.3 Research question

While research-based knowledge on coordination in large-scale agile is expanding, there
are still unresolved questions, such as which coordination mechanisms used in large-
scale agile are more effective. The research area for this study is coordination in two
distributed agile teams in a large-scale agile agency. Both teams utilize the framework
Objectives and Key Results (OKR), which influences how the teams prioritize their work.
The process of both teams will be individually studied by examining meetings, tools,
communication, and other agile and non-agile practices used in everyday work. These
practices act as coordination mechanisms and are continually addressing dependencies
in both teams. The focus of this thesis will be to study these practices and how they
manage dependencies, which resulted in the following research question:

“How are dependencies managed in distributed teams in large-scale agile?”

1.4 Approach

Prior to this thesis, I have had the lucky opportunity to work as an intern in a large
software consultancy agency as a software developer. With an already established
network through my internship, I chose this to be the company to conduct my research.
A large municipality in Norway is one of the clients of the consultancy agency and later

2

agreed to participate. Two distributed agile teams within the agency are investigated in
separate contexts, involving all members of the teams. As the year 2020 is marked by a
global pandemic, the situation requires the teams to work full-time from home. The data
was accordingly collected remotely through observations, documents, and interviews.
They are further used and evaluated at a team level, with the focus of answering the
research question.

In this thesis, I will conduct a multiple-case study. Combined with a theoretical model
proposed by Strode, Huff, Hope and Link (2012), I aim to analyze the collected data
and uncover dependencies and related coordination mechanisms. Following this theory
resulted in a well-structured and planned data collection, serving as my research design.
Further, the data analysis was initiated with the coding of the material in a software
application called Nvivo. The raw datasets were converted into more deliberate data
by organizing the data into themes and textual codes. Principles and strategies from
Yin (2017) are followed to establish and maintain reliability and validity throughout the
collection and analysis of the data. This is further explained in Chapter 3.

1.5 Structure

Chapter 2: Background: This section will provide a theoretical foundation and invest-
igate the most essential parts of the field. The expected result is to get a proper under-
standing of agile development and how coordination in autonomous teams fit into this.

Chapter 3: Method: This part will be elaborating on my choice of method. This includes
the data collection to be conducted, associated with analysis and how the data should be
validated.

Chapter 4: Research context: Context about the teams being researched is presented.

Chapter 5: Results: A presentation of the results from collected data will be held.

Chapter 6: Discussion: The results presented in the last section will be discussed.

Chapter 7: Conclusion and future work: Conclude the findings and propose possible
directions for future research.

3

Background

This chapter contains a presentation of the theoretical context on software development,
including the emergence of agile and the value of coordination in software development.
The dependency taxonomy used in this study is also presented and context on
autonomous and distributed teams. Furthermore, background on Objectives and Key
Results (OKR) - the goal-tracking framework utilized in the case teams is introduced.

2.1 Software development

Software development is the process of planning, designing, creating, and maintaining
applications or software components and belongs to the engineering discipline (Wohlin,
Šmite and Moe, 2015). The term “software development” was coined in a conference
in 1968, aimed at discussing the need for a software development discipline (Kirk and
MacDonell, 2015). Prior to the deriving of software development processes, systems
were often created without much of a plan, where design and architecture often were
determined through short-term decisions. Although working well with small systems, it
proved difficult as the workload increased and the systems scaled. Methodologies were
later introduced, imposing a more structured approach to software development and
defining disciplined processes to focus on more predictable and efficient work (Awad,
2005). Accordingly, the traditional way of developing software emerged, focusing on
uncovering design flaws before the programming is initiated (Munassar and Govardhan,
2010).

2.1.1 Plan-driven development

A plan-driven process model is a formal procedure for developing a product, also
referred to as traditional software development. The functionality to be implemented is
well planned and documented before the work starts, often set up in a linear order where
one task must be completed before the next can start. Characterized by individual role
assignment, the plan-driven approach attempts to anticipate the product’s features before
the initiation of development (Moe, Dingsøyr and Dybå, 2008). Royce (1970) presented
a paper on his recommendations for process in system development, defining a stage-
wise model of the software process later known as the Waterfall Model. Comprising
five stages, it emphasizes the importance of stability and is regarded as the first software
process model.

Plan-driven process models have since derived from this, and their sequential work

4

patterns represent a new approach of planning and management in software projects
(Li, Moe and Dybå, 2010). Individual phases consist of work assigned to teams of
highly independent professionals within each field (Moe, Dingsøyr and Dybå, 2008). In
the instance where something must be changed in an earlier phase, the entire process
must be adjusted backward. Promoting stability and long-term planning, plan-driven
processes focus on good documentation and high-quality requirements and are best fit
to predictable and well-defined projects (Awad, 2005). Its rigid structure poses many
dependencies between teams, and its lack of flexibility can be time-consuming and
potentially very expensive. Although highly context-dependent, studies show that agile
perform better regarding software quality and time-to-market than waterfall processes
(Li, Moe and Dybå, 2010).

2.1.2 Agile development

Agile processes were introduced as an alternative to the traditional processes methodo-
logies, one of which being the waterfall model. In 2001, seventeen representatives from
different methods, such as Scrum and Extreme programming (XP), arranged a meeting
to discuss future trends in software development. It was evident that their individual
methods had many similarities, resulting in the emergence of the "Agile Alliance" and
a manifesto for agile software development (Awad, 2005). This manifest promotes a set
of values that embrace factors such as people, interactions, working software, customer
collaboration, and change, rather than processes, tools, contracts, and plans.

Considering agile in the context of software engineering, Larman and Vodde (2008)
emphasizes the importance of defining what it actually stands for. "Agile is not a practice.
It is a quality of the organization and its people to be adaptive, responsive, continually learning
and evolving" (Larman and Vodde, 2008, p.137)

Often being perceived as a formal practice that one can do, agile actually represents
the underlying values that agile methods and practices represent. One can do concrete
methods or practices that encourage agility, but according to Larman and Vodde (2008),
either you are agile, or you are not. Fink and Neumann (2007) define agility as "the
ability to respond operationally and strategically to changes in the external environment. The
response has to be quick and effective for the organization to be considered agile". Agile methods
often involve delivering working software in iterations, resulting in short-term decision-
making in contrast to the traditional approach. Agile teams are set up to be self-managing
teams and are encouraged to become involved in project management decisions (Moe,
Aurum and Dybå, 2012).

2.1.3 Large-scale agile

Initially designed for small single-team projects, agile methods have shown potential
benefits such as high adaptability to change, reduced risk, and continuous customer in-
volvement, making them attractive for larger projects and companies (Dikert, Paasivaara

5

and Lassenius, 2016). Compared to smaller projects, large-scale agile is characterized by
the need for additional coordination and is more challenging to implement (Dyba and
Dingsoyr, 2009). This difficulty is associated with the higher organization inertia, which
comes with the increasing size, slowing down organization change (Livermore, 2008).

There is much variation on how to define large-scale agile throughout studies.
Dingsøyr, Fægri and Itkonen (2014) present a taxonomy for defining the size of teams and
how coordination should be approached in each scenario (see figure 2.1). Although the
taxonomy is based on a theoretical model of a project, they emphasize how this taxonomy
can help characterize research and its related scale in agile software development.
Further, Dikert, Paasivaara and Lassenius (2016) identified a few studies which regarded
the number of people involved as the deciding factor, ultimately defining large-scale agile
as software development organizations with at least 50 people or a minimum of six teams.
Considering this definition, the team size would be around 6 or 7 people. The taxonomy
from Dingsøyr, Fægri and Itkonen (2014) will be used as the definition in this thesis.

Figure 2.1: A taxonomy of scale of agile software development projects

Projects of large size often introduce high complexity with regards to organizational
and technical context and dependencies among tasks and teams. This further increases
the need for formal documentation, reducing the agility as a result (Dingsøyr, Moe
and Seim, 2018). In addition to inter-team coordination, development teams are
sometimes required to interact with other organizational units, which often are non-
agile in nature. Large projects are dependent on the ability to manage this complexity,
considering its negative effect on performance (Dingsøyr, Moe and Seim, 2018; Floricel,
Michela and Piperca, 2016). In a study about large-scale agile transformations, Dikert,
Paasivaara and Lassenius (2016) uncovered challenges such as change resistance,
insufficient customization of agile, lack of training, and reverting to old ways of
working. As organizations and teams transition into large-scale agile and new challenges
emerge, it is imperative to adapt. Further, in large-scale agile, many development
teams are dependent on an efficient coordination process to manage the increased
complexity. Accordingly, it is important to study coordination practices in large-scale
agile development (Dingsøyr, Moe and Seim, 2018).

6

2.2 Coordination

By focusing on collaborative teamwork and collaboration with customers, agile methods
aim to achieve early delivery of quality software. Like other project teams, agile devel-
opment teams collaborate effectively using mechanisms to coordinate their interdepend-
ent work. Unfortunately this is quite difficult, and coordination breakdowns are a major
problem in software development (Strode, 2016; Herbsleb, 2007; Kraut and Streeter, 1995;
Curtis, Krasner and Iscoe, 1988).

To be able to maintain productivity across teams in large-scale agile projects,
coordination is essential. A large amount of dependencies, uncertainty, and the
complexity that comes with it requires a continuous emergence of coordination
mechanisms (Berntzen, Moe and Stray, 2019). In organization studies, coordination is
defined differently across organization-, project- and team level in software development
(Strode, Huff, Hope and Link, 2012). As organizations grow and progress into large-
scale, coordination across teams is equally important as inside the different individual
teams. Coordination across teams is defined as inter-team coordination and is important
in situations where particular tasks must be performed under certain constraints caused
by inter-dependencies. As a result, derived the definition of coordination as managing
dependencies (Malone and Crowston, 1994).

Dependency management is by definition central to coordination. This is achieved
by using coordination mechanisms that address dependencies in any given situation
(Strode, 2016; Malone and Crowston, 1994). Dependencies are described by Crowston
and Osborn (1998) as "when the progress of one action relies upon the timely output of a previous
action or on the presence of a specific thing, where a thing can be an artifact, a person, or a piece of
information". Strode (2016) further states, "When dependencies occur in a development project,
they can be managed well, poorly, or not at all" (Strode, 2016, p. 24).

2.2.1 Coordination theories

This section will present the most relevant theories concerning coordination. The theories
and definitions of coordination emerge from various fields and are necessary to address
to establish context.

Deriving from sociology, Van de Ven, Delbecq and Koenig Jr (1976) define coordin-
ation as "integrating or linking together different parts of an organization to accomplish a col-
lective set of tasks”(Van de Ven, Delbecq and Koenig Jr, 1976, p. 322). Additionally, three
categories of coordination mechanisms are identified; impersonal, personal, and group
(Van de Ven, Delbecq and Koenig Jr, 1976, p. 69). Originating from organizational the-
ory, Mintzberg (1980) further defines six coordinating mechanisms: mutual adjustment,
direct supervision, standardization of work processes, standardization of outputs, stand-
ardization of skills, and standardization of norms.

In order to study coordination mechanisms, both Mintzberg (1980), and Van de Ven,

7

Delbecq and Koenig Jr (1976), provide interesting approaches. Mintzberg (1980) explains
coordination with regards to tasks, while Van de Ven, Delbecq and Koenig Jr (1976)
consider coordination in the respective parts of an entire organization. Strode (2016)
further defines coordination in a dependency taxonomy. She explains that taxonomies
are useful when little is known about a topic, and further research could assess the
applicability of her dependency taxonomy in contexts such as large-scale or distributed
agile software development.

Nyrud and Stray (2017) performed a case study in large-scale agile on inter-team
coordination, identifying eleven different coordination mechanisms. These mechanisms
were mapped into five categories and drawn on the framework proposed by Van de
Ven, Delbecq and Koenig Jr (1976). The framework proved to be an important tool
in this case study, providing better awareness and understanding of coordination as a
concept. Furthermore, Stray, Moe and Aasheim (2019) conducted a qualitative case study
of coordination in autonomous DevOps teams. Using the framework designed by Strode
(2016), the results revealed 34 coordination mechanisms and 77 pairs of dependencies.
The coordination mechanisms act as a defined group of components called coordination
strategy components. These components - synchronization, structure, and boundary
spanning, are used to manage dependencies (Strode, Huff, Hope and Link, 2012). The
strategy components are detailed in table 2.1

Stray, Moe and Aasheim (2019) also recommended using the same taxonomy on
different datasets to compare the outcome. Including the recommendation by Strode
(2016), the taxonomy is suitable for the approach of my multiple-case study with regards
to distributed teams in large-scale agile. I have therefore chosen to follow the dependency
taxonomy of Strode (2016) to uncover the different coordination mechanisms and
dependencies in the collected data.

8

Distinct component Component Definition

Synchronization
Synchronization
activity

Activities performed by all team members
simultaneously that promote a common
understanding of the task, process, and or
expertise of other team members.

Synchronization
artefact

An artefact generated during synchronization
activities. The nature of the artefact may be
visible to the whole team at a glance or largely
invisible but available. An artefact can be
physical or virtual, temporary or permanent.

Structure
Proximity

This is the physical closeness of individual team
members. Adjacent desks provide the highest
level of proximity.

Availability
Team members are continually present and able
to respond to requests for assistance or information.

Substitutability
Team members are able to perform the work of
another to maintain time schedules.

Boundary spanning

Boundary spanning
activity

Activities (team or individual) performed to elicit
assistance or information from some unit or
organization external to the project.

Boundary spanning
artefact

An artefact produced to enable coordination
beyond the team and project boundaries. The nature
of the artefact may be visible to the whole team at a
glance or largely invisible but available. An artefact
can be physical or virtual, temporary or permanent.

Coordinator role

A role taken by a project team member
specifically to support interaction with people
who are not part of the project team but who
provide resources or information to the project.

Table 2.1: Table of coordination strategy components (Strode, Huff, Hope and Link, 2012)

2.2.2 Dependency taxonomy

Strode, Huff, Hope and Link (2012) present a theoretical model of coordination
mechanisms and dependencies through an empirical case study of three co-located cases
of agile software development. This theoretical model proposes an agile coordination
strategy to increase coordination effectiveness. Strode (2016) further highlights the
importance of managing dependencies:

“When dependencies are well managed this suggests that appropriate
coordination mechanisms are in place to support the smooth flow of inter-
dependent work. When dependencies are poorly managed then coordination
mechanisms might be inappropriate, inadequate, or absent” (Strode, 2016, p.
24).

Poorly managed dependencies may lead to a lack of progress or delays, as people
have to wait for resources to be available. Being potential bottlenecks in the development

9

process, they need to be identified and handled to ensure workflow.

This taxonomy describes three different categories of dependencies: knowledge,
process, and resource. Knowledge dependency is when a form of information is needed
for a project to progress and consist of four sub-categories: expertise, requirement, task
allocation, and historical. Process dependencies are defined through two categories,
activity and business process, which entails when a task must be completed before
another task can be initiated. Resource dependencies are composed of entity and
technical, which is when an object is needed for a project to progress. Further details
about the different dependencies are described in table 2.2.

Dependency Description

Expertise
Technical or task information is known only

by a particular person or group and this affects,

or has the potential to affect, project progress.

Requirement
Domain knowledge or a requirement is not

known and must be located or identified and this

affects, or has the potential to affect, project progress

Task allocation
Who is doing what, and when, is not known and

this affects, or has the potential to affect,

project progress.Knowledge

dependency

Historical
Knowledge about past decisions is needed and

this affects, or has the potential to affect,

project progress.

Activity
An activity cannot proceed until another activity

is complete and this affects, or has the potential

to affect, project progress.
Process

dependency Business process
An existing business process causes activities to

be carried out in a certain order and this affects,

or has the potential to affect, project progress.

Entity
A resource (person, place, or thing) is not available

and this affects, or has the potential to affect,

project progress.

Resource

dependency Technical

A technical aspect of development affects progress,

such as when one software component must interact

with another software component and its presence or

absence affects, or has the potential to affect,

project progress.

Table 2.2: Table of dependencies (Strode, 2016)

10

2.3 Agile teams

Compared to traditional software development with an individual role assignment,
agile relies on teamwork which often is stimulated through cross-functional autonomous
teams, illustrated in the figure below. With more involvement and participation from
the team, an increased commitment, motivation, and a desire for responsibility can be
expected (Lundene and Mohagheghi, 2018).

Figure 2.2: Example of cross-functional teams

Wheelan and Hochberger (1996) define a team as “a workgroup that has shared goals
and effective methods to achieve them”. A workgroup is further defined as a group of
members that want to create a shared view of group goals and develop a structure to
achieve these goals. This implies that workgroups in many organizations might not be
teams (Gren, Torkar and Feldt, 2017). Moreover, to which degree a working group or
team is mature has also shown to increase effectiveness, where maturity is dependent on
the relationships between individuals (Gren, Torkar and Feldt, 2017; Wheelan, Murphy,
Tsumura and Kline, 1998).

2.3.1 Autonomous teams

Software development companies experience an increasing amount of complexity that
demands cross-functional autonomous teams. The structure of the team has to support
rather than impede, which requires clear boundaries. This structuring is done by putting
all needed skills within the team, significantly increasing team size. As a result, it
introduces challenges regarding shared leadership and shared decision-making (Stray,
Moe and Hoda, 2018). An example of a cross-functional autonomous team structure is
illustrated in figure 2.2.

Dybå and Dingsøyr (2015) provided a briefing on agile project management, based

11

on an extensive amount of large-scale industrial studies. They elaborate on the
transition from traditional management and direct supervision to the agile approach
using autonomous teams and decentralized decision making. With authority at the
operations level, decisions are made faster, and problem-solving is more efficient.

Including these self-managing teams, the briefing also explained how a redundancy
of knowledge within the team also is an important factor. Lundene and Mohagheghi
(2018) emphasized this as one of the pre-conditions of autonomous teams, enabling better
capability to adapt to changing situations and knowledge sharing. As the autonomy
increases, the team is expected to perform better when task interdependence is high.
Meanwhile, if the interdependence is low, it can negatively affect the team’s efficiency
(Stray, Moe and Hoda, 2018).

2.3.2 Distributed teams

Working with large-scale agile requires a substantial amount of coordination, considering
the number of teams and individuals working simultaneously in a software development
organization. Factors such as dependencies among people, tasks, synchronization, and
schedules are continuously emerging challenges to be managed. These are compounded
with teams being geographically distributed, resulting in increased development
time and coordination challenges being more difficult to manage compared to co-
located teams (Espinosa, Slaughter, Kraut and Herbsleb, 2007). Berntzen and Wong
(2021) presents challenges of distributed teams such as reduced communication and
coordination quality, resulting in reduced performance and work engagement. Team
members who are not co-located communicate less frequently and may lack knowledge
about each other’s situations, potentially reducing trust, commitment, and knowledge
sharing (Berntzen and Wong, 2021).

In a large number of project failures where coordination has been an issue, it is
usually in a large-scale agile situation and with distributed teams. Because members of a
distributed team seldom meet physically, one could argue that its maturity is negatively
affected. A study interviewing a set of coaches and managers of agile processes identified
a lack of camaraderie and team identity as challenges within distributed teams (Gren,
Torkar and Feldt, 2017). Accordingly, it is important to study how the dispersion of agile
teams affects their performance and ability to coordinate (Espinosa, Slaughter, Kraut and
Herbsleb, 2007).

2.4 OKR

Objectives and key results (OKR) is a goal-setting framework to define a specific set of
objectives in an organization and measure its progress. Instead of spending months
setting long-term goals, OKR is designed to help organizations much quicker in a
structured manner. It is defined as “a critical thinking framework and ongoing discipline that

12

seeks to ensure employees work together, focusing their efforts to make measurable contributions
that drive the company forward” (Niven and Lamorte, 2016, p. 6). OKR provides
benefits such as focus, the frequent establishment of priorities, and transparency.
Introducing OKR enables transparency on an inter-team level, which allows teams to
cross-functionally align, provide feedback, and collaborate (Niven and Lamorte, 2016).

In order to measure progress, the framework consists of a set of objectives and key
results. The objectives are defined for a certain period, and key results are defined to
progress towards these objectives continually through tasks. This is illustrated in figure
2.3.

Figure 2.3: Figure displaying OKR through objectives and key results

2.4.1 Objectives

An objective describes in short terms what the team wants to do. A well-described
objective should be obtainable within a quarter and represent a shared imagination of
the team (Niven and Lamorte, 2016). It is defined as “a concise statement outlining a broad
qualitative goal designed to propel the organization forward in a desired direction.” (Niven and
Lamorte, 2016, p. 8).

An example of an objective from Niven and Lamorte (2016) is “Design a compelling
website that attracts people to OKRs”. They explain the importance of setting a qualitative
and short objective, using plain language and which can be obtained within the time
frame. The objectives should preferably start with a verb to provide direction and action
and positive language to make it compelling and motivating.

13

2.4.2 Key results

Key results allow the team to measure their progress and are designed to show when
the objective has been reached. It is defined as “a quantitative statement that measures the
achievement of a given objective” (Niven and Lamorte, 2016, p. 8). Objectives can be vague
or unclear, making it challenging to quantify high-quality key results.

Referring to the objective above (see 2.4.1), it is important to define how “compelling”
translates into numbers, emphasizing the importance of context. Finding a good
compromise between value and measurability is essential for the quality of a key
result. Niven and Lamorte (2016) also recommends the implementation of scores for
key results, describing to what extent the organization is likely to achieve it. The scores
can communicate expectations and provide clarity and context into what progress looks
like for a particular key result.

14

Method

The purpose of this chapter will be to assess the methodical approach for this thesis.
The first section describes qualitative research and the methods used, consisting of
interviews, observations, and how to conduct them. The following section will comprise
the analysis and categorization of the findings that emerged from the previous section,
including its reliability and validity. These findings will be further discussed in
forthcoming sections in the thesis.

3.1 Qualitative research

O’Leary, 2017 describes qualitative data as represented through words, pictures, or icons,
whereas quantitative data is represented through numbers and statistical analysis. He
mentions that qualitative research often focuses on a small number of in-depth cases. This
allows multiple realities instead of the singular truth that quantitative research usually
relies on (O’Leary, 2017).

Traditionally, qualitative research involves three methods: case study, ethnographic
study, and grounded theory (Gerring, 2006). The past year with the entire world confined
in a global pandemic, there has been a heavy increase in the work performed from home
and the distribution of teams. These rapid changes are having a serious effect on how
coordination is performed and are important to highlight. Case studies seek to explain
certain circumstances, such as “how” or “why” some phenomenon works (Yin, 2017, p.
33). This thesis seeks to address this, resulting in a multiple-case study being applied,
with the focus of uncovering how different coordination mechanisms are used and why
within two autonomous teams.

3.1.1 Multiple-case study

In order to facilitate the relevance of the findings, a logical plan connecting the empirical
data to the research questions, and eventually to its conclusion, is of absolute interest (Yin,
2017, p.60). As mentioned earlier, this study aims to answer how different coordination
mechanisms are used in two autonomous teams and why. A decision to follow a
dependency taxonomy from Strode, Huff, Hope and Link, 2012 was taken before the
initiation of the data collection. This allowed me to assemble a research plan following
the taxonomy, facilitating the emergence of an observation protocol and interview guide.

A case study is an empirical research method for investigating contemporary
phenomenons, or cases, in-depth within its real-world context. This is mainly when

15

the boundaries between context and phenomenons are ambiguous or not apparent (Yin,
2017, p. 45). To put it another way, a case study is relevant when you want to understand
a real-world case and its contextual conditions. Meanwhile, both single- and multi-case
studies are considered by Yin as case study designs within the same methodological
framework (see figure 3.1). With this presumption proceeded the choice of a multiple-
case study, designed for and revolving two different autonomous teams later referred to
as Team Alpha and Team Bravo.

Figure 3.1: Different case study types (COSMOS Corporation)

3.1.2 Research site

As mentioned in Chapter 1, a software consultancy agency was chosen as the research
site. This Swedish consultancy agency has a Norwegian department, which is where this
study was conducted. As I had recently worked in a summer internship there, a dialogue
was initiated 13th of October 2020. Using Slack, a digital communication tool for channel-
based instant messaging, a message was sent to one of the department managers about
potential projects for the study. There was an early interest in the possibilities of studying
one or more teams in an agency within a large Norwegian municipality.

On the 21st of October 2020, one agency agreed to this and the possibility of
examining a large and interesting team, being Team Alpha. A dialogue was started
with the product owner the following day, further referring me to the team lead of Team
Alpha. A meeting with the team lead was held 6th of November 2020, discussing and
planning the data collection process and sending a request to access Slack and other
necessities for the observations to begin. This was quickly arranged, and as a result,
the observations started remotely on the 9th of November 2020. An overview of this is
illustrated in figure 3.2.

16

Figure 3.2: Timeline of research period

3.2 Data collection

Two common methods in qualitative research are interviews and observations. They
provide the necessary depth and information to respond to the research question
and corresponding subjects, primarily through observing daily agile processes and
investigating lived experiences of the team. Bell (2010) emphasizes the importance of
“informed consent”, requiring all researchers to carefully prepare, explain and consult
before any data-collecting. She further explains:

“Research ethics is about being clear about the nature of the agreement you
have entered into with your research subjects or contacts.” (Bell, 2010, p. 45-
46)

Accordingly, an application was sent to the ”Norwegian Centre for Research
Data”(NSD) before initiating any research or data collection. This application defined
the foundation for my research, requesting permission to perform observations and
interviews concerning my research agenda. The application was sent 17th of August and
approved 25th of August 2020. Leading into the data collection, the participants were
also presented with a consent form that explained the scope and purpose of my research,
ensuring they were comfortable and approved with what this entailed.

To increase the potential benefits of the selected data collection methods, Yin presents
four principles. If followed correctly, they are to aid in the process of establishing
construct validity and reliability (Yin, 2017, p. 170). My approach to these principles
can be viewed in table 3.1.

17

Principle Approach

Use multiple sources of evidence
The data was collected through interviews,

observations, and additional documents and

resources.

Create a case study database

All of the raw collected data was stored safely on

Dropbox, ready for analysis. The anonymized data

was further studied and processed, is stored on

Google drive.

Maintain the chain of evidence
All data were stored in folders with intuitive

names, granting a clear overview and easy access

to data from different stages of the study.

Exercise care when using data from

electronic sources

Combined with the data collected through

observations and interviews, chat logs, and

the additional resources obtained are

cross-checked to ensure their validity

Table 3.1: Approach on the basic principles of data collection

3.2.1 Observation

The initial phase of the data collection consisted of the observation of the regular
meetings in Team Alpha. With this insight, I learned about their process and work,
significantly increasing my understanding of their product and organization. What
the participants say they do, compared to what they actually do, can differ to a very
large extent. The observation tends to take place in the real world, as opposed to a
constructed research world. Observation allows a sense of reality and works through
the complexities of social interactions. It is defined as a method of data collection that
relies on a researcher’s ability to gather data through his or her senses (O’Leary, 2017).

The observations lasted from the 9th of November to the 7th of December 2020,
consisting of 21 meetings throughout the time period (see table 3.2). During this period,
the team worked remotely because of the global situation of the pandemic, and as a
result, I participated in their digital meetings. A structured approach to the observations
was chosen, following an observation protocol. This protocol included the number of
participants, time stamps, content, and any abnormalities if any. It can be challenging to
convert the observed situation of the participants into a research tool. The complexities
of the social interactions proved to be harder to grasp through the observations of the
digital meetings. However, they were still a good experience and valuable addition to
my data collection. Observation is narrowed by understanding and what we manage
to take in through our senses. If done correctly, it can provide the same rich, in-depth,
verbal, and non-verbal qualitative data as interviews (O’Leary, 2017).

18

Meeting Amount

Daily standup 15

Sprint planning 5

Retrospective 1

Total 21

Table 3.2: An overview of the meetings observed in Team Alpha

Moreover, the observation has the potential to provide other valuable data and
behavior that the participants are not aware of themselves, making it a good addition
to the data collection. This made me well equipped to handle the next phase of the
data collection, allowing me to create a comprehensive interview guide covering a
variety of relevant subjects. These subjects included their individual roles, coordination,
communication, meetings, and their process. This facilitated good insight in their work,
ultimately granting a solid research foundation in combination with the observation
material.

3.2.2 Semi-structured interviews

The primary source for data collection in this study is interviews. As an in-depth data
collection method, interviews provide rich, non-verbal as well as verbal data. It is a
flexible method that enables the exploration of tangents and, in a structured manner,
provides the generation of standardized, quantifiable data. Interviews are a method
of data collection that allows the researcher to seek open-ended answers related to
questions, subjects, or themes (O’Leary, 2017). Moreover, Bell, 2010 explains the values
of an interview response:

“The way in which a response is made (the tone of voice, facial expression,
hesitation, etc.) can provide information that a written response would
conceal.” (Bell, 2010, p. 157)

Further, semi-structured interviews are described as interviews with a more flexible
approach. In combination with the interview guide, the semi-structured strategy gives
the researcher the freedom to shift the interview direction to follow the natural flow
of the conversation. With the flexibility from the semi-structured method, a strategic
exploration can be conducted on exciting topics that might surface (O’Leary, 2017). A
carefully constructed interview plan provides the intended data and structure to the
interview and can be found in the appendix. The team members from both rounds of
interviews were contacted either through Slack or email, requesting their participation
and further agreeing on an appropriate time to schedule the interview.

The first round of interviews was held with Team Alpha from the 4th until the 15th
of December 2020. All interviews were arranged remotely and carried out without any
problems of any sort. The interviews are presented in table 3.3.

19

Role Time at team Date Duration

Tech lead 2 years 04.12.20 55:45

Team lead 1.5 years 09.12.20 53:07

Data scientist 2 years 09.12.20 49:26

UX designer 1.5 years 10.12.20 58:15

Front-end developer 3 months 11.12.20 47:48

Front-end developer 1 year 2 months 14.12.20 51:40

Back-end developer 1.5 years 07.12.20 28:50

Back-end developer 8 months 14.12.20 58:19

Back-end developer 2 years 14.12.20 38:19

Back-end developer 2 years 15.12.20 42:44

Average 1 year 6 months 48 minutes

Table 3.3: Overview of interviews held in Team Alpha

The second and last round of interviews were held with Team Bravo, from 1st until
16th of February 2021 (see table 3.4). All interviews were successfully held remotely,
except for one, which unfortunately was canceled midway because of a connection issue.
The second half of the interview was answered through email.

Role Time at team Date Duration

Developer 1 year 4 months 01.02.21 37:44

Developer 2 years 04.02.21 1:11:04

Developer 4 months 04.02.21 34:45

Developer 3 months 04.02.21 -

Tech lead 4 months 09.02.21 39:32

UX designer 9 months 10.02.21 48:54

Team lead 3 years 16.02.21 46:01

Average 1 year 2 months 45 minutes

Table 3.4: Overview of interviews held in Team Bravo

Both rounds of interviews were held in Norwegian and with a predefined meeting
length of 1 hour, the interviews ranged in length from 28 minutes to 71 minutes long. A
video conferencing program called Zoom was utilized, allowing easy access to record the
interviews with permission from the interviewee. The average interview length in Team
Alpha was 48 minutes and 45 minutes for Team Bravo.

3.3 Data analysis

One of the underlying challenges after collecting data is to best preserve the richness
and quality of it. Therefore, the analytical part is a delicate process, where we are

20

moving from a qualitative data set to a concrete understanding and interpretation of
the participants and their situation. O’Leary (2017) mentions the main steps in the
process of reflective analysis. Initially, it starts with identifying biases and noting overall
impressions. This is followed by reducing, organizing, and coding the data. Then, a
systematic search for patterns and interconnections. Further, the themes must be mapped
and built. Finally, one must build and verify theories, in addition to concluding. This is
all while keeping the research question, aims and objectives, methodological constraints,
and theory clearly in mind (O’Leary, 2017).

The analytical process was started by uploading the transcribed material into the
systematic coding tool Nvivo, a qualitative data analysis software. One analytical
strategy proposed by Yin is the reliance on a theoretical proposition. As the presented
theory of Strode shapes my data collection in Chapter 2, it has yielded analytical
priorities. Following this theoretical proposition, the analysis was organized and helped
me point out relevant contextual conditions to be described (Yin, 2017, p. 216). The
findings are presented in Chapter 5.

3.4 Reliability and validity

Once the process of collection and analysis is complete, the dependability and quality
of the data must be sufficient. Four tests are regularly used to determine the quality of
most empirical research and its design, being reliability, construct-, internal- and external
validity. This section will present these factors and how the collected material reflects on
these criteria.

3.4.1 Reliability

Consistency, often referred to as reliability, is to what degree the research can procreate
results given constant circumstances. Bell (2010) comes with the following definition:
“Reliability is the extent to which a test or procedure produces similar results under constant
conditions on all occasions”(Bell, 2010, p. 117). The circumstances in which these
procedures were held might change. Similarly, the data collection methods, in this case,
will differ between interviews and observations. Crescentini and Mainardi (2009) further
explains:

“If the researcher has made the process clear and transparent, the question
of reproducibility can better be treated. For example, if the population’s
characteristics are clearly described, it is easier to imagine how the results can
be extended or reproduced in a similar population. However, it is obvious
that a replication of a process that involves the same researchers should lead
to same results, but in qualitative studies what is done, seen, and heard
(and also what will happen) will not be precisely the same as the original
information.” (Crescentini and Mainardi, 2009, p. 437)

21

Yin defines reliability as the ability to demonstrate the repetition of the operations
in the study while yielding the same results (Yin, 2017, p. 78). Case study protocols,
developing a case study database, and maintaining a chain of evidence are factors to
increase reliability and decrease errors and biases. Based on these principles, the data
collection is performed and documented with regard to and concern for its reliability.

3.4.2 Validity

While reliability is about consistency, it is critical to aim this within the correct field of
research. Validity is a more complex concept, and often the definitions differ to some
extent. Essentially, it reassures that the correct results are obtained, which is usually how
definitions describe it. O’Leary (2017) defines it as “When we have validity, we know we are
measuring what we intended to measure and that we have eliminated any other possible causal
relationships”(O’Leary, 2017, p.64).

Construct validity is referred to as “identifying correct operational measures for the
concepts being studied” (Yin, 2017, p. 78). According to Yin (2017), having multiple sources
of evidence and having key informants reviewing the draft report of the case study are
enablers of this.

Internal validity refers to “seeking to establish a causal relationship, whereby certain
conditions are believed to lead to other conditions, as distinguished from spurious relationships“
(Yin, 2017, p. 78). Considering this is only relevant for explanatory or causal case studies,
assessing this is not relevant.

External validity is “showing whether and how a case study’s findings can be generalized”
(Yin, 2017, p. 78). The strategy for ensuring this is in regards to the research design. In
single-case studies, this entails applying a theory while making use of replication logic
in multi-case studies. The general idea is augmenting the study design with “why” and
“how” questions, ultimately making it easier to arrive at an analytical generalization.

22

Research context

This chapter will describe the two teams of the multiple-case study, the different roles
and meetings within and the organization, and their overall goal.

4.1 Organization and project case

The project case is an agency within a large municipality in Norway. Comprising a set
of product teams, they are aimed to be a driving force in a digital transformation and
contribute to the municipality being able to realize its vision for digitization. It was
established as a project in 2017 but was further organized as an agency from 01.01.2020.
This commitment emphasizes that developing good joint solutions for the inhabitants
across sectors in the municipality is a lasting investment.

The case comprises six departments and seven product areas, consisting of 11 per-
manent and three temporary teams structured with people from multiple departments.
These product teams are cross-functionally structured to deliver solutions such as web
solutions, mobile solutions, document-handling solutions, and business systems. The
work entails connecting existing systems in the municipality to create a shared service
platform for agencies and businesses. Considering the amount of data the municipality
holds, the objective is to facilitate the creation of high-quality, valuable services for all
citizens of the municipality.

The two teams studied in this multiple case study will be referred to as "Team Alpha"
and "Team Bravo" and are product teams within the agency, contributing to the vision
of digitized and sustainable solutions. This is illustrated in figure 4.1. Both teams
follow Objective Key Results (OKR), a framework that the entire agency also utilizes.
Accordingly, they have to adapt their work routines to fit the principles of OKR, which
comprises aligning their tasks under key results. This allows for measuring progress
against objectives, set within each team once every quarter to fit under the higher levels
of objectives on the organizational levels.

23

Figure 4.1: Structure of the agency

4.2 Team Alpha

Team Alpha was the first team studied for the thesis and the larger one as well. Their
goal is to create a platform to facilitate easy access and sharing of data within agencies
in the municipality and ensure it is being put to use. This includes making intuitive and
secure solutions, good documentation, and ensuring that the different agencies know
this, ultimately enabling the citizens to have access to better solutions. Team Alpha has
been operational since August 2018 and has since then been redefined from a single
product team to a product area because of the emerging size. This entails a pretty
substantial scope, resulting in a large team and different roles.

4.2.1 Roles

The product area is, as mentioned, quite large and, as a result, in need of a variety of
roles. How they are utilized, and function in different large-scale settings might differ
from context to context. This is why it is important to outline and is detailed in table 4.1.

4.2.2 Meetings

Team Alpha has a few regular meetings, at present being held digitally because of the
distribution of the team. Each meeting, the team uses a face cam and mic, allowing better
flow and a better understanding of body language. The team lead acts as chair of the
meeting, ensuring structure following the agenda for the relevant meeting. Team Alpha
works rigidly and performs their work in one-week sprints. An overview of the meetings
is presented in table 4.2

24

Role Amount Description

Team lead 1
Ensures that the team is moving in the right direction,

communicating company goals, and facilitating a good

flow of information.

Tech lead 1
Also referred to as the architect, performs development work,

coordination, and provides technical guidance for the team

members.

UX designer 2
Works with illustration, design, and collection of data

and insight from other teams and agencies.

Back-end 4
Management and operation of the existing systems, as well

as the continuous implementation of new server-side

features.

Front-end 2
Development of new client-side functionality, creating a user

interface and coordination with designers.

Data scientist 1
Acquires requirements, use cases, and proof of concept for

new features to be built.

Table 4.1: Roles in team Alpha

Meeting When Description

Sprint planning Mondays

Discuss status and decide which key results to be

prioritized in the following sprint, often with a few

predefined suggestions from the product owner to

align the team with the objectives of the agency.

Daily standup Tuesday - Friday
Each of the team members gives a small update on

the work that has been done, what is in progress and

any potential problems.

Retrospective Once a month
Discuss and vote for product and process related

practices to start, stop, and continue doing. Outcome

of meeting is a set of actions to follow up on.

OKR workshop Once a quarter
Discuss status and set new objectives for the

upcoming quarter, as well as creating corresponding

key results.

Table 4.2: Meetings in team Alpha

4.3 Team Bravo

The second team investigated in this study, Team Bravo, was started in January 2019.
Being a total of seven team members currently, and five at the minimum, their size has
over time mostly remained the same. As a part of the agency’s vision to provide valuable
services to the citizens of the municipality, their product entails offering information

25

to citizens as they need it. They are ultimately ensuring that the correct individuals
receive relevant information when they need it. The product and technology of Team
Bravo have recently been through a modernization process aimed at improving systems
and introducing serverless solutions. As a result, the current process of creating and
integrating new functionality and standards is faster and less complicated.

4.3.1 Roles

Team Bravo is confined to a more limited set of roles, compared with team Alpha. Their
product has not experienced the need for a proper user interface until recently. As a
result, they have no developers dedicated to a singular role as a front- or back-end
developer. Further, Team Bravo does not have a product owner to report to at the
current time. Accordingly, the team lead has most of this responsibility, resulting in
more decisions being made on team-level, thus making Team Bravo very autonomous. A
description of the roles in team Bravo is presented in table 4.3.

Role Amount Description

Team lead 1
Ensures that the team is moving in the right direction,

communicating company goals, and facilitating a good

flow of information.

Tech lead 1
Also referred to as the architect, performs development

work, coordination, and provides technical guidance for

the team members.

UX designer 1
Works with illustration, design, and collection of data,

and insight from other teams and agencies.

Developer 4

Work consists of building and maintaining the product,

functioning as full-stack developers with high redundancy

of skills. This includes front-end, back-end, and cloud

services, among other things.

Table 4.3: Roles in team Bravo

4.3.2 Meetings

Team Bravo is not confined to sprints as opposed to Team Alpha, and work can continue
over multiple weeks if deemed necessary and per the objectives. They have also
introduced a chairman, which is a person responsible for ensuring that everyone is heard
during a meeting. When someone raises their hand, the chairman is responsible for this
and facilitates discussions in an orderly manner, reducing interruptions between the team
members. Their meetings are detailed in table 4.4

26

Meeting When Description

Backlog meeting Mondays

Discuss status and decide which key results to be

prioritized, often with a few predefined

suggestions from the team lead and tech lead to

align the team with the objectives of the agency.

Written slackup Tuesday - Friday
The team members share a written update with

the rest of the team similar to a daily standup.

Open forum Wednesday

With a predefined agenda, the team can show

demos, discuss. or do clarifications on pressing

matters. The meeting is canceled if nothing is

submitted to the agenda beforehand.

Retrospective Once every two weeks

Every second week, the backlog meeting is

combined with a retrospective meeting. The

meeting differs every other time between a

standard retrospective meeting and a

health-oriented retrospective meeting.

OKR workshop Once a quarter
Discuss status and set new objectives for the

upcoming quarter, as well as creating

corresponding key results.

Table 4.4: Meetings in team Bravo

4.4 Communication and tools

Due to the global situation caused by the pandemic, Team Alpha and Bravo find
themselves working full-time distributed. While working remotely, both teams utilize
communication tools such as Slack, Google meets, and Whereby, allowing them to
perform their meetings and workshops as intended. Tools such as Trello and Jira are
used to visualize their workloads in kanban boards and the status of the different tasks,
including Confluence and Github pages for various documentation. Furthermore, Miro
and Google slides are used in conjunction with workshops and meetings, functioning as
open workspaces that allow the teams to discuss and collaborate digitally.

27

Results

Chapter 2 describes the coordination theory from Strode, Huff, Hope and Link (2012),
where coordination mechanisms are categorized through eight different coordination
strategy components; synchronization activity, synchronization artefact, boundary
spanning activity, boundary spanning artefact, availability, proximity, substitutability,
and coordinator role. It is further explained how Strode (2016) divides dependencies
into three categories; knowledge, process, and resource.

Chapter 4 describes Team Alpha and Bravo. Details about the agency and team
roles, tools, and regular meetings are explained in separate contexts to illuminate their
characteristics.

The management of dependencies is central in coordination, and it is important to
understand how coordination mechanisms are used to address this. This chapter will
present the emerged coordination mechanisms and dependencies using the proposed
taxonomy from Strode (2016). Based on these results, I aim to answer the research
question:

“How are dependencies managed in distributed teams in large-scale agile?”

An overview of Team Alpha and Bravo’s dependencies and coordination mechanisms
can be viewed in figure 5.1 and 5.3. Deriving from the data material described in Chapter
3, 37 coordination mechanisms and 123 dependencies were identified in Team Alpha, and
34 coordination mechanisms and 108 dependencies in Team Bravo.

5.1 Dependencies and coordination mechanisms

In this section, the identified coordination mechanisms and dependencies are presented
for team Alpha and Bravo. When categorizing the emerging coordination mechanisms,
the boundary spanning activities and artefacts have been regarded as activities and
artefacts outside the team. This is different from Strode, Huff, Hope and Link (2012),
where boundary spanning is defined as external to the project. The following sections
are grouped by the main dependencies; knowledge, process, and resource. Many
coordination mechanisms are multi-purpose, meaning they manage more than one
dependency. To present the results in an organized manner, each section will present
the coordination practices with its best-matched dependency. Both teams have many of
the same coordination mechanisms but will be presented only once. Any differences with
regards to coordination mechanisms between the two teams will be detailed.

28

5.1.1 Team Alpha

Figure 5.1: Dependency taxonomy of team Alpha

29

As mentioned before, a total of 37 coordination mechanisms and 123 dependencies
were identified in Team Alpha. The knowledge dependency constitutes 61% of the total
dependencies, equivalent to a total of 75 dependencies. In comparison, the resource and
process dependency constitutes 25 and 23 dependencies individually. This is illustrated
in the figure below, and a total overview for Team Alpha can be seen in figure 5.1.

Figure 5.2: Distribution of dependencies in team Alpha

30

5.1.2 Team Bravo

Figure 5.3: Dependency taxonomy of team Bravo

31

Similar to Team Alpha, the knowledge dependency for Team Bravo makes up the
majority of the dependencies identified. Totaling 68, knowledge dependencies constitute
63% of all dependencies. Further, the process dependency has registered 19 cases and
the resource dependency a total of 21 cases. The frequencies are illustrated in the figure
below.

Figure 5.4: Distribution of dependencies in team Bravo

5.2 Knowledge dependency

The knowledge dependencies were most evident in both teams and are defined as “When
a form of information is required for a project to progress”. Totaling over 60% of dependencies
in both teams (see figures 5.2 and 5.4), most coordination mechanisms managed multiple
dependencies. Table 5.1 shows an overview of the best-matched mechanisms covering
multiple knowledge dependencies and will be explained individually. The additional
coordination mechanisms with fewer knowledge dependencies will be presented in the
following sections relevant for them.

Strategy component Coordination mechanism Total dependencies Team

Synchronization activity,

Boundary spanning activity
Ad hoc communication 5 Both

Synchronization activity OKR workshop 5 Both

Synchronization artefact

Objectives 4 Both

Key results 4 Both

Retrospective actions 4 Both

Coordinator role Product owner 5 Alpha

Table 5.1: Best matched coordination mechanisms for knowledge dependencies

32

Ad hoc communication

Although both teams held regular inter-team and intra-teams meetings, there was still
a substantial amount of communication performed ad hoc, mainly using Slack. The
ad hoc communication coordination mechanism comprises both within the individual
teams but also in inter-team contexts. This is why it is listed as both synchronization and
boundary spanning activity. This communication might be about the implementation
of new technology and locating domain knowledge, pair programming and debugging,
and anything else work-related, which requires a person to locate knowledge outside of
regular meetings. The team lead in Bravo emphasized the following: “You can sit all day
just chatting. There is so much in all possible channels that you can end up doing nothing but
just reading updates and questions and answering and communicating with people. So we spend
a lot more time on digital communication than before”.

When teams work distributed, ad hoc communication constitutes most communica-
tion during work hours next to scheduled meetings. It addressed knowledge dependen-
cies such as expertise, requirement, and task allocation. This is done by asking or locat-
ing someone with the particular knowledge needed (expertise and domain) and can be a
time-consuming process if who is doing what is unknown (task allocation). Ad hoc com-
munication also managed activity dependency (process dependency) as the person could
be stuck on a task which is why the communication was initiated, and entity dependency
(resource dependency) because specific people or resources might not be available.

OKR workshop

The OKR workshop was arranged once a quarter by both teams. It was typically
held co-located, but with regards to the pandemic, it was done digitally. OKR served
as the foundation of prioritization of workload in team Alpha and Bravo, and the
OKR workshop managed knowledge dependencies such as expertise, requirement, and
historical. It further managed dependencies such as business process dependency
(process dependency) and entity dependency (resource dependency).

The team members managed expertise and historical dependencies, as it required a
perspective of past decisions and specific knowledge about the product to create optimal
OKRs. The requirement dependency was managed by the team lead and tech lead,
as they had discussed the current status and possible priorities prior to the meeting.
Parts of the agenda of the OKR workshop entailed that the team members discuss this
proposition, which also managed the entity dependency.

Aimed at setting a direction for the teams in the upcoming quarter, the OKR
workshop addressed five dependencies. It was identified as one of the coordination
mechanisms managing the most dependencies and is essential for the teams and their
work in the following period.

According to the OKR framework, the team is to set these objectives and quantify
them through the key results. One of the hardest parts about using OKR was stated by
multiple team members from both teams, being the quantifying of objectives through key

33

results and the corresponding choice of words. It was the deciding factor of what tasks
would be prioritized in the upcoming quarter, which further emphasized the need for
high quality and intuitive objectives and key results.

Someone from team Alpha stated: “I think OKR is difficult. It is useful for maintaining
focus, but it is hard to create good, measurable key results which make sense”. Another
member from Alpha further explained: “This has been a problem for us. Typically, we
cannot progress a key result in a single week, but suddenly after three weeks, when tasks are
finished, it is updated from 0 to 5”. The difficulties experienced with OKR were similar in
both teams. The OKR workshop was a challenging and time-consuming meeting from a
complex framework, but both teams were successful with OKR and stated that they were
continually improving.

Objectives

Objectives are what both teams worked towards to progress, which teams set for
each quarter through the OKR workshop explained above. The optimal objective is
written in plain and qualitative language, short, and should be obtainable within a
quarter. They managed four dependencies; expertise, requirement, task allocation
(knowledge dependencies), and business process (process dependency). The objectives
are dependent on different objectives from management to align teams in the direction
envisioned by the agency and specific knowledge about the domain and tasks to be
created optimally.

Key results

In order to work towards these objectives, the teams progressed key results continually
throughout the quarter as they completed relevant tasks. The optimal key result is a
quantitative statement that concisely represents how to achieve an objective. Objectives
are qualitative by nature and can, as a result, be vague. Although the teams defined
their objectives, it was challenging to create good and meaningful key results. This
is mentioned above and was observed in both teams. Key results managed four
dependencies; expertise, requirement, task allocation (knowledge dependencies), and
activity dependency (process dependency). This is because they required specific domain
and task information to create the key results and who was working with what. Key
results were also dependent on defined objectives before they could be created.

Retrospective actions

Retrospective actions also emerged as a coordination mechanism that managed four
different dependencies; expertise, task allocation (knowledge dependencies), business
process (process dependency), and technical (resource dependency). It was regarded
as a synchronization artefact mainly because it was generated through a retrospective
meeting, serving as an important part of its function as a meeting. The retrospective
meeting held in Team Alpha and Bravo was not utilized in the same rigid manner as
intended in Scrum, where the meeting is only to focus on process-specific issues. In this

34

context, the retrospective actions could cover a broader scope of issues than what they
usually would in standard agile processes.

When actions were defined following each retrospective, the responsibility for
following up on the actions was distributed with regards to the technical aspect, domain
knowledge, and possible expertise on the subject. Meanwhile, it was evident that to what
extent the actions were pursued could vary. One team member from Team Alpha stated;

“They are written down but I have the feeling that they occasionally are forgotten. It may not
be until the very next retrospective before we take a look at the list of actions and discuss what has
been done since last time”

This was further mentioned in a couple of more instances from Team Alpha, where
despite delegating responsibility, it did not hide the fact that the team had to perform
work towards their product as well. This is in line with the business process dependency,
as both teams had to prioritize their work regarding OKR. For example, moving Jira to
the cloud had been defined as an action in a few instances in Team Alpha. Further, a
member of Bravo explained: "It’s not always possible to boil it down to a specific task. It might
as well be actions with regards to changing the structure of meetings". This was true for team
Alpha as well, where they recently restructured their weekly planning meeting to make
it more relevant for participants.

Considering the potential size or ambiguity of a retrospective action, it may be
challenging to balance attention between following up on it and performing actual work.
Difficulties aside, the retrospective actions were valuable assets for both teams.

Product owner

The product owner was the third coordination mechanism which had a total of five
dependencies, being expertise, requirement, task allocation (knowledge dependencies),
business process (process dependency), and entity (resource dependency). Only used in
team Alpha, it was categorized as a coordinator role through the taxonomy and existed to
communicate stakeholder interests, check status, and point teams in the right direction.
Working tightly with the team lead and tech lead of Team Alpha, the product owner
assisted in discussions of which key results to prioritize throughout the quarter. This is
what ultimately decided many of the team’s tasks during any point in time, which in turn
managed requirement and task allocation dependency.

On the other hand, Team Bravo did not have a product owner. The product area for
Bravo did not have a product owner at the moment, making them significantly more
autonomous compared to Team Alpha. Decisions were more or less exclusively taken at
team level, providing flexibility for them as a team. As a result, the team lead of team
Bravo inherited a lot of this responsibility and functioned as a product owner for their
team.

35

5.2.1 Expertise dependency

The coordination mechanisms that best matched the expertise dependency are listed
table 5.2, mainly mechanisms that required specific knowledge or experience. The
expertise dependency was managed by 27 coordination mechanisms in team Alpha and
25 mechanisms in team Bravo and is defined as “Technical or task information is known only
by a particular person or group and this affects, or has the potential to affect, project progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization activity

Daily standup 4 Alpha

Written slackup 4 Bravo

Open forum 3 Bravo

Boundary spanning

activity
Inter-team meetings 2 Both

Substitutability
Rotating support role 2 Alpha

Fullstack developers 1 Bravo

Table 5.2: Best matched coordination mechanisms for expertise dependency

Daily standup

Tuesday to Friday, team Alpha arranged their daily standup meeting just before lunch.
Following the predefined agenda, the team members shared what they had done, were
doing, and possible hindrances. It was held remotely, and the team lead functioned
as a meeting facilitator. The tech lead explained the following: "The standups are ok,
but it quickly becomes an update of what has been done since last, which is not as important.
It should rather be about what you will be doing and potential problems". The meeting
participants were encouraged to use a webcam, and the meeting was also the only daily
scheduled interaction in team Alpha except for the planning meeting on Mondays. The
daily standup managed expertise, task allocation (knowledge dependencies), activity
dependency (process dependency), and entity dependency (resource dependency).

Written slackup

In contrast to the regular daily standup on video utilized by team Alpha, Bravo had
recently changed to a written standup from Tuesday to Friday. They have named it
a "slackup" and was essentially a regular standup but in a written format, managing
the same dependencies as the standup. This meeting format allowed the team to avoid
potential context switching during complex work. As a result, they could maintain their
focus and share their status report when it was convenient.

Open forum

Open forum was a meeting reserved for occasions deemed necessary in team Bravo and
managed expertise, requirement, and task allocation (knowledge dependencies). If an
agenda was defined prior to the meeting, the meeting was arranged accordingly. If there

36

were no agenda or content for the meeting, it would be canceled. This flexible approach
provided a platform for extra discussion on matters, which was a good way to save time
and avoid digressions in other regular meetings.

Inter-team meetings

This was a meeting available for all teams in the agency and was one of the main
contributors to information flow between teams. Every second inter-team meeting, the
team lead had to share status from their team, which managed the expertise (knowledge
dependency) and entity (resource dependency). Team members from any team in the
agency could participate to get a status update of work, technology, and other relevant
information. For instance, this facilitated ad hoc communication across teams if a team
recently implemented new technology or framework. If this were of interest to other
teams and their product, it would be a great platform to initiate knowledge sharing and
problem-solving.

Rotating support role

The scope of team Alpha included both development of new functionality and the
maintenance of the already existing system, which managed expertise and historical
dependencies (knowledge dependencies). To handle this efficiently and promote cross-
functionality, a rotating support role was introduced. Rotating every week, a member
from team Alpha would be responsible for managing any potential support tickets. There
were not a significant number of users yet, which allowed team Alpha to communicate
and perform the support through Slack.

Fullstack developers

The developers of Team Bravo had a more comprehensive range of tasks than in
Team Alpha. This was because the team had not reached the point where they
required all-out front-end and back-end developers. The developers mainly worked
with building and maintaining the product, and occasionally front-end, and as a result
functioning as full-stack developers. Most development work consisted of setting up the
infrastructure serverless in Amazon Web Services (AWS). As a result, there was a good
amount of knowledge redundancy which managed expertise dependency, and promoted
substitutability.

5.2.2 Requirement dependency

Table 5.3 presents the two coordination mechanisms which will be detailed in this
section. They managed the requirement dependency because of the cases where they
are utilized required domain-specific knowledge. As displayed in figure 5.1 and 5.3, the
requirement dependency was managed by 24 coordination mechanisms in team Alpha
and 22 coordination mechanisms in team Bravo. A requirement dependency is defined
as “Domain knowledge or a requirement is not known and must be located or identified and this

37

affects, or has the potential to affect, project progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization artefact
Backlog 2 Both

Whiteboard 2 Both

Table 5.3: Best matched coordination mechanisms for requirement dependency

Backlog

Both teams utilized two different backlogs each; one priority backlog and one backlog for
additional tasks. The prioritized backlog consisted of tasks that were to be prioritized in
the following period regarding the objectives (OKR), and the standard backlog consisted
of tasks that would be done eventually. The content of the priority backlog would be
discussed and processed in the weekly sprint planning meeting for team Alpha and the
backlog meeting for team Bravo regarding their respective OKRs. Including requirement
dependency, the backlog managed task allocation (knowledge dependencies).

Whiteboard

With regards to the distributed work situation, most work and discussions were held
remotely. During the summer of 2020, the agency opened for limited use of the
offices. As a result, whiteboard sessions were sometimes held physically at the office.
The whiteboard provided a simple solution to discuss and visualize without much
overhead, which in addition to managing requirement dependency, also managed
expertise dependency (knowledge dependency). It was a valuable alternative compared
to digital discussions, where it would be much harder to read body language and
contribute to the discussion without drowning out other voices.

5.2.3 Task allocation dependency

The coordination mechanisms most relevant to present in this section are presented in
table 5.4. The mechanisms managed task allocation dependency and were all meetings
where knowledge of current work is relevant. The task allocation dependency was
managed by a total of 15 coordination mechanisms in both team Alpha and team Bravo
(see figures 5.1 and 5.3), and is defined as “Who is doing what, and when, is not known and
this affects, or has the potential to affect, project progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization activity

Backlog meeting 4 Bravo

Sprint planning 4 Alpha

Retrospective 3 Both

Table 5.4: Best matched coordination mechanisms for task allocation dependency

38

Backlog meeting

Every Monday, a status and backlog meeting was held in team Bravo. The team lead and
tech lead prepared suggestions for which tasks to prioritize in advance, and status was
given from each team member regarding their current work and potential difficulties,
similar to a daily standup. This was followed by adjusting tasks in Trello, discussing the
current workload and the potential necessity of moving additional tasks from the product
backlog into the priority backlog regarding the OKRs. The backlog meeting managed
expertise, requirement, task allocation (knowledge dependencies), and business process
(process dependency), which in combination with the written slackup constituted most
of the weekly coordination in team Bravo.

Sprint planning

Like team Bravo, team Alpha had a weekly meeting where they would have a plenary
discussion of key results, the progression of various tasks, and which new tasks to
initiate. A pre-planning meeting would be held in advance with the product owner,
team lead, and tech lead to discuss what to be prioritized. The sprint planning meeting
was divided into two parts, an initial general discussion of key results, followed by a
more detailed and technical part. A problematic aspect observed from this meeting
was discussions. Body language and possible bandwidth implications were factors
that complicated digital discussions, making the propositions from the pre-planning
unfortunately leading. Similar to the backlog meeting, the sprint planning managed
expertise, requirement, task allocation (knowledge dependencies), and business process
(process dependency), which in combination with daily standup also constituted most of
the weekly coordination in team Alpha.

Retrospective

Both teams also used retrospective meetings to reflect on their current product and
process, with a common goal of identifying practices to start, stop, and continue doing.
The meeting was arranged once a month for both teams and managed expertise, task
allocation (knowledge dependencies), and activity dependency (process dependency).

While team Alpha arranged individual retrospective meetings, team Bravo combined
their weekly backlog meeting with the retrospective when it was due. Team Bravo also
held a health retrospective every two weeks between the regular retrospectives. The
health retrospective remained focused on social aspects, well-being, and the overall work
process. A questionnaire would be given to each team member prior to the meeting, and
the answers are discussed with regards to the potential room for improvement.

5.2.4 Historical dependency

Table 5.5 shows coordination mechanisms that managed the historical dependency.
Documentation in the form of chat logs, Confluence or Github pages, provided an option

39

to view past decisions and discussions. The historical dependency was managed by a
total of 9 coordination mechanisms in team Alpha and six mechanisms in team Bravo
(see figures 5.1 and 5.3), and is defined as “Knowledge about past decisions is needed and this
affects, or has the potential to affect, project progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization artefact,

Boundary spanning artefact
Chat logs 2 Both

Synchronization artefact
Github pages 2 Alpha

Confluence 2 Bravo

Table 5.5: Best matched coordination mechanisms for historical dependency

Chat logs

Chat logs were both synchronization and boundary spanning artefacts, deriving from ad
hoc communication and meetings. They could contain written discussions that would be
easy to find in Slack or perhaps the status from a written slackup in team Bravo. It was
important to address this as a coordination mechanism because it covered a significant
amount of communication within and across teams. The chat logs provided a historical
perspective that might prove helpful in many situations and managed requirement
dependency by saving specific domain knowledge available for later.

Github pages

Similar to chat logs, documentation was important to gain knowledge and granted easy
access to past decisions and solutions. Github pages were used by team Alpha for their
documentation. They managed historical dependency and requirement dependency
(knowledge dependencies), explaining domain-specific information and being available
to view for future decisions.

Confluence

As detailed in table 5.5, team Bravo used Confluence. This tool was used for
documentation and past decisions, similar to Github pages in team Alpha. Confluence
managed historical and requirement dependency (knowledge dependencies), where
specific domain knowledge was required for sufficient documentation and available for
future decisions.

5.3 Process dependency

The process dependencies which emerged in team Alpha and Bravo made up for 18,7%
and 17,6% respectively (see figures 5.2 and 5.4). This dependency addresses process-
related practices and how they might affect project progress, which is defined as “When
a task must be completed before another task can proceed and this affects project progress”. The

40

three coordination mechanisms that managed both process dependencies are listed in
table 5.6 and will be further explained. The following sections elaborate on the remaining
dependencies and a presentation of the coordination mechanisms they were managed by.

Strategy component Coordination mechanism Total dependencies Team

Synchronization activity
Sprint 4 Alpha

One-on-one meetings 4 Both

Boundary spanning artefact Insight reports 4 Both

Table 5.6: Best matched coordination mechanisms for process dependencies

Sprint

Team Alpha used a more rigid process method, where they iteratively worked in
one-week sprints similar to Scrum. The direction and prioritized workload were
determined in the weekly planning meeting on Mondays, where predefined propositions
of what to focus on were prepared in advance from pre-sprint plannings. Including
the management of activity and business process dependencies (process dependencies),
the sprint managed both requirement (knowledge dependency) and entity (resource
dependency). Team Alpha depended on the predefined propositions from the pre-sprint
plannings, which provided domain knowledge prepared by the product owner, team
lead, and tech lead.

One-on-one meetings

This coordination mechanism is a practice used by both teams, which functioned as
a guidance meeting between the tech lead or team lead and the team’s members.
As a result, the teams had regular conversations where they could share and discuss
matters in confidentiality. This way, possible topics outside the agenda of meetings
could be addressed and solved efficiently. The meeting managed expertise and
requirement dependency (knowledge dependencies) because the meetings were mostly
about clarifications and guidance regarding requirements and specific task- and domain-
related knowledge. It also addressed both process dependencies because team members
might need this meeting to progress their task, which is also affected by existing processes
(OKR).

Insight reports

As a boundary spanning artefact, insight reports were produced by the UX designer.
They were helpful for developing the product in both teams and provided insight from
relevant persons. It was a valuable mechanism that managed the requirement depend-
ency by retrieving relevant knowledge about the domain, and historical dependency as
it can be viewed at a later time as a form of documentation (knowledge dependencies).
It further managed both process dependencies. The insight was required for the product
to be designed and implemented in alignment with users, customers, and management
to continue corresponding work.

41

5.3.1 Activity dependency

Table 5.7 contains the different coordination mechanisms which most accurately ad-
dressed the activity dependency. The teams utilized Jira and Trello to visualize the pro-
gress and responsibility of various tasks, which provided an organized way of viewing
the workload. Ten coordination mechanisms managed the activity dependency in team
Alpha and 9 in team Bravo (see figures 5.1 and 5.3), and is defined as “An activity cannot
proceed until another activity is complete and this affects, or has the potential to affect, project
progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization artefact

Jira 3 Alpha

Trello 3 Bravo

Tasks 4 Both

Table 5.7: Best matched coordination mechanisms for activity dependency

Jira

For project management, Jira was used by team Alpha to organize tasks and backlog.
Functioning as a Kanban board, it provided a visualization of the workload and
managed three dependencies. Expertise and task allocation dependencies (knowledge
dependencies) were handled by the need for specific knowledge by the team members
and distribution of responsibility and tasks. Activity dependency is addressed because
many tasks must be completed before another can be initiated, which is visualized and
managed with Jira.

Trello

Team Bravo similarly used a project management tool called Trello. It managed
dependencies such as expertise and task allocation (knowledge dependencies) through
team members’ knowledge and the distribution of responsibility and tasks. Activity
dependency is addressed because many tasks must be completed before another can be
initiated, which is visualized and managed with Trello.

Tasks

Managing expertise, task allocation (knowledge dependencies), and technical depend-
encies (resource dependency), tasks were distributed based on specific knowledge re-
garding expertise, domains, and OKRs. In many cases, tasks had to be completed before
further work could continue and therefore managed the activity dependency. The tech-
nical dependency was also strictly related to tasks and was therefore managed because
components often are dependent on each other to interact or function.

42

5.3.2 Business process dependency

The business process dependency was managed by 13 mechanisms in team Alpha
and ten in team Bravo (see figures 5.1 and 5.3). The remaining mechanisms most
relevant to explain in this section are presented table 5.8. They managed business
process dependencies because the meetings were affected by OKR, existing processes,
and additional practices introduced when teams were distributed. A business process
dependency is defined as “An existing business process causes activities to be carried out in a
certain order and this affects, or has the potential to affect, project progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization activity
Pre-sprint planning 3 Alpha

Backlog grooming 3 Bravo

Proximity Distributed teams 2 Both

Table 5.8: Best matched coordination mechanisms for business process dependency

Pre-sprint planning

The pre-sprint planning involved the product owner, the team lead, and the tech lead.
Arranged every Friday, the purpose of the meeting was to tentatively plan what to
prioritize in the upcoming planning meeting in team Alpha. Further, the pre-sprint
planning managed expertise and requirements dependencies(knowledge dependencies)
and business process dependency. The expertise and requirement dependency were
managed by the specific knowledge of the team lead and tech lead and the advice from
the product owner. The team lead explained the following:

“When we are in the pre-planning, we simply go through what we most likely
have to work with the next week on a general level. Perhaps we discuss which
tasks to include, but the idea is to not make it decisive for what is chosen in
the planning. But it is clear when the discussion isn’t flowing very well, what
we have talked about prior to the meeting can be very conclusive.”

The outcome of the meeting was strictly a tentative plan for the upcoming planning
meeting. However, it could be somewhat leading because the discussions in the planning
meeting often were insufficient or did not flow as well, compared to when held co-
located.

Backlog grooming

The backlog grooming served the same function for team Bravo as the pre-sprint
planning did for team Alpha. The team members were encouraged to provide their
opinions for the backlog grooming if they had any specific thoughts on what key results
should be of priority in the upcoming week. The team lead and tech lead would discuss
what they should prioritize and create a tentative plan. Following this, the tentative plan

43

would be discussed in the backlog meeting and the workload determined in plenary.

Distributed teams

Because of the pandemic, the teams worked remotely for the better part of 2020. Working
as a distributed team managed business process dependency and entity dependency
(resource dependency) because their work process relied on specific digital resources to
coordinate properly. The lack of co-location had enabled the teams to reduce unnecessary
meetings, and was stated by members from both teams. The team lead of team Bravo
explained: "You can be much more productive during the day because there aren’t as many
meetings. The threshold to initiate a meeting is probably a little bit higher than physically asking
someone in the office".

The threshold to initiate meetings had increased, but the amount of digital commu-
nication had also increased. Both teams explained how they would reach out on Slack if
there were any implications, which differed from when they could physically walk up to
someone and ask. Further, members of both teams stated that the threshold to approach
others was increased. As a challenge introduced by the distribution of teams, this could
result from limited body language and physical interaction, which further influenced
meetings relying on discussions.

5.4 Resource dependency

As one of the less frequently observed dependencies, the resource dependency covered
20,3% of dependencies identified in team Alpha and 19,4% in team Bravo (see figures
5.2 and 5.4). The coordination mechanisms which covered both resource dependencies
will be explained initially and are listed in table 5.9. In the following sections, the
dependencies and the remaining relevant coordination mechanisms will be detailed.
Resource dependency is defined as “When an object is required for a project to progress”.

Strategy component Coordination mechanism Total dependencies Team

Synchronization artefact
Pull request 4 Both

Collaboration tools 4 Both

Availability Constantly online 4 Both

Table 5.9: Best matched coordination mechanisms for resource dependencies

Constantly online

Team Alpha and Bravo both worked distributed, which entailed a substantial amount
of communication being performed digitally. As a collaboration tool, Slack was
utilized by both teams extensively during work hours. This included meetings, ad hoc
communication, social events, and more. The individual threshold for balancing work
and answering questions differed in both teams by being constantly online and managed
expertise, requirement (knowledge dependencies), technical and entity dependency

44

(resource dependencies). By locating domain knowledge and sharing one’s expertise,
being constantly online depended on various tools and people. Team members from
both teams explained different thresholds regarding context switching, for example, how
much time they would continue working before checking the chat logs. A member of
team Bravo explained: "You can ignore Slack for two hours if you want, but the expectations
for your answer is higher compared to a comment on the Kanban board".

It is reasonable to think that this expectation could lead to an unnecessary amount
of context switching. On the other hand, as ad hoc communication could be inquiries
for assistance in many cases, the expectation for an answer was probably aligned with
this. As a result, team members could feel obligated to answer within a relative time
frame if someone actually needed help for their work to be continued. A member of
Alpha stated the following when asked about a change of threshold when asking for
help: "I think it is pretty similar, but there is a change of format which means you have to send
a message or engage in a video call. You can’t turn around and ask someone". It would almost
seem as if the threshold to ask for help was experienced as unchanged for some team
members, but in reality would be slightly higher. This could be a subconscious challenge
for communication in teams when converting from co-location to working remote.

Collaboration tools

Team Alpha and Bravo both utilized an extensive amount of tools to facilitate
coordination and collaboration. This included Miro, Slack, Github, Whereby, and
more. These have been grouped into one coordination mechanism and addressed
four dependencies; expertise, task allocation(knowledge dependencies), entity, and
technical (resource dependencies). The various tools were used for meetings and to
plan and prioritize workload, which were valuable resources for a distributed team to
be productive and coordinate properly.

Pull request

In collaboration with the version-control tool Github, pull requests were used by the
teams to submit their work. The pull requests consisted of implemented code according
to tasks, and would be reviewed by peers before they ultimately could be applied to
the latest version of the product. They covered expertise and requirement dependencies
(knowledge dependencies) due to the specific knowledge required to create and review
the quality of the pull request. Further, pull requests managed entity and technical
dependencies (resource dependencies) as they were dependent on certain team members
to be reviewed, and their presence or absence could affect the system.

5.4.1 Entity dependency

Entity dependency was managed by 18 mechanisms in team Alpha and 15 mechanisms
in team Bravo (see figures 5.1 and 5.3). Table 5.10 details the various mechanisms which
best fit the entity dependency and is defined as “A resource (person, place or thing) is not

45

available and this affects, or has the potential to affect, project progress”. They were managed
by entity dependency because the absence or presence of individuals in OKR training,
team lead meetings, and coordinator roles could affect project progress.

Strategy component Coordination mechanism Total dependencies Team

Boundary spanning activity
OKR training 3 Both

Team lead meetings 3 Both

Coordinator role

Team lead 4 Both

Tech lead 3 Both

UX designer 3 Both

Data scientist 3 Alpha

Table 5.10: Best matched coordination mechanisms for entity dependency

OKR training

Roughly on a one-year basis, teams across the agency were trained with regards to OKRs.
To produce high-quality objectives and key results effectively, the teams participated in a
course held by certified OKR facilitators. The amount of time a member had been on team
Alpha and Bravo varied, which meant that some junior team members could go a long
time without proper training. The OKR training managed expertise and requirement
dependencies (knowledge dependencies) and entity dependency (resource dependency).
It provided a platform for the teams to increase their understanding and how they could
set better OKRs. This could result in improved coordination with regards to the regular
meetings of team Alpha and Bravo, which already relied on a collective mindset on OKR
concerning their products.

Team lead meetings

The agency had recently experienced a lot of growth, which resulted in a lack of struc-
ture for routines and processes. The distribution of responsibility was somewhat unclear,
which also caused some obstacles. To manage this, all team leads held a weekly coordin-
ating meeting. The meeting managed historical dependency (knowledge dependency),
business process dependency (process dependency), and entity dependency (resource
dependency), which provided the opportunity for the team leads to align. This was done
by sharing their experiences with OKRs, meetings, and workshops, which provided each
team lead with the knowledge to improve their individual teams and avoid problems
experienced by other teams.

Team lead

The team lead’s responsibility consisted primarily of administrative and coordination
tasks to enable the team to perform their work in alignment with the product owner and
other stakeholders. As a result, the team lead ensured that the team moved in the right
direction, communicating company goals and facilitating a good flow of information.
Team lead of team Bravo also functioned as a product owner, as their product area did not

46

have a product owner at the time. Therefore, they had more flexibility to make decisions
on a team level and were more autonomous than Alpha and other teams with product
owners. The team lead managed expertise, requirement, task allocation dependencies
(knowledge dependencies), and entity dependency(resource dependency).

Tech lead

The tech lead performed a lot of coordination work and participated in many meetings
but also aimed to be a developer. The responsibility consisted of technical guidance for
others, the planning of further development of the platform, and actual development.
The role as tech lead managed expertise, requirement (knowledge dependencies), and
entity dependencies, by locating and acquiring valuable knowledge which ultimately
could help the team improve their product.

UX designer

Including assistance in illustrations and various designs for the solutions in the platform,
designers worked with the collection of data and insight from other teams and agencies.
It was done through coordination and exploring other product areas and performing
interviews, and writing reports of the findings. This was important for the teams, as
their product is aimed towards other agencies and the facilitating of their needs for data
(team Alpha), and providing services for the citizens (team Bravo). The UX designers
managed expertise, requirement (knowledge dependencies), and entity dependencies, as
they provided valuable information necessary for the direction of the products.

Data scientist

Team Alpha also had a data scientist, which has been defined as a coordinator role.
As opposed to the developers who primarily worked with building the platform, the
data scientist focused on coordinating and dealing with other agencies, which ultimately
was the platform’s user. Their work consisted of indicating different requirements,
understanding the user cases, and creating proof of concepts that allowed the developers
to create optimal solutions fitting the needs of their users. The data scientist managed
dependencies such as expertise, requirement (knowledge dependencies), and entity
dependencies by coordinating with other teams and agencies, providing valuable
information for identifying additional needs and requirements for the product.

5.4.2 Technical dependency

Seven mechanisms managed the technical dependency in team Alpha and six mechan-
isms in team Bravo (see figures 5.1 and 5.3). The two mechanisms listed in table 5.11
managed the technical dependency, as they provided valuable information, and their ab-
sence could affect project progress. The technical dependency is defined as “A technical
aspect of development affects progress, such as when one software component must interact with
another software component and its presence or absence affects, or has the potential to affect, pro-

47

ject progress”.

Strategy component Coordination mechanism Total dependencies Team

Boundary spanning artefact
KPI 2 Alpha

OKR tracker 4 Both

Table 5.11: Best matched coordination mechanisms for technical dependency

KPI

Key performance indicators (KPI) were defined on a general level in the agency and
used in teams which the measure fits. The KPIs were defined to measure volume,
satisfaction, and conversion rate. These values did not fit the product of all teams
in the agency, including team Bravo. They were utilized in Team Alpha alongside
their OKRs, allowing them to view their progress compared to other teams. Moreover,
the KPIs were expected to be in use for all teams eventually but have not yet been
prioritized. KPI managed business process dependencies (process dependencies) and
technical dependencies, because it provided metrics that potentially could affect their
work process and prioritization.

OKR tracker

The OKR tracker was a digital dashboard available for all in the agency, which provided
transparency and inter-team insight. It managed requirement and task allocation
dependencies (knowledge dependencies) because it required domain-specific knowledge
to set up for the individual teams and contributed to an overview of different teams’
workload and performance. The OKR tracker also managed the business process
dependency as it showed the progression of different key results, which was also relevant
for the team to further plan their workload. If the metrics shown in the tracker were
incorrect, it could negatively affect the work of teams, which in turn managed the
technical dependency.

48

Discussion

In Chapter 5, the results of this multiple-case study were presented. The particular
context of team Alpha and team Bravo was assessed. The findings showed 123
dependencies managed by 37 coordination mechanisms in team Alpha and a total of
108 dependencies managed by 34 mechanisms in team Bravo. This chapter will present,
discuss, and compare the findings with existing studies in order to answer the research
question:

"How are dependencies managed in distributed teams in large-scale agile?"

The findings will further be discussed in relation to large-scale agile and implications
for theory and practice.

6.1 Dependencies and coordination mechanisms

This section will present the most significant coordination mechanisms used to manage
dependencies in the two teams. The findings related to knowledge, process, resource
dependencies will be discussed and compared with other studies. As presented in
Chapter 5, the coordination mechanisms will also be categorized with the best-matched
dependencies in the following sections.

6.1.1 Knowledge dependency

Totaling over 60% of dependencies in the two teams, the knowledge dependency
constituted 75 coordination mechanisms in team Alpha and 68 mechanisms in team
Bravo (see tables 5.1 and 5.3). The large number of knowledge dependencies in both
teams indicates that team Alpha and Bravo rely heavily on the availability and sharing of
knowledge. Many of the coordination mechanisms found in this study manage multiple
dependencies and are therefore necessary to further examine as they have the most
significant influence on coordination in large-scale agile. Accordingly, this section will
discuss ad hoc communication, product owner, daily standup, written slackup, OKR
workshop, and retrospective actions.

Ad hoc communication

One of the prominent contributors to the management of dependencies was ad
hoc communication, which addressed knowledge dependencies such as expertise,
requirement, and task allocation. Further, ad hoc communication also managed activity

49

dependency (process dependency) and entity dependency (resource dependency). The
ad hoc communication constituted the majority of coordination in the teams, next to the
regular meetings. This is especially inherent in team Bravo, as they removed the daily
standup meeting entirely. Further, unplanned discussions were often not prioritized in
regular meetings because of the predefined agenda and limited time. Emphasized by
team members from both teams, reaching out on Slack was their first choice to locate
expertise and facilitate discussion.

These findings are consistent with the findings of a large-scale agile case study by
Stray (2018). The study discovered how the project members spent on average 1.1 hours
a day on scheduled meetings, compared to 1.6 hours a day on unscheduled meetings
and ad hoc communication. Moreover, a mixed-methods study by Stray and Moe (2020)
surveyed members of globally distributed teams, also uncovering how teams spent more
time in unscheduled meetings compared to scheduled ones.

Product owner

The findings show that the product owner was an important coordinator role related to
both knowledge, process, and resource dependencies. Previous research has found that
the product owner role is important for large-scale coordination both for coordination
within the team, but also between teams, in large-scale agile (Berntzen, Moe and Stray,
2019). In the case of team Alpha, the product owner worked in close collaboration with
the team lead, thus managing process-related dependencies and managing technical
dependencies through coordination with the tech lead. This finding is in line with
Berntzen, Moe and Stray (2019), who found coordination with the team lead was an
important product owner activity.

Further, Bass (2015) found that the product owner performs a wide set of different
functions. Remta, Doležel and Buchalcevová (2020) studied the product owner in a
company that implemented the Scaled Agile Framework and found that this role entails
being a gatekeeper, motivating, communicating, and prioritizing. This is consistent with
the findings of this study because the product owner role contributes to addressing five
types of dependencies and performs a wide set of responsibilities.

Daily standup

The daily standup meeting was used by team Alpha to have a short and daily status
update, where all team members participate and share what they have done, are doing,
and possible obstacles. Stray et al. (2016) explained in their study how it is imperative to
have the meeting before lunch to make it less disruptive and to be standing up to keep it
short. Team Alpha performed their standups similar to the study, where it was followed
by lunch. Meanwhile, the team was working remotely at the moment of observations,
and therefore the team members were sitting down during the virtual meeting. Further,
the tech lead of team Alpha explained how it would be optimal if there were increased
focus on what will be done instead of what has already been done. This is in line with
Stray et al. (2016), which mentioned how it is important for daily standups to focus on

50

the future.

Written slackup

Rather than having a daily standup, Bravo used a written format called slackup in the
distributed setting. With the same goal as a regular standup of giving a brief update
on current work, the written slackup provides additional flexibility to share the update
and is less disruptive. This is also in line with Stray, Moe and Sjoberg (2018), where
the findings showed how it was important to make the meeting less disruptive. The
written format resulted in less context-switching, which provided team Bravo with more
room to focus on complex work. Additionally, a mixed-methods study of globally
distributed teams by Stray and Moe (2020) explained how there is more focus and
efficient decision making in unscheduled meetings, making unplanned coordination
valuable in distributed teams. Accordingly, this can be beneficial for team Bravo as
additional meetings can be initiated when necessary.

Retrospective actions

The retrospective meeting held in Team Alpha and Bravo was focused on process-
specific and product-specific issues, which could result in actions with a broader scope of
topics. The responsibility to follow up actions after each retrospective was appropriately
distributed among team members. Regardless, the actions were not always fully
prioritized and followed up. Team members of both teams emphasized how these actions
often could end up forgotten or partly done, much because the retrospective actions
ended up being additional tasks next to the regular work. Retrospectives provided a
regular reflection for the team to adjust and become more effective, which is in line
with one of the core principles of agile. Moreover, there is minimal research about
retrospective actions as coordination mechanisms. The findings of this study indicated
that OKR perhaps required too much attention from the team members, leaving little
room to follow up on retrospective actions and self-improvement for the teams.

OKR workshop

As a regular meeting arranged once a quarter, the OKR workshop was used by both
teams in this study. Aimed to set a direction for the teams in the upcoming quarter, the
OKR workshop addressed five dependencies. It was identified as one of the coordination
mechanisms managing the most dependencies and important for the teams and their
work in the following period. Several members of both teams explained what they
perceived as difficult with OKR as a framework, being the creation of objectives and
key results. Considering the agenda of the OKR workshop, these difficulties are highly
correlated with the meeting itself.

Strode (2016) explains in her study how poorly managed dependencies could be the
result of inappropriate, inadequate, or absent coordination mechanisms. Considering the
number of dependencies managed by the OKR workshop and the recurrent difficulties
explained by both teams, it might be appropriate to evaluate if the meeting manages

51

its dependencies sufficiently. As a result, other coordination mechanisms could also be
negatively affected. An example of this could be retrospective actions. Despite their
efforts, both teams could not find the time or priority to follow up on the actions after
each retrospective meeting because the OKRs often required their attention.

6.1.2 Process dependency

The process dependencies identified in this multiple-case study make up 18,7% in team
Alpha and 17,6% in Bravo (see figures 5.2 and 5.4). This dependency addresses activity
and process-related practices and how they might affect project progress. An example
would be dependencies between tasks or how an existing business process influences
how teams work. Process dependencies are often a part of everyday work and routines,
which could often be less visible or go by unnoticed. Therefore, it is important to examine
further how they might have influenced team Alpha and Bravo. Sprint and distributed
teams managed multiple dependencies, and detailed important team characteristics
such as process rigidity, and how working remotely had influenced their coordination.
Possible findings with regards to this will be discussed below.

Sprint

Team Alpha used a sprint-based process for their development work, confined to one-
week iterations. A sprint planning meeting would be arranged each Monday to discuss
the prioritized workload and their ambitions for the sprint. In addition, a daily standup
was held each day to briefly inform about what each team member is working with.
Cooper and Sommer (2018) presented findings from six different case studies from agile
development. Their study showed how each sprint was initiated with a sprint planning
meeting, followed by a daily standup to ensure the work is on course and ended with
a demo and a retrospective. The findings from team Alpha are consistent with this,
although demos and retrospectives were not arranged each week.

In another context, team Bravo did not use sprints but a more flexible approach
similar to the principles of Kanban. Accordingly, their work could continue over multiple
weeks, and the backlog was reviewed each Monday to discuss the work in progress.
Team Bravo and their choice of converting the daily standup to a written slackup also
reduced disruptions, which is in line with the principle of reducing waste, central in
Kanban and lean processes.

As explained above, the development processes of team Alpha and team Bravo are
different with regards to rigidity. As neither of the teams fully followed a certain process
method, it is difficult to compare their approach with existing research on team-level, and
if it affected their productivity. Team Alpha, with its 11 team members were quite larger
than team Bravo and their total of seven team members, which also should be taken into
consideration.

52

Distributed teams

Because of the global pandemic, team Alpha and Bravo were working full-time
distributed. As a result, all scheduled and unscheduled coordination was performed
digitally. The findings show that the number of meetings was reduced, and the threshold
to initiate ad hoc communication had increased. Regardless of the increased threshold,
the amount of digital coordination had still increased compared to when the teams were
co-located. Team Alpha and Bravo have worked remotely for the past year and have
primarily utilized the communication tool Slack for coordination. Members of team
Bravo stated that ad hoc chatting often could lead to disorganized communication and
chat logs.

This is in accordance with Espinosa, Slaughter, Kraut and Herbsleb (2007), where
findings show that coordination challenges are more evident in distributed teams
compared to co-located teams with regards to communication. It was also difficult to
find a balance between chatting and initiating meetings for discussions, where chats and
threads often ended up too long. This is consistent with the findings of Stray and Moe
(2020), which showed that a lack of guidelines when using Slack resulted in coordination
being confusing and frustrating for some team members.

Further, the findings showed unbalanced activity in meetings, both in team Alpha
and Bravo. Members of both teams explained that meetings requiring discussion were
affected after the teams started working remotely. The virtual meetings made it difficult
to read body language, and network issues could often lead to participants talking
simultaneously and canceling each other’s voice out. Accordingly, the retrospectives,
as well as the planning meeting for team Alpha, and the backlog meeting for team Bravo,
were discussed less in meetings. This is in line with the findings of Stray and Moe (2020),
where results showed that the retrospectives arranged co-located lasted longer because
the participants were more invested in the discussions compared to the virtual meetings.
The interviewees of the study further stated that the reasons behind this were that they
could use whiteboards, stickers and have informal co-located discussions. The virtual
meetings did not provide this in the same way.

6.1.3 Resource dependency

The resource dependency covered 20,3% of dependencies identified in team Alpha and
19,4% in team Bravo (see figures 5.2 and 5.4). This dependency addresses resource-related
practices and how they might affect project progress, such as people, tools, technicalities,
and other resources. As team Alpha and Bravo were working distributed, they relied
more on the presence of people and collaboration tools in order to coordinate properly.
Accordingly, the findings with regards to team lead, data scientist, and collaboration tools
will be discussed.

53

Team lead

Categorized as a coordinator role, the team lead managed a total of four dependencies in
both teams. The responsibility of a team lead includes coordinating with the team and
the work of the individual members, communicating with the product owner, reducing
noise, and aligning the team according to the agency’s vision. Further, the team lead of
Bravo also functioned as a product owner at the time of the interviews. As a result, team
Bravo was very autonomous, and much of the decisions for their product were taken at
the team-level.

For both cases, this is consistent with the findings of Moe, Dahl, Stray, Karlsen and
Schjødt-Osmo (2019). Their study showed how one team member was responsible for
communicating with the project and organization to reduce the challenge of having to
deal with too many additional tasks. This included protecting the team from unnecessary
interruptions and deciding what information was relevant to bring forward to the team.
The importance of shielding the team from external dependencies was emphasized,
which is true for both team Alpha and Bravo.

Data scientist

Team Alpha is a team with roles of various scope and responsibilities. One of these was
the data scientist, who is in charge of indicating different requirements, understanding
use cases, and creating proof of concepts. This work included much inter-team
coordination and allowed the developers to create optimal solutions fitting the needs
of their users.

A study by Hukkelberg and Berntzen (2019) explored the challenges of integrating
data science roles in agile teams. Their findings emphasized the importance of a data-
driven platform that aims to make data-driven decisions to fully utilize data scientists’
competence in autonomous teams. This is in line with team Alphas’s product and vision
to facilitate easy access and sharing of data.

Collaboration tools

Considering the current situation where team Alpha and team Bravo were working
remotely, it was evident that collaboration tools played an important role. These
were tools that facilitated project management, communication, video conferences,
bug-tracking, version control, and more. Factors involving communication were
not considered as necessary when the teams were co-located because much of this
collaboration could be performed physically. The findings of this multiple-case study
show how team Alpha and team Bravo utilized a comprehensive set of tools to support
and coordinate their work in a distributed setting.

Stray and Moe (2020) discovered how Slack supports agile teams, with more focus
and efficient decision making in unscheduled meetings, making tools and unplanned
coordination valuable in distributed teams. These findings are consistent with the
findings in team Alpha and team Bravo, as they used Slack for most of their

54

communication. The findings of Espinosa, Slaughter, Kraut and Herbsleb (2007))
also indicated that large-scale distributed software development organizations could
substantially benefit from promoting the use of tools and practices that strengthen
different types of team knowledge. This is in line with the findings of ad hoc
communication and the extensive amount of digital communication in team Alpha and
Bravo.

6.2 Dependency management in large-scale agile

Large-scale projects are defined as projects with two to nine teams, and very large-scale
projects contain ten or more. As a result, the need for new or adjusted agile practices is
introduced (Dingsøyr, Moe, Fægri and Seim, 2018). Findings by Berntzen, Stray and
Moe (2021, in press) showed how coordination mechanisms were useful to manage
dependencies across teams in a large-scale program and how the organization under
study responded to coordination problems that emerged when scaling. They emphasized
how large-scale agile programs could benefit from adopting coordination mechanisms
to their specific organizational contexts and needs to better cope with uncertainty,
novelty, and complexity. A different study by Dingsøyr, Moe and Seim (2018) explored
coordination in a large-scale program, bringing attention to the importance of scheduled
and unscheduled meetings and the need to change coordination mechanisms over time.

This is in line with the findings of this study, as both team Alpha and Bravo have
changed meeting formats, structure, and tool usage with regards to their specific needs.
The findings showed that the knowledge dependencies constituted a substantial amount
of the total dependencies uncovered in team Alpha and Bravo. The coordination
mechanisms managing these dependencies were mostly characterized by strategy
components such as synchronization- activities and artefacts and coordinator roles. They
proved to be very central in the coordination performed in team Alpha and Bravo and
were continually evaluated for potential improvements. Replacing daily standup with
written slackup and Jira with Trello (team Bravo), restructuring planning, and replacing
google slides with Miro (team Alpha), were among the changes done by the teams to
improve their situations. The findings of Dikert, Paasivaara and Lassenius (2016) are
consistent with these choices, where they discovered how choosing and customizing
the agile approach was the number one contributor to success in large-scale agile
transformations.

Berntzen, Stray and Moe (2021, in press) further explained how challenges with main-
taining an overview of work were typically introduced with knowledge dependencies
as teams grew in size and number. They recommended mechanisms to showcase who
works with what in different teams and utilize communication tools to synchronize and
align the teams. Team Alpha and Bravo used similar coordination mechanisms to man-
age process and resource dependencies through collaboration tools, the OKR tracker,
various intra- and inter-team meetings, and ad hoc communication, indicating proper
management of inter-team dependencies in this large-scale agile context.

55

On the other hand, their work and prioritization are heavily influenced by OKR,
which is why it is crucial for team Alpha and Bravo to continually evaluate the need for
change or new coordination mechanisms. The findings show that OKR was perceived
as difficult by the teams and indicated potential complications to their coordination.
One explanation could be that OKR requires the teams to tailor the framework to their
individual contexts or introduce additional mechanisms to manage the dependencies.
It is hard to determine what would result in the optimal outcomes for Alpha and Bravo,
but continued focus on OKR and proper management of dependencies could benefit both
teams.

6.3 Implications for theory

6.3.1 Dependency taxonomy

The dependency taxonomy by Strode (2016) was used in this study to identify
dependencies and agile practices in two large-scale distributed teams. This multiple-case
study used interviews and observation of team members from two similar contexts in an
agency. The results presented by Strode (2016) are based on interviews of team members
from three different project cases, varying in complexity and customer involvement. With
regards to the results, the difference in type and scale is important to keep in mind. Strode
(2016) further proposed the applicability of the taxonomy on large-scale or distributed
contexts, which both are consistent with this study. Using the taxonomy allows for the
mapping of coordination mechanisms with their best-matched dependencies. As a result,
it was possible to collect the most appropriate agile and non-agile practices and identify
which were inappropriate, inadequate, or absent in the case contexts.

Considering the framework by Strode was originally designed for and applied
to software projects, the applicability to large-scale agile would potentially lead to a
difference in the identified coordination mechanisms and dependency management. For
example, her study defined the boundary spanning to be activities and artefacts beyond
project level. As a large-scale and distributed context was chosen for this multiple-
case study, it is important to examine the inter-team dependencies. Accordingly, I
redefined boundary spanning to apply beyond the team level to better address the inter-
team context. Both team Alpha and Bravo had inter-team dependencies and have been
presented to some extent through boundary spanning activities and artefacts. However,
any further was considered beyond the scope of this study.

Other studies have also applied the framework of Strode. For example, Berntzen,
Stray and Moe (2021, in press) employed the framework in a large-scale setting which
also used OKR, adapting the framework to the inter-team level in a study with 16
development teams. Their study discovered coordination strategies that reflected the
complex environment that large-scale agile often is characterized by. Their findings were
also consistent with this study, which uncovered both agile and non-agile coordination
practices. On the other side, Strode (2016) only included agile practices as coordination

56

mechanisms in her study. Stray, Moe and Aasheim (2019) similarly conducted a
qualitative case study of coordination in autonomous DevOps teams, using the proposed
framework by Strode (2016) to map agile practices and dependencies. The findings
of my study extensively showed how non-agile practices were important as well.
Practices such as communities of practice, OKR, ad hoc communication, and various
tools and meetings were all significant contributors to coordination in large-scale agile
and managed multiple dependencies.

6.3.2 Limitations

The data collected and the results presented for this multiple-case study were confined
to two teams and their contexts. Considering "coordination mechanisms are dynamic social
practices that are under continuous construction" (Jarzabkowski, Lê and Feldman, 2012,
p. 907), the results could be different if the data were collected at a different point in
time. Regarding this, it could have been interesting to observe the teams over a more
extended period of time. Had a different case been chosen with a different context, the
results could also have been different. The observations and interviews were arranged
remotely, potentially excluding important body language and other valuable interactions
in meetings. Considering the teams were working distributed, this limitation would
be hard to avoid. Lastly, the results of this multiple-case study are influenced by my
interpretation of the dependency taxonomy and how the various dependencies were
addressed by the coordination mechanisms identified. A different person might find
that the coordination mechanisms addressed different dependencies, which would yield
different results.

6.3.3 Validity

The taxonomy proposed by Strode (2016) was used to identify coordination mechanisms
and dependencies. By using a theory, the external validity increases accordingly. The
observations of team Alpha also allowed me to clarify any questions I had, which allowed
me to get a deeper understanding of their work and reduce the threat of construct
validity. The teams were also contacted for clarifications and questions, which further
improved the validity of the collected data.

6.4 Implications for practice

The findings of this study showed several implications for practice. Most important of all,
teams and organizations should make sure to prioritize coordination mechanisms that
address multiple dependencies. This is in order to manage the dependencies properly
and avoid potential difficulties with regards to coordination on an intra- and inter-team
level. As organizations progress into large-scale and very large-scale agile, breakdowns
and failures with regards to coordination are more common. Accordingly, I suggest that

57

organizations investigate the coordination challenges and dependencies experienced by
teams to better understand the coordination mechanisms used and to uncover potential
inadequacies.

Moreover, as many large-scale agile teams currently work distributed, all commu-
nication is performed digitally. The findings of this study show that transitioning from
co-location to working remotely quickly could result in increased ad hoc communication,
disorganized chats, and lack of structure when using Slack. With proper routines, chat
logs would be better structured and information easier to locate. Further, the expectation
to answer within a reasonable timeframe would often urge team members to check Slack.
By using channels and tags for cases of different priority and relevance, team members
could reduce their context switching and potentially only be disrupted by inquiries that
need urgent attention. Such routines could also encourage more unscheduled meetings
instead of long threads of discussions. According to Stray and Moe (2020), this yields
increased focus and efficient decision-making, which could positively influence coordin-
ation in teams.

As observed in team Bravo, replacing the daily standup with a written slackup could
help distributed teams in large-scale agile to reduce disruptions further. It is relatively
easy to implement and could assist teams to focus on complex work over longer periods
of time. This could be especially valuable in large teams with many developers, as their
work often requires longer spans of focus to work efficiently.

58

Conclusion and future work

This multiple-case study aimed to investigate how coordination mechanisms facilitate
large-scale agile development by examining how they were used to manage depend-
encies. The aim was to address the research question: How are dependencies managed in
distributed teams in large-scale agile?

The findings show that dependencies in two teams in a large-scale setting were
managed by a broad set of different agile and non-agile coordination mechanisms. The
contexts of these two teams were examined, consisting of 6 departments and 11 product
teams. The two teams are referred to as team Alpha and Bravo. The data collection
consisted of observing 21 meetings in team Alpha and interviews with team members
from both team Alpha and Bravo.

A dependency taxonomy proposed by Strode (2016) was used to map the broad scope
of coordination mechanisms. This taxonomy proved to be a valuable tool to categorize
what mechanisms were used by team Alpha and Bravo and which dependencies were
managed by these. A total of 123 coordination mechanisms in team Alpha and 108 in
team Bravo were categorized in an organized manner, visualizing the foundation for how
the teams worked and coordinated within and across teams. This included coordination
mechanisms such as meetings, tasks, collaborative tools, roles, and their influence on
the work and process of both teams. The majority of the coordination mechanisms were
multi-purpose, addressing more than a singular dependency.

Every coordination mechanism that emerged from team Alpha and team Bravo was
presented in Chapter 5 with their best-matched dependency and carefully examined.
This illuminated how the different coordination mechanisms managed their dependen-
cies. The findings of this study suggest that by discussing Objectives and Key Results,
the teams managed dependencies both within the teams and inter-team dependencies.
Further, ad hoc communication happened mostly on Slack and allowed team members
to locate and discuss expertise, requirements, task allocation, and activities. This was fa-
cilitated by the extensive use of collaboration tools, which also proved to be very valuable
in a distributed context with no co-location.

Roles such as the product owner in team Alpha and the team lead of both teams
were important roles that managed knowledge, process, and resource dependencies.
The team lead of team Alpha and Bravo were essential coordinator roles, successfully
guiding and shielding their teams from any unnecessary external noise. Their cases
and differences have been detailed, where process rigidity and meetings have been
discussed in Chapter 6. Despite different contexts, both teams shared many of the
same coordination mechanisms and managed the corresponding dependencies similarly.

59

Accordingly, both teams experienced many of the same difficulties with OKR. There
were indications that certain dependencies were not adequately managed, which was
discussed concerning retrospective actions in section 6.1.1. Existing mechanisms might
not have managed the dependencies sufficiently, or the teams might need to evaluate the
need for additional coordination mechanisms.

Future work should further explore how OKRs can be used to align teams in large-
scale agile projects. In this large-scale project, no dedicated roles were focusing on OKRs
in the teams. As a result, discussions were very time-consuming during meetings and
required much facilitation. The findings of this study indicate that large-scale projects
utilizing OKR would benefit from having a dedicated “OKR master” to facilitate and
follow up on the process. It would be interesting to investigate whether such an informal
role could contribute to better coordination by having one person coordinating OKR-
related aspects within the team and other teams, if OKR is present on an inter-team level.
Further, applying the framework of Strode (2016) to an inter-team context in large-scale
agile would also be interesting to get a better understanding of inter-team dependencies
and coordination. This could benefit software development organizations by improving
coordination and provide valuable insight to better handle the growth of agile teams and
projects.

60

Bibliography

Awad, MA (2005). ‘A comparison between agile and traditional software development
methodologies’. In: University of Western Australia 30.

Bass, Julian M (2015). ‘How product owner teams scale agile methods to large distributed
enterprises’. In: Empirical Software Engineering 20.6, pp. 1525–1557.

— (2019). ‘Future trends in agile at scale: a summary of the 7 th international workshop
on large-scale agile development’. In: International Conference on Agile Software
Development. Springer, pp. 75–80.

Bass, Julian M and Abdallah Salameh (2020). ‘Agile at scale: a summary of the 8th
International Workshop on Large-Scale Agile Development’. In: Agile Processes in
Software Engineering and Extreme Programming–Workshops, p. 68.

Bell, Judith (2010). Doing Your Research Project: A guide for first-time researchers. McGraw-
Hill Education (UK).

Berntzen, Marthe, Nils Brede Moe and Viktoria Stray (2019). ‘The product owner in large-
scale agile: an empirical study through the lens of relational coordination theory’. In:
International Conference on Agile Software Development. Springer, pp. 121–136.

Berntzen, Marthe, Viktoria Stray and Nils Brede Moe (2021, in press). ‘Coordination
strategies: managing inter-team coordination challenges in large-scale agile’. In:
International Conference on Agile Software Development. Springer.

Berntzen, Marthe and Sut I Wong (2021). ‘Autonomous but Interdependent: The Roles of
Initiated and Received Task Interdependence in Distributed Team Coordination’. In:
International Journal of Electronic Commerce 25.1, pp. 7–28.

Cooper, Robert G and Anita Friis Sommer (2018). ‘Agile–Stage-Gate for Manufacturers:
Changing the Way New Products Are Developed Integrating Agile project manage-
ment methods into a Stage-Gate system offers both opportunities and challenges.’ In:
Research-Technology Management 61.2, pp. 17–26.

Crescentini, Alberto and Giuditta Mainardi (2009). ‘Qualitative research articles:
guidelines, suggestions and needs’. In: Journal of workplace learning.

Crowston, Kevin and Charles S Osborn (1998). ‘A coordination theory approach to
process description and redesign’. In:

Curtis, Bill, Herb Krasner and Neil Iscoe (1988). ‘A field study of the software design
process for large systems’. In: Communications of the ACM 31.11, pp. 1268–1287.

Dikert, Kim, Maria Paasivaara and Casper Lassenius (2016). ‘Challenges and success
factors for large-scale agile transformations: A systematic literature review’. In:
Journal of Systems and Software 119, pp. 87–108.

Dingsøyr, Torgeir, Tor Erlend Fægri and Juha Itkonen (2014). ‘What is large in large-scale?
A taxonomy of scale for agile software development’. In: International Conference on
Product-Focused Software Process Improvement. Springer, pp. 273–276.

Dingsøyr, Torgeir, Nils Brede Moe and Eva Amdahl Seim (2018). ‘Coordinating know-
ledge work in multiteam programs: findings from a large-scale agile development
program’. In: Project Management Journal 49.6, pp. 64–77.

61

Dingsøyr, Torgeir et al. (2018). ‘Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method adaptation’. In: Empirical
Software Engineering 23.1, pp. 490–520.

Dyba, Tore and Torgeir Dingsoyr (2009). ‘What do we know about agile software
development?’ In: IEEE software 26.5, pp. 6–9.

Dybå, Tore and Torgeir Dingsøyr (2015). ‘Agile project management: From self-managing
teams to large-scale development’. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. Vol. 2. IEEE, pp. 945–946.

Espinosa, J Alberto et al. (2007). ‘Team knowledge and coordination in geographically
distributed software development’. In: Journal of management information systems 24.1,
pp. 135–169.

Fink, Lior and Seev Neumann (2007). ‘Gaining agility through IT personnel capabilities:
The mediating role of IT infrastructure capabilities’. In: Journal of the Association for
Information Systems 8.8, p. 25.

Floricel, Serghei, John L Michela and Sorin Piperca (2016). ‘Complexity, uncertainty-
reduction strategies, and project performance’. In: International Journal of Project
Management 34.7, pp. 1360–1383.

Gerring, John (2006). Case study research: Principles and practices. Cambridge university
press.

Gren, Lucas, Richard Torkar and Robert Feldt (2017). ‘Group development and group
maturity when building agile teams: A qualitative and quantitative investigation at
eight large companies’. In: Journal of Systems and Software 124, pp. 104–119.

Herbsleb, James D (2007). ‘Global software engineering: The future of socio-technical
coordination’. In: Future of Software Engineering (FOSE’07). IEEE, pp. 188–198.

Hukkelberg, Ivar and Marthe Berntzen (2019). ‘Exploring the challenges of integrating
data science roles in agile autonomous teams’. In: International Conference on Agile
Software Development. Springer, pp. 37–45.

Jarzabkowski, Paula A, Jane K Lê and Martha S Feldman (2012). ‘Toward a theory of
coordinating: Creating coordinating mechanisms in practice’. In: Organization Science
23.4, pp. 907–927.

Kirk, Diana and Stephen G MacDonell (2015). ‘Progress report on a proposed theory
for software development’. In: 2015 10th International Joint Conference on Software
Technologies (ICSOFT). Vol. 2. IEEE, pp. 1–7.

Kraut, Robert E and Lynn A Streeter (1995). ‘Coordination in software development’. In:
Communications of the ACM 38.3, pp. 69–82.

Larman, Craig and Bas Vodde (2008). Scaling lean & Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum. The Agile Software Development Series.
Pearson Education Inc. ISBN: 0-321-48096-1.

Li, Jingyue, Nils B Moe and Tore Dybå (2010). ‘Transition from a plan-driven process to
scrum: a longitudinal case study on software quality’. In: Proceedings of the 2010 ACM-
IEEE international symposium on empirical software engineering and measurement, pp. 1–
10.

Livermore, Jeffrey A (2008). ‘Factors that Significantly Impact the Implementation of an
Agile Software Development Methodology.’ In: JSW 3.4, pp. 31–36.

62

Lundene, Kjell and Parastoo Mohagheghi (2018). ‘How autonomy emerges as agile cross-
functional teams mature’. In: Proceedings of the 19th International Conference on Agile
Software Development: Companion, pp. 1–5.

Malone, Thomas W and Kevin Crowston (1994). ‘The interdisciplinary study of
coordination’. In: ACM Computing Surveys (CSUR) 26.1, pp. 87–119.

Mintzberg, Henry (1980). ‘Structure in 5’s: A Synthesis of the Research on Organization
Design’. In: Management science 26.3, pp. 322–341.

Moe, Nils Brede, Aybüke Aurum and Tore Dybå (2012). ‘Challenges of shared decision-
making: A multiple case study of agile software development’. In: Information and
Software Technology 54.8, pp. 853–865.

Moe, Nils Brede, Torgeir Dingsøyr and Tore Dybå (2008). ‘Understanding self-organizing
teams in agile software development’. In: 19th australian conference on software
engineering (aswec 2008). IEEE, pp. 76–85.

Moe, Nils Brede et al. (2019). ‘Team autonomy in large-scale agile’. In: Proceedings of
the Annual Hawaii International Conference on System Sciences (HICSS). AIS Electronic
Library, pp. 6997–7006.

Munassar, Nabil Mohammed Ali and A Govardhan (2010). ‘A comparison between five
models of software engineering’. In: International Journal of Computer Science Issues
(IJCSI) 7.5, p. 94.

Niven, Paul R and Ben Lamorte (2016). Objectives and key results: Driving focus, alignment,
and engagement with OKRs. John Wiley & Sons.

Nyrud, Helga and Viktoria Stray (2017). ‘Inter-team coordination mechanisms in large-
scale agile’. In: Proceedings of the XP2017 Scientific Workshops, pp. 1–6.

O’Leary, Zina (2017). The essential guide to doing your research project. Sage.
Remta, Daniel, Michal Doležel and Alena Buchalcevová (2020). ‘Exploring the Product

Owner Role Within SAFe Implementation in a Multinational Enterprise’. In: XP2021
Companion Proceedings. Ed. by Maria Paasivaara and Philippe Kruchten. Cham:
Springer, pp. 92–100. ISBN: 978-3-030-58858-8.

Royce, Dr Winston W (1970). ‘MANAGING THE DEVELOPMENT OF LARGE SOFT-
WARE SYSTEMS’. en. In: p. 11. URL: https :// leadinganswers . typepad.com/leading_
answers/files/original_waterfall_paper_winston_royce.pdf.

Stray, Viktoria (2018). ‘Planned and unplanned meetings in large-scale projects’. In: Pro-
ceedings of the 19th International Conference on Agile Software Development: Companion,
pp. 1–5.

Stray, Viktoria and Nils Brede Moe (2020). ‘Understanding coordination in global
software engineering: A mixed-methods study on the use of meetings and Slack’. In:
Journal of Systems and Software 170, p. 110717.

Stray, Viktoria, Nils Brede Moe and Andreas Aasheim (2019). ‘Dependency management
in large-scale agile: a case study of DevOps teams’. In: Proceeding of the 52nd Hawaii
International Conference on System Sciences (HICSS 2019). University of Hawai’i.

Stray, Viktoria, Nils Brede Moe and Rashina Hoda (2018). ‘Autonomous agile teams:
challenges and future directions for research’. In: Proceedings of the 19th International
Conference on Agile Software Development: Companion, pp. 1–5.

Stray, Viktoria, Nils Brede Moe and Dag IK Sjoberg (2018). ‘Daily stand-up meetings: start
breaking the rules’. In: IEEE Software 37.3, pp. 70–77.

63

Strode, Diane E (2016). ‘A dependency taxonomy for agile software development
projects’. In: Information Systems Frontiers 18.1, pp. 23–46.

Strode, Diane E et al. (2012). ‘Coordination in co-located agile software development
projects’. In: Journal of Systems and Software 85.6, pp. 1222–1238.

Van de Ven, Andrew H, Andre L Delbecq and Richard Koenig Jr (1976). ‘Determinants
of coordination modes within organizations’. In: American sociological review, pp. 322–
338.

Wheelan, Susan A and Judith M Hochberger (1996). ‘Validation studies of the group
development questionnaire’. In: Small group research 27.1, pp. 143–170.

Wheelan, Susan A et al. (1998). ‘Member perceptions of internal group dynamics and
productivity’. In: Small Group Research 29.3, pp. 371–393.

Wohlin, Claes, Darja Šmite and Nils Brede Moe (2015). ‘A general theory of software
engineering: Balancing human, social and organizational capitals’. In: Journal of
Systems and Software 109, pp. 229–242.

Yin, Robert (Sept. 2017). Case Study Research and Applications: Design and Methods. 6th ed.
Thousand Oaks, California: SAGE Publications. 414 pp. ISBN: 978-1-5063-3616-9.

64

Interview guide

Introduction

• Present myself and the project

• Ask for consent to record

General

• What is your current position?

• How long have you been working here?

• What are your main responsibilities?

Team

• When was the project started?

• Have anything changed since you started on the team (technology, positions,
framework)?

– Have anything improved or become worse?

• How do you mostly work as a team, individually or with each other?

• What would you say is the goal of your product?

Coordination

• How do you coordinate within and across teams?

• Which platforms do you use for communication?

– How do you think it works?

• Do you feel the coordination in the team is influenced by the lack of co-location?

• How has working remotely impacted you and your work routines?

• If you are stuck on a task, how do you proceed to solve it?

• Do you think your threshold to inquire assistance has changed after the team
started working from home?

65

• Have you noticed a change of inquiries from others?

– In what way?

• Do you experience any interruptions or context switching during work?

– Do you think it affects your work in any way?

• How would you describe the information flow in the team, and in the agency?

Meetings

• What is your opinion on your current regular meetings?

• Have you noticed any effects of the retrospective actions?

• How many meetings a day do you have on average?

• Do you feel the current meetings can be improved in any way?

Process

• What is your opinion on OKR?

– Do you have any prior experience with it?

– Do you think it allows you to work effectively?

– How do you think OKR as a framework fits your team and product?

– What do you think is the purpose of using OKR?

– What do you perceive as difficult with OKR?

• Do you get any followup or documentation on OKR from management?

– How do you feel about that?

• How are tasks picked and prioritized?

• Where is your threshold for taking on new tasks and domains?

• Do team members end up working with similar tasks and domains over longer
periods of time?

– Do you think it affects the knowledge redundancy in the team?

• Is there anything about your current process that could be improved?

Closing

• Is there anything else you would like to add?

• Do you have any questions about this interview?

66

