
UNIVERSITY OF OSLO

Department of Informatics

Comparison of

automated,

user-transparent

encryption facilities

under Linux and

Windows operating

systems

Master Thesis

Beibei Zhan

Oslo University College

May 26, 2010

Comparison of automated, user-transparent

encryption facilities under Linux and Windows

operating systems

Master Thesis

Beibei Zhan
Oslo University College

May 26, 2010

Abstract

Cybercrime is a serious social problem. Data security threats affect not only
large financial organizations and government department but also personal
computer users. It is very common that laptops or USB drivers are stolen or
lost, and private information is leaked as a consequence. Encryption is one
method used to ensure data security. During recent years, encryption tech-
nology has developed significantly, and there are many encryption facilities
available.

Even though users do care about their data security, normally they think
it is too sophisticated and time-consuming to install and configure encryption
facilities. They also worry about encryptionwould affect their system’s perfor-
mance and other features. As a result, many people do not even try to use the
encryption technologies. Others have tried some encryption tools but didn’t
like them and then give up. However, users still have the problem of informa-
tion leakage now.

In this thesis, the author performs research on encryption technologies, de-
scribes the features and advantages or disadvantages of the most popular en-
cryption facilities, and also measures and compares the performance penalty
of these facilities. Furthermore, recommendations are given based on differ-
ent aspects of users’ requirements. Hopefully, the result of this thesis will be
valuable to users who want to use encryption technology and must choose the
most suitable facility.

Acknowledgements

First and foremost, I want to express the greatest gratitude to my beloved su-
pervisor Æleen Frisch. Many thanks to her teaching, guidance, encourage-
ment, patience and support during the whole project progress. She sets a very
good example for me, as an experienced system administrator as well as a
learned professor. I feel very proud and lucky to have been her student and
under her supervising. It will be the most unforgettable experience in my life.

I also very appreciate the help from Kyrre M. Begnum, Hårek Haugerud,
Simen Hagen and all the other teachers, thank you so much for all your sup-
port and care during my master study. I am so proud to be a student in Oslo
University College and so happy to work with all my classmates in the last
two years.

Last but not least, I want to give special thanks to my family for all the
support and encouragement.

Once again, thank you all!

Oslo, May 2010
Beibei Zhan

1

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Problem Statement . 8
1.3 Thesis Outline . 8

2 Background and Literature 9

2.1 Data Security Overview . 9
2.2 Cryptography . 10

2.2.1 Cipher-Encryption Algorithms 12
2.2.2 Encryption Key Management 14

2.3 Encryption Strategies . 18
2.3.1 File-based Encryption . 18
2.3.2 Block Device Encryption 18
2.3.3 Filesystem-level Encryption 19

2.4 Encryption Facilities Introduction 20
2.4.1 eCryptfs . 20
2.4.2 TrueCrypt . 21
2.4.3 Dm-crypt . 22
2.4.4 Bitlocker . 23
2.4.5 EFS . 24

3 Methodology 27

3.1 Objective . 27
3.2 Tools and Equipment . 27

3.2.1 Hardware Specification 27
3.2.2 Software Tests List . 28
3.2.3 Bonnie++ Benchmark . 29
3.2.4 IOzone Benchmark . 30
3.2.5 Seekwatcher I/O . 31
3.2.6 HPC Calculations - Gaussian 09 32

3.3 Experiment Setup . 32
3.3.1 Windows OS Encryption Facilities Comparison 32
3.3.2 Linux OS Encryption Facilities Comparison 35

4 Measurements and Results 39

4.1 Approximate Encryption Setup Time 39
4.2 Sequential I/O Performance: Windows 40

2

CONTENTS

4.3 Sequential I/O Performance: Linux 41
4.3.1 Logical Volume and LUKS Effects 41
4.3.2 Internal Hard Disk and External Hard Disk Comparison 41
4.3.3 TrueCrypt Encryption Comparison on Different Platforms 42
4.3.4 Different Tools Encryption on The Same Internal Hard

Disk . 43
4.4 Bonnie++ Benchmark Results . 44

4.4.1 Bonnie++ Benchmark Sequential I/O Performance . . . 44
4.4.2 Bonnie++ Benchmark Random Seek Performance 45
4.4.3 Bonnie++ Sequential Block Operation CPU Percentage . 45
4.4.4 Bonnie++ Benchmark File Create Operations Performance 46

4.5 IOzone Benchmark Results . 46
4.5.1 Windows IOzone Benchmark Performance 46
4.5.2 Linux IOzone Benchmark Performance 52
4.5.3 Three Specific IOzone Benchmark Performance Reports 55

4.6 Seekwatcher I/O Results . 58
4.7 HPC Sample Calculation Results 61

5 Evaluation and Discussion 63

5.1 Costs and Platform Compatibility 63
5.2 Ease of Installation and Use . 63
5.3 Features and Effectiveness Analysis 64
5.4 Performance Penalty Evaluation 65

5.4.1 Storage Media Comparisons Without Encryption 65
5.4.2 Operating System Comparison Without Encryption . . . 65
5.4.3 Encryption Strategies . 66
5.4.4 Multi-platform Approach: TrueCrypt 68
5.4.5 CPU Usage . 68

5.5 Recommendations . 68
5.5.1 Scenario 1: Laptops . 68
5.5.2 Scenario 2: Desktops . 69
5.5.3 Scenario 3: Limited Sensitive Data 69
5.5.4 Scenario 4: External Media 69

5.6 Problems Encountered . 70
5.7 Experiment Validation and Reliability 70
5.8 Future Work . 70
5.9 Conclusion . 71

A Experiment Setup 72

A.1 Dm-crypt Encryption Setup on Logical Volume Without LUKS . 72
A.2 Seekwatcher Installation . 73
A.3 Ext2Fsd – Mount Linux Hard Disk Partition on Windows 73
A.4 HPC Calculation Gaussian 09 Input File 74

B Sequential I/O Tests Raw Data 77
B.1 Internal Hard Disk Sequential I/O Operation on Windows . . . 77
B.2 Internal Hard Disk eCryptfs Encryption Sequential I/OOperation 77

3

CONTENTS

B.3 Internal Hard Disk Dm-crypt Encryption Sequential I/O Oper-
ation . 78

B.4 External USB Hard Disk Sequential I/O Operation on Linux . . 78
B.5 Internal Hard Disk Sequential I/O Operation on Linux 78
B.6 TrueCrypt Encryption Sequential I/O Operation on Windows

and Linux . 79

C Bonnie++ Benchmark Results Raw Data 80

D IOzone Benchmark Results 81

D.1 Different Tools IOzone Benchmark Performace Rewriter Report 81
D.2 Different Tools IOzone Benchmark Performace Random Write

Report . 81
D.3 Different Tools IOzone Benchmark Performace Rereader Report 82
D.4 Different Tools IOzone Benchmark Performace Random Read

Report . 82
D.5 IOzone Benchmark Tests Raw Data 83

4

List of Figures

2.1 WASC Report: Percent of Vulnerabilities Statistical Analysis [5] 10
2.2 TSK1 Key Management Scheme 17
2.3 Overview of Different Encryption Facilities 20
2.4 The Architecture of eCryptfs [33] 21
2.5 The Workflow of Dm-crypt Encryption [35] 23
2.6 The Bitlocker Architecture [40] 24
2.7 Bitlocker Encryption Workflow [40] 25
2.8 The Architecture of EFS [41] . 26

3.1 Experiment Overview . 28
3.2 IOzone File System Performance Graph Plotted by Gnuplot . . 31
3.3 Bitlocker Encryption Setup . 33
3.4 TrueCrypt Encryption Setup . 34
3.5 EFS Encryption Setup . 35

4.1 Encryption Facilities Approximate Setup Time Comparison . . . 40
4.2 Windows Encryption Facilities Sequential I/O Performance . . 40
4.3 Logical Volume and LUKS Effect Analysis 41
4.4 Linux Encryption Facilities Sequential I/O Performance 42
4.5 TrueCrypt Encryption Sequential I/O Performance Comparison 42
4.6 Different Tools Sequential I/O Performance Comparison 43
4.7 Bonnie++ Benchmark Sequential I/O Performance 44
4.8 Bonnie++ Benchmark Random Seek Performance 45
4.9 Bonnie++ Benchmark File Create Operations Performance . . . 46
4.10 Unencrypted Hard Disk IOzone Performance (Windows) 47
4.11 Bitlocker Encryption IOzone Performance (Windows) 48
4.12 TrueCrypt Encryption IOzone Performance (Windows) 49
4.13 EFS Encryption IOzone Performance (Windows) 50
4.14 IOzone Performance Comparison under Windows 51
4.15 Unencrypted Hard Disk IOzone Performance (Linux) 52
4.16 Dm-crypt Encryption IOzone Performance (Linux) 53
4.17 eCryptfs Encryption IOzone Performance (Linux) 54
4.18 IOzone Writer Operation Tools Comparison 55
4.19 IOzone Reader Operation Tools Comparison 56
4.20 IOzone Record Rewrite Operation Tools Comparison 57
4.21 Seekwatcher I/O Write File Operation (Linux) 58
4.22 Seekwatcher I/O Read File Operation (Linux) 59
4.23 Seekwatcher I/O Write Directory Operation (Linux) 60

5

4.24 Seekwatcher I/O Read Directory Operation (Linux) 61
4.25 Gaussian 09 - HPC Sample Calculation Comparison 62

5.1 Storage Media Performance Comparison (Unencrypted Linux) . 65
5.2 USB Stick Performance Penalty on Windows OS 66
5.3 Operating System Performance Comparison (Unencrypted) . . 66
5.4 Block Device Encryption Approaches Performance Penalty . . . 67
5.5 Filesystem-level Encryption Approaches Performance Penalty . 67
5.6 TrueCrypt Performance Penalty (Windows vs Linux) 68

List of Tables

2.1 TrueCrypt Volume Format Specification 22

3.1 Hardware Specification . 28

4.1 Bonnie++ Sequential Block Operation CPU Usage 46

6

Chapter 1

Introduction

1.1 Motivation

Nowadays, information security is very important, organizations of all sizes
that are challenged to protect valuable digital information against carelessmis-
handling and malicious attacks. Attacks can take many forms, such as USB
abuse, illegal internet access, virus intrusion and so on. It is a demanding task
to protect their data not only from random hackers but also against directed
attacks from determined attackers.

Solutions like Firewalls, IDS and Access Control strategies, etc, function
well at blocking information security threats from network. However, data
corruption and information leaks still happen quite often. Rethinking the root
cause for those information security threats, lead to the realization that what
we really want to protect is the storage media! Valuable data, executable pro-
grams, configuration and authorization information, and even the base ex-
ecutable version of the operating system itself are all stored on the storage
media, which sometimes must be protected at the source.

Encryption is a common way of protecting data on disk, one method is
file-based encryption, which means encrypting the contents of a file, or part
of the contents of a file. However, this method still exist encryption attack
cracks. Other methods are filesystem level encryption and block device en-
cryption which encrypt the data on a lower level. These encryption methods
can encrypt files at the filesystem level or block device, and protect confiden-
tial data from attackers with physical access to the computer. Both also give
ordinary users transparent access to the encrypted data. Transparency is crit-
ical to implementing encryption successfully and delivering peace of mind
to managers, administrators, and employees who depend on well-protected
data. Users are generally not sophisticated enough to manually encrypt and
decrypt files, and they will resist any solution which is inconvenient in any
way, so the best solution is the one which they don’t even know about. By
transparently encrypting a file system or block device, the encryption and de-
cryption operations are performed at a layer below user file access, and the
encryption is transparent to the user and all to their applications. In this way,
we can achieve both data security and ease at use for ordinary users.

7

1.2. PROBLEM STATEMENT

There are many approaches to filesystem encryption and block device en-
cryption currently. In this project, I will describe and compare the features and
advantages or disadvantages of the most important approaches, and also per-
form representative tasks and standard benchmark softwares with and with-
out encryption on different platforms, to evaluate the benefits of these ap-
proaches to the normal user.

1.2 Problem Statement

What are the benefits of different encryption methods to normal user?

• Which encryption facility is best for the normal user?

• Is it easy to install and use?

• How big is the performance penalty?

• How do these results vary between the Linux and Windows environ-
ments?

I will install and use different encryption tools of filesystem level encryp-
tion and block device encryption. I will compare the performance of repre-
sentative tasks with and without encryption for each encryption tool and plat-
form. For theWindows operating system, I will use BitLocker, EFS, TrueCrypt.
For the Linux operating system use eCryptfs, Dm-crypt, TrueCrypt.

Based on the results of these experiments, I will discuss and evaluate the
various solutions with respect to the dimensions such as effectiveness, ease of
installation and use, and penalty to hard disk performance.

1.3 Thesis Outline

This thesis will be structured as follows:

Chapter 1 introduces about the motivations and goals of this thesis. Read-
ers are introduced to the problem of encryption that the thesis will investigate.

Chapter 2 provides background information relevant to encryption in gen-
eral and available encryption tools.

Chapter 3 explains the design and setup process of the performance tests.
It also discusses installation of the various encryption tools.

Chapter 4 presents the data and results achieved in comparing different
encryption approaches’ performances. Performance tests are deployed from
several aspects.

Chapter 5 discusses about the results achieved, estimating the performance
penalty for different encryption approaches, and evaluates the benefits of these
tools. Some recommendations for ordinary users are also included. The final
sections discuss potential future work and provides conclusion to the thesis.

8

Chapter 2

Background and Literature

This chapter provides a general overview of data security and then briefly
introduces several technologies and terminologies related to encryption. It
also outlines the different encryption techniques and tools to be studied.

2.1 Data Security Overview

Cybercrime is not a new word or concept any more. According to a United
States official involved in targeting online crime, cybercrime is becoming more
organized. In 2006, the FBI estimates all types of computer crime in the US
costs industry about $400 billion, while in Britain the Department of Trade and
Industry said computer crime had risen by 50 percent over the last two years
[1]. During recent years, we also heard many news reports about cybercrime
and information leakage incidents.

On October 18, 2008, the German’s newspaper FianzNachrichten reported
a story entitled ”Axel Springer hit by new German data leak scandal.” It de-
scribed how thousands of people’s personal data related to placing for classi-
fied advertisements in newspapers and millions of mobile phone customers’
data from the Deutsche Telekom company was published on the Internet [2].

Similar things continue to happen. On November 17, 2009, the BBC re-
ported that the staff at mobile phone company T-Mobile soldmillions of records
from thousands of customers to third party brokers [3]. This caused heavy
losses to T-Mobile. Also, on November 21, 2009, the Washington Post pub-
lished another report that described the information leakage in the world’s
foremost climate research centers, which gave rise to a controversy between
climate scientists and climate-change skeptics [4].

In 2008, the Web Application Security Consortium (WASC) announced the
results of WASC Web Application Security Statistics Project [5]. The initiative
of the project is a collaborative industry-wide effort to pool together sanitized
website vulnerability data and to gain a better understanding about the web
application vulnerability landscape. In the project, statistics from 12186 sites
with 97554 detectedvulnerabilities were analyzed. Figure 2.1 shows the results

9

2.2. CRYPTOGRAPHY

Figure 2.1: WASC Report: Percent of Vulnerabilities Statistical Analysis [5]

classified by kind of vulnerability. From the graph, we see that information
leakage vulnerabilities ranks second, and is a high percentage of the total.

Thus, data security is an urgent challenge to many organizations [6]. Cryp-
tography can be used in many cases to solve the problem of data security. The
following sections will explore more about different encryption methods and
facilities.

2.2 Cryptography

Cryptography is the practice and study of ”hiding” information (the Geek
word origins mean ”hidden writing”), and the history of cryptography begins
thousands of years ago. The first cipher-based encryption was used by Ro-
mans in the 1st century BC. The Caesar cipher, also known as the Caesar shift,
is one of the simplest and most widely known encryption techniques [7]. It is
a type of substitution cipher in which each letter in the plaintext is replaced by
a letter some fixed number of positions down the alphabet. The Caesar cipher
was used for Roman military cryptography, and was still in use even as late
as 1915. Today, it can still be found in children’s toys such as secret decoder
rings.

Modern encryption begins in the 20th century during the first World War
[8]. During the second World War, the invention of complex mechanical and
electromechanical machines, such as the Enigma rotormachine, providedmore
sophisticated and efficient means of encryption. And the subsequent introduc-
tion of electronics and computing has allowed schemes of still greater com-
plexity. Until the 1970s, secure cryptography was largely limited to govern-

10

2.2. CRYPTOGRAPHY

ment agencies. However, the creation of a public encryption standard (DES),
and the invention of public-key cryptography made encryption available to
the public. Nowadays, with more attention to the data security, cryptography
is developing very quickly. Different kinds of encryption facilities and algo-
rithms appear frequently.

Cryptography helps protect data from being viewed or modified and helps
provide a secure means of communication over otherwise insecure channels
[9, 10, 11]. For example, data can be encrypted using a cryptographic algo-
rithm, transmitted in an encrypted state, and later decrypted by the intended
party. If a third party intercepts the encrypted data, it will be difficult to deci-
pher.

Normally, cryptography can be used to implement the following goals:

• Confidentiality: To help protect a user’s identity or data from being read.

• Integrity: To help protect data from being altered.

• Authentication: To assure that data originates from a particular party.

To achieve these goals, people can use some cryptographic primitives, known
as the combination of algorithms and practices, to create a cryptographic scheme.
Here is the list of the main cryptographic primitives:

1. Secret-key encryption (symmetric cryptography): Performs a transfor-
mation on data, keeping the data from being read by third parties. This
type of encryption uses a single shared, secret key to both encrypt and
decrypt data.

2. Public-key encryption (asymmetric cryptography): Performs a transfor-
mation on data, keeping the data from being read by third parties. This
type of encryption uses a public/private key pair to encrypt and decrypt
data. Data is encrypted by the public key and can only be decrypted by
the private key, which is always kept secret.

3. Cryptographic hashes: Maps data of any length to a fixed-length byte
sequence. Hashes are statistically unique; different two-byte sequences
will not hash to the same value. Hashed data cannot be decrypted. This
method is typically used to encrypt passwords.

4. Cryptographic signing: Helps verify that data originates from a specific
party by creating a digital signature that is unique to that party. This
process also uses hash functions.

Most encryption facilities today use Public-key encryption as the primary
cryptographic primitive.

11

2.2. CRYPTOGRAPHY

2.2.1 Cipher-Encryption Algorithms

The encryption algorithm is the mathematical procedure for performing en-
cryption on data [12]. Through the use of an encryption algorithm, infor-
mation is made into meaningless cipher text and requires the use of a key
to transform the data back into its original form. There are many encryption
algorithms being used today. The following is a general introduction to some
common encryption algorithms.

RSA

RSA is a public-key cryptosystem for both encryption and authentication, and
it was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman
(the first letters of their names make up for ”RSA”) [13]. It is also the first
algorithm known to be suitable for signing as well as encryption, and was one
of the first great advances in public key cryptography. RSA is widely used in
electronic commerce protocols, and is believed to be secure given sufficiently
long keys and the use of up-to-date implementations. It works as follows:
take two large primes, p and q, and find their product n = pq (n is called the
modulus). Choose a number, e, less than n and relatively prime to (p-1)(q-1).
Find another number d such that (ed-1) is divisible by (p-1)(q-1). The values
e and d are called the public and private exponents, respectively. The public
key is the pair (n,e); the private key is (n,d). The factors p and q may be kept
with the private key, or destroyed.

DES

DES stands for Data Encryption Standard, and it is a block cipher selected by
the National Bureau of Standards as an official Federal Information Processing
Standard (FIPS) for the United States in 1976 [14]. DES encrypts and decrypts
data in 64-bit blocks, using a 64-bit key, although the effective key strength
is only 56 bits. It takes a 64-bit block of plaintext as input and outputs a 64-
bit block of ciphertext. Since it always operates on blocks of equal size and it
uses both permutations and substitutions in the algorithm, so DES is both a
block cipher and a product cipher. The actual encryption or decryption is per-
formed by themain DES algorithm core function. DES has 16 rounds, meaning
the core function algorithm is repeated 16 times to produce the ciphertext. It
has been found that the number of rounds is exponentially proportional to
the amount of time required to find the key using a brute-force attack. So as
the number of rounds increases, the security of the algorithm increases expo-
nentially. For DES, the same algorithm can be used for encryption as well as
decryption.

Unfortunately, over time, various shortcut attacks were found that could
significantly reduce the amount of time needed to find a DES key by brute
force. As computers became progressively faster and more powerful, it was
recognized that a 56-bit key was simply not large enough for high security
applications. As a result of these serious flaws, NIST abandoned their offi-

12

2.2. CRYPTOGRAPHY

cial endorsement of DES in 1997 and began work on a replacement, which
is called the Advanced Encryption Standard (AES). Despite the growing con-
cerns about its vulnerability, DES is still widely used by financial services and
other industries worldwide to protect sensitive on-line applications.

IDEA

IDEA is short for the International Data Encryption Algorithm, which is a
block cipher designed by James Massey of ETH Zurich and Xuejia Lai and
was first described in 1991 [15, 16]. The algorithm was intended as a replace-
ment for the Data Encryption Standard (DES). IDEA operates on 64-bit blocks
using a 128-bit key, and consists of a series of eight identical transformations
and an output transformation. The processes for encryption and decryption
are similar. IDEA derives much of its security by interleaving operations from
different groups’ modular addition and multiplication and bitwise exclusive
OR (XOR), which are said to algebraically ”incompatible.”

Blowfish

Blowfish is a symmetric block cipher designed to be used as a replacement for
DES or IDEA [17, 18]. It was designed in 1993 by Bruce Schneier as a fast,
free alternative to existing encryption algorithms. Since then it has been ana-
lyzed considerably, and it is slowly gaining acceptance as a strong encryption
algorithm.

Blowfish is a symmetric chiper that uses a key length from 32 to 448 bits.
It encrypts data in 64-bit block. Blowfish first convents the key into several
subkey arrays. These subkeys are successively used and permuted during
multiple rounds of addition and XOR-based encryption. In all, the Blowfish
encryption algorithm will run 521 times to process all the subkeys and permu-
tations.

Blowfish was one of the first secure block ciphers not subject to any patents
and therefore freely available for anyone to use. This benefit has contributed
to its popularity in cryptographic software.

Twofish

Twofish, first published in 1998, is a symmetric key block cipher algorithm
[19]. It is a 128-bit block cipher that accepts a variable-length key up to 256
bits. The cipher is a 16-round Feistel network, a pseudo-Hadamard transform,
bitwise rotations, and a carefully designed key schedule. The design of both
the round function and the key schedule permits a wide variety of tradeoffs
between speed, software size, key setup time, and memory. Depending on
on the key length as well as whether Twofish is used for hardware based or
software based encryption, Twofish may outperform AES in terms of speed.

13

2.2. CRYPTOGRAPHY

CAST

Cast is encryption algorithm similar to Blowfish. It is a block cipher used in a
number of products. It was designed by Carlisle Adams and Stafford Taveres,
and name ”CAST” represents the first letters of their names [20]. Cast-128 is
licence-free algorithm available to everyone. It is a 12- or 16-round Feistel net-
work with a 64-bit block size and a key size of between 40 to 128 bits (but only
in 8-bit increments). Components include key-dependent rotations, modular
addition and subtraction, and XOR operations. There are three alternating
types of round function, but they are similar in structure and differ only in the
choice of the exact operation at various points.

CAST-256 is a symmetric cipher designed in accordance with the CAST
design procedure. It is an extension of the CAST-128 cipher and has been sub-
mitted as a candidate for NIST’s Advanced Encryption Standard (AES) effort.

AES

AES is short for Advanced Encryption Standard, which is an encryption stan-
dard adopted by the U.S government [10, 21]. The standard comprises three
block ciphers, AES-128, AES-192 and AES-256. Each AES cipher has a 128-bit
block size, with key sizes of 128, 192 and 256 bits respectively.

Generally speaking, AES is an algorithm that starts with a random num-
ber, and then the key and data encrypted with it are scrambled through four
rounds of mathematical processes. The key that is used to encrypt the num-
ber must also be used to decrypt it. The four rounds are called SubBytes,
ShiftRows, MixColumns, and AddRoundKey. During SubBytes, a lookup ta-
ble is used to determine what each byte is replaced with. The ShiftRows step
has a certain number of rows where each row is shifted cyclically by a partic-
ular offset (while leaving the first row unchanged). The MixColumns step is
a mixing operation using an invertible linear transformation in order to com-
bine the four bytes in each column. The AddRoundKey derives round keys
from Rijndaels key schedule, and combines each byte of the state with the cor-
responding byte from the round key. Lastly, these steps are repeated again for
a fifth round, omitting the MixColumns step.

AES provides strong encryption and has been selected byNIST as a Federal
Information Processing Standard in November 2001. In June 2003, the U.S.
Government (NSA) announced that AES is secure enough to protect classified
information up to the TOP SECRET level. Ultimately, anyone can use AES
encryption methods, and it is free for public or private, commercial or non-
commercial use. Most of encryption facilities that this thesis will study use
AES as the default encryption algorithm.

2.2.2 Encryption Key Management

As we have seen, there are two components required to encrypt data: an algo-
rithm and a key. The algorithm is generally known, and the key is kept secret.
The key is a very large number that should be impossible to guess, and of a

14

2.2. CRYPTOGRAPHY

size that makes exhaustive search impractical. In a symmetric cryptosystem,
the same key is used for both encryption and decryption. In an asymmetric
cryptosystem, the key used for decryption is different from the key used for
encryption. It is worth noting that keys are different from passphrases. A
passphrase is a password that provides an additional layer of protection for
an encryption key.

There are many commercial technologies on the market today that are ca-
pable of transparently encrypting data at the file, database or storage-media
level. Normally, these technologies have their own built-in proprietary key
management methods. The following are some concepts introduction related
to encryption key management [22, 23].

Trusted Platform Module (TPM)

The Trusted PlatformModule (TPM) is a microcontroller security chip used to
defend the internal data devices against real intelligent attacks. Normally, the
TPM crypto processor is embedded in the computer motherboard [24]. Cur-
rently, TPM technology is used by the Microsoft Windows operating system.
It is used to store encryption keys for and to authenticate a hardware device.
Since each TPM chip is unique to a particular device and is capable of perform-
ing platform authentication, it can be used to verify that the system seeking the
access is the expected system. Also, at boot time, the TPM chip can verify the
integrity of key files before providing access to an encrypted disk. The way
that TPM works with Bitlocker key management will be discussed in a later
section.

To allow for recovery in cases where the TPM module cannot release the
key, additional copies of the key can be stored. The most commonmethods are
to store a recovery key on a USB device or to create a recovery key consisting
of a long numeric password. If the TPM interaction fails, the user will be asked
to provide either the USB device containing the recovery key or the password.

Key Escrow

Key escrow is a storage arrangement for the keys needed to decrypt the en-
crypted data [25, 26]. It can be considered as an encryption system in which
one or more ”escrow agents” hold copies of all encryption keys, so that, un-
der certain circumstances, an authorized third party may gain access to those
keys. These third parties may include businesses, whomay want access to em-
ployees’ private communications, or governments, who may wish to be able
to view the contents of encrypted communications.

In April 1993, President Clinton announced the Escrowed Encryption Ini-
tiative, ”a voluntary program to improve security and privacy of telephone
communications whilemeeting the legitimate needs of law enforcement.”How-
ever, public response to the key escrow encryption was overwhelmingly nega-
tive. Despite the negative public opinion, on February 4, 1994, the Department
of Commerce announced the approval of the Escrowed Encryption Standard
as a voluntary Federal Information Processing Standard.

15

2.2. CRYPTOGRAPHY

One implementation, the Clipper Chip breaks messages up into chunks,
encrypts each chuck, and adds a Law Enforcement Access Field (LEAF), before
transmitting the message. A simple structure of each encrypted and packaged
chunk is as following:

• F = Family key (common to all Clipper Chips) - 80 bits

• N = serial Number of chip - 30 bits

• U = secret key for chip - 80 bits

• K = Key specific to particular conversation - 80 bits

• M = the Message

Nowadays, key escrow is still used in some systems to implement key re-
covery scheme. For example, Microsoft Exchange Server provides key escrow
services for secure mail so you can recover encrypted data if private keys are
lost or damaged.

LUKS

LUKS is short for Linux Unified Key Setup, and it is the standard for Linux
hard disk encryption key management [27, 28]. It provides secure manage-
ment of multiple passwords for a single device. By using the kernel device
mapper subsystem, LUKS provides a low-level mapping that oversees en-
cryption and decryption of the device’s data (although actual encryption is
performed by dm-crypt discussed below). LUKS stores all the necessary setup
information in the partition header, using the TKS1, a template design devel-
oped for secure key setup on cross-platform. However, LUKS has some lim-
itations. It is not well-suited for applications requiring more than eight users
to have distinct access keys to the same device, nor to applications requiring
file-level encryption.

16

2.2. CRYPTOGRAPHY

TKS1

As mentioned above, TKS1 is a design template for secure key management
[29]. It is an anti-forensic, two level, and iterated key setup scheme. Figure2.2
shows us the overall structure of TKS1. The salt and the AF-splittedmaster key
come from key storage. The passphrase comes from an entropy-weak source
like the user’s keyboard input.

Figure 2.2: TSK1 Key Management Scheme

The initialization of the TSK1 system is straightforward: First, generate a
master key and a salt to use for PBKDF2, and choose an appropriate hash itera-
tion rate by benchmarking the system. Then have the user enter the passphrase,
and process the passphrasewith PBKDF2, thus obtaining the password-derived
key. Thirdly, set up the master key cipher with the password derived key, and
encrypt the master key with the master key cipher. After that, AF-split the
encrypted master key, and save the AF-splitted encrypted master key, the iter-
ation rate and the password salt to storage. Once the real time cipher is set up
with the master key, master key copy is destroyed in memory.

The recovery of an encrypted volume happens as follows: First, read the
salt, iteration rate and the AF-splitted encrypted master key from storage.
Then AF-merge in memory, obtaining the encrypted master key. Then have
the user enter the passphrase, and process the passphrase with PBKDF2, thus
obtaining the password-derived key. Finally, set up the master key cipher with
the password-derived key, and decrypt the encrypted master key with the
master key cipher. Once again, the master key copy in memory is destroyed
after use.

When a password has been compromised, the master key can be recovered
as shown above, but instead of using it for the real time cipher, it can be re-
encrypted using a new passphrase derived with PBKDF2. The master key
encrypted with the old, compromised passphrase can be easily destroyed.

17

2.3. ENCRYPTION STRATEGIES

2.3 Encryption Strategies

File-based encryptionwas the first encryption strategy offered onmodern com-
putes. However, ordinary users are often not sophisticated enough to manu-
ally encrypt and decrypt files. For this reason, transparent encryption can be a
more appropriate solution. Nowadays, filesystem level encryption and block
device encryption are very popular; both of them are transparent encryption
facilities. The following section presents each of these encryption strategies.

2.3.1 File-based Encryption

File-based encryption means encrypting the contents of a file, or part of the
contents of a file [30, 31]. Although this method is sometimes referred to
as folder encryption because all of the files in a folder can generally be en-
crypted with one action, the technology operates at the individual file level.
This means that one can encrypt just those files that contain sensitive data and
leave all other files unencrypted. Of course, files are decrypted or encrypted
only for users who properly authenticate themselves by knowing the encryp-
tion key.

A file-based encryption solution allows users to apply encryption to just a
few files until they gain confidence that either an operator error or technology
problem won’t destroy their data. However, it still has a number of disadvan-
tages that need to be well understood. Firstly, file-level encryption can be very
difficult to deploy and manage from a policy point of view. Organizations
need to determine what data needs to be encrypted. Another disadvantage is
that it depends on the user’s action. Since users can inadvertently forget to en-
crypt a file that should be encrypted, or intentionally choose not to, the whole
security system is very prone to human weaknesses. Thirdly, sometimes it
is impossible, or at least impractical, to encrypt specific bits of sensitive data
within an application. For example, there is no way in Microsoft Outlook to
encrypt specific fields or a specific record within the Contacts database. The
only option is to encrypt all Outlook database files, which can significantly de-
grade performance. Nevertheless, as the first generation of encrypted storage
technology, file-based encryption was an important step in the development
of encryption features.

2.3.2 Block Device Encryption

Block device encryption protects the data on a block device by encrypting it
[32]. To access the device’s decrypted contents, a usermust provide a passphrase
or key for authentication. This provides additional security beyond existing
OS security mechanisms, which can protect the device’s contents even if it has
been physically removed from the system. With block device layer encryp-
tion, the user creates the filesystem on the block device, and the encryption
layer transparently encrypts the data before writing it to the actual lower block
device.

18

2.3. ENCRYPTION STRATEGIES

One advantage of block device layer encryption is that attackers learn noth-
ing about the filesystem unless they have the key. For instance, attackers will
not even know the type of filesystem or the directory structure. Also, sparse
files can be securely and efficiently supported in filesystems on encrypted
block devices.

However, block device encryption can have disadvantages that stem from
the lack of integration with the filesystem itself: Firstly, a fixed region of stor-
age must be pre-allocated for the entire filesystem. Resizing the partition later
is often an inconvenient process. Secondly, it can be difficult to change encryp-
tion keys or ciphers, and there is no flexibility for the block device encryption
mechanism to encrypt different files with different keys or ciphers (Dm-crypt
is an exception when it works with LUKS). Thirdly, applications such as in-
cremental backup utilities need access to the unencrypted data. Fourthly, data
from the encrypted device is still sent in the clear over the network. Finally,
all content in the filesystem incurs the overhead of encryption and decryption,
including data that does not require secrecy.

Full Disk Encryption

Full disk encryption, can be considered as a special situation of block device
encryption. It is also known as whole disk encryption or on-disk encryption,
which is a kind of disk encryption software or hardware which encrypts every
bit of data that goes onto a disk or disk volume [31, 32]. The term ”full disk
encryption” is often used to signify that everything on a disk is encrypted,
including special bootable operating system partitions.

The advantage of full disk encryption is that the disk is protected if it is
physically removed from the computer. One drawback of full disk encryption
is that it does not encrypt data during the process of transmission when the in-
formation is being shared between devices or stored on portable devices such
as a flash drive or external hard drive. It also does not protect data that is being
transferred via a network.

2.3.3 Filesystem-level Encryption

Filesystem-level encryption is a form of disk encryptionwhere the entire filesys-
tem contents are encrypted and decrypted by the operating system [31, 32].
The data actually on disk remains encrypted. In Linux systems, the filesystem
is mounted via the loopback mount mechanism to provide an unencrypted
view.. On Windows systems, each file has a unique encryption key.

The advantages of filesystem-level encryption include: Firstly, flexible file-
based key management, so that each file can potentially be encrypted with a
separate encryption key. Secondly, individual management of encrypted files:
e.g., incremental backups can be made of the individual changed files even in
encrypted form, rather than backup of the entire encrypted volume. Thirdly,
access control can be enforced through the use of public-key cryptography,
and the fact that cryptographic keys are only held in memory while the file
that is decrypted by them is open.

19

2.4. ENCRYPTION FACILITIES INTRODUCTION

However, unlike disk-based encryption, general-purpose file systems that
include filesystem-level encryption do not typically encrypt file system meta-
data, such as the directory structure, file names, sizes or modification times-
tamps. This can be problematic if the metadata itself needs to be kept confi-
dential. In other words, if files are stored with identifying file names, anyone
who has access to the physical disk can know which documents are stored on
the disk, although not the contents of the documents.

2.4 Encryption Facilities Introduction

There are many available encryption tools. This thesis will consider the fol-
lowing ones. Figure2.3 gives a general comparison about these facilities.

Figure 2.3: Overview of Different Encryption Facilities

2.4.1 eCryptfs

eCryptfs is an enterprise-class, kernel-native stacked cryptographic filesystem
for Linux [33, 34]. By layering on top of the filesystem layer, eCryptfs protects
files no matter the underlying filesystem type, partition type, etc.

eCryptfs uses the Linux kernel keyring service, the kernel cryptographic
API, the Linux Pluggable AuthenticationModules (PAM) framework, OpenSSL,
the Trusted PlatformModule (TPM), and the GnuPG keyring in order to make
the process of key and authentication token management seamless to the end
user. The architecture of eCryptfs can be seen in Figure 2.4.

The encryption algorithms used by eCryptfs can be: AES, Blowfish, DES3 EDE,
Twofish, CAST6, and CAST5, and AES is most used today by users. eCryptfs
encrypts and decrypts individual data extents in each file using a unique ran-
domly generated File Encryption Key (FEK). The FEK is encrypted with the

20

2.4. ENCRYPTION FACILITIES INTRODUCTION

Figure 2.4: The Architecture of eCryptfs [33]

File EncryptionKey Encryption Key (FEKEK), and the resulting Encrypted File
Encryption Key (EFEK) is stored in the header of each file. Once the eCryptfs
filesystem is loopback-mounted to the mount point successfully, files written
to the mount point will be encrypted transparently and written to the direc-
tory in the underlying filesystem. To decrypt files that exist in the underlying
filesystem, the eCryptfs volume needs to be mounted with the correct key.

2.4.2 TrueCrypt

TrueCrypt is a free open-source software application used for real-time en-
cryption [36]. It is distributed without cost, and has source code available. It
can create a virtual encrypted disk within a file or a device-hosted encrypted
volume consisting of either an individual partition or an entire storage de-
vice. Also, TrueCrypt is compatible on different platforms, such as Windows
XP/Vista/7, Mac OS X, and Linux.

TrueCrypt has no limitation to the size of file on encrypted disk volume.
The size of virtual volume is only limited by the filesystem of the encrypted
volume disk. i.e. on a FAT32 format disk, the size of file system created on the
encrypted volume cannot be larger than 4 GB.

The TrueCrypt volume initialization process proceeds as following [37]:

1. Generate a series of keys based on entered password, using the key deriva-
tion function selected by the user.

2. Use these keys to encrypt the data in the volume; unused space within
the volume is filled with random data at creation.

3. The encryption keys are stored within the volume header used by True-
Crypt (see Table 2.1), beginning at byte 256.

4. An additional encryption key is used to encrypt the volume header. It is
generated from the password and a random salt using the selected key

21

2.4. ENCRYPTION FACILITIES INTRODUCTION

Of f set Size Encryption Description
(bytes) (bytes) Status

0 64 Unencrypted Salt

64 4 Encrypted ASCII string ”TRUE”

68 2 Encrypted Volume header format version

70 2 Encrypted Minimum version required to open the volume

100 8 Encrypted Size of volume

108 8 Encrypted Byte offset of the start of the master key scope

116 8 Encrypted Size of the encrypted area within the master key scope

252 4 Encrypted CRC-32 checksum of the (decrypted) bytes 64-251

256 Var Encrypted Concatenated primary and secondary
master keys used to encrypt the data

131072 Var Encrypted Data area (master key scope)

S-131072 65536 Encrypted Backup header (encrypted with a different
/Unencrypted header key derived using a different salt)

Table 2.1: TrueCrypt Volume Format Specification

derivation function. The salt is stored unencrypted as the first 64 bytes
of the header.

5. A backup volume header encrypted with the derivation function a dif-
ferent salt is stored in the last 65536 bytes of the volume.

The mount process for a TrueCrypt volume proceeds like this:

1. The volume header is read into RAM. Salt is extracted (bytes 0-63)

2. After user enter the password, the volume header key is created using
salt and the appropriate header key derivation function. The latter is
determined by trial and error in the next step.

3. The header is decrypted using the header key. Bytes 64-68 are tested
against the ASCII string ”TRUE” and the checksum for bytes 256-511 is
computed and compared with the stored value (at byte 72). This process
is repeated for each available derivation function until one succeeds.

4. When the checks in step 3 are passed successfully, the header has been
decrypted and the volume can be mounted.

5. Decryption of data within the volume is performed as needed using the
stored keys (the header bytes 256 and following).

2.4.3 Dm-crypt

Dm-crypt is a transparent disk encryption subsystem in Linux kernel versions
2.6 and later [35]. It is part of the device mapper infrastructure, and uses cryp-
tographic routines from the kernel’s Crypto API. Figure 2.5 shows the work-
flow of Dm-crypt.

22

2.4. ENCRYPTION FACILITIES INTRODUCTION

Figure 2.5: The Workflow of Dm-crypt Encryption [35]

Dm-crypt is implemented as a device mapper target and may be stacked
on top of other device mapper transformations. Device mapper is a new in-
frastructure in the Linux 2.6 kernel, which can provides a generic way to create
virtual layers of block device. Thus dm-crypt can encrypt whole disks, parti-
tions, software RAID volumes and logical volumes. It appears as a block de-
vice, which can be used to hold a filesystem, a swap area or an LVM volume.
Some Linux distributions support the use of dm-crypt for the root file system.
These distributions use initrd to prompt the user to enter the passphrase at the
console, or insert a smart card, prior to the normal boot process.

2.4.4 Bitlocker

BitLocker Drive Encryption is a full disk encryption feature included with Mi-
crosoft’s Windows 7 Ultimate and Enterprise and Windows Server 2008 oper-
ating systems [39, 38]. It is designed to protect data by providing encryption
for entire volumes. By default, it uses the AES encryption algorithm in CBC
mode with a 128 bit key, combined with the Elephant diffuser for additional
disk encryption-specific security (provided by AES). Bitlocker’s architecture
provides functionality and management mechanisms both in kernel mode and
user mode. Figure 2.6 give an overview of the Bitlocker architecture [40].

BitLocker encryption has three implementation modes. Two modes re-
quire a TPM cryptographic hardware chip and a compatible BIOS, and they are
Transparent operation mode and User authentication mode. The third mode
does not have the TPM chip requirement, which is USB Key Mode. When the
encryption process begins, a key is created. This key is called the Full Vol-
ume Encryption Key (FVEK), which is used to encrypt/decrypt the data. The
FVEK is stored on the volume as part of the volume’s metadata. To ensure
the security of FVEK, it is encrypted by an additional key called the Volume

23

2.4. ENCRYPTION FACILITIES INTRODUCTION

Figure 2.6: The Bitlocker Architecture [40]

Master Key (VMK). To encrypt a volume, Bitlocker must set the VMK first. To
decrypt a volume, the OS boots, identifies the usage of Bitlocker, requests the
VMK and uses it to access the FVEK, which in turn it provides access to the
encrypted data. The workflow of Bitlocker is illustrated in Figure 2.7.

Windows 7 includes a new feature called ”BitLocker To Go,” which gives
the lockdown treatment to portable storage devices like USB flash drives and
external hard drives. On computers running Windows Vista or Windows XP,
to open and view the content of removable drives that have been encrypted
with BitLocker Drive Encryption in Windows 7, the Bitlocker To Go Reader
(bitlockertogo.exe) program is need. This function makes Bitlocker more com-
patible on different Windows OS versions, so that people running Windows
7 are able to share their BitLocker-protected data on removable drives with
anyone running Windows 7, Windows Vista, or Windows XP.

2.4.5 EFS

Encrypting File System (EFS) provides filesystem-level encryption for the Mi-
crosoft Windows environment [41]. The technology enables files to be trans-
parently encrypted to protect confidential data from attackers with physical
access to the computer. EFS is enabled in all versions of Windows meant
for professional use from Windows 2000 onwards. However, since significant
caveats exist for its use, no files are encrypted by default and EFS must be ex-

24

2.4. ENCRYPTION FACILITIES INTRODUCTION

Figure 2.7: Bitlocker Encryption Workflow [40]

plicitly enabled by the user. More recent versions of EFS can also provide for
sharing of encrypted files among multiple users.

There are several components in Windows system that make EFS work.
Figure 2.8 is an overview about the EFS architecture [41]. EFS support is
merged into the NTFS driver, and when NTFS encounters an encrypted file,
NTFS executes EFS functions, which will encrypt and decrypt file data as ap-
plications access encrypted files. At the same time, CryptoAPI provides vari-
ous cryptography services to applications. So all those components work to-
gether to make EFS function.

The process of using EFS to encrypt a file can be described as follows: First,
EFS generates a File Encryption Key (FEK). Then, it employs a symmetric al-
gorithm using the FEK to encrypt the file. The choice of algorithm depends on
the version of the operating system. All versions of Windows 2000 use only
the Expanded Data Encryption Standard (DESX). Windows XP Service Pack
1 or later and Windows Server 2003 support AES as well as DESX and 3DES,
though AES is the default. Second, EFS extracts the public key from the EFS
certificate contained in the user’s profile. It encrypts the FEK with the user’s
public EFS key and stores it in the Data Decryption Field (DDF) in the header
of the file. Also in the header of each encrypted file is a Data Recovery Field
(DRF). The DRF contains an encrypted key created using the recovery certifi-
cate from each recovery agent. When a user opens an encrypted file, the user’s
private key decrypts the FEK in the DDF; then the FEK decrypts the file. Only
the private key from the user who encrypted the file can decrypt the FEK. If
necessary, a recovery agent can also decrypt the file using the encrypted FEK in
the DRF. So only the user who encrypted the file and any designated recovery
agents can access the file.

When two or more users require access to an encrypted file, an individual
encrypted version of the FEK is created for each user, using their own public
keys. These multiple encrypted FEKs are all stored in the file header’s DDF.

Using EFS to encrypt a folder is much more efficient and safer than en-

25

2.4. ENCRYPTION FACILITIES INTRODUCTION

Figure 2.8: The Architecture of EFS [41]

crypting individual files. When a folder is encrypted, each file currently in
the folder is encrypted and any file subsequently placed in the folder is also
automatically encrypted. Each file in the folder is encrypted with a unique
FEK. When encrypting an individual file, Windows makes a backup copy of
the file, encrypts the original, and then deletes the backup. However, dur-
ing this period, attackers could easily read the slack space using commonly
available disk sector editing tools. While by marking a folder for encryption
changes this process. All files stored in the folder are immediately encrypted;
no backup versions ever exist on the drive, and this is much more safer.

26

Chapter 3

Methodology

This chapter covers the basic design of the experimental environment:

• Hardware equipments and software tools

• Experiment setup process on both Windows and Linux platforms

• Benchmark utilities used for performance analysis

3.1 Objective

As mentioned in the first chapter, currently there are many approaches to
filesystem-level encryption and block device encryption. Ordinary users re-
quire a general overview of each approaches, in order to make choices based
on their own requirements.

The project will install and use different encryption tools for filesystem-
level encryption and block device encryption, and compare the performance
of representative tasks with and without encryption for each encryption tool
and platform. For the Windows operating system, tests will use Bitlocker, EFS,
and TrueCrypt. For the Linux operating system, tests will use eCryptfs, Dm-
crypt, and TrueCrypt. Based on the results of these experiments, the various
solutions with respect to the dimensions such as effectiveness, ease of installa-
tion and use, and hard disk performance penalty will be discussed and evalu-
ated. The following will cover the hardware and software used, and also give
a short introduction to the set up process of each encryption facilities.

3.2 Tools and Equipment

3.2.1 Hardware Specification

The experiment environment uses a dual-boot computer. Table 3.1 shows the
equipment and software specifications.

The following external storage devices were used for testing:

• 500 GB Seagate FreeAgentTM Go USB Hard Disk

27

3.2. TOOLS AND EQUIPMENT

• 8 GB Kingston DT101 II USB Stick

OperatingSystem Windows Linux

Version Windows 7 Ultimate Red Hat Enterprise Linux 5.4
Professional (2.6.18 kernel)

CPUType Intel(R) Core(TM)2 CPU Intel(R) Core(TM)2 CPU

Memory 2.00 GB 2.00 GB

HardDisk WDC WD800adfs-75SLR2 ATA Device ST380815AS ATA Device

HardDiskSize 80G 80G

Table 3.1: Hardware Specification

Figure 3.1: Experiment Overview

3.2.2 Software Tests List

Here is a general list of the tests and their associated software applications
used in the thesis. More details will be given in later sections.

• Sequential I/O tests were performed in all environments using standard
operating system functionality: reading a 3 GB binary file, writing a 3 GB
binary file, reading a 2.3 GB directory tree and writing a 2.3 GB directory
tree.

• Bonnie++-1.03e [42]: an I/O benchmark available for Linux only.

• IOzone version 3.338 [43]: an I/O benchmark available forWindows and
Linux.

• Seekwatcher-0.12 [44]: a low-level I/O analysis tool for Linux.

28

3.2. TOOLS AND EQUIPMENT

• Gaussian 09 computational chemistry software [45]: available for Win-
dows and Linux and used to test large random I/O operations perfor-
mance.

• Windows 2003 Server Resource Kit tools - timeit.exe [46]: used for CPU
and elapsed time measurements.

• Linux time utility : used for CPU and elapsed time measurements.

Figure 3.1 summarizes all the tests in the experiment along with the types
of I/O operations they exercise. With each encryption tool setup, ordinary
user sequential I/O operations, I/O benchmarks and HPC calculations are ex-
ecuted as available.

3.2.3 Bonnie++ Benchmark

Bonnie++ is a benchmark suit that focuses on fundamental hard drive and file
system performance [42]. As most applications that perform heavy I/O will
not read or write data in single characters, the -f option was used to eliminate
the suite’s characted-level tests.

One example of the Bonnie++ command line and raw results can be seen
as follows:

bonnie++ -u root -d /mnt/crypt/ -f
Using uid:0, gid:0.
Writing intelligently...done
Rewriting...done
Reading intelligently...done
start ’em...done...done...done...
Create files in sequential order...done.
Stat files in sequential order...done.
Delete files in sequential order...done.
Create files in random order...done.
Stat files in random order...done.
Delete files in random order...done.
Version 1.03e ——Sequential Output—— –Sequential Input- –Random-
-Per Chr- –Block– -Rewrite- -Per Chr- –Block– –Seeks–
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP
pc116-74.iu.h 3536M 51060 12 23922 1 57163 0 163.7 0
——Sequential Create————–Random Create——–
-Create– –Read— -Delete– -Create– –Read— -Delete–
files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
16 16158 97 +++++ +++ +++++ +++ 16006 95 +++++ +++ +++++ +++
pc116-74.iu.hio.no,3536M,,,51060,12,23922,1,,,57163,0,163.7,0,16,16158,97,
+++++,+++,+++++,+++,16006,95,+++++,+++,+++++,+++

29

3.2. TOOLS AND EQUIPMENT

Bonnie++ benchmarks three things: data read and write speeds, number
of seeks that can be performed per second, and number of file metadata op-
erations that can be performed per second. Metadata operations include file
creation and deletion as well as getting metadata such as the file size or owner.

Bonnie++ also reports (%CP column above) the percentage of the CPU that
was used to perform the I/O for each test. The file metadata tests are shown in
the second row of results; in them, files with a zero byte size are created, read,
and finally deleted. The create, read, delete metadata tests are performed us-
ing file names that are sorted numerically and those are just random numbers.
Some filesystems perform much better if an application creates and accesses
files in a specific order. Because Bonnie++ performs the metadata tests twice,
you can see whether a filesystem has optimized accesses to files by perform-
ing accesses in sorted file name order. Some of the metadata benchmarks are
reported by Bonnie++ as +++++ instead of a real number per second. This
happens when that particular benchmark completes too quickly.

3.2.4 IOzone Benchmark

IOzone is a free filesystem benchmark utility, and it is useful for performing
broad filesystem analysis on Windows and Linux systems [43]. It can test file
I/O performance for many different kinds of I/O operations.

In the experiment, IOzone 3.3888 version is executed on both Windows 7
Ultimate and Red Hat 5.4 platforms under different encryption facilities envi-
ronments. The following operations were included in this study:

• Reader: sequential I/O read operations using a range of record and file
sizes.

• Writer: sequential I/O write operations using a range of record and file
sizes.

• Rereader: sequential I/O read operations using a range of record and file
sizes from previously-accessed (cached) data.

• Rewriter: sequential I/O write operations using a range of record and
file sizes to an existing file (avoiding metadata write).

• Random read: random access I/O read operations using a range of record
and file sizes.

• Random write: random access I/O write operations using a range of
record and file sizes.

• Record rewrite: Repeated writes of a record to the same disk location.

The IOzone command used was of the form:

#iozone -ae -q 1024 -y 32 -i 0 -i 1 -i 2 -i 4 -g 1G -n 64k -p -R -f output-file -U filesystem

30

3.2. TOOLS AND EQUIPMENT

where -n and -g specify the range of file sizes and -y and -q specify the
range of record sizes in KB. -p purges the processor cache before each test, and
-e includes buffer flushing times in the reported results. The remaining options
specify the tests to run and output location and format. IOzone reports results
in a tabular format starting with the smallest files up to the largest files. For
each file size, the record size range is tested from smallest to largest record
size.

Figure 3.2: IOzone File System Performance Graph Plotted by Gnuplot

The IOzone package comeswith scripts called Generate Graphs and gengnu-
plot.sh to create graphs using gnuplot from its tabular output. Generate Graphs
calls gengnuplot.sh multiple times to generate a graph for each test that IO-
zone performs in its benchmark and then runs gnuplot to show each of these
graphs and generates PostScript output at the same time. Generate Graphs
uses the gnu3d.dem file to drive the gnuplot operations. Figure 3.2 shows a
3D graph plotted by IOzone. While these plots are very attractive, this study
will present these results in another form better suited to performance analy-
sis.

3.2.5 Seekwatcher I/O

Seekwatcher is a Linux utility to visualize I/O patterns and performance by
generating graphs from blktrace runs [44]. And there are three basic ways to
run Seekwatcher:

• It can generate graphs from an existing blktrace run, start blktrace and
run a program, or make a series of pngs from a single trace.

• It can run blktrace onmultiple devices at the same time, and the resulting
graph will have I/O from each device combined.

• It can make an animation of the IO generated by a given run.

31

3.3. EXPERIMENT SETUP

In this thesis, all tests related to Seekwatcher are running in a single trace
by starting blktrace, executing sequential I/O operations and generating graphs.
Seekwatcher uses matplotlib to generate graphs.

Each generated graph presents three subfigures graphing the Disk I/OOff-
set, Seek Count and Troughput through the course of the operation. For ex-
ample, to test the I/O patterns and performance of hard disk partition when
reading a large file, the command line can be as following form:

seekwatcher -t trace-file -p ’read command’ -o output-image -d device

3.2.6 HPC Calculations - Gaussian 09

In order to test large I/O operations in random mode, a scenario not covered
by often tests, the computational chemistry package Gaussian 09 was run for a
problem that requires substantial I/O operations. The calculation performed
a single point energy calculation for hexane (C6H14) using the highly accurate
but computationally expensive coupled cluster method, including single and
double excitations [47, 48]. A full integral transformation is performed to max-
imize the I/O requirements. The calculation uses the 6-31G(d,p) basis set, re-
sulting in 170 basis functions for the molecule’s 20 atoms. The calculation was
set up so that all intermediate files were placed on the volume being tested.

3.3 Experiment Setup

Both Windows and Linux environments are considered in the thesis experi-
ment, and different encryption facilities are tested. This section introduces the
procedures for each experiment at setup in detail.

3.3.1 Windows OS Encryption Facilities Comparison

Bitlocker, TrueCrypt, EFS were tested on the Windows 7 platform for the se-
quential I/O operations, I/O benchmarks and HPC calculation. Performance
results for each encrypted environment were compared with the unencrypted
device data. Experiments related to Windows platform have three different
hard disk environments options:

32

3.3. EXPERIMENT SETUP

• Internal Hard Disk Partition (ST380815AS ATA Device, 48G)

• External USB Hard Disk Partition (Seagate FreeAgentTM Go, 50G)

• External USB stick (8G Kingston DT101 II)

Bitlocker Setup

On theWindows 7 Ultimate operating system, Bitlocker helps keep all the data
safer by encrypting the entire drive. Once Bitlocker is turned on, any file you
save on that drive is encrypted automatically.

Figure 3.3: Bitlocker Encryption Setup

Figure 3.3 illustrates enabling Bitlocker to encrypt a hard disk drive. The
operation of setting up Bitlocker is quite simple: Right click the hard disk icon,
select ”Turn on Bitlocker”, specify a password and finally save the key file.
After that, Bitlocker starts encrypting the device, a lock appears on that hard
disk icon when it finishes. All the file on the virtual volume will be encrypted
on the designated encrypted disk volume, enabling transparent access.

As mentioned in Chapter 2, Bitlocker encryption has three implementation
modes. In this thesis, Bitlocker experiments are based on the USB key mode
without TPM chip support. The Windows 7 Ultimate platform also has the
new feature of Bitlocker to go to encrypt a removable USB device, and the
setup process is almost the same as hard disk encryption above.

33

3.3. EXPERIMENT SETUP

TrueCrypt Setup OnWindows 7

TrueCrypt is free open-source disk encryption software available on multiple
platforms. On Window 7 Ultimate, one must download and install the latest
version TrueCrypt 6.3a setup.exe program from the official website. When
starting the TrueCrypt program, the interactive GUI will display.

Figure 3.4: TrueCrypt Encryption Setup

The procedure for using TrueCrypt to encrypt volume is very simple. First,
click create volume and select the device. Then, set password or keyfile, choose
encryption algorithm and start volume encryption. After that, automount the
encrypted volume to an unused virtual volume. In Figure 3.4, disk F is the
encrypted volume, and disk H is the mounted virtual volume. Thereafter all
the files copied on the virtual volume H will be encrypted on the designated
encrypted disk volume F . Users who want to access the files on the virtual
volume will be prompted for the password.

EFS Setup

EFS technology is supported by most Windows versions. It enables files to
be transparently encrypted to protect confidential data from attackers with
physical access to the computer.

The setup of EFS encryption is very straightforward. As seen in Figure 3.5,
first the folder’s Properties dialogbox is opened. Next, click Advanced, and

34

3.3. EXPERIMENT SETUP

Figure 3.5: EFS Encryption Setup

then select the option ”Encrypt contents to secure data.” After applying this
attribute, the folder icon will become green, which means EFS encryption is
successful, and any files or subfolders under this folder will be automatically
encrypted.

3.3.2 Linux OS Encryption Facilities Comparison

eCryptfs, Dm-crypt, TrueCrypt were tested on the Red Hat 5.4 platform for
the sequential I/O operations, I/O benchmarks and HPC calculation. Perfor-
mance results for each encrypted environment were compared with the unen-
crypted device data. Experiments related to Linux platform have three differ-
ent hard disk environments:

• Internal Hard Disk Partition (ST380815AS ATA Device, 48G)

• External USB Hard Disk Partition (Seagate FreeAgentTM Go, 50G)

• External USB stick (8G Kingston DT101 II)

eCryptfs Setup

eCryptfs works by remounting a filesystem via the loop back mount mech-
anism. Files in the ”lower” filesystem are encrypted, and eCryptfs provides
transparent encryption and decryption as needed. eCryptfs encryption on
block device /dev/sdb3 can be set up as follows:

35

3.3. EXPERIMENT SETUP

mount /dev/sdb3 /mnt/data/
mount -t ecryptfs /mnt/data/ /mnt/ecrypt/
Select key type to use for newly created files:
1) openssl
2) tspi
3) passphrase
Selection: passphrase
Passphrase:
Select cipher:
1) aes: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
2) blowfish: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
3) des3 ede: blocksize = 8; min keysize = 24; max keysize = 24 (not loaded)
4) twofish: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
5) cast6: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
6) cast5: blocksize = 8; min keysize = 5; max keysize = 16 (not loaded)
Selection [aes] : aes
Select key bytes:
1) 16
2) 32
3) 24
Selection [16]: 32
Enable plaintext passthrough (y/n) [n] : n
Attempting to mount with the following options:
ecryptfs unlink sigs
ecryptfs key bytes=32
ecryptfs cipher=aes
ecryptfs sig=3be5d1f6400ba896
Mounted eCryptfs

The passphrase must be entered whenever the filesystem is mounted.

Dm-crypt Setup

On the Red Hat 5.4 platform with kernel 2.6.18, Dm-crypt uses a new infras-
tructure feature called Device mapper, which can provide a generic way to
create virtual layers for a block device. The commands of setup Dm-crypt en-
cryption with LUKS on block device /dev/sdb3 is as follows:

36

3.3. EXPERIMENT SETUP

cryptsetup luksFormat /dev/sdb3
WARNING!
========
This will overwrite data on /dev/sdb3 irrevocably.
Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase:
Verify passphrase:
Command successful.
cryptsetup luksOpen /dev/sdb3 CRYPTO
Enter LUKS passphrase for /dev/sdb3:
key slot 0 unlocked.
Command successful.

mkfs.ext3 /dev/mapper/CRYPTO
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
7848960 inodes, 15697384 blocks
784869 blocks (5.00First data block=0
Maximum filesystem blocks=0
480 block groups
32768 blocks per group, 32768 fragments per group
16352 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 36 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

mount /dev/mapper/CRYPTO /mnt/crypt/

umount /mnt/crypt/
cryptsetup luksClose CRYPTO

See Appendix A.1 for Dm-crypt setup without LUKS.

TrueCrypt Setup On Linux

TrueCrypt is a multi-platform tool for encryption. Its setup process on Win-
dows 7 Ultimate has been introduced before. Red Hat 5.4 with kernel 2.6.18
can not initialize any Truecrypt-6.3a file systems due to an acknowledged bug

37

3.3. EXPERIMENT SETUP

in their specific kernel build. Fixing the bug requires upgrading the Red Hat
customized kernel to version 2.6.24 or later, a daunting task even for an ex-
perienced system administrator. Therefore, In the test, the Linux platform
TrueCrypt encryption is implemented fromGUI interface on Ubuntu 8.10 with
kernel 2.6.24-27-generic on the same hardware. The command for setting up
Truecrypt encryption is as follows:

truecrypt -t -c /dev/sdb3
Volume type:
1) Normal:
2) Hidden:
Select [1]: 1
Encryption algorithm:
1) AES
2) Serpent
3) Twofish
4) AES-Twofish
5) AES-Twofish-Serpent
6) Serpent-AES
7) Serpent-Twofish-AES
8) Twofish-Serpent
Select [1]: 1
Hash algorithm:
1) RIPEMD-160
2) SHA-512
3) Whirlpool
Select [1]: 1

Filesystem:
1) FAT
2) None
Select [1]: 1
Enter password:
Re-enter password:
Enter keyfile path [none]:
Please type at least 320 randomly chosen characters and then press Enter:
Done: 100.000The TrueCrypt volume has been successfully created.

truecrypt -t -k ”” - -protect-hidden=no - -mount /dev/sdb3 /mnt/truecrypt/
Enter password for /dev/sdb3:

truecrypt -t -l
1: /dev/sdb3 /dev/loop0 /mnt/truecrypt

38

Chapter 4

Measurements and Results

This chapter covers the experiment output and the final results. The following
information is presented:

• Approximate Encryption Setup Time

• Sequential I/O Performance Comparison

• Bonnie++ Benchmark Results

• IOzone Benchmark Performance Reports

• Seekwatcher I/O Analysis

• HPC Calculation I/O Performance Comparison

The following sections present the data primarily in graphical form. See
the Appendixes for raw data.

4.1 Approximate Encryption Setup Time

Figure 4.1 shows the approximate time required to set up encryption using
the different encryption facilities. For eCryptfs, Dm-crypt, TrueCrypt and Bit-
locker, the time is based on encrypting an empty 8G Kingston DT101 II USB
stick. For EFS, the time is for encrypting an 8G folder with many files and
subdirectories inside. EFS can be applied to an empty folder essentially in-
stantaneously.

As we can see from the histogram, eCryptfs and Dm-crypt encryption
take much less time than the other tools, EFS and Bitlocker are more time-
consuming, and the time for TrueCrypt is in between. In addition, for the
same size folder, EFS encryption setup time is affected by the number of sub-
directories and files in the folder.

39

4.2. SEQUENTIAL I/O PERFORMANCE: WINDOWS

Figure 4.1: Encryption Facilities Approximate Setup Time Comparison

4.2 Sequential I/O Performance: Windows

Figure 4.2 displays the sequential I/O performance of different Windows en-
cryption facilities. When executing sequential I/O operations for the 3G file
and 2.3G directory, the Windows Resource Kit Utility timeit.exe is used to
record the elapsed time.

(a) Bitlocker, TrueCrypt (b) EFS

Figure 4.2: Windows Encryption Facilities Sequential I/O Performance

Figure 4.2 presents the real time for sequential I/O operations based on
Bitlocker, TrueCrypt encryption and the unencrypted state, which shows Bit-
locker encryption takes a bit more real time than TrueCrypt. TrueCrypt en-
cryption does not have much performance penalty for these sequential I/O
operations.

Figure 4.2(b) compares the real time difference for sequential I/O oper-
ations between EFS encryption and unencrypted state. For EFS encryption,
directory sequential I/O operation takes much more time than without en-
cryption.

40

4.3. SEQUENTIAL I/O PERFORMANCE: LINUX

4.3 Sequential I/O Performance: Linux

4.3.1 Logical Volume and LUKS Effects

Figure 4.3 shows the real time for performing sequential I/O on eCryptfs en-
crypted hard disk and Dm-crypt encrypted hard disk, with and without using
logical volumes.

Figure 4.3(a) compares eCryptfs encryption with the unencrypted state,
and also compares about the situations with and without logical volumes. The
results show that the logical volume state does not affect sequential I/O per-
formance very much. However, eCryptfs encryption doubles the real time of
directory sequential I/O performance compared with the unencrypted state.

(a) eCryptfs (b) Dm-crypt

Figure 4.3: Logical Volume and LUKS Effect Analysis

Dm-crypt encryption, bothwith/without logical volumes andwith/without
LUKS are compared in Figure 4.3(b). The graph indicates that Dm-crypt en-
cryption does not affect sequential I/O performance compared to the unen-
crypted device. In addition, whether logical volumes or LUKS are used has
almost no effect on the sequential I/O performance.

Based on these results, most subsequent tests use eCryptfswithout a logical
volume and Dm-crypt with LUKS but without a logical volume.

4.3.2 Internal Hard Disk and External Hard Disk Comparison

In Figure 4.4, there are two subfigures comparing Linux encryption facilities
for sequential I/O performance using an external USB hard disk and the inter-
nal hard disk.

Figure 4.4(a) displays the real time difference of Linux encryption tools on
a 50 GB external USB partition. In this case, the performance of Dm-crypt and
TrueCrypt are quite close to the unencrypted situation. However, eCryptfs
takes much more real time for directory sequential I/O operations.

The internal hard disk performance with Dm-crypt and eCryptfs is illus-
trated by Figure 4.4(b). Again, the sequential I/O performance for Dm-crypt

41

4.3. SEQUENTIAL I/O PERFORMANCE: LINUX

(a) External USB Hard Disk (b) Internal Hard Disk

Figure 4.4: Linux Encryption Facilities Sequential I/O Performance

encryption is not very different from unencrypted situation. In contrast, eCryptfs
takes much more real time for directory write and read operations.

Thus, the relative performances of the various encryption facilities with
respect to the unencrypted device does not change much with the slower I/O
of the external USB disk.

4.3.3 TrueCrypt Encryption Comparison on Different Platforms

As mentioned in TrueCrypt setup section, Red Hat 5.4 with kernel 2.6.18 can
not successfully create Truecrypt-6.3a volumes. So instead of using the Red
Hat platform, TrueCrypt was initialized on an 8G USB stick via Ubuntu 8.10
platform with kernel 2.6.24-27-generic. This device was then able to be used
on a RedHat system. Figure 4.5 shows a comparison for TrueCrypt encryption
sequential I/O performance on Windows 7 Ultimate and Red Hat 5.4 profes-
sional platforms.

Figure 4.5: TrueCrypt Encryption Sequential I/O Performance Comparison

On this hardware, TrueCrypt encryption on the Windows platform takes
more time for write operations than the Linux platform, most notably for the

42

4.3. SEQUENTIAL I/O PERFORMANCE: LINUX

directory write. However, the read operation results are opposite, although
the differences are quite small.

The very poor performance of TrueCrypt for the directory write test is con-
sistent with the Windows unencrypted results, where their operation takes
almost 9 times as long as the corresponding read operation (2734 vs 306 sec-
onds). The ratio for the large file operations is 1.6 (457 vs 288 seconds).

4.3.4 Different Tools Encryption on The Same Internal Hard Disk

3G file and 2.3 G directory sequential I/O operations were performed on the
same internal hard disk partition in order to comapare I/O performance and
tools across operating systems.

Figure 4.6: Different Tools Sequential I/O Performance Comparison

Figure 4.6 shows us that the same sequential I/O operation tests take more
time on the Linux platform than on the Windows platform. For the Linux en-
cryption tools, eCryptfs encryption takes themost time, and Dm-crypt encryp-
tion performs similar to the unencrypted state. For the Windows encryption
facilities, Bitlocker encryption takes a bit more time than TrueCrypt encryp-
tion, but neither of them have much performance penalty compared with the
unencrypted state.

These results also show that Linux I/O performance for these sequential
I/O operations is much slower than underWindows. The unencrypted results
measure this base line I/O level (see the first and fourth bars in each group in
Figure 4.6). The performance gap between Linux and Windows is largest for
the file-based operations (about a factor of 2) and shrinks to about 20% slower
for the directory operations. The block device encryption schemes follow the
same underlying I/O profile.

43

4.4. BONNIE++ BENCHMARK RESULTS

4.4 Bonnie++ Benchmark Results

In the experiment, we test Bonnie++ benchmark for different Linux encryp-
tion tools (unencrypted, Dm-crypt, eCryptfs) in three different hardware situ-
ations: internal hard disk, external USB hard disk, and USB stick.

To make comparisons among the various Linux tools and different hard-
ware situations, results are categorized into three sections below.

4.4.1 Bonnie++ Benchmark Sequential I/O Performance

Figure 4.7 shows the Sequential I/O performance for each tool using three
different types of hard disk. Obviously, the internal hard disk has the best I/O
performance compared to the USB devices. In addtion the external USB hard
disk performs better than the 8 GB USB stick. The following figures give the
Bonnie++ sequential I/O results.

(a) Sequential Write (b) Sequential Read

(c) Sequential Rewrite

Figure 4.7: Bonnie++ Benchmark Sequential I/O Performance

Overall, Figures 4.7(a) and 4.7(c) indicate that Dm-crypt encryption has
better sequential write and re-write operation performance than eCryptfs en-
cryption, which means that Dm-crypt has less performance penalty compared
with eCryptfs encryption.

For the internal hard disk, the Bonnie++ sequential I/O results diverge
most for the write operation, where Dm-crypt and eCryptfs have noticeable
performance penalties. For the other 2 operations, their performance is quite

44

4.4. BONNIE++ BENCHMARK RESULTS

close to the unencrypted results. The results for the external USB hard disk
are similar. The two encryption schemes give results that differ only a small
amount from the unencrypted state.

The write results for the USB stick are essentially the same for all three
environments. The two encrypted environments also perform slightly better
than the unencrypted state for the rewrite benchmark suggesting that caching
is more of a factor in those environments.

The read results for all three disk types are somewhat unexpected in that
the encrypted environments perform better than the unencrypted state in al-
most all cases. The gap between them also increases for the slower I/Omedia.
This result is difficult to rationalize and comes about from the internal func-
tioning of the benchmark suite.

4.4.2 Bonnie++ Benchmark Random Seek Performance

Figure 4.8 reflects the random seek rate of the unencrypted state, Dm-crypt,
and eCryptfs based on Bonnie++ benchmark testing. The unencrypted has
the highest random seek rate, Dm-crypt ranks second, and eCryptfs has the
lowest random seek rate. Once again, this graph illustrates that Dm-crypt
encryption has a smaller performance penalty than eCryptfs encryption. The
largest penalty comes for the external USB hard disk.

Figure 4.8: Bonnie++ Benchmark Random Seek Performance

4.4.3 Bonnie++ Sequential Block Operation CPU Percentage

Table 4.1 displays the CPU percentage used for the sequential block operations
benchmarks for the Linux encryption tools. Bonnie++was run on an otherwise
idle system. The results from Bonnie++ tests on the internal hard disk show
that Dm-crypt encryption does not takemuchmore CPU than the unencrypted
situation. In contrast, eCryptfs encryption takes much more CPU resources
than bothDm-crypt encryption and the unencrypted state. Similar trendswere
observed for the other hardware situations.

45

4.5. IOZONE BENCHMARK RESULTS

Tools Write Re-write Read

Unencrypted 13% 0% 0%

Dm− crypt 12% 1% 0%

eCrypt f s 92% 49% 47%

Table 4.1: Bonnie++ Sequential Block Operation CPU Usage

4.4.4 Bonnie++ Benchmark File Create Operations Performance

The Bonnie++ benchmark also tests both sequential and random file create
operations for the Linux encryption tools under the three hard disk environ-
ments. Figure 4.9 presents these results. It indicates that for both sequen-
tial and random operations, the performance of Dm-crypt encryption does not
have much difference with the unencrypted state, while eCryptfs encryption
has a large performance penalty. These results are consistent with those for
most of the other Bonnie++ operations.

(a) Sequential File Create (b) Random File Create

Figure 4.9: Bonnie++ Benchmark File Create Operations Performance

4.5 IOzone Benchmark Results

The IOzone benchmark was run under both Linux and Windows using the
internal hard disk. IOzone produces a very large amount of data. In order to
analyze its results in an effective way, themost important data was chosen and
is presented in separate sections.

4.5.1 Windows IOzone Benchmark Performance

Figure 4.10 through 4.13 present results for the different Windows encryption
facilities for all 7 of the IOzone operation modes. In each case, there is one
graph showing the complete results and another graph displaying those for a
single record size.

Figure 4.10(a) presents the IOzone benchmark performance for the un-
encrypted internal hard disk situation, where the record size changes from

46

4.5. IOZONE BENCHMARK RESULTS

(a) Unencrypted

(b) Record Size 128KB

Figure 4.10: Unencrypted Hard Disk IOzone Performance (Windows)

47

4.5. IOZONE BENCHMARK RESULTS

32KB to 1024KB, and, for each record size, the file size increases from 64KB
to 1024MB. As the record size increases, the transfer rate slowly increases for
each file size. Figure 4.10(b) gives detailed view for the record size of 128KB.
The patterns and trends in this example are quite similar for the other record
sizes.

These results indicate that the transfer rates of the Rereader, Reader and
Random read operations are the fastest, and the transfer rate of the Record
rewrite operation increases with the file size, and the other operation modes
have a very slow transfer rate.

(a) Bitlocker

(b) Record Size 128KB

Figure 4.11: Bitlocker Encryption IOzone Performance (Windows)

Figure 4.11 displays IOzone benchmark performance using Bitlocker en-
cryption tool using the same record file size ranges. The transfer rates of the

48

4.5. IOZONE BENCHMARK RESULTS

Rereader, Reader and Random read operations are still the fastest, the transfer
rate of the Record rewrite operation again grows with the file size. The other
operations are very slow. As for the unencrypted state, larger record sizes
yield higher transfer rates.

Figure 4.12 shows IOzone benchmark performance using the TrueCrypt
encryption tool and the same range of file record sizes. The transfer rates of
the Rereader, Reader, Random read and Record rewrite operations are higher
than the other 3 operations. For each record size, the transfer rate increases
with the file size, and the larger the record size, the higher the transfer rate.

(a) TrueCrypt

(b) Record Size 128KB

Figure 4.12: TrueCrypt Encryption IOzone Performance (Windows)

Figure 4.13 shows the IOzone benchmark performance for a folder en-

49

4.5. IOZONE BENCHMARK RESULTS

crypted by EFS on the internal hard disk. Again, the transfer rates of the
Rereader, Reader, Random read and Record rewriter operations are high, while
the transfer rates of other 3 operations are low. For each record size, with
the increase of file size, the Record rewrite transfer rate increases consistently,
while the Rereader, Reader, Random read operations are not very stable: they
oscillate dramatically at the low end of the record size range for all file sizes.
The Writer, Rewriter and Random write operations remain slow.

(a) EFS

(b) Record Size 128KB

Figure 4.13: EFS Encryption IOzone Performance (Windows)

In generally, for the Windows encryption facilities, the IOzone benchmark
performance results shows that the operation modes of Rereader, Reader and
Random read (considered as a read operation in general) have higher transfer
rates than Re-writer, Writer and Random write (considered as write opera-

50

4.5. IOZONE BENCHMARK RESULTS

tion in general). Record rewrite measures the performance of writing and re-
writing a particular spot within a file, and different sizes of the spot will make
the performance very different. Here, the results show that the transfer rate of
Record rewrite operation for TrueCrypt and EFS all increase with the file size.
Figure 4.14 compares the IOzone results for the various Windows cases for the
sequential and random read and write operations.

(a) Sequential

(b) Random

Figure 4.14: IOzone Performance Comparison under Windows

Figure 4.14 shows that the performance on this benchmark varies very little
across the different environment. EFS exhibits an odd performance dip for
the 1MB file size for both read operations. For the write operations, there is a
performance increase starting at the 4MB file size with exception of TrueCrypt,
which achieved the higher performance level on smaller file sizes as well.

51

4.5. IOZONE BENCHMARK RESULTS

4.5.2 Linux IOzone Benchmark Performance

IOzone benchmark results for the Linux encryption facilities (unencrypted,
Dm-crypt, eCryptfs) IOzone benchmark results are shown in Figures 4.15 through
4.17. All tests were run on the internal hard disk using record size from 32KB
to 1024KB and file sizes from 64KB to 1024 MB.

(a) Unencrypted

(b) Record Size 128KB

Figure 4.15: Unencrypted Hard Disk IOzone Performance (Linux)

For the unencrypted case and Dm-crypt encryption, the trend of differ-
ent operation modes is quite similar (see Figure 4.15 and Figure 4.16). For
each record size, the transfer rate of the Record Rewriter operation is sharply
increased as the file size increased, while for the other operation modes, the
transfer rates maintain low level, even when the record size increases.

Figure 4.17 presents the IOzone benchmark performance under eCryptfs
encryption. In contrast to the unencrypted and Dm-crypt encryption results,

52

4.5. IOZONE BENCHMARK RESULTS

(a) Dm-crypt

(b) Record Size 128KB

Figure 4.16: Dm-crypt Encryption IOzone Performance (Linux)

the Rereader, Reader, Random read and Record Rewriter operations transfer
rates are higher, while the other three operations again show a low speed.

For the Linux environment, IOzone benchmark performance on the inter-
nal hard disk, results are quite similar for the unencrypted state and Dm-crypt
encryption. The Record rewrite operation mode has largest transfer rate, and
it increases with the record size. For all the other operations, transfer rates are
very slow and do not change very much. For eCryptfs encryption, the opera-
tion modes of Rereader, Reader and Random read (considered as a read opera-
tion in general) have higher transfer rates than Re-writer, Writer and Random
write (considered as a write operation in general). Also Record rewrite opera-
tion has a high transfer rate that increases with the record size.

53

4.5. IOZONE BENCHMARK RESULTS

(a) eCryptfs

(b) Record Size 128KB

Figure 4.17: eCryptfs Encryption IOzone Performance (Linux)

54

4.5. IOZONE BENCHMARK RESULTS

4.5.3 Three Specific IOzone Benchmark Performance Reports

Figures 4.18 through 4.20 present the results for the operation modes of Writer,
Reader and Record Rewrite for all of the tools.

(a) Writer Operation

(b) Record Size 128KB

Figure 4.18: IOzone Writer Operation Tools Comparison

Figure 4.18 displays the transfer rates for the IOzone Writer operation for
each of the encryption facilities on the same internal hard disk. For the Linux
encryption tools (eCryptfs, Dm-crypt, unencrypted), eCrypfs encryption has
higher transfer rates than the unencrypt state on Linux, and the transfer rate
of Dm-crypt encryption is lower. Still, for theWindows encryption tools (True-
Crypt, Bitlocker, EFS, unencrypted), TrueCrypt encryption has the highest trans-
fer rate, and Bitlocker and EFS encryption are a bit slower than unencrypted
state on Windows. For all the tools, the transfer rates of eCryptfs and True-
Crypt encryption rank highest. The other two write operations, Rewriter and
Random write, show similar trends.

55

4.5. IOZONE BENCHMARK RESULTS

There is a lot of variation in the Reader results for file sizes smaller than
4-8MB for several tools, including some rather dramatic highs and lows. To
some extent, these extremes are likely the result of the specific characteristics
for the benchmark and are probably unlikely to be achieved in real user oper-
ations as a matter of course.

Considering the results for 8 GB and larger files, the several performance
ordering among the tools is (from high to low): unencrypted Windows, True-
Crypt, Bitlocker (all with comparable performance at the highest file sizes),
eCryptfs, EFS, unencrypted Linux (these 3 are also very similar to one an-
other), and finally DM-crypt. eCryptfs performans better and Dm-crypt per-
forms worse than they did for the large file sequential write I/O test consid-
ered earlier.

(a) Reader Operation

(b) Record Size 128KB

Figure 4.19: IOzone Reader Operation Tools Comparison

Figure 4.19 presents the the transfer rate of the IOzone Reader operation

56

4.5. IOZONE BENCHMARK RESULTS

for each of the encryption facilities. Generally, the transfer rates of Windows
encryption tools is faster than the transfer rate of Linux encryption tools. For
Linux tools, the transfer rate of eCryptfs encryption is much faster than Dm-
crypt encryption and the unencrypted situation. In contrast, the transfer rates
of Windows encryption facilities are quite close to one another. The other two
read operations Rereader and Random read are similar to this trend.

These Linux results are quite anomalous in two ways: the extremely high
performance of eCryptfs, and the extremely low performance of Dm-crypt and
the unencrypted Linux environment. These results seem suspect and all into
question the accuracy of IOzone in their Linux environment in general. The
IOzone results are repeatable across multiple runs and similar trends are ob-
served in other devices.

(a) Record Re-write

(b) Record Size 128KB

Figure 4.20: IOzone Record Rewrite Operation Tools Comparison

Figure 4.20 shows the IOzone benchmark performance Record rewrite re-
sults which measure the performance of writing and re-writing a particular

57

4.6. SEEKWATCHER I/O RESULTS

spot within a file. The graph shows that for all the encryption approaches,
the transfer rate grows quickly as the record size increases. In addition, for a
given record size, the transfer rate increases with the file size. For the larger
the record size, the transfer rates of TrueCrypt, EFS and Bitlocker encryption
increase faster than other tools.

4.6 Seekwatcher I/O Results

Seekwatcher graphs the raw I/O data collected by blktrace during a specified
I/O operation. For these tests, the same commands were run as for the Linux
sequential I/O tests presented in section 4.3.

Figure 4.21 is the results of the Seekwatcher benchmark for the 3G file write
operation on the same internal hard disk partition. The three Disk I/O graphs
show that the write operation is based at the same disk offset and thus uses
the same portion of the partition.

(a) Unencrypted (b) Dm-crypt

(c) eCryptfs

Figure 4.21: Seekwatcher I/OWrite File Operation (Linux)

However, the curves for Seek Count and Throughput for Dm-crypt and
eCryptfs are very different from the unencrypted situation. This indicates that

58

4.6. SEEKWATCHER I/O RESULTS

disk head movement pattern is quite different for the unencrypted case. The
I/O throughput rates are various in different ways among the 3 environments,
with the rate for eCryptfs being significantly lower than the other two.

Figure 4.22 shows the results of the Seekwatcher benchmark for 3G file
read operation. As expected, the read operation is based on the same disk
offset. Once again, the Seek Count and Throughput partten for Dm-crypt and
eCryptfs are very different from the unencrypted situation for the same I/O
operation. This time, eCryptfs achieves the same overall performance levels
as the other two cases.

(a) Unencrypted (b) Dm-crypt

(c) eCryptfs

Figure 4.22: Seekwatcher I/O Read File Operation (Linux)

59

4.6. SEEKWATCHER I/O RESULTS

Figure 4.23 shows the results of the Seekwatcher benchmark for the 2.1G
directory write operation. The three Disk I/O graphs show that the disk por-
tion used is different in all 3 cases. However, during the course of the same
I/O operation, the Seek Count and Throughput profiles for Dm-crypt and
eCryptfs are very different from the unencrypted situation. The throughput
for eCryptfs lies in the range of 40% to 60% of that achieved for the other two
cases.

(a) Unencrypted (b) Dm-crypt

(c) eCryptfs

Figure 4.23: Seekwatcher I/O Write Directory Operation (Linux)

60

4.7. HPC SAMPLE CALCULATION RESULTS

Figure 4.24 shows the results for the Seekwatcher benchmark for the 2.1G
directory read operation. The directory read operation disk portion used is
different in the 3 cases. Once again, the Seek Count and Throughput profiles
for Dm-crypt and eCryptfs are differ from the unencrypted situation. Interest-
ingly, eCryptfs has a much smoother as less varying seek count profile than
the other 2 cases. It also exhibits lower overall throughput over the period of
the operation.

(a) Unencrypted (b) Dm-crypt

(c) eCryptfs

Figure 4.24: Seekwatcher I/O Read Directory Operation (Linux)

The Seekwatcher throughput results are consistent with the averaged re-
sults seen in section 4.3. Seekwatcher provides a detailed view of how the
throughput and disk access rate varies over the course of each operation. There
are major differences in these profiles for the three environments.

4.7 HPC Sample Calculation Results

In HPC calculation experiment, Gaussian 09 executed the same simulation un-
der the various encryption environments on both Windows and Linux plat-
forms. Figure 4.25 presents the real and I/O times for each case; and also

61

4.7. HPC SAMPLE CALCULATION RESULTS

calculates the performance penalty of different encryption approaches for the
large random I/O operations performed during the calculation.

Figure 4.25: Gaussian 09 - HPC Sample Calculation Comparison

These results show that Linux encryption tools (Dm-crypt, eCryptfs) have
a larger performance penalty than the Windows encryption tools (Bitlocker,
TrueCrypt and EFS). Moreover, eCryptfs encryption has the biggest perfor-
mance penalty and takes much more I/O time than others. For Window en-
cryption approaches, the performance penalty of EFS is bigger than TrueCrypt
and Bitlocker encryption.

The Windows environment itself imposes a slight performance penalty.
The unencrypted state Windows calculation took about 20% longer than the
same Linux calculation on its unencrypted disk.

62

Chapter 5

Evaluation and Discussion

This chapter will cover the analysis and discussion of the experimental results.
Since the goal of the thesis is to evaluate the benefits of different encryption
facilities to normal users, it will discuss each tool from different dimensions
that users care about based on these results.

5.1 Costs and Platform Compatibility

Figure 2.3 presented an overview of different encryption facilities, including
the licensing and running platforms of each tool.

Bitlocker and EFS are Microsoft proprietary software and they can only be
used on Windows versions. EFS can be enabled in most Windows versions,
such as Windows 2000/XP/Vista/7, and Windows Server 2003/2008. How-
ever, Bitlocker is only available on Windows 7/Vista Ultimate and Enterprise
and Windows Server 2008. Currently, major hardware vendors charge extra
money for Bitlocker (the default is no Bitlocker), but this may change in the
future as more and more users will require this feature.

TrueCrypt is a free open source software for multiple platforms. It supports
Linux platforms with kernel 2.6.5 or higher, Windows 7/Vista/XP andMac OS
X.

eCryptfs and Dm-crypt both use the GNU general public license, and they
can be used on Linux platforms. eCryptfs can be running with Linux kernel
2.6.19 and higher; Dm-crypt is available on Linux kernel 2.6 and higher.

Obviously, if normal users consider only the cost and platform compat-
ibility factors, TrueCrypt is preferred. In addition, Windows users can also
think about Bitlocker and EFS, and Linux users can try to use eCryptfs and
Dm-crypt.

5.2 Ease of Installation and Use

Details about setting up each encryption approach were discussed in section
3.3.

63

5.3. FEATURES AND EFFECTIVENESS ANALYSIS

Currently, only Bitlocker, EFS, TrueCrypt have GUI interface and naviga-
tion for setting up encryption. eCryptfs and Dm-crypt encryptions can just be
implemented via the command line. Dm-crypt uses the interface cryptsetup
to initialize the encryption; also, it can work with LUKS support. eCryptfs can
be considered as an cryptographic filesystem.

In general, as long as the function and principle of each encryption ap-
proach is understood, all these encryption tools are easy to install and set up.
None of them are that difficult to set up by following the navigation or the user
guide.

Another thing that normal users may care about is the time to set up the
encryption. Figure 4.1 presents the approximate time of each tools to initial-
ize encryption on the same 8G USB stick. The result shows that EFS takes
about 48 minutes, Bitlocker takes 37 minutes, TrueCrypt needs 18 minutes,
and eCryptfs and Dm-crypt take less than 3 minutes. Although that is just an
approximate timing based on a 8 GB USB stick, it still can give users a primary
impression about the time cost of each facilities. These timing values represent
the worst case scenario as I/O is slowest to this device.

5.3 Features and Effectiveness Analysis

All of the encryption tools discussed in the thesis have the functions required
provide to make automated, user-transparent encryption on different types of
storage media. Bitlocker, Dm-crypt, and TrueCrypt are block device encryp-
tion approaches (Bitlocker is implemented as full disk encryption), while, EFS
and eCryptfs are filesystem-level encryption tools.

Using block device encryption, Dm-crypt, TrueCrypt and Bitlocker can
provide additional security beyond existing OS security mechanisms, and can
protect the data even the physical device been removed from the system. The
attackers can not determine the filesystem and directory structure of the en-
crypted devices unless they have the encryption key.

Moreover, Bitlocker can use encryption on the booting disk, and Windows
7 has the new feature of Bitlocker to go which can also encrypt USB devices.
Truecrypt can create encrypted file containers, encrypted non-system volume
partitions, and versions later than 5.0 also include system partition encryption
on Windows systems. However, block device encryption approaches are not
convenient when resizing the encrypted partition after initialization.

EFS and eCryptfs, as approaches to filesystem-level encryption, have flex-
ible file-based key management, and each file can potentially be encrypted
with a separate encryption key. Thus, encrypted files can be managed inde-
pendently. Also, these approaches can use public key cryptography to enforce
the access control. But one limitation of them is that they can not encrypt the
file systemmetadata, such as the directory structure, file names, sizes or times-
tamps. This can be problematic if the metadata itself needs to be kept secret.

64

5.4. PERFORMANCE PENALTY EVALUATION

5.4 Performance Penalty Evaluation

The following evaluations begin with baseline analysis in the absence of en-
cryption and then go on to compare the various encryption options.

5.4.1 Storage Media Comparisons Without Encryption

An internal hard disk, external USB hard disk and USB stick are all consid-
ered in this thesis’ experiments. Normally, the performance of hard disk will
depend very much on the types and features of the hard disk device.

Figure 5.1: Storage Media Performance Comparison (Unencrypted Linux)

Figure 5.1 shows the performance penalty of the external USB hard disk
and USB stick with respect to the internal hard disk. For most cases, both ex-
ternal devices used in the experiment have a significant performance penalty
compared to internal hard disk, especially, the USB stick has a larger penalty.

Figure 5.2 presents the USB stick performance penalty compared to the in-
ternal hard disk on the Windows platform for different I/O operations. The
USB stick has a large performance penalty compared with the internal hard
disk. The sequential directory write operation reaches a 95% penalty percent-
age, the worst observed case, indicating that it takes almost twice as long as
for the internal hard disk. These results are generally comparable to the Linux
results.

5.4.2 Operating System Comparison Without Encryption

Another factor supposed to be considered is the operating system independent
of encryption. Figure 5.3 shows the Linux performance penalty with respect
to Windows for a variety of I/O operations using the internal hard disk. In
Figure 5.3, for the different I/O operations, Linux has performance penalty
percentage ranging from 16% to 154% compared to Windows. In other words,

65

5.4. PERFORMANCE PENALTY EVALUATION

Figure 5.2: USB Stick Performance Penalty on Windows OS

for the same I/O operations on the same hard disk, the Windows 7 Ultimate
environment performs better than Red Hat 5.4 with the Linux kernel 2.6.18
environment. The sequential directory write operation and IOzone’s small to
medium random write operation show the least performance difference.

Figure 5.3: Operating System Performance Comparison (Unencrypted)

5.4.3 Encryption Strategies

The two main encryption strategies discussed in the thesis are used by most
of the popular approaches nowadays. Block device encryption apples to the
block device layer such as a hard disk partition or even a whole volume. Bit-
locker, TrueCrypt and Dm-crypt are all block device encryption tools. Filesys-
tem level encryption encrypts data at the filesystem level. eCryptfs can be
considered as a kernel-native cryptographic filesystem in the Linux system.

66

5.4. PERFORMANCE PENALTY EVALUATION

Also EFS is implemented by the filesystem-level EFS function on theWindows
system. So these two approaches implement on the filesystem level encryption
strategy.

Figure 5.4: Block Device Encryption Approaches Performance Penalty

Figure 5.4 shows the performance penalty of different block device encryp-
tion approaches with respect to performance on an unencrypted device using
the internal hard disk on the same platform. For the HPC random I/O, Dm-
crypt has a larger penalty than Bitlocker and TrueCrypt. However, for the
large sequential I/O operations, Bitlocker has a larger penalty than Dm-crypt
and TrueCrypt. The largest penalty is 29% while most of the values are less
than 20%.

Figure 5.5: Filesystem-level Encryption Approaches Performance Penalty

Figure 5.5 reflects the filesystem-level encryption tools’ performance penalty
with respect to the unencrypted state on the internal hard disk. EFS has amuch
larger penalty than eCryptfs, especially for the directory I/O operations where

67

5.5. RECOMMENDATIONS

it is catastrophically poor. However, eCryptfs also often imposes a significant
penalty of more 2 times.

5.4.4 Multi-platform Approach: TrueCrypt

Figure 5.6: TrueCrypt Performance Penalty (Windows vs Linux)

TrueCrypt is a free open-source encryption tool onmultiple platforms. Fig-
ure 5.6 presents the sequential I/O performance penalty for TrueCrypt on both
Windows and Linux systems. The results shows that for sequential write oper-
ations, TrueCrypt on the Linux system has better performance than Windows,
however, the results of sequential read operations are opposite.

5.4.5 CPU Usage

Both the results from Bonnie++ and HPC sample calculations show that for
Linux encryption facilities, eCryptfs takes much more CPU time when ex-
ecuting I/O operations, which is caused by kernel service operation; while
Dm-crypt performs as well as unencrypted situation and takes very little extra
CPU time.

5.5 Recommendations

Based on the results in this thesis, the following suggestions are given to nor-
mal users, especially new users to the encryption facilities.

5.5.1 Scenario 1: Laptops

For laptop users, it is very necessary to use encryption for data security. The
number of laptop users are increasing, but laptops are easily lost or stolen.

68

5.5. RECOMMENDATIONS

Block device encryption tools are recommended for laptop users as they en-
crypt all data on the hard disk.

For Window users, Bitlocker is also a good choice, especially nowadays,
as most laptops have TPM support, which can help Bitlocker work better. Al-
though Bitlocker is only available on Windows Vista/7 Ultimate and Enter-
prise, it is worth spending extra money for this feature. Also, it is not very
difficult to update an existing Windows Vista/7 Home Basic operating system
variant to Ultimate version in any significant way. It can be easily selected
during OS installation, and it is also easy to enable later.

For Linux users, Dm-crypt is suggested. It is easy to insall with kernel 2.6
or higher, and also it does not affect hard disk I/O operation performance.

TrueCrypt is a good choice for external media as it is free open source soft-
ware. In addition, external devices using TrueCrypt can be used on multiple
platforms. Once Truecrypt encrypts a hard disk partition under one system,
the encrypted partition can be automatically mounted on another system.

5.5.2 Scenario 2: Desktops

Traditional computers with large amounts of sensitive data are given the same
suggestions as laptops.

5.5.3 Scenario 3: Limited Sensitive Data

For existing desktop system users, with limited amounts of sensitive data, the
filesystem level encryption tools can meet the requirements.

For Windows users, EFS can be a good method. The EFS attribute can
be enabled for files or folders which are important. Alternatively, EFS can
encrypt an empty directory, where confidential data can be stored as need.
However, if there is a large amount of data to be encrypted, EFS will be very
time-consuming.

Linux users can choose eCryptfs for encryption of existing file systems,
which takes only a very short time to set up. However, large directory I/O
operations will takes more time than previously. If you need to copy or move
the encrypted directories quite often, then eCryptfs is not a good choice.

.

5.5.4 Scenario 4: External Media

If you want to encrypt an external USB stick or hard disk, TrueCrypt certainly
works fine for both Windows and Linux users. For users with Windows 7
Ultimate or Enterprise OS, Bitlocker to go also functions very well. However,
EFS can not encrypt the folders or files on external USB devices.

For Linux users, both eCryptfs and Dm-crypt can be used for encryption
on external USB devices. In case the USB device is lost or stolen, Dm-crypt is
more secure.

69

5.6. PROBLEMS ENCOUNTERED

5.6 Problems Encountered

1. When setting up TrueCrypt encryption, Red Hat 5.4 with kernel 2.6.18
can not initialize any Truecrypt-6.3a file systemsdue to an acknowledged
kernel bug. One solution it to upgrade the current kernel to 2.6.24 or
later, but this is not practical for ordinary users. So in the experiment,
instead of using Red Hat platform for TrueCrypt encryption, Ubuntu
8.10 platform with kernel 2.6.24-27-generic was used.

2. In the sequential I/O performance tests, the memory cache makes a big
difference in the real time of I/O operations. To make sure the results are
not affected by cache, flushing cache was an important step in each test.

3. The benchmark tool HD Tune Pro was tried on the Windows platform.
However, it is limited to measuring the lowest level disk operations, and
thus could not show the performance effects of encryption.

4. The IOzone benchmark results of the Linux encryption facilities are quite
anomalous. eCryptfs shows extremely high performance, but Dm-crypt
and the unencryptedLinux environment have extremely low performance.
These results seem suspect and call into question the accuracy of IOzone
in the Linux environment in general.

5.7 Experiment Validation and Reliability

When trying to compare different approaches, a reference model is needed.
In the experiment, the unencrypted state is the reference model for the other
encryption approaches. In addition, to compare various factors related to each
approach, one factor is made variable while other factors remain stable. Then
the result will show the affect of that certain factor on the performance of dif-
ferent approaches.

In the thesis, the aim is to compare different encryption tools. First, they are
divided into two groups (Windows and Linux). Each platform has the same
hardware environment. Then, to evaluate different benefits of these tools, the
same sequential I/O tasks are tested, and also different benchmark tools are
used to measure performances for a variety of I/O types. The performance
penalty is compared for the different cases.

To eliminate the experiment errors, for sequential I/O tasks, tests are re-
peated three times each, and results presented are the average. For different
benchmark tests, the benchmark tools’ internal mechanisms for repeated test-
ing were used to ensure that the results are reliable.

5.8 Future Work

The thesis evaluated different encryption tools with various performance tests.

70

5.9. CONCLUSION

It would be interesting to perform case studies about these encryption ap-
proaches with actual users operations. For example, observing and recording
all the operations a user did in a given time period, then executing the same
operations under different encryption situations using each tool would be an
interesting comparison. Also database operations can be performed to com-
pare the access time under different encryption states using each encryption
tool for a very different kind of I/O operation.

Due to the kernel bug on Red Hat 5.4 with kernel 2.6.18 for TrueCrypt
6.3a file systems, TrueCrypt encryption was just compared based on an exter-
nal USB stick in the thesis. It would be beneficial to continue with TrueCrypt
encryption performance comparison on multiple hardware environment and
platforms.

As mentioned, IOzone benchmark results under Linux environment are
odd. The IOzone benchmark tests were repeated under different hard disk
environments, and produced similar trends.. It would be important to study
the accuracy of IOzone benchmark in the Linux environment in more detail.

Future work can also consider different types of hard disks. For example,
the encryption performance based on other types of hard disk like SCSI might
be different.

Furthermore, people can deploy each encryption tools on different plat-
forms, such as cell phones, which are popular, mobile and easily lost or stolen.
Therewill be a strong requirement to have encryption function on such portable
devices in the future, and so a similar study would be useful.

Finally, it might be interesting to observe ordinary users attempting to use
each of the encryption tools in various environments in order to confirm the
thesis’ judgment about the tools’ ease of use.

5.9 Conclusion

With the aim of comparing different encryption facilities onmultiple platforms
and evaluating their benefits to the normal users, this thesis has performed
research about encryption technologies, described the features and advan-
tages/disadvantages of some popular encryption facilities, and also measured
and compared the performance penalty of these facilities.

By demonstrating the installation and use of different encryption tools on
different platforms, it provides general information of how to use these tools
for encryption. Based on all of these results and evaluations, recommendations
for encryption tools were made for several common scenarios. Hopefully, the
results of this thesis will be valuable to users who want to use encryption tech-
nology.

71

Appendix A

Experiment Setup

A.1 Dm-crypt Encryption Setup on Logical VolumeWith-

out LUKS

cryptsetup create DMCRYPT /dev/mapper/LVMG-DATA
Enter passphrase:

cryptsetup status DMCRYPT
/dev/mapper/DMCRYPT is active:
cipher: aes-cbc-plain
keysize: 256 bits
device: /dev/mapper/LVMG-DATA
offset: 0 sectors
size: 125575168 sectors
mode: read/write
ls -l /dev/mapper/
total 0
crw——- 1 root root 10, 63 Feb 10 19:40 control
brw-rw—- 1 root disk 253, 1 Feb 11 08:09 DMCRYPT
brw-rw—- 1 root disk 253, 0 Feb 10 21:27 LVMG-DATA

mkfs.ext3 /dev/mapper/DMCRYPT
mount /dev/mapper/DMCRYPT /mnt/crypt/
df -H
Filesystem Size Used Avail Use%Mounted on
/dev/sdb1 11G 4.1G 5.6G 43% /
tmpfs 1.1G 0 1.1G 0% /dev/shm
/dev/sdc1 512M 7.8M 504M 2% /media/BIANCA
/dev/mapper/DMCRYPT 64G 189M 60G 1% /mnt/crypt

umount /mnt/crypt/
cryptsetup remove DMCRYPT

72

A.2. SEEKWATCHER INSTALLATION

A.2 Seekwatcher Installation

• First, download and install blktrace. Make sure blktrace can have live
run.

yum install blktrace

mount -t debugfs debugfs /sys/kernel/debug

blktrace -d /dev/sdb3 -o - | blkparse -i -

• Second, install matplotlib for generating graph by Seekwatcher. On mat-
plotlib website [49], there are detailed infomation about matplotlib in-
struction. Using EPD32-6.1 [50] is a recommended method here. After
installing EPD32-6.1 successfully, do not forget to export the path.

export PATH = "/usr/EPD/bin:" \$PATH

• Third, install Seekwatcher version 0.12. To read the output file of Seek-
watcher, using the following command:

blkparse -i read_file_unencrypt.trace.blktrace.0

A.3 Ext2Fsd –Mount Linux Hard Disk Partition onWin-

dows

Ext2Fsd is an open source Linux ext2/ext3 file system driver for Windows
systems. It will allow users to have read/write access to Linux partitions from
Windows platform. First choose Linux partition which you want to mount,
then change the filesystem to ’NTFS’ or ’FAT’, after that this partition will be
mount as a Windows volume. Here is the graph of volume manager interface:

73

A.4. HPC CALCULATION GAUSSIAN 09 INPUT FILE

A.4 HPC Calculation Gaussian 09 Input File

%rwf=hpctest.rwf

%chk=hpctest.chk

#p CCSD/6-31G(d,p) Geom=Connectivity Transformation=Full

HPC I/O performance benchmark

0 1

C

H 1 B1

H 1 B2 2 A1

H 1 B3 3 A2 2 D1 0

C 1 B4 3 A3 4 D2 0

H 5 B5 1 A4 3 D3 0

H 5 B6 1 A5 3 D4 0

C 5 B7 1 A6 3 D5 0

H 8 B8 5 A7 1 D6 0

H 8 B9 5 A8 1 D7 0

C 8 B10 5 A9 1 D8 0

H 11 B11 8 A10 5 D9 0

H 11 B12 8 A11 5 D10 0

C 11 B13 8 A12 5 D11 0

H 14 B14 11 A13 8 D12 0

H 14 B15 11 A14 8 D13 0

H 14 B16 11 A15 8 D14 0

C 11 B17 8 A16 5 D15 0

H 18 B18 11 A17 8 D16 0

H 18 B19 11 A18 8 D17 0

H 18 B20 11 A19 8 D18 0

H 18 B21 11 A20 8 D19 0

B1 1.07000000

B2 1.07000000

B3 1.07000000

B4 1.54000000

B5 1.07000000

B6 1.07000000

B7 1.54000000

B8 1.07000000

B9 1.07000000

B10 1.54000000

B11 1.07000000

B12 1.07000000

B13 1.54000000

B14 1.07000000

B15 1.07000000

74

A.4. HPC CALCULATION GAUSSIAN 09 INPUT FILE

B16 1.07000000

B17 1.90715663

B18 1.07000000

B19 1.07000000

B20 1.07000000

B21 1.07000000

A1 109.47122063

A2 109.47122063

A3 109.47122063

A4 109.47122063

A5 109.47122063

A6 109.47122063

A7 109.47122063

A8 109.47122063

A9 109.47122063

A10 109.47122063

A11 109.47122063

A12 109.47122063

A13 109.47122063

A14 109.47122063

A15 109.47122063

A16 108.42539314

A17 82.77736425

A18 108.42283070

A19 132.78888874

A20 29.58769036

D1 -120.00000000

D2 -120.00000000

D3 60.00000000

D4 -60.00000000

D5 -180.00000000

D6 60.00000000

D7 -60.00000000

D8 -180.00000000

D9 60.00000000

D10 -60.00000000

D11 -180.00000000

D12 60.00000000

D13 180.00000000

D14 -60.00000000

D15 -28.58883891

D16 -71.82906644

D17 179.99502606

D18 38.08086288

D19 82.81926042

1 2 1.0 3 1.0 4 1.0 5 1.0

75

A.4. HPC CALCULATION GAUSSIAN 09 INPUT FILE

2

3

4

5 6 1.0 7 1.0 8 1.0

6

7

8 9 1.0 10 1.0 11 1.0

9

10

11 12 1.0 13 1.0 14 1.0

12

13

14 15 1.0 16 1.0 17 1.0

15

16

17

18 19 1.0 20 1.0 21 1.0 22 1.0

19

20

21

22

76

Appendix B

Sequential I/O Tests Raw Data

B.1 InternalHardDisk Sequential I/OOperation onWin-

dows

B.2 Internal Hard Disk eCryptfs Encryption Sequential

I/O Operation

77

B.3. INTERNALHARD DISK DM-CRYPT ENCRYPTION SEQUENTIAL
I/O OPERATION

B.3 Internal Hard Disk Dm-crypt Encryption Sequential

I/O Operation

B.4 External USB Hard Disk Sequential I/O Operation

on Linux

B.5 InternalHardDisk Sequential I/OOperation on Linux

78

B.6. TRUECRYPT ENCRYPTION SEQUENTIAL I/O OPERATION ON
WINDOWS AND LINUX

B.6 TrueCrypt Encryption Sequential I/O Operation on

Windows and Linux

79

Appendix C

Bonnie++ Benchmark Results
Raw Data

80

Appendix D

IOzone Benchmark Results

D.1 Different Tools IOzone Benchmark PerformaceRewriter

Report

D.2 Different Tools IOzone Benchmark PerformaceRan-

domWrite Report

81

D.3. DIFFERENT TOOLS IOZONE BENCHMARK PERFORMACE
REREADER REPORT

D.3 Different Tools IOzone Benchmark PerformaceRereader

Report

D.4 Different Tools IOzone Benchmark PerformaceRan-

dom Read Report

82

D.5. IOZONE BENCHMARK TESTS RAW DATA

D.5 IOzone Benchmark Tests Raw Data

Unencrypted Internal Hard Disk (Windows)

rand rand rec

KB reclen write rewrite read reread read write rewrite

64 32 3832 4347 661587 778743 361156 3880 4706

64 64 3862 3941 1045585 1107546 491837 4527 3858

128 32 5107 4694 786940 810399 520065 6254 7951

128 64 5750 9188 1107546 1145737 706944 7391 10336

128 128 9135 7859 1329055 1437679 819280 8798 7930

256 32 10274 13444 746660 821531 641711 9338 15940

256 64 15300 15303 1107546 1168114 858070 11418 15914

256 128 13636 13633 1427386 1480383 1020605 12508 15658

256 256 8445 10338 1612061 1708785 1147936 8315 10401

512 32 20249 20188 819842 698685 558948 18438 31439

512 64 13308 15797 944080 1160184 956919 13051 20986

512 128 16236 16236 1455170 1497058 1156817 15879 31988

512 256 25383 25382 1663629 1726045 1354642 22825 25038

512 512 20577 18175 1652140 1848763 1350056 19033 21129

1024 32 25395 24148 813707 766762 752532 29652 59169

1024 64 21016 20456 1127911 1170400 1052022 23208 59086

1024 128 30650 26754 1424835 1484977 1290344 31287 65486

1024 256 23476 30668 1627414 1693064 1479467 25700 45701

1024 512 24546 26408 1564617 1797370 1244045 25237 23298

1024 1024 21799 23329 1427386 1706347 1475817 23751 23428

2048 32 30765 35437 795048 787070 759580 36158 84357

2048 64 30691 30687 1093372 1141909 1008345 34813 161630

2048 128 27454 30907 1401053 1443753 1345500 28778 67225

2048 256 35048 35077 1580118 1635760 1304416 33862 110913

2048 512 33432 35077 1626308 1753242 1584304 33667 80023

2048 1024 35067 35075 1474907 1598596 1299103 34053 50037

4096 32 40947 37975 640294 637479 621780 37611 153143

4096 64 40935 41985 835081 867639 816484 43549 169597

4096 128 41008 40946 1047416 1056902 993067 47659 254074

4096 256 40066 40943 1120121 1181820 1171403 39446 100233

4096 512 44685 44681 1204733 1256624 1181382 42619 164628

4096 1024 43751 44651 974757 1166833 1047531 43411 96496

8192 32 42350 47012 627673 635996 600967 44694 231198

8192 64 46853 46579 780744 827964 780649 47597 302191

8192 128 49198 51779 980551 998559 1018216 47343 312473

8192 256 46848 49193 1071878 1101110 1124597 46731 258159

8192 512 46851 49197 826819 1017188 1172911 49804 189708

8192 1024 46851 46854 881750 975453 1001957 50088 192853

16384 32 47551 51010 628312 626113 578610 50379 332870

16384 64 50374 51750 816310 626184 780712 47932 405131

16384 128 51751 53148 973567 987864 974187 53600 444562

16384 256 53157 54624 1078675 1101997 1113765 51270 220668

16384 512 51523 54653 1102315 1130075 1159586 53842 448395

16384 1024 49439 48232 1030358 1062860 1076006 50233 333389

32768 32 53849 54149 617367 633260 583434 52174 424138

32768 64 54614 54631 813128 828995 778125 53101 637505

32768 128 53151 54146 969658 988247 937478 54199 710678

32768 256 55401 56207 1061430 1082320 1062211 52660 815875

32768 512 57001 57007 1104940 1127412 1131729 55722 757146

32768 1024 55401 55859 1034549 1062904 1045771 54609 498045

83

D.5. IOZONE BENCHMARK TESTS RAW DATA

65536 32 53124 52305 622313 623321 543360 52063 438620

65536 64 53869 53870 814062 821597 771293 53059 663784

65536 128 55804 56608 956830 974292 941080 55765 890447

65536 256 57010 57011 1048765 1071496 1071601 56791 928152

65536 512 57255 58278 1087864 1112172 1106977 57984 921621

65536 1024 55126 54739 1022145 1042516 1036104 55357 698449

131072 32 54451 54841 622340 629232 564492 54166 493167

131072 64 56731 57186 811153 824455 764522 56913 790597

131072 128 58705 56200 957787 969981 932165 563371040003

131072 256 58875 59287 1053194 1069501 940814 588661162531

131072 512 58030 58496 1084958 1109062 1098995 584821254339

131072 1024 60751 59608 1022121 1038588 1030781 593921141517

262144 32 55117 58411 620455 625889 558941 52287 522082

262144 64 57220 60758 809221 819377 755286 55827 784304

262144 128 58131 58696 953018 968940 922139 563011075625

262144 256 59132 59157 1036196 1064049 988671 570211342621

262144 512 59050 59363 1085058 1107672 1050141 591371367037

262144 1024 58821 59494 1021973 1037134 994536 577221463001

524288 32 56569 57330 619131 618612 546198 22025 533447

524288 64 58672 59866 805942 814959 740716 26634 811658

524288 128 59200 60313 950198 962758 905435 329561130724

524288 256 59779 60674 1042063 1057168 1043067 382871416362

524288 512 60000 60815 1079398 1098115 1091862 447771535353

524288 1024 60116 59738 1015366 1031529 997365 524271665686

1048576 32 59634 58555 67965 625528 549741 12884 536451

1048576 64 58965 61247 63331 815806 747180 16800 838625

1048576 128 60179 61619 63395 961075 910726 220011165685

1048576 256 59943 61758 63296 1055314 1034064 283481448947

1048576 512 60698 61710 1091709 1102599 1073279 363841658722

1048576 1024 60288 61849 1019336 1037300 1011192 445911734236

Internal Hard Disk Bitlocker Encryption (Windows)

rand rand rec

KB reclen write rewrite read reread read write rewrite

64 32 2710 2708 725815 786937 421177 3993 2356

64 64 2906 3949 1052944 1091372 465788 3614 2991

128 32 3694 4356 793199 817038 549698 4792 4668

128 64 5307 5307 1119985 1141359 692213 4095 7544

128 128 4787 8892 1390865 1430795 839989 7785 8984

256 32 8126 8127 818156 828355 662317 7887 9656

256 64 8194 8235 983671 1085430 779755 9064 14058

256 128 12283 12432 1427380 1480377 1011966 9449 14083

256 256 9450 18317 1625196 1694255 1117892 15422 18467

512 32 15333 20423 820400 835880 705690 17257 31233

512 64 15924 21501 1113728 1171542 978841 16982 28296

512 128 16374 12271 1429085 1502694 1107541 13222 32608

512 256 16634 24150 1638554 1726038 1337969 22973 25761

512 512 20798 15486 1432508 1815090 1224303 16767 15760

1024 32 20521 24879 813703 836172 752528 23146 63326

1024 64 24544 20458 1137019 1062767 1032048 28864 58392

1024 128 20455 30658 1319519 1446365 1127906 30455 52209

1024 256 22043 22081 1600193 1685898 1518913 20536 40240

84

D.5. IOZONE BENCHMARK TESTS RAW DATA

1024 512 19784 20459 1626301 1806865 1553434 22196 31312

1024 1024 25003 21017 1456936 1717364 1516026 26265 25829

2048 32 22333 24769 797429 817736 763943 22667 136499

2048 64 24606 27345 1132176 1162716 1089881 26933 85977

2048 128 22063 24649 1392079 1454279 1358097 23986 90711

2048 256 24608 27346 1572322 1647014 1522781 26392 82190

2048 512 24610 30769 1607181 1756453 1619694 29512 50036

2048 1024 30696 24525 1362739 1542914 173991 27531 54000

4096 32 32759 38074 646739 536477 590433 35919 137806

4096 64 35145 37852 828211 864656 846004 37757 155194

4096 128 35147 41007 950358 1067986 1003792 39978 196600

4096 256 30883 32792 1133115 1180211 1243716 31702 130620

4096 512 32722 35091 1155276 1121823 1184301 39501 115975

4096 1024 32767 35146 1012073 1131507 1164272 39640 85007

8192 32 36404 42995 644019 650918 599871 42675 177108

8192 64 39199 42740 704754 739045 349762 41062 297993

8192 128 44916 46846 978891 1023384 1009511 47255 271188

8192 256 39323 44721 1095746 1115351 1147656 44446 235296

8192 512 37821 39349 1094931 1087095 1171757 39170 209597

8192 1024 41456 39788 1053233 977691 1128039 36364 193862

16384 32 43881 45810 629736 641859 589451 44489 391632

16384 64 49156 50423 813980 841966 729287 50762 441147

16384 128 47956 48844 968587 991211 982913 49840 417912

16384 256 43721 45752 1044696 1088982 1137560 45387 401390

16384 512 45732 49185 1106165 1125849 1098072 47740 310613

16384 1024 46827 49186 1032995 1046581 1048962 45525 290293

32768 32 48537 48216 625910 628805 545534 48612 397153

32768 64 47052 47391 721601 813937 604061 46860 570475

32768 128 52446 50437 957466 961253 956867 51151 689755

32768 256 49789 49157 1059355 1089446 1061308 50672 745471

32768 512 49680 50631 1070106 1134424 1103772 50221 617325

32768 1024 51755 51506 1028665 1041455 1088068 53069 574706

65536 32 46013 46410 627143 634396 516544 46849 465078

65536 64 51130 50758 817138 830214 778898 50591 721234

65536 128 52449 52802 960957 975834 953411 52592 922178

65536 256 53885 53891 1056482 1078754 1077903 53632 931327

65536 512 50764 51427 1085830 1119314 1111190 50630 888722

65536 1024 52807 53165 1014709 1044874 1049249 52823 904719

131072 32 50893 51642 628548 634385 543643 50936 507396

131072 64 50471 54700 811265 824994 772937 50780 788629

131072 128 54029 54077 956270 970841 938701 537601015180

131072 256 54069 54579 1050790 1073629 1066907 538791219000

131072 512 55795 56198 1078355 1111965 1045784 559961195019

131072 1024 53766 54447 1030014 1045074 956094 550341118533

262144 32 52331 52983 625188 631341 562916 46567 526952

262144 64 55002 54235 814652 824494 763846 49430 786197

262144 128 55889 55771 959919 977612 931513 519621122905

262144 256 56754 56283 1050861 1067401 1056484 545791279456

262144 512 56452 57015 1084473 1112809 1031751 541151413569

262144 1024 56293 57327 1020024 1043935 1035817 538051420157

524288 32 56153 57619 622955 624306 558143 20166 530268

524288 64 56300 58227 810812 810371 745462 26129 814094

524288 128 57385 58880 953405 957226 903689 328351139531

524288 256 57008 58936 1050286 1067648 1008382 370491409703

524288 512 58664 59105 1088622 1112554 1041305 442351578126

524288 1024 58097 59137 1023547 1036807 990677 506411571715

1048576 32 58160 58568 625955 635849 558522 11741 543632

85

D.5. IOZONE BENCHMARK TESTS RAW DATA

1048576 64 57462 59521 810217 825794 745557 15899 845635

1048576 128 59361 61138 955414 973596 908251 218331186517

1048576 256 58442 60004 1050789 1059458 1030742 276141426666

1048576 512 60079 61427 1092287 1100621 1078074 360691641147

1048576 1024 58741 60407 1017137 1042177 1013632 436131711984

Internal Hard Disk EFS Encryption (Windows)

rand rand record

KB reclen write rewrite read reread read write rewrite

64 32 3837 4311 725822 821534 201508 4445 3587

64 64 4754 3837 1003485 1091382 462908 4488 3867

128 32 4285 5137 766765 819284 528336 5026 5880

128 64 9115 5721 1107550 1141369 685868 8721 12476

128 128 7629 5218 1390877 1444631 778746 8811 7859

256 32 8590 11740 803867 827216 632217 9951 15294

256 64 12682 12660 1060420 1152365 546688 11364 11798

256 128 13237 13235 1410559 1444631 1005172 12739 15061

256 256 7462 8055 1620806 1713688 1189020 8222 7812

512 32 14815 14815 783336 830663 700324 13962 28959

512 64 20433 15368 1164707 1041946 981259 16912 28460

512 128 12522 12314 1403937 1482224 991836 13385 30794

512 256 15428 15402 1491464 1506492 1079562 13988 26296

512 512 14865 15596 1638568 1848771 1469477 17413 15062

1024 32 19903 21206 830086 603661 728474 19187 71007

1024 64 20396 20394 1139195 1184898 1063721 22585 55767

1024 128 20724 20474 1334994 1452525 94944 20652 59819

1024 256 18690 18637 1568727 1652147 858381 19043 52610

1024 512 20376 20355 1339479 1721086 1514120 18961 31164

1024 1024 20931 20756 1320259 1687101 1241468 21859 21225

2048 32 24596 27551 807530 765784 737229 24990 84868

2048 64 24574 27344 1116076 1154589 1073506 26759 130080

2048 128 27383 26578 373360 1227769 1308345 33229 75625

2048 256 31539 24302 1545919 1595937 1403937 30051 91708

2048 512 27780 30773 1535007 1597535 1621355 33620 72860

2048 1024 32833 30763 1343616 1641378 1450763 33821 46750

4096 32 37243 38618 631591 661361 614003 39453 149797

4096 64 35126 37798 851962 824507 839996 35132 116802

4096 128 35114 37799 1006334 1029836 963184 37008 215024

4096 256 35145 34355 1069786 1005066 106543 35520 106179

4096 512 35970 37799 1138111 1119602 1192131 39371 108935

4096 1024 38898 30407 924474 1089518 933584 24498 65724

8192 32 36603 27730 575368 564873 600648 39892 253991

8192 64 35094 42776 805932 778081 644132 41586 274520

8192 128 40993 39371 990758 973621 862287 43456 215179

8192 256 23422 42065 912398 1059716 1040926 43891 174390

8192 512 41804 44682 799635 688830 942921 38870 162861

8192 1024 40054 40989 424384 916198 534863 40118 150395

16384 32 42190 41087 570250 547831 516356 39507 327534

16384 64 43069 43716 371556 694505 542781 43766 499588

16384 128 45913 44694 980379 970019 963572 46179 458148

16384 256 44714 45710 945460 1015115 1091755 45457 448396

16384 512 43704 44865 1110668 1116857 1189464 45042 402208

86

D.5. IOZONE BENCHMARK TESTS RAW DATA

16384 1024 46386 47101 993458 1016787 1109026 45947 244618

32768 32 44714 45784 633556 650990 586359 44848 441011

32768 64 46840 47401 813710 837286 785748 47545 571327

32768 128 45843 48573 970843 994697 966785 47026 625118

32768 256 47586 48573 1018667 865661 1044662 48222 672286

32768 512 47505 47377 893048 1116190 1138619 45219 691994

32768 1024 47417 46832 724379 1021536 982796 47223 439985

65536 32 45489 46133 601791 597144 565407 45673 476443

65536 64 46709 47687 807296 815131 769958 46682 687732

65536 128 47849 48422 952512 979821 938776 48863 861690

65536 256 48546 48873 1052323 1082217 1073123 48843 835053

65536 512 47746 48519 1084079 1114346 917318 47046 952820

65536 1024 49179 48870 1040622 1056943 1043551 49133 790454

131072 32 48121 47122 628007 635546 566522 41833 485348

131072 64 48272 47686 811960 830124 768220 48130 727764

131072 128 48170 49340 951524 971148 870457 49338 940855

131072 256 49814 50116 1049765 1069532 1055602 497471143355

131072 512 49822 50116 1092336 1106470 1107066 493421180317

131072 1024 50117 50436 1023181 1054526 1041149 502151011681

262144 32 47498 48273 627712 635733 549729 44526 508046

262144 64 55643 49559 813209 825675 756783 48177 812328

262144 128 49593 51608 960337 973510 905473 511801086356

262144 256 51521 51174 1050178 1068763 1048996 506561363846

262144 512 51207 52192 1087255 1110593 1029536 502001388585

262144 1024 51723 51257 1030262 1045341 1032722 513761313934

524288 32 50235 54768 624714 624377 548491 17794 513040

524288 64 53845 54544 812756 808616 745018 24877 823320

524288 128 51737 54925 955750 951354 901660 297761126160

524288 256 54256 55069 1045845 1062558 1008766 360931430750

524288 512 52149 54829 1082555 1105859 1052748 422751512966

524288 1024 51935 55263 1022486 1019659 978295 487971575333

1048576 32 52007 53386 52712 635468 550771 10850 522639

1048576 64 52084 58639 54470 821985 742060 14835 829965

1048576 128 53149 54521 52453 969388 915262 207661156563

1048576 256 53510 54029 50191 1063021 1026929 268131465542

1048576 512 52419 54192 47609 1106757 1083330 351061622216

1048576 1024 53487 54216 1014763 1038083 1019351 435311703374

Internal Hard Disk TrueCrypt (Windows)

rand rand record

KB reclen write rewrite read reread read write rewrite

64 32 32003 27131 729362 799568 605341 37435 50377

64 64 47211 47815 1075678 1107550 844742 46579 45419

128 32 55542 54193 791107 823798 695438 55326 103045

128 64 52115 52684 1128447 1154589 974067 63679 86452

128 128 59700 50624 1397377 1378058 1205801 46155 61404

256 32 61473 58663 812605 835303 758981 65903 114508

256 64 63740 59819 1161315 1156822 1064194 66166 155952

256 128 58235 63048 1455176 1491464 1323180 67267 104558

256 256 71600 63828 1647596 1708792 1514120 69795 63645

512 32 78964 75931 817045 838818 785909 75984 257958

512 64 64385 77241 1153476 1194959 1115816 90645 251451

87

D.5. IOZONE BENCHMARK TESTS RAW DATA

512 128 85178 78118 1432520 1506492 1370165 78328 199959

512 256 83483 56652 1578040 1677636 1603424 89720 123276

512 512 84617 63948 1616425 1736073 1594873 53576 50128

1024 32 81210 67406 765539 842066 718411 87591 328930

1024 64 99200 69388 1151810 1095379 929774 64969 389183

1024 128 76992 79037 1433379 1480389 1434238 89926 229544

1024 256 83949 74508 1607735 1701500 1641942 94955 194988

1024 512 106495 75196 1604500 1774710 1710014 69862 179832

1024 1024 83501 68748 1422300 1697877 1685912 82801 78085

2048 32 81919 65521 806849 825646 768613 50504 414611

2048 64 82843 58238 1072303 1156543 1058075 60252 541552

2048 128 72044 53501 1406413 1463633 1418085 57574 182905

2048 256 86696 49903 1565135 1659597 1609357 55520 393601

2048 512 58795 44784 1615334 1744301 1717379 45969 230639

2048 1024 54062 43451 1414312 1652147 1390069 49370 65929

4096 32 58818 55283 605763 661132 596660 58084 436572

4096 64 65882 50226 814611 868273 860156 61184 574073

4096 128 57258 50140 972286 914316 744803 61270 671855

4096 256 62573 39120 1129913 1156543 1014120 66217 591204

4096 512 68655 42293 1085070 1228558 1233785 74561 433802

4096 1024 53069 56053 835303 1106654 1173563 67266 247619

8192 32 59869 58159 636697 619849 600328 52104 509476

8192 64 57990 60289 827717 852759 802620 60748 700632

8192 128 62139 62252 992247 1000652 1023886 62129 833375

8192 256 62128 57942 1050583 1080537 1108834 62829 802552

8192 512 63118 58539 1078649 1086055 1098334 61557 708937

8192 1024 62754 62055 675245 911095 1067280 60819 471902

16384 32 55288 56387 613963 610799 491057 56345 507524

16384 64 57535 59721 820460 826341 773224 58978 732867

16384 128 60395 59548 932583 907768 857996 59547 992633

16384 256 57492 57890 919898 961346 1063071 568771044876

16384 512 57245 56259 1062923 1112961 1108898 57427 936553

16384 1024 57533 59672 974464 1003485 1030695 54990 745021

32768 32 54754 55514 618507 624364 578791 54456 528132

32768 64 54425 56342 795795 807173 774845 56276 828998

32768 128 58125 58873 948693 969748 942666 592821110329

32768 256 58599 58756 1009573 1030834 1008110 595711068472

32768 512 57695 57934 1055057 1071058 1086040 581511367375

32768 1024 58341 57127 940327 781146 1002605 581941102526

65536 32 54473 54738 607409 615563 554565 49235 518999

65536 64 55059 55463 798376 817481 760538 55090 835882

65536 128 55225 55880 945758 963530 928168 530961149044

65536 256 57815 57918 1033311 1053888 1044669 573741386519

65536 512 57168 58776 1068763 1097067 1076435 587571499601

65536 1024 55692 54691 984135 1029670 1001313 557121421072

131072 32 52341 52881 616777 625279 557706 52309 539608

131072 64 54608 55458 796078 817063 758346 54648 851872

131072 128 57629 58139 939747 962164 920857 577331153558

131072 256 57936 58108 1020065 1053329 1044145 579971450145

131072 512 58266 58529 1060769 1097842 1075875 585111603567

131072 1024 58149 58563 1004713 1028895 1006123 584631622162

262144 32 55111 54087 618968 627095 548839 52151 544801

262144 64 56066 56439 804011 814059 752997 49092 856393

262144 128 56586 56834 944550 956822 915356 517541202460

262144 256 59773 57868 1028482 1058613 1037027 521041493254

262144 512 58288 58119 1076049 1088300 1083425 573721668072

262144 1024 58221 59171 1010667 1036959 1016215 546191747586

88

D.5. IOZONE BENCHMARK TESTS RAW DATA

524288 32 56823 58261 624590 627114 555288 20415 548593

524288 64 58962 59838 811474 810828 749611 25691 862522

524288 128 58329 59602 952860 953820 913253 321071210157

524288 256 59836 60473 1043044 1060423 1023863 370571508527

524288 512 59107 60066 1080467 1098123 1063279 439361707320

524288 1024 59458 60707 1015328 1028593 989376 510461796239

1048576 32 59308 60983 62930 634852 552105 11794 543928

1048576 64 59313 57437 807288 821605 746342 15988 858896

1048576 128 59948 62085 948429 967287 908374 215351213323

1048576 256 59816 60760 1042489 1048559 1032845 277091501319

1048576 512 60677 62182 1081915 1086317 1073073 359581720001

1048576 1024 59871 61753 1015656 1024027 1007005 438901829722

Unencrypted Internal Hard Disk (Linux)

rand rand record

KB reclen write rewrite read reread read write rewrite

64 32 19030 24883 145 79406 81632 13341 43095

64 64 23694 22832 66593 92083 79800 26272 27349

128 32 29871 62013 124023 113264 66252 51159 106932

128 64 30755 50451 99300 94532 87252 26823 63747

128 128 34990 50257 97935 92353 112379 50914 48966

256 32 54527 63540 131747 76623 62500 62515 138899

256 64 44329 69378 129159 134179 101870 72051 104748

256 128 53601 93841 109965 120929 134171 45054 53735

256 256 54759 70004 111358 104065 120470 65339 52213

512 32 74353 92601 151609 149925 27767 69395 249755

512 64 60477 102685 147633 122751 92003 94604 160551

512 128 76361 103772 126952 100296 121298 104425 138228

512 256 65616 90315 132918 133370 157684 97971 144794

512 512 68294 85991 98576 109005 113424 94169 100115

1024 32 89919 34150 13357 37082 30292 92277 370063

1024 64 35404 82633 61988 61850 22130 106733 319594

1024 128 78030 37626 61858 61783 29260 89268 256192

1024 256 71990 78701 61757 61843 51431 98736 210746

1024 512 40488 88965 61809 53111 60624 94152 128368

1024 1024 14824 103329 60941 60909 60313 104543 88934

2048 32 51122 70189 61731 61714 15077 15767 377237

2048 64 16693 72318 61779 61714 24044 13013 335193

2048 128 32986 33749 61619 61623 30586 50489 385250

2048 256 9639 29555 48122 61636 23525 50112 252592

2048 512 16849 73339 61638 61662 40775 14462 236678

2048 1024 28704 46118 61564 61625 61045 61710 92140

4096 32 36745 68920 56741 62776 12436 18188 572218

4096 64 14293 67737 56925 62779 12453 49378 543372

4096 128 16829 72050 62733 62710 23864 59201 577795

4096 256 50258 16156 62753 62755 27507 61717 483361

4096 512 15565 62870 57591 62730 29142 37348 388508

4096 1024 24410 68891 57246 62749 55403 53588 342560

8192 32 54388 26555 61749 62652 8774 44400 640900

8192 64 29919 39915 58375 62650 14994 41160 638204

8192 128 24288 50773 60795 62616 20609 35479 631902

8192 256 34369 30061 59164 62628 29975 34315 554864

89

D.5. IOZONE BENCHMARK TESTS RAW DATA

8192 512 26030 51084 62618 62630 33091 49358 563409

8192 1024 53415 22394 61627 62622 47077 47280 456634

16384 32 33482 48140 61366 62919 6526 41915 701280

16384 64 32306 41412 60922 61933 11278 38946 605156

16384 128 34056 50859 62086 62901 17342 35430 601864

16384 256 41128 50929 61588 62912 25873 42804 681556

16384 512 32764 48986 60759 62900 35743 44779 651760

16384 1024 35424 53349 61634 62907 44663 41399 578325

32768 32 47645 47898 62305 61778 5765 46283 658839

32768 64 43459 48079 62137 62898 10170 44047 728160

32768 128 43247 47317 62656 62891 17105 46865 706923

32768 256 47300 47124 62429 61861 25777 46224 689199

32768 512 44470 43570 62237 62892 34643 42795 712364

32768 1024 44641 40019 62049 62894 43463 45781 651179

65536 32 47712 47183 62216 62422 5280 47465 700800

65536 64 47611 47320 62110 62553 9706 47180 734008

65536 128 48215 47297 62507 62274 15843 46898 514080

65536 256 47472 41501 62387 62136 24459 47462 756102

65536 512 48837 49005 62275 62472 34320 46895 744811

65536 1024 48026 48527 62134 62330 44178 45803 720143

131072 32 47705 46580 62262 62270 4973 46079 732822

131072 64 48316 46409 62431 62435 8961 47325 739071

131072 128 48351 46871 62468 62342 15345 47468 761528

131072 256 47716 45055 62297 62419 24549 46624 766615

131072 512 48243 41345 62325 62336 33803 47182 766170

131072 1024 48374 46239 62382 62269 42731 47466 730979

262144 32 50158 45820 62514 62519 4612 45899 739734

262144 64 50226 45795 62444 62455 8370 45845 756572

262144 128 50295 46451 62496 62505 14457 46247 769612

262144 256 50370 46067 62528 62475 23591 46869 773525

262144 512 50292 45463 62475 62539 32558 47577 769371

262144 1024 50280 46401 62462 62413 42672 47008 770748

524288 32 52062 44389 62578 62541 4315 14506 736411

524288 64 52303 44450 62569 62533 7920 19354 757291

524288 128 52319 44890 62575 62509 13755 24003 773888

524288 256 52324 44365 62541 62564 22315 30964 775837

524288 512 52238 44936 62583 62573 32062 35485 779901

524288 1024 52143 44543 61473 62569 41626 39251 779261

1048576 32 53078 45267 62447 62485 4045 8635 744156

1048576 64 53233 45550 62448 62447 7499 12792 762100

1048576 128 53311 45011 61683 62493 13156 16763 768148

1048576 256 53290 45136 62487 62447 21507 21892 779805

1048576 512 53294 45273 62447 62458 31368 28255 779958

1048576 1024 53288 45449 62448 62494 40481 32451 785763

Internal Hard Disk Dm-crypt (Linux)

rand rand record

KB reclen write rewrite read reread read write rewrite

64 32 4757 10344 34499 5894 23138 4320 12944

64 64 5173 10178 32802 34022 18028 6582 9864

128 32 5804 19467 30353 34178 29746 15108 24916

128 64 6253 22245 8341 31114 31403 11764 14809

90

D.5. IOZONE BENCHMARK TESTS RAW DATA

128 128 592 12942 30089 32922 30338 8780 13324

256 32 9622 22725 18049 39042 24462 21498 50702

256 64 12305 21125 18811 24956 31499 23279 40998

256 128 13956 16303 33956 30238 35764 24313 38776

256 256 14319 23918 33556 30658 36132 27112 24089

512 32 19824 34408 43768 39506 25954 20777 114134

512 64 19867 27555 21392 33089 31164 32993 87014

512 128 19579 31789 29354 29967 35320 31215 47097

512 256 23755 30443 31938 32607 33936 20868 45898

512 512 17104 30532 21375 33646 40404 28611 32439

1024 32 23483 20503 30770 28482 12958 26141 191401

1024 64 11659 37085 36431 28623 14510 18275 109577

1024 128 21890 23071 9402 16314 13865 33021 49761

1024 256 27064 34725 16207 20637 14327 20421 64879

1024 512 22995 32420 8353 21460 27042 28970 55941

1024 1024 19050 29706 18795 24276 26378 28878 31991

2048 32 32830 28386 39999 30150 20302 18560 272666

2048 64 26105 34652 35999 34142 19047 10417 312866

2048 128 27674 19061 17056 17761 13522 29100 192355

2048 256 25141 22572 17733 17107 17406 27959 160427

2048 512 25772 29449 21986 16115 16108 26739 134076

2048 1024 25415 36655 17755 16336 31180 23900 67649

2048 2048 23859 28702 18215 15160 22366 23946 33857

4096 32 27320 32711 28486 37330 12108 37292 487155

4096 64 28911 31813 31023 39623 12576 29136 409964

4096 128 12894 41917 21189 14622 15373 10636 246496

4096 256 30953 32036 15142 20304 16670 32440 300559

4096 512 25633 31129 20443 19125 13968 33809 188513

4096 1024 26181 25806 14637 20329 29368 33976 111271

4096 2048 9056 30332 22597 16381 35466 24670 76326

4096 4096 31659 38996 21090 18043 29021 31821 36818

8192 32 29154 38942 31311 32944 7457 26097 379242

8192 64 27155 30301 41714 31299 10844 31260 612392

8192 128 16598 33347 21900 20039 10924 32649 474404

8192 256 30787 36277 21504 15059 15654 33924 337604

8192 512 32934 30988 21548 21538 15321 36578 320198

8192 1024 31448 32583 20531 15848 24635 32625 159052

8192 2048 30509 29761 23325 17252 29475 31369 126579

8192 4096 22767 31685 14552 23196 29105 33505 61091

8192 8192 35126 31200 22333 18866 22422 30595 39971

16384 32 36457 31855 41597 41749 5824 33546 612027

16384 64 38512 39146 42882 21530 9209 35308 550906

16384 128 32340 37602 18372 25292 11971 38545 442632

16384 256 28568 39947 24401 23075 15408 34462 459424

16384 512 37242 37547 22346 31145 20037 35493 377642

16384 1024 35337 28066 26621 23378 22819 36476 293368

16384 2048 31220 41561 25726 23911 27354 34887 192198

16384 4096 31492 34679 24380 30500 24043 35355 117966

16384 8192 37460 33144 24136 26649 31725 34264 67571

16384 16384 31640 39058 20792 26781 39448 31323 41972

32768 32 38371 37384 39965 41096 5169 36457 677725

32768 64 31830 33560 35413 41480 8191 35603 590743

32768 128 36340 33395 31426 31533 11686 36325 688459

32768 256 33662 37741 27441 29571 18353 36673 635715

32768 512 37524 34739 32298 30940 24194 35708 568879

32768 1024 36232 34413 28086 27740 26962 37311 412939

32768 2048 32750 33849 26078 27859 29287 38098 317159

91

D.5. IOZONE BENCHMARK TESTS RAW DATA

32768 4096 35380 39547 28775 27896 32444 35976 209266

32768 8192 39334 39493 29535 31317 42349 34239 117817

32768 16384 37475 36670 28658 29814 42463 38900 62902

65536 32 36291 35815 44549 40803 4695 39626 604275

65536 64 38417 37912 44242 44288 7837 36456 635303

65536 128 35733 37591 32648 30962 11559 38117 632183

65536 256 36139 35286 32746 30754 18702 39111 653459

65536 512 38705 34533 32763 30654 24754 38023 566269

65536 1024 37485 39977 32424 30709 28706 39831 543546

65536 2048 40112 38167 32259 31086 30783 36024 433671

65536 4096 33331 37868 33017 31574 33683 34794 321147

65536 8192 36461 35457 32778 32041 36689 34482 225603

65536 16384 39894 40321 32302 32040 40535 37949 133133

131072 32 39600 41320 44621 42360 4517 38207 666754

131072 64 39036 41320 43991 43256 7457 39657 698272

131072 128 39860 36646 33133 32534 11552 40672 696324

131072 256 37603 41238 33380 33335 18702 40242 716283

131072 512 39410 36304 33294 33620 24539 39706 694991

131072 1024 40037 36570 33102 32817 30076 40179 648287

131072 2048 39147 37779 33361 32102 32494 38059 599145

131072 4096 40456 39936 33543 33188 34154 38433 476672

131072 8192 39125 41203 33238 33463 39086 35860 322097

131072 16384 40875 37948 33328 32942 40331 35404 197109

262144 32 41216 41484 44564 43799 4141 29661 716884

262144 64 42908 38290 42877 42406 6900 35133 730407

262144 128 41997 40664 33969 33542 10885 38326 743533

262144 256 42930 36850 34070 33756 17504 39952 728293

262144 512 42712 40104 33646 33631 23832 41276 741516

262144 1024 41576 37394 33908 33655 28850 40795 686623

262144 2048 41430 39455 33793 33055 28511 40500 658682

262144 4096 42337 36207 33909 33503 33203 38352 579781

262144 8192 42132 36930 33853 33484 37648 35450 433289

262144 16384 42647 38135 33791 33072 41206 36091 314865

524288 32 44198 38009 42866 42317 3870 26257 719717

524288 64 41615 38454 43949 44039 6741 23026 737881

524288 128 41948 39532 33744 34066 10292 24893 760773

524288 256 44669 38385 33796 33996 17062 30767 757784

524288 512 44651 38109 25343 33992 23640 35271 756082

524288 1024 41366 37215 33839 33696 28581 36505 741026

524288 2048 41689 38172 33480 33904 31290 38624 731653

524288 4096 41902 38527 33791 34054 32871 37806 647198

524288 8192 43780 39340 33760 34014 38135 38636 539037

524288 16384 41839 36566 33855 33992 41742 38052 438904

1048576 32 48647 43457 51974 50729 3741 13580 736269

1048576 64 47598 44880 52028 49729 6651 16863 752155

1048576 128 47903 44588 40497 40310 10630 23188 762227

1048576 256 46938 43399 40479 40324 17844 27060 767056

1048576 512 48835 44567 39074 40251 25782 31984 772620

1048576 1024 46947 43869 40073 39190 32597 35400 764993

1048576 2048 48131 44802 40459 40255 36399 36181 773598

1048576 4096 47444 42581 40470 39662 39282 39992 690227

1048576 8192 48339 42919 40092 39778 44592 40389 587334

1048576 16384 46544 41356 39724 39970 47129 41072 528597

92

D.5. IOZONE BENCHMARK TESTS RAW DATA

Internal Hard Disk eCryptfs (Linux)

rand rand record

KB reclen write rewrite read reread read write rewrite

64 32 44848 70256 626961 680790 666666 37405 60153

64 64 40074 71987 552153 571850 587155 57399 72155

128 32 56886 99292 740167 775885 761904 97043 182048

128 64 67299 102568 688307 706935 711111 49174 124036

128 128 62715 94956 592313 621118 624390 91168 102241

256 32 57606 114240 789976 825958 810126 112676 305871

256 64 71348 69734 750554 802211 792569 115471 211214

256 128 88426 124390 703160 735445 739884 125613 176067

256 256 80048 98616 595425 628921 635235 91330 106581

512 32 97767 138264 821985 853490 839344 141710 392672

512 64 100293 135274 819128 846253 837970 138079 338825

512 128 104190 133091 787622 817834 811410 116788 278119

512 256 106469 140545 718087 739973 752941 134489 203101

512 512 102915 127138 596090 629718 630541 131181 138606

1024 32 109028 95016 840691 865576 855471 101155 580849

1024 64 94256 96640 849763 875995 863406 107371 365308

1024 128 108867 129176 825064 857584 856187 130779 402357

1024 256 105067 84845 791961 820486 818545 147699 300376

1024 512 108923 90628 715594 738799 741491 93124 241050

1024 1024 106877 91895 588497 603380 592249 127015 126045

2048 32 68515 26049 667553 868560 854757 67877 541529

2048 64 16544 58821 852989 880132 878592 122546 530703

2048 128 100200 44632 859023 875256 877463 148707 430618

2048 256 111310 34975 842097 850139 856903 88466 336072

2048 512 93150 70358 792236 795668 802193 105068 244481

2048 1024 73331 70547 691866 710107 705234 15853 223678

4096 32 66578 65290 861064 871316 857441 74892 624115

4096 64 63653 64777 878947 885818 877275 30390 528724

4096 128 65367 65748 880299 886399 888310 71231 615760

4096 256 64267 64947 867238 885429 878216 64980 481490

4096 512 58389 65269 844890 858148 843840 64696 376328

4096 1024 40823 23601 684143 781666 778855 68317 275121

8192 32 50931 59066 867991 878132 856724 54921 687706

8192 64 54356 56648 782199 895398 886100 57655 678650

8192 128 51936 59443 895401 901199 891015 55032 617706

8192 256 35253 56341 890054 902307 899527 57267 624769

8192 512 51261 56109 770064 884656 886676 58053 509703

8192 1024 50673 59932 826050 832523 830158 55766 428698

16384 32 50688 54225 802229 887592 861816 53872 679580

16384 64 41947 55531 891840 902749 886100 53752 687216

16384 128 48575 52453 898144 910882 906144 53144 735763

16384 256 47684 55482 824314 910478 907097 53476 718815

16384 512 41091 57108 811692 902804 902699 49789 684689

16384 1024 51297 39163 835155 871633 865321 52888 619315

32768 32 44129 51384 866282 890361 855204 52674 727290

32768 64 47809 49060 826829 905343 890943 53107 744746

32768 128 42704 52801 893422 915179 906445 53050 707701

32768 256 44062 51498 897679 916819 916074 52916 753390

32768 512 45041 50756 891498 915129 910272 53048 724348

32768 1024 45215 52303 816891 891550 889130 53451 685522

65536 32 48386 52263 878134 891560 861261 51949 734214

65536 64 48947 52269 892277 905344 889057 52100 753660

93

D.5. IOZONE BENCHMARK TESTS RAW DATA

65536 128 48263 52285 899329 918358 908518 52314 764955

65536 256 49091 52237 905344 921509 910842 52308 763396

65536 512 48451 51920 879630 920101 917806 52513 753494

65536 1024 48718 52278 888237 900305 899503 52464 732392

131072 32 48269 51675 882651 893092 862622 51662 740653

131072 64 48556 51582 896316 903272 893384 51729 694355

131072 128 48663 51537 908417 917467 912027 51829 768949

131072 256 48654 51660 910431 919590 918662 51793 773409

131072 512 48641 51659 907845 924468 920960 51980 770572

131072 1024 48521 51879 895772 907380 907851 52046 757974

262144 32 50156 52744 881752 892900 861901 49628 741783

262144 64 50386 52656 898048 908011 887892 50095 762072

262144 128 50459 52653 865858 918704 910057 50506 771157

262144 256 50415 52654 870433 922590 919052 50930 776545

262144 512 50484 52748 881328 919690 920569 52087 779010

262144 1024 50432 52662 895930 914141 911916 52604 720744

524288 32 52059 53926 883783 892513 859249 13439 739945

524288 64 52680 53970 881661 903016 892049 18442 743299

524288 128 51208 53701 909806 918199 907256 23917 762657

524288 256 52628 53971 914311 920907 917776 29514 777033

524288 512 52713 54015 913325 898541 921737 36877 775186

524288 1024 52674 53972 903301 915499 910317 43388 779188

1048576 32 53645 52801 1254924 1267084 1208656 8945 725844

1048576 64 54053 52755 1282600 1287729 1258225 12622 750353

1048576 128 54055 52597 1297347 1312240 1293276 18068 758687

1048576 256 53722 52982 1307060 1256503 1309731 24073 778798

1048576 512 54093 52983 1307332 1323007 1313723 31304 782538

1048576 1024 54024 52979 1282394 1298139 1282111 37813 771806

94

Bibliography

[1] Matthew Jones. Cybercrime becoming more organised. 18 Sep
2006. URL http://www.ioltechnology.co.za/article_page.php?

iSectionId=2885&iArticleId=3442667.

[2] FRANKFURT. Axel springer hit by new german data leak scan-
dal. 18 Oct 2008. URL http://www.reuters.com/article/

idUSTRE49H1GH20081018.

[3] Danny Shaw. T-mobile staff sold personal data. 17 Nov 2009. URL http:

//news.bbc.co.uk/2/hi/8364421.stm.

[4] Juliet Eilperin. Hackers steal electronic data from top climate research
center. 20 Nov 2009. URL http://www.washingtonpost.com/wp-dyn/

content/article/2009/11/20/AR2009112004093.html.

[5] Web application security statistics. 2008. URL http://projects.

webappsec.org/Web-Application-Security-Statistics.

[6] Dorothy E. Denning and Peter J. Denning. Data security. ACM Comput.
Surv., 11(3):227–249, 1979. ISSN 0360-0300. URL http://doi.acm.org/

10.1145/356778.356782.

[7] Chris Savarese and Brian Hart. The caesar cipher. 2002. URL http:

//www.cs.trincoll.edu/~crypto/historical/caesar.html.

[8] Fred Cohen. A short history of cryptography. Copyright(c), 1990, 1995.
URL http://all.net/BOOKS/IP/cHAP2-1.HTML.

[9] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical Unix &
Internet Security, 3rd Edition. O’Reilly Media, Inc., 2003. ISBN 0596003234.

[10] Dorothy Elizabeth Robling Denning. Cryptography and data security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.
ISBN 0-201-10150-5.

[11] SA Vanstone AJ Menezes, PC Van Oorschot. Handbook of applied cryptog-
raphy. CRC Press, 1996. ISBN 0849385237, 9780849385230.

[12] Encryption algorithms. URL http://www.mycrypto.net/encryption/

crypto_algorithms.html.

95

BIBLIOGRAPHY

[13] RSA Laboratiories. Pkcs#1: Rsa cryptography standard. 2002. URL ftp:

//ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

[14] Data encryption standard (des). 1999. URL http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf.

[15] Dongyue Xue Jia Chen and Xuejia Lai. An analysis of international
data encryption algorithm (idea) security against differential cryptanal-
ysis. Wuhan University Journals Press, China, 2008. URL http://www.

springerlink.com/content/l178210gl737488u/.

[16] K.H.Tsoi M.P.Leong, O.Y.H.Cheung and P.H.W.Leong. A bit-serial
implementation of the international data encryption algorithm idea.
2000. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.35.5852&rep=rep1&type=pdf.

[17] Description of a new variable-length key, 64-bit block cipher (Blowfish), volume
Volume 809/1994, pages 191–204. Springer Berlin, Heidelberg, 1994. doi:
10.1007/3-540-58108-1 24.

[18] Dr. Dobb’s Journal B. Schneier. The blowfish encryption algorithm. 1995.
URL http://www.schneier.com/paper-blowfish-oneyear.html.

[19] D. Whiting D. Wagner C. Hall N. Ferguson B. Schneier, J. Kelsey.
Twofish: A 128-bit block cipher. 1998. URL http://www.schneier.com/

paper-twofish-paper.pdf.

[20] CARLISLE M. ADAMS. Constructing symmetric ciphers using the cast
design procedure. Ottawa, Canada, 1998. URL http://jya.com/cast.

html.

[21] J. Daemen and Rijmen. The Design of Rijndael: AES-the advanced encryption
standard. Springer-Verlag New York, Inc., 2002.

[22] A Publication of the BITS Security Working Group. Enterprise key
management. May 2008. URL http://www.bitsinfo.org/downloads/

Publications%20Page/BITSEnterpriseKeyManagementMay2008.pdf.

[23] Arshad Noor. Securing the core with an enterprise key management in-
frastructure (ekmi). In IDtrust ’08: Proceedings of the 7th symposium on
Identity and trust on the Internet, pages 98–111, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-066-1. URL http://doi.acm.org/10.1145/

1373290.1373303.

[24] Trusted Computing Group. Enterprise key management. 2006.
URL http://www.trustedcomputinggroup.org/resources/tpm_main_

specification.

[25] Frank Wells Sudia. Enhanced cryptographic system and method with
key escrow feature. 1998. URL http://www.google.no/patents?

id=cB8pAAAAEBAJ&printsec=description&zoom=4#v=onepage&q=&f=

false.

96

BIBLIOGRAPHY

[26] Lorrie Cranor. Introduction to Cryptography and the Clipper Chip Con-
troversy. 1995. URL http://lorrie.cranor.org/pubs/crypt1.html.

[27] Red Hat Documemtation. Overview of LUKS. 2008. URL
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/

5.4/html/Installation_Guide/ch29s02.html#id4702552.

[28] Clemens Fruhwirth. New methods in hard disk encryption. 2005. URL
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf.

[29] Clemens Fruhwirth. Tks1: An antiforensic two level and iterated
key setup scheme. 2004. URL http://clemens.endorphin.org/

TKS1-draft.pdf.

[30] David Braun. Disk encryption howto. 2004. URL http://Linuxreviews.

org/howtos/security/Disk-Encryption-HOWTO/en/index.html.

[31] Bill Bosen. File level vs. full drive encryption. 2008. URL http:

//www.itsecurityjournal.com/index.php/Latest/File-Level-vs.

-Full-Drive-Encryption.html.

[32] Christian Stble Marcel Winandy. Ahmad-Reza Sadeghi, Michael Scheibel.
Design and implementation of a secure Linux device encryption ar-
chitecture. 2006. URL http://www.trust.rub.de/media/trust/

publications/SaScStWi2006.pdf.

[33] Michael Austin Halcrow. ecryptfs: An enterprise-class cryptographic
filesystem for Linux. In in Proceedings of the Linux Symposium, page
201218, Ottawa, Canada, July 2005. URL http://www.dubeyko.com/

development/FileSystems/eCryptfs/ecryptfs.pdf.

[34] Mike Halcrow. ecryptfs: a stacked cryptographic filesystem, April 2007.
URL http://www.Linuxjournal.com/article/9400.

[35] Christophe Saout. dm-crypt: a device-mapper crypto target. 2004. URL
http://www.saout.de/misc/dm-crypt/.

[36] TrueCrypt Foundation. TrueCrypt user’s guide. 2005. Retrieved
2007. URL http://security.ngoinabox.org/Programs/Security/

Encryption%20Tools/TrueCrypt/TrueCrypt%20User%20Guide.pdf.

[37] TrueCrypt: Free Open-source on-the-fly Encryption. URL http://www.

truecrypt.org/docs/.

[38] Byron Hynes. Advances in bitlocker drive encryption. 2008. URL http:

//technet.microsoft.com/en-us/magazine/cc510321.aspx.

[39] Martin Kiaer. A best practice of how to configure bitlocker.
Jan 2007. URL http://www.windowsecurity.com/articles/

Best-practice-guide-how-configure-BitLocker-Part2.html.

97

BIBLIOGRAPHY

[40] Microsoft TechNet Documentation. Chapter 2: BitLocker Drive Encryp-
tion. April 04, 2007. URL http://technet.microsoft.com/en-gb/

library/cc162804.aspx.

[41] RandyMuller. How it works: Encrypting file system. 2006. URL http://

technet.microsoft.com/en-us/magazine/2006.05.howitworks.aspx.

[42] Russell Coker. Bonnie++ Website. URL http://www.coker.com.au/

bonnie++/.

[43] IOzone Filesystem Benchmark. Last Updated: 28th Oct, 2006. URL http:

//www.iozone.org/.

[44] Chris Mason. Seekwatcher I/O. URL http://oss.oracle.com/~mason/

seekwatcher/.

[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Norm,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W.Ochterski, R. L.Martin, K.Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
A. D. Daniels, . Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J.
Fox. Gaussian 09 Revision A.02, Gaussian Inc. Wallingford CT 2009.

[46] Microsoft Corporation, 2003. Windows Server 2003 Resource Kit Tools.

[47] R. J. Bartlett, G. D. Purvis III, Many-body perturbation-theory, coupled-
pair many-electron theory , importance of quadruple excitations for cor-
relation problem, Int. J. Quantum Chem.,14 (1978) 561-81.

[48] G. E. Scuseria, C. L. Janssen,, H. F. Schaefer III. An efficient reformula-
tion of the closed-shell coupled cluster single, double excitation (CCSD)
equations, J. Chem. Phys., 89 (1988) 7382-87

[49] Matplotlib Documentation. March, 2010. URL http://matplotlib.

sourceforge.net/contents.html.

[50] Enthought Python Distribution. URL http://www.enthought.com/

products/getepd.php.

98

