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Abstract

The field of machine learning has seen a rapid progression in the last
decade, heavily contributing to the computer’s ability to solve complex
problems. However, as the field progresses, so does the complexity of
the challenges that need to be solved to advance the field further. One
of these challenges is dealing with a huge amount of data and extracting
useful information; another challenge is solving tasks that require several
"correct" actions in sequence to complete the task. These challenges
have been solved separately, but more complex problems might require
a singular solution to solve both challenges simultaneously. This study
investigates how to solve complex, high-dimensional, and sparse reward
problems by combining two separate algorithms that excel at each sub-
part of the problem. More specifically, deep learning and neuroevolution.
Deep learning extracts information from the high-dimensional data, and
neuroevolution solves the sparse reward problems.

This thesis aims to show that a combination of deep learning and neur-
oevolution on high-dimensional and sparse reward problems outperforms
either machine learning technique alone. The experiments were run in a
reinforcement learning environment, modified to fit the needs of this dis-
sertation. Numerous experiments were conducted with different goals and
sub-goals to thoroughly investigate and explore the capabilities of neur-
oevolution in combination with deep learning. The deep learning model
receives the high-dimensional data, and through the process of learning,
discovers how to extract compact, useful information from this data. The
neuroevolution algorithm utilizes the compact, extracted representation
provided by the deep learning model to determine the best possible action
given the input.

The results show that deep learning and neuroevolution can perform
better when combined than each of them alone on a high-dimensional and
sparse problem. Neuroevolution performs well on problems with sparse
rewards but struggles with high-dimensionality, and deep learning can eas-
ily handle high-dimensionality but struggles with sparse rewards. This
combination of deep learning and neuroevolution can be a good perform-
ing and viable option in multiple fields where similar problems appear.
This research contributes to the field by doing a comparison between deep
reinforcement learning, neuroevolution, and neuroevolution+deep learn-
ing, and a thorough survey of the field.
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Chapter 1

Introduction

1.1 Motivation

Recent years have seen an impressive and rapid progression in solving
highly challenging tasks that have challenged AI researchers for decades.
One of the fields in machine learning which has shown particularly
impressive results is deep learning. With deep learning, computers have
mastered complex tasks from a wide range of domains, from image and
speech recognition to game playing, robot control, and systems for self-
driving cars.

Deep Learning (DL) is particularly good at extracting structures
from large amounts of data, forming meaningful, compressed internal
representations from high-dimensional inputs. For instance, DL can learn
from a large dataset of pictures what types of features are characteristic
of a dog or a car. DL has achieved state-of-the-art performance in image
recognition [12, 32, 57] and speech recognition [25, 37, 45]. However, deep
learning is not without its weaknesses, and many open challenges restrict
the ability of deep learning algorithms to solve certain kinds of problems,
and the complexity of these models limits our capability to understand
and trust the decisions made by deep learning [35]. One of the challenges
is solving Reinforcement Learning (RL) problems with sparse rewards
[43]. In RL environments, the environment provides the algorithm with
a numerical reward, which indicates whether the action it took was good
or bad. In more complex, sparse environments, this reward is delayed,
meaning that the algorithm has to do several "correct" actions in sequence
before receiving feedback from the environment. By introducing other
machine learning techniques with different strengths and functionality,
it is possible to assist deep learning in overcoming some of these open
challenges. An interesting idea, which has not yet been widely explored,
is, therefore, to combine neuroevolution (NE) and deep learning (DL).

Neuroevolution (NE) is a sub-field of Evolutionary Algorithms (EA)
and is a type of population-based search algorithm, where a population
of neural networks solving a problem is maintained, which allows for a
more diverse search for candidate solutions [54]. Through some of the
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attributes inherited by EAs, NE has the potential to overcome some of
DL limitations by exploring multiple solutions simultaneously and solving
sparse reward problems. In contrast to RL and DL methods that heavily
rely on continuous rewards and feedback from the environment to improve
and learn, NE only cares about the accumulated reward over an entire
episode, allowing it to overcome sparse reward problems. Evolution is
used to adjust the population in NE, which is computationally expensive.
This is the reason why, as with most evolutionary algorithms, NE struggles
to improve effectively with high-dimensional data [1].

A promising way to combine NE and DL is to let deep learning do
what it excels at, learn and make predictions from a large amount of high-
dimensional data, and train a small action-selection component using NE.
[1, 11, 17, 29, 43]. This thesis will explore ways to combine deep learning
and neuroevolution, aiming to solve problems that neither could solve well
by themselves by uniting their advantages.

1.2 Goal of the thesis

The overall goal is to get an overview and to thoroughly explore the
combination of neuroevolution and deep learning.

Goal 1 : Surveying the related work of neuroevolution in combination with
deep learning.

The first goal of the thesis is to survey the use of neuroevolution and
deep learning combined. Exploring the variations in the different papers,
focusing on the different algorithms, the division of work between the
algorithms, representations, and problems solved using this combination.
To the best of the author’s knowledge, a thorough survey has not been done
before in this particular sub-field. Hopefully, this can give a good insight
into this field and reveal potential new challenges and possibilities utilizing
this combination.

Goal 2 : Investigate the performance of a deep learning and neuroevolution
combination in a high-dimensional, sparse reward environment.

This goal was chosen to get a better understanding of a DL+NE com-
bination and its capabilities. DL manages and extracts useful information
from the high-dimensional data, and NE chooses the best actions based on
this information, solving sparse reward problems. The problem is high-
dimensional, mimicking data received in the real world, and with most
real-life tasks being sparse. This problem is highly interesting, testing the
capabilities of DL+NE and helping to close the gap between solving prob-
lems in simplistic environments with continuous feedback to highly com-
plex, noisy, uncertain real-world environments.

2



Milestones

The second goal is divided into separate milestones, leading up to the final
experiment that is a high-dimensional and sparse reward problem.

Milestone 1 : Compare the performance of deep RL and NE algorithms in a
simple, non-sparse environment.

Milestone 2 : Investigate and possibly verify how a combination with deep
learning and the algorithms can successfully work in the simple, non-
sparse environment.

Milestone 3 : Test the algorithm’s performance with high-dimensional input data.

Milestone 4 : Test the algorithm’s performance with sparse reward.

The first milestone is comparing the performance of the chosen RL
and NE algorithm in a simple, non-sparse environment. Secondly, finding
a way to combine DL with these algorithms and test whether such a
combination will work. The third milestone investigates the performance
when the input to the algorithms increases in dimensionality, together with
the original normal fitness function. The last milestone is to change the
reward function from a normal fitness function to a sparse fitness function
and test the performance of the algorithms. In this experiment, the input
dimensionality is low, so that the main focus is the performance with the
new fitness function. With all these milestones completed, the second goal
of this thesis should be achievable.

1.3 Outline

Chapter 2 introduces the theory used in this thesis and related work in the
field. Chapter 3 gives information about the environments and algorithms
used. Chapter 4 describes the author’s changes and contributions to the
already described algorithms and environments, along with experimental
setup and challenges.

Chapter 5 presents the experiments as well as the results. Chapters 6
and 7 include discussion and the conclusion of the thesis and lastly chapter
8 presents possible avenues for future work.

3
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Chapter 2

Background

This chapter aims to give an introduction to the field of machine learning
as well as more in-depth knowledge about thesis-related background
information in the fields of deep learning, reinforcement learning, and
evolutionary algorithms. The last section of this chapter presents a survey
of the related literature in the sub-field of neuroevolution in combination
with deep learning, with comprehensive information about the algorithms,
problems, and contributions.

2.1 Machine Learning

Machine learning is a part of computer science where the objective and
goal is to construct algorithms that can improve automatically through
experience/examples. The field of machine learning is not a new idea or
field; it has been around since the 1940s, with the popularity decreasing
and increasing over the last decades. However, in recent years, popularity
has exploded, and companies and researchers employ it to all types
of problems and disciplines. The reason why it has seen such an
increase in popularity is directly linked with the rapid progression and
availability in processing power, which furthermore allows more complex
and challenging problems to be solved in a reasonable amount of time.
Machine learning is a multidisciplinary field with aspects from statistics,
mathematics, biology, and computer science and is most closely related to
computational statistics. Machine learning is a sub-part of the greater field
of Artificial Intelligence and is usually divided into three sub-fields, (1)
Supervised Learning, (2) Unsupervised Learning, and (3) Reinforcement
Learning.

2.1.1 Types of Machine Learning

2.1.1.1 Supervised Learning

The majority of practical usage in today’s society, without including the
scientific research field, uses a supervised learning approach [33]. This
approach aims to learn the mapping function f from the input x to the
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Figure 2.1: Example of supervised learning

output Y, seen in equation 2.1. In other words, it receives an input x and
attempts to find the correct features or information that links it with the
output Y.

f (x) = Y (2.1)

The algorithm needs to approximate this mapping function well so that
when presented with new input data x, it manages to predict the correct
output Y. It is called supervised because the process of learning from a
dataset can be seen as a teacher supervising a student. The "supervisor"
provides the input data and the correct output data through the dataset.
The algorithm is given an input, and based on this input, predicts an
output. It is then given the correct answer and has to adjust its mapping
function according to how well or close its prediction was to the actual
correct answer, depicted in figure 2.1. If the model was wrong and adjusts
its weight accordingly, the goal is that it manages to predict the correct
answer when presented with a similar input in the future.

Supervised learning can be divided into two different problems:

1. Classification - Output value is a category, such as "Disease" and "no
disease," or "cat" and "dog." The number of categories can range from
one to infinite.

2. Regression - Output value is usually a real numbered value. Ex-
amples include Price, Weight.

When training a machine learning model, and especially through the
use of a dataset, a common problem is over and underfitting. This can
also relate to other machine learning problems often described by other
terms. These two terms relate to how well the model can generalize to new
input and the model’s performance with the supplied dataset. Over-fitting
is a problem where the model is able to perform very well with the given
training dataset, but when presented with new unseen data, it struggles
to predict correctly. This is because it has learned the noise in the training
data and not the underlying effect. Under-fitting is when the performance
is low with the training dataset as well as with new unseen data, this can

6



be caused by lack of data, too little training, or if the machine learning
model is too simple. The goal is to train the model to hit the optimum place
between over and underfitting, good performance on the training dataset,
and good performance with new unseen data. This is not easy to achieve,
but a common practice for accomplishing this is dividing the dataset into
three separate parts, training set, validation set, and test set. The training
set is used when training the model, the validation set is used to validate
the model throughout the training, and finally, the goal of the test set is to
see how well it generalizes to new data by using never-before-seen data.

2.1.1.2 Unsupervised Learning

Unsupervised learning is utilized when there is only input data x and
no correct output variables, in other words, an unlabeled dataset. The
goal is to let the algorithm find the underlying structure or distribution
in the data. These are called unsupervised because no teacher is telling the
algorithm what is right and wrong, and it is up to the algorithm itself to
find meaningful and interesting structure in the data.

Unsupervised learning can be divided into several different problems.
The most common are:

1. Clustering - The algorithm divides the data with the same structure
into clusters, in other words, grouping similar data points. "Cluster-
ing people who buy the same things."

2. Association - Finding structures or rules that govern a large part of
the data, "People who buy X, also buys Y."

Unsupervised learning can typically be used before supervised learning
when performing exploratory analysis on the data, identifying features in
the data. Clustering algorithms can also be used to compress data [58].

Semi-supervised Learning

Semi-supervised learning is a combination of unsupervised learning and
supervised learning, where a partially labeled dataset is used. The goal
of this combination is to see how combining different types of labeled and
unlabeled data can change the learning process and design algorithms that
can take advantage of this combination [65]. This is used when the labeled
data is scarce and expensive.

2.1.1.3 Reinforcement Learning

In reinforcement learning, an agent is learning how to take the correct
actions in an environment with which it can interact with. The environment
provides the agent with a reward and a new state based on the action
taken by the agent. In this type of machine learning, no supervisor tells
the agent what to do but instead guiding it through rewards provided
by the environment. The agent’s goal is to maximize its reward through

7



actions in the environment. There might not be an optimal action to take
in these types of problems, which is one of the reasons why it can not be
solved by supervised learning. The figure below 2.2 shows how a typical
reinforcement learning algorithm operates, where there is a state, the agent
chooses an action based on the state, this results in a new state, and the
agent is given a reward from the environment.

Figure 2.2: Reinforcement Learning iteration, State, agent, action, reward
and environment [47]

Markov Decision Process

Reinforcement learning problems are often modeled as Markov Decision
Processes (MDP). A key aspect in MDPs is the Markov Property. "If an
environment has the Markov Property, then its one-step dynamics enable
us to predict the next state and expected next reward given the current
state and action [56]." This property is essential in RL because this allows
the agent to make decisions and actions based solely on the current state the
agent is in. An RL task that satisfies this Markov Property is called an MDP.
If the environment has a finite set of states and actions, it is called a Finite
Markov Decision Process (FMDP). An MDP models the RL environment
and contains (1) A set of possible world states s, (2) A set of possible actions
A, (3) Reward function R, and (4) a description T of each action’s effect in
each state.

Q-learning

The goal in Reinforcement learning is to solve the MDP, which involves
finding the best actions to take under what circumstances to accumulate
the highest expected total reward in all successive steps. Q-learning is an
algorithm that attempts to find the optimal policy to solve an MDP, and
this is done by learning a Q-function, given in equation 2.2. A policy in
reinforcement learning is a term describing the agents strategy to pursuit
its goal.

Q(st, at)← Q(st, at) + α[rt+1 + γmaxQ(st+1, a)−Q(st, at)] (2.2)

8



This is an action-value function that tells how good it is to take this
action, and this function directly approximates the optimal action-value
function Q∗, independent of the policy being followed [56]. The actions
taken by the q-learning agent are given in equation 2.3

a(s) = argmaxQθ(s, a) (2.3)

Policy Gradient

Policy Gradient is another method used for solving MDPs. The goal of the
policy gradient method is to update θ to values that make πθ the optimal
policy, where π is the policy and θ is the parameters of the policy. The The
algorithm aims to maximize the expected return, seen in equation 2.4.

J(πθ) = E
τ∼πθ

[R(τ)] (2.4)

Model-based agent vs. Model-free agent

Model-based agent vs. Model-free agent is a distinction made in RL
algorithms, and this can relate to how an agent chooses its action. Model-
free agents take their actions based on the stimuli received, and the actions
are done almost automatically. Model-based agents are more goal-directed,
and the agent knows the value of the goals and the relationship between
actions and consequence [56].

Getting enough information in model-based algorithms is challenging
in more complex, high-dimensional environments. An inaccurate model
of the environment almost always leads to sub-optimal actions. Therefore
model-free-based algorithms have achieved the most success in those
environments [11]. The goal of model-based algorithms is to solve mainly
two challenges in model-free algorithms,(1) the requirement of a vast
amount of training data and (2) transfer the policy to different tasks in the
same environment.

Off-policy vs On-policy

This term explains how the agent updates its policy. On-policy is
dependant on the current policy being used, while off-policy works
independently of the current policy. In other words, on-policy updates
its policy according to how the current policy performs, while off-policy
gathers information from past policies, often using a replay buffer. This
allows the agent to know the latest experiences in addition to older
experiences that may have been collected using an older policy and
improves the policy according to this buffer.
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2.1.2 Neural Networks

Neural networks (NN) or Artificial Neural Networks (ANN) are some of
the most commonly used architectures in machine learning [33]. This
architecture is inspired by the inner workings of the human brain, more
precisely, the neurons and connections between them. Figure 2.3 depicts
the relationship between a biological neuron and an artificial neuron. The
goal is to mimic how the brain works but vastly simplified in complexity.
The advance in computing power allows us to increase the number of
connections and neurons in a NN progressively toward the hundred billion
neurons in the human brain. NN has both served as a way to better
understand how the human brain works and as a basis for efforts creating
artificial intelligence. NN can be used for multiple different applications,
but it tends to fall into one of these categories: (1) function approximating,
(2) classification, or (3) data processing.

x1

xn

b

Σ f

y1

yn

W1... Wn

...

(a) Artificial Neuron: Inputs:x1
to xn, Outputs:y1 to yn, Activa-
tion Function: f Bias:b

(b) Biological Simple Neuron: Inputs via the
Dendrites, Outputs through Axon [61]

Figure 2.3: Artificial and Biological Neurons

Functionality

Neural network is a network of connections and neurons; each neuron
receives a signal, does some processing, and then sends the signal to all
neurons connected to it. The signal that goes "through" a connection is
usually a real number. The output of a neuron is calculated by some non-
linear function of the sum of its input. The connections are called edges,
and the edges have a weight attached to it so that it can strengthen or
weaken the signal; this weight is adjusted when the network is "learning."
The edges are updated using gradient descent, more thoroughly explained
in the sub-section Gradient Descent (2.1.2). This is an iterative optimization
technique for finding a local minimum. The bias term is used to move
the activation function to the left or right on the graph. An example of a
complete neural network is illustrated in figure 2.4.
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Layers

A neural network usually consists of three types of layers, an input layer,
an output layer, and 0 to n number of hidden layers. The input layer
receives input data, this is usually a real number, and depending on the
type of data or classifier, these numbers represent different objects, such
as the pixel value in an image classifier or the number of bedrooms in a
house-price predictor. The hidden layers are located between the input and
output layers and are responsible for doing non-linear transformations of
the inputs. The output layer is responsible for converting the values from
the hidden layer to object-specific outputs, such as classes in a classifier or
a real value number in a regression problem.

Activation Function

The activation function is responsible for deciding if the neurons should
propagate its value to the next layer. The most straightforward example
of an activation function is a threshold function; if Y > threshold, signal
next layer, else send 0 to the next layer. The activation functions are usually
chosen based on the architecture and type of classification.

x1

b[1] b[2]

x2

a1

a2

a3

y1

y2

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

W [1]
11

W [1]
21

W [1]
12

W [1]
22

W [1]
13

W [1]
23

W [2]
11

W [2]
21

W [2]
31

W [2]
12

W [2]
22

W [2]
32

W [2]
11

W [2]
21

W [2]
31

Figure 2.4: Neural Network, with 2 inputs, 3 hidden layer neurons, 2 biases
and 2 output neurons

11



Calculations

To calculate the output of the nodes ak in the hidden layer, the sum of the
nodes is calculated in the last layer, multiplied with the weights in the
edges, and add the bias term. This result is then passed through a non-
linear activation function g, seen in equation 2.5.

ak = g(
n

∑
j=1

xjWjk + b[1]) (2.5)

And correspondingly the output neurons, seen in equation 2.6.

yk = g(
n

∑
j=1

ajWjk + b[2]) (2.6)

After the outputs are calculated, the correct answer is provided to the
algorithm if it is supervised learning, and the algorithm uses an error
function to calculate how far off the answer was in relation to the correct
answer. This error value is used to iteratively update the weights by using
an optimization technique, layer by layer, towards the input nodes; this is
called backpropagation.

Loss Function

Loss functions are used as an evaluation method for how well the model
fits the dataset, and it is the basis for iteratively improving the model by
reducing the error.

Gradient Descent

Gradient descent is one of the most commonly used optimization tech-
niques and is used to minimize a function by finding the direction of the
steepest descent. This is done by taking the negative of the gradient. Each
time the gradient is calculated and the weights and biases are updated,
the neural network is hopefully but not necessarily a step closer to the op-
timum value.

Summary

NN consists of neurons, connections, and layers. Through these quite
simple building blocks, it can learn how to approximate functions, doing
simple classification and regression. This architecture can be extended by
increasing the depth, which is done by adding more hidden layers. This
allows the NN to learn more complex functions and vastly increases the
possibilities of a NN.
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2.1.3 Deep Learning

Deep learning is a sub-field of machine learning that has seen an explosion
in popularity in recent years, and this is essentially due to the technological
advancements that only increase in rate each year. With faster and more
computational power available, a highly complex model is more feasible.
GPUs, in particular, is a technology that allows a significant speed-up when
training deep learning models due to the way deep learning models are
implemented by using matrices. Deep learning is typically implemented
like a NN, but the numbers of neurons, layers and parameters are vastly
increased. These architectures may look interchangeable on the surface,
but with this increase in complexity, the attributes and functionality of the
model change. A simple NN is transmitting the input data through the
model and producing an output. DL, on the other hand, with the increase
in depth and number of neurons, is able to extract complex features
information automatically from the input data and form a relationship
between input stimuli and neural responses that is also found in the human
brain.

Deep learning has solved some of the most challenging problems
in machine learning that have been unsolvable by other methods [33].
Some examples of its achievements is state-of-the-art image recognition
[12, 32, 57] and speech recognition [25, 37, 45]. One of the most useful
attributes of a deeper neural network is its ability to extract features
directly from raw data, without pre-processing, such as images or audio
files. Conventional machine learning techniques [4] on the other hand,
has limited capability of extracting useful information from raw data,
and doing so required considerable domain expertise to design a feature
extractor that can transform the data before this data could be used in a
classifier to detect patterns [4, 33]. Deep learning models are able to do all
this by themselves, receiving raw data, propagating the data and increasing
the abstraction through the layers, and extracting the useful representations
that are needed for classification [33]. The difference between how a
deep learning model works compared to conventional machine learning
is showed in figure 2.5. Therefore deep learning can also be referred to
as a representation learning algorithm due to the ability to learn how it
can extract features/representations. Deep learning is a varied field that
encapsulates all models that take advantage of the depth and complexity
explained here. Examples of this are Deep Reinforcement learning, which
is able to solve more complex MDP’s and Deep Convolutions Networks
that are specialized for image classification.
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Figure 2.5: Conventional ML techniques vs. Deep Learning [34]

To better understand how deep learning can extract useful features
by increasing its abstraction level through the network, imagine a face
classifier, like the one depicted in figure 2.6. The classifier aims to receive
raw data in the form of pixel values from images and classify the persons
in the image. The first hidden layer has learned to look for edges, and
the second hidden layer has learned to look for arrangements of edges,
here in the form of facial features, such as noses, eyes, eyebrows, and
mouths. The third hidden layer has learned to look for full shapes, in
this case, entire faces. Here the abstraction layer increases through the
network, which can explain what is going on inside this model and how it
can make predictions; these abstraction levels are also visualized in figure
2.9. This example also describes one of the most desirable properties of
deep learning, that the network itself learns what attributes and features to
look for in the input data when performing classification, without the need
for human interaction.

Figure 2.6: Face-classifier using Deep Neural Networks [33]

14



2.1.3.1 Convolutional Neural Network

Convolutional Neural networks or CNN is used heavily in image recogni-
tion applications and is directly inspired by visual neuroscience [33]. CNN
is dominating the fields in computer vision for almost all recognition, and
detection tasks [33]. It is very similar to a NN because it is made up of
neurons with learnable weights and biases. The difference in CNN is the
assumption that the inputs are images, and with this follows the option to
encode certain properties into the architecture. The architecture in a CNN
consists of three main components; convolutional layers, pooling layers,
and fully connected layers. An example of a convolutional neural network
can be seen in figure 2.7, with convolutional layers (blue), max-pooling lay-
ers (yellow), and the last three layers are a fully connected neural network
architecture.

Figure 2.7: VGG16 CNN architecture [50]

Convolutional Layer

The convolutional layer, portrayed in figure 2.8, consists of multiple
learnable filters; the filters are usually small (5x5x3) and extend to the full
depth of the input volume. In the forward pass, the filter is convoluted
along the entirety of the input image. The dot product is calculated
between the filter and the input at every position. Each dot product
is stored in what is called an activation map. This activation map is
related to each neuron’s receptive field, in other words, what part of the
image each neuron looks at. Each layer can have multiple filters, and
correspondingly several activation maps, and as the learning progresses,
each filter learns to look for different objects in the image that will activate
the filter. Backpropagation is as simple as in a regular deep neural network,
updating the weights in the filters. The abstraction level increases with
the depth of the network, so the filters look for more advanced shapes,
visualized in figure 2.9.
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Figure 2.8: Convolutional layer, with a 32x32x3 input image, one 5x5x3
filter, that results in one activation map [26].

Figure 2.9: Filter abstraction in CNN [64]

Pooling Layers

The pooling layers, illustrated in figure 2.10, are responsible for downsizing
the activation map. There is a couple of reason why this is useful,
(1) the number of parameters decreases with a smaller activation map
and (2) decrease the location sensitivity of features in an image, which
results in activation maps being more robust against the changes in the
position of the features in the image, called local translation invariance.
Common pooling layers are max-pooling and average-pooling. Most CNN
architectures include pooling layers, but some researchers wish to avoid
pooling operations and have found ways to eliminate these layers by
substituting them with convolutional layers [51].

Figure 2.10: Max-pooling, with stride = 2 (stride is the spatial step length
in the convolutional operation) [26]
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Fully Connected Layers

Fully connected layers are a standard fully connected NN, receiving
features produced by convolutional layers and pooling layers. This layer is
responsible for transforming the received features into useful and problem-
specific outputs. An example of this could be a classifier, where the last
layer is responsible for transforming the features into distinct classes.

Dropout Layers

Dropout layers is a concept introduced to prevent overfitting and help the
model generalize better; this can also be viewed as requiring each neuron
to "learn" more. The dropout layer works by introducing a dropout rate,
which is the percentage chance of an input to a neuron set to 0. So if the
dropout rate is 0.5, there is a 50% chance that the input to each neuron is
set to 0. The actual sum of the inputs remains unchanged because it also
scales up all other non 0 inputs with a scale fitting with the 1/(1− rate).

2.1.3.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is the combination of deep learning
and reinforcement learning. This combination aims to create algorithms
that can achieve their task in more complex environments. Reinforcement
learning has achieved some success in various domains [38], but these
domains are handcrafted, low-dimensional, or fully observed state spaces.
The problem is getting enough information about the environment so that
the agent can learn to take the correct actions. The motivation behind DRL
is that deep learning can extract useful features from high dimensional
input, and an RL agent can react to this compressed representation of the
environment.

DRL was first introduced in 2013 in Mnih et al [39] and later extended
[38]. In these papers, methods are presented using a deep CNN trained
using Q-learning, end-to-end, reinforcement learning. The goal is to derive
an efficient representation of the environment from high-dimensional
data so that the agent can utilize these observations to generalize past
experiences to new situations. The deep convolutional neural network
is responsible for extracting useful features from the raw pixel data and
approximate an optimal action-value function. These methods were able
to surpass the performance of all earlier algorithms and achieve human-
level performance in the 49 Atari games they tested on and were using
the same architectures and hyperparameter in every game, which shows
that their approach is very robust. However, the Q-learning algorithm has
a problem with overestimating the bias (overestimates action value under
certain conditions). Hasselt, Guez, and Silver [21] improved and extended
the approach and addressed the overestimated biases using the double Q-
learning algorithm [20]. Other improvements of the Q-learning algorithms
have also been shown to produce good results.
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In Hessel et al. [22] a combination of six of these improvements
are integrated into a single algorithm which achieves state-of-the-art
performance in Atari games.

DRL is not without its problem and drawbacks, one being that they
require vast amounts of data to work well. Another problem is that they
are quite slow learners, and the reason for that is that it needs to learn
how to extract features combined with learning a policy. These problems
have been addressed by introducing transfer learning, where the feature
extractor is trained in a supervised fashion by watching human play games
[7, 23, 49]. This makes the agent perform well from the start of learning and
can continue improving.

The combination of RL and DL has achieved some great results in more
advanced games like Go [49], Chess [48] and Shogi [48].

2.1.3.3 Challenges in Deep Learning

Exploration vs. Exploitation

One of the biggest challenges in machine learning, in general, is the trade-
off between exploration and exploitation [42, 60]. Exploration is where
the algorithm explores new solutions, and this may lead to finding more
optimal solutions and can lead to a way out of a local optimum. On the
other hand, the algorithm also needs to exploit already known solutions,
optimizing them to see their full potential. So it is a trade-off between
doing what it knows gives it reward and works and try to find new and
better things that can accumulate a higher reward.

A classical exploration-exploitation problem is the Multi-armed bandit
problem. Where there is k number of one-armed bandits(slot machines),
the goal is to find out in which sequence to play the machines to accumulate
the highest reward. Each machine provides a random reward from a
probability distribution specific to that machine. The trade-off is exploiting
the machine that has the highest expected payoff while exploring the other
machines to get information about their expected payoffs.

Sparse rewards

A sparse reward is when an algorithm has to do many "correct" actions
in sequence before getting a reward for doing so. Most deep learning
algorithms still struggles with this [43], although some researchers have
found ways to increase exploration in these algorithms to find solutions
[9].

An example of the difference between non-sparse reward and sparse
reward environment can be explained using the hotter, colder game. Where
a hider has hidden something, and a searcher is trying to find the lost
object. The searcher is given instructions by the hider, with cold being
further from the object and warmer being closer. A non-sparse version
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of this can be that the searcher takes one step, then gets feedback from the
hider on whether the step/action resulted in getting closer to the object. A
sparse version can be that it requires the searcher to take 10-15 steps before
the searcher gets feedback whether it resulted in getting closer to the object
than in the beginning. This makes the problem increasingly complex, the
searcher do not know which specific actions that resulted in getting closer
or farther away from the object. In order to solve this game, the searcher
can not be fully dependant on the feedback, and have to balance between
exploring and exploiting.

Data driven

Deep learning requires large amounts of data to learn even the easiest
abstraction relationships and to do simple classification tasks [35]. With
this requirement, it is not difficult to see why these models have been
increasingly popular and well-performing in the last decade, with data
being more available than ever.

Black box

Deep learning has millions or even billions of parameters, and it is often
useful to know how these systems work; of now, it is still mostly considered
a ”black box.” [35] However, researchers have taken steps to get a better
understanding of these systems and displaying what each neuron has
learned to detect [41].

Transfer learning

Transfer learning is a problem in deep learning. This means that the model
might struggle to perform or solve the problem if the goal or environment is
slightly changed from the original goal or training environment. With this
being a problem, it might seem that the solutions given by the DL model
are extremely superficial, and the question is: what has it actually learned
[35].

Images for DRL

High-dimensionality remains one of the critical challenges for DRL to
explore in high-dimensional environments effectively [42]. This especially
relates to pixel-to-action mapping. However, there have been proposed
solutions to this, which do not require any changes in the actual algorithms.
This solution uses data augmentation techniques on the input images
which resulted in state-of-the-art performance over several benchmarks
[28].
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Challenge

Deep learning has achieved some great results doing what it is good at, but
it is also useful to be aware of problems where DL does not perform well,
like problems with sparse reward. Instead of tweaking and changing DL to
fit every problem, a combination with other approaches might be a better
solution. By picking algorithms that excel at different parts of a problem, a
better solution can be achieved.

2.2 Evolutionary Computation

Evolutionary Computation (EC) is an area of research within computer sci-
ence. This field draws its main inspiration from natural evolutionary pro-
cesses. The fundamentals of this field relate to the powerful components of
evolution and the usage of trial and error to solve problems. Evolutionary
Algorithms (EA) is the sub-field describing the algorithms used for solv-
ing problems using evolution. Genetic programming, a sub-class of the
larger class of EAs, has produced a wide range of competitive results to
human-level achievements in many different fields, including controllers,
game playing, algebra, and designing circuits [30].

2.2.1 Evolutionary Algorithm

There are several different variations of Evolutionary Algorithms, where
goals, representation, and implementation differ. Common for all of these
algorithms is the idea behind them: a population of individuals, where
there is a natural selection to pressure the population to become better
(survival of the fittest) [10]. In addition to achievements described in
the previous paragraph, evolutionary algorithms have also achieved some
surprising results in recent years, managing to perform competitively with
DRL in high-dimensional Atari environments [46, 55]. EAs are highly
parallelizable due to the population-based search, making it time-efficient
(real-time) and able to create different strategies simultaneously [54]. EAs
have shown to be good to solve problems with sparse rewards [1, 11, 27],
and can be used alone or in combination to solve those problems such as
an Evolutionary RL algorithm proposed in [27].

An EA consists of these main components: representation, fitness
function, population, variation operators, parent and survivor selection,
and a termination criterion. Concerning the workflow of a typical EA, these
components are illustrated in figure 2.11.

Representation

Representation in EA’s is more commonly called genotype. The genotype is
a set of genes describing each individual, and the phenotype is what could
be developed based on the genotype. How this representation is described
is problem-dependant.
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Figure 2.11: Standard layout of an Evolutionary Algorithm

Fitness Function

The fitness function forms the basis of selection in that it promotes
improvement. The fitness function represents the problem that needs to
be solved and defines what improvement is. This fitness value is given to
individuals based on its ability to solve the problem and is further used in
choosing which individuals to include in the next generation.

Population

The population is a set of candidate solutions to the problem. The initial
population is usually randomly seeded or chosen from a set of known
solutions. The population size can either be fixed or very unusual dynamic.
There are two main ways for the population to evolve, evolving the entire
population to create the next generation or, evolve individuals within the
population, allowing individuals to be kept into the next generation. One
generation refers to one run of the algorithm and also to the population at
the beginning of that run.

Parent Selection

Parent Selection is the process of choosing which individuals that should
be parents for the next generation. Together with survivor selection, this
is responsible for pushing towards quality improvement (better fitness).
There are different approaches to selecting which individuals should be
parents; usually, the selection is probabilistic. The high-quality solutions
have a higher chance of becoming parents, but the low-quality solutions
are given a small chance to avoid local optimum and increase diversity.
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Variation Operators

Crossover The offspring is created by combining the parents into one or
two offsprings. What parts and how they are combined are dependent
on random selection. The motivation behind crossover is that you are
combining individuals with desirable features, and by crossover, combine
these features. This operation is exploitative in that it makes a transition
somewhere between the parents in the search space [14, 62].

Mutation The role of the mutation operator is to create small, random
changes to a genotype. This operation is exploratory because it introduces
a random change to the population [14, 62].

Survivor Selection

The individuals allowed to continue into the next generation are chosen
based on fitness and quality. This selection is done after the offspring
has been created, and this selection is often deterministic. The two most
common ways to select is fitness based(selecting top quality solutions) or
age-based(selecting only from offspring)

Termination Criteria

There are no guarantees in reaching an optimum in EA’s, so there has to
be other criteria to stop the algorithm. Examples of this could be time,
the number of fitness evaluations if no fitness improvement or under a
threshold, or where diversity drops below a threshold value.

Example

Image an example where the goal is to evolve a robot’s morphology (shape,
structure). The morphology consists of a body, legs, and arms, similar
to a humanoid robot. The objective is to make an efficient morphology
optimized for walking in dynamic environments. For the simplicity of this
example, how it walks or is controlled will be left out.

The representation of each individual can be a vector describing its
morphology, where the shape of the body is fixed as a cube, but the size
can vary. The number of legs can be changed, and leg and arm lengths can
also be varied.

Genotype = [nr_legs, length_legs, length_arms, size_body] (2.7)

The population is randomly initialized, consisting of n number of robot
individuals represented as the vectors in equation 2.7. The different robots
are tested in the environment, and the f itness of each robot is evaluated.
In this case, the fitness function is how far the robot can walk without
falling over. This fitness value is the foundation for the parent selection,
where the top-performing robots have a higher chance of being selected
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as parents. The parents are then combined using crossover at a random
position in the genome; elements of each parent are combined to create
new offspring, as illustrated in figure 2.12. Mutation creates a small change
in the offspring’s genotype, which could be a small variation in the length
of the leg, also displayed in figure 2.12. The new robots are evaluated
and given a fitness score; based on this, the survivors are selected, the
robots that should be saved in the new generation. In this stage, the
best performing robots are chosen as survivors, and the other robots are
discarded. Suppose the termination criteria are not met, select new parents,
and continue the algorithm. The termination criteria in this case can be
a threshold value; if a robot walks over a set distance, combined with a
non-improvement threshold over a number of generations and a maximum
number of allowed generations.

Figure 2.12: Variation Operators

General Problems in EA

Exploration vs. Exploitation Exploration versus exploitation is also a
problem in EA’s, where there has to be a balance to find good solutions,
although some variations exist where they solely depend on exploration.
In Genetic Algorithms (GA), excessive exploration will limit the diversity
of solutions and induce premature convergence, and excessive exploitation
will lead to a slow convergence [5]. Premature convergence is when an
algorithm reaches a sub-optimal solution where the parent can not produce
offspring that are better or superior to themselves—slow convergence
results in a slow and time-consuming process.

High-dimensionality In complex RL environments or problems where
there is high-dimensional data such as raw visual input, EAs struggles
to improve effectively. The bigger the input, the bigger the network
processing the data has to be, the larger the genome has to be, which equals
slower evolution [1].
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2.2.2 Neuroevolution

Neuroevolution is a sub-field of Evolutionary Computation, which em-
ploys EA’s to optimize neural networks. The goal is to apply evolution
to either evolve, both topology and weights, or just one of them. The pop-
ulation in neuroevolution can consist of neurons, weights, or full neural
networks. Neuroevolution is known to perform well as a robot controller,
with a long history of success in the field of evolutionary robotics [54].

Evolution

Through the history of neuroevolution, several different approaches has
been proposed on how to evolve a neural network[54]. From only
evolving weights[15, 44], evolving the topology[63] or a combination
TWEANN(Topology and Weight Evolving Artificial Neural Networks)[2,
40, 52, 53], to evolving neurons [15, 40] or evolving how to update
the weights[13]. Some algorithms have a fixed topology, and some are
randomizing through generations, keeping the ones that produces good
results.

Types of NE-algorithms

There have been proposed several different algorithms for evolving neural
networks. In [44] a fixed topology is applied, and the weights are evolved.
This can be a good solution if this topology is known to be best for the
given problem. SANE [40], showed in figure 2.13a, evolves the topology
based on a population of nodes. The population consists of nodes of
different types and specialization, and the main goal is to combine nodes
that have optimized for different aspects of a NN. This creates a symbiotic
relationship between the nodes. The goal of each neuron is to establish
a connection with other neurons in the population to form a functioning
NN. ESP [15], displayed in figure 2.13b, is an extension of SANE, with
a population of nodes, but it enforces sub-population. This involves
recombination that can only be done with other members of its own
sub-population, and a neural network is created by randomly choosing
nodes from each sub-population. This method used a fixed topology, only
evolving weights, but if the algorithm did not manage to solve the task and
got stuck, it restarted with a random number of hidden neurons between a
preset range.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [19]
algorithm evolves its topology and weights by using a covariance matrix.
A population of new individuals is generated by sampling a multivariate
normal distribution. When all individuals are evaluated and given their
fitness score, a mean of the multivariate normal distribution is calculated
as a weighted average of the highest performing individuals in the
population. The steps taken to update the covariance matrix are in
the direction of previously successfully search steps. Other approaches
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(a) Symbiotic, Adaptive Neuro-
Evolution (SANE) [15]

(b) The Enforced Sub-Populations
Method (ESP) [15]

Figure 2.13: SANE and ESP

evolving both topology and weights uses a population of full NN, like
GNARL [2], NEAT [53] and HyperNEAT [52].

There are a few differences between these; GNARL initializes the
population randomly, with a random number of hidden nodes. Half of
the population is chosen as parents. The offspring is created by copying the
parent and mutated according to the severity of how bad or good the fitness
score was. NEAT is starting with only input and output nodes, no hidden
nodes. Through mutation, which can add either a new connection between
nodes or adding a new node, it gradually increases the size and complexity
of the networks. This makes sure that it only evolves a suitable network for
the task at hand and does not get an over complexified result. The special
thing about this is the innovation number or historical markings that
are used when doing crossover and mutation. HyperNEAT is exploiting
geometry to evolve large-scale neural networks. HyperNEAT extends
NEAT to evolve CPPN or Compositional Pattern Producing Networks. In
this method, CPPN uses indirect encoding to encode NN. "The main idea
is that we can generate a pattern of weights based on a function of the
geometry of the inputs and outputs [54]." This makes it possible to have
an encoded CPPN with only a few dozen weights to represent a NN with
millions of connections. HyperNEAT was the first system to achieve direct
pixel-to-action in Atari games [54].

NE and Sparse rewards

Neuroevolution inherits EA’s ability to overcome delayed or sparse
rewards by using a fitness metric that looks at the accumulated reward after
an entire episode rather than continuous feedback after every action, often
used by RL algorithms. Neuroevolution through the selection operators
gradually pushes the population towards regions of the policy space that
equals higher episodic returns. In addition, NE uses a population-based
search that can effectively explore and exploit the action space, which leads
to diverse policies that effectively explore the domain [27].

Computational Demanding

Neuroevolution being a part of EA, also struggles with high-dimensional
data and is far more computationally demanding than gradient descent
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approaches like deep learning [11, 29]. Challenging RL environments or
problems with raw visual data often require large networks for dealing
with high-dimensional data. Up until now, approaches dealing with
scaling NE to these problems have been focusing on indirect encoding,
where small networks are mapped to large complex structure [29]. Other
approaches involve using a pre-processor to transform high-dimensional
raw data into low-dimensional features.

Summary

Evolutionary algorithms and Neuroevolution are powerful tools, espe-
cially as optimization techniques. The population-based search provides
some desirable properties, such as parallelization and the capability to
evolve several different strategies simultaneously. EAs and Neuroevolu-
tion work well in problems with sparse rewards and tasks where multiple
viable solutions are desired. However, due to the computational demand-
ing task of solving continuous RL environments, a way of scaling NE to this
problem has to be found. This can be done in two approaches: reduce the
dimensionality by compressing the representation of the neural network
controller, or use a form of pre-processor like deep learning, to transform
the high-dimensional raw data into low-dimensional features.

2.3 Deep Learning and Neuroevolution

DL and NE are both powerful tools when used on problems that can exploit
their best qualities, but knowing their weaknesses is equally important
when choosing an algorithm for a given task. DL is generally known for
performing poorly in environments where the rewards are delayed, also
known as sparse. On the other hand, NE performs poorly when dealing
with high-dimensional data. The motivation behind combining DL and
NE is based on their best qualities, and by picking algorithms that excel
at different parts of a problem, a better solution can be achieved. One of
DL’s best qualities is extracting features directly from raw input, such as
images or sound. NE is excellent at solving tasks with different strategies
simultaneously and can solve tasks with sparse rewards. Thus combining
DL and NE can produce a model capable of handling high-dimensional
data, extracting useful information from complex environments, and a
controller that can solve problems with sparse rewards. A few interesting
questions need to be answered to thoroughly understand how these
algorithms can be merged in a useful way.

2.3.1 Dividing the problem

It is first essential to determine how the workload should be distributed
between the two algorithms. As mentioned earlier, the DL component
should do most of the computational demanding tasks, dealing with the
high-dimensional complex data from the environment. Exactly what type
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of work this DL component should do depends on whether it is model-
free or model-based; in other words, a transformer or a model predictor.
The NE component should receive a compact representation from the DL
component and determine what types of actions are optimal based on
the input. This workload division aims to maximize the potential of this
union, utilizing the different strengths from each of the algorithms. Figure
2.14 depicts a simplified overview of how the problem could be divided
amongst NE and DL.

Deep
LearningInput [Features] Neuro-

evolution Action

Figure 2.14: Work-load division

2.3.2 DL-component

The next step is specifying the DL component. It is first helpful to divide it
into model-based and model-free. Then specify what type of problem the
DL component is solving, which DL architecture, and if specified, why this
architecture was chosen.

Model-Free

The goal for the DL component in model-free algorithms is to transform
the high-dimensional data into low-dimensional compact features that
the controller can use. Possibly one of the most intuitive approaches
is using DCNN for video feature extraction, in that CNN is known
to be good at extracting features from images, sound, and video. In
Poulsen et al. [43] this approach was applied, showed in figure 2.15.
Two different networks were implemented: shallow (6-layers) and deep
network (12-layers). These networks were trained using a supervised
learning approach. The results of the comparison showed that a deeper
network is more robust and produced better results overall. In addition to
this, they experimented with different types of feature representations to
see which type of representations yielded the best results when combined
with the NE component.

Figure 2.15: Combination of DL and NE [43]
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In Koutnik et al. [29] a Max-Pooling CNN (MPCNN) architecture,
displayed in figure 2.16, was used, with an algorithm called UL-ERL
(Unsupervised Learning - Evolutionary Reinforcement Learning). This
method combined evolved action learning with an unsupervised learning
compressor. The compressor was evolved to maximize the variance in
its output, and a fitness function forced the MPCNN to output feature
vectors that are spread out in feature space. This results in a small set of
useful features used by the small evolved RNN controller. In this approach,
evolution is used for both feature extraction with the DL component and
action selection by a small RNN controller. Instead of supervised learning,
which requires task-specific domain knowledge, the DL component was
evolved. It might not be an easy task to choose what constitutes a class in a
given scenario in an RL setting. Instead of letting the algorithm figure this
out on its own, not putting on any restraints which may be over-complex
or not complex enough for the task at hand. This has its strengths and
drawbacks; the strength is that there is no need to investigate the domain
to create training sets. It evolves the needed architecture for that given
problem, but evolving large structures is computational demanding, as
mentioned before.

Figure 2.16: Unsupervised Learning – Evolutionary Reinforcement Learn-
ing (UL-ERL) framework [29]

Another good architecture at transforming high-dimensional data to
low-dimensional compact representations is a Variational Autoencoder
(VAE). A VAE consists of three components, encoder, chokepoint, and
decoder, and the main goal is to compress data (encoder), create a
compressed representation of the data (chokepoint), and decompress the
data (decoder), shown in figure 2.17. The objective of the VAE is to
reconstruct the input image as output. The training of a VAE is done
by calculating the loss between the input image and output image of
the model. Recreating the input from the compressed representation
in the chokepoint shows that the compressed representation consists of
enough information to represent the input accurately. In other words,
no information is lost in the compression of the data, and the data in the
chokepoint can be used to represent the input.
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Encoder
Chokepoint

Decoder

Output

Figure 2.17: Simple variational autoencoder

Two relevant papers have proposed methods using VAE [1, 17]. One
is a model-free approach, the other a combination. In Alvernaz et al. [1]
a VAE was trained online during game-play and used backpropagation to
update the weights, seen in figure 2.18. This method allows the VAE to
continuously update its weight while playing; in the first 30 generations,
exploration was rewarded high for the NE component (finding images that
the VAE had not seen before) to acquire a diverse representation of the
environment.

Figure 2.18: Combination of VAE and NE [1]
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Model-Based

The goal of the DL component in model-based algorithms is to create an
accurate predictive model of the environment and solve the main problems
with model-free algorithms: (1) requirement of large data-sets and (2) not
being able to transfer its policy to different tasks in the same environment.
Creating an accurate predictive model of the environment can be a problem
in high-dimensional environments. In Ellefsen et al. [11] they greatly
simplified the prediction of future states by only predicting a few key
measurements that are required to choose the optimal action given the
state. Their approach is an extension of an algorithm called DFP (Direct
Future Prediction) [8]. The process can be seen as transferring the RL
problem into a supervised learning problem of predicting future states. The
environment predictor used in this paper is a deep network, receiving data
from a CNN architecture processing the image from the environment and
two fully connected networks that are (1) a measurement module and (2) a
goal module. This architecture is displayed in figure 2.19b.

A second paper mentioned earlier that used a VAE is Ha et al. [17].
Here, a VAE is used to compress image inputs and propagate a compact
feature representation both to the controller but also to an evolved RNN,
seen in figure 2.19a. The RNN is tasked with predicting the compact feature
representation based on actions taken by the controller. This paper uses a
combination between model-based and model-free, in that the controller
both relies on the information from the environment and also takes into
account the consequences of actions. The representation given by the RNN
is used to generate an environment in which the agent can be trained inside
and then transfer back to the real-world model.

(a) Flow diagram in [17] using
VAE, RNN, NE

(b) DL component in Model-Based approach[11]

Figure 2.19: Two different approaches of combining deep learning and
neuroevolution
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2.3.3 NE-component

With either a compressed representation of the data or a predictive
model of the environment ready to be used, a controller reacting to these
representations is needed. As mentioned in the NE section, there are a lot
of different algorithms to choose from, and in this section, the goal is to get
an overview of the algorithms used in the relevant papers. NEAT is used
in [11, 43] and CoSyNe [16] which is a extension of ESP is used in [29]. The
two last papers used a CMA-ES algorithm to evolve their controller [1, 17].
Similar for all of the above implementations is that the controller outputs a
vector; the elements in the vector are either actions or goals to pursue. With
the algorithms defined, a table summarizing the input and output vectors
of the NE components is displayed in table 2.1 on the next page.
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Input/Output NE-component

Paper Input Output

Ellefsen et al. [11]

[m1, m2, m3]

m1 = ammunition
m2 = health
m3 = Nr. enemies killed

Goal-vector:

[g1, g2, g3]:
g1 = ammo-objective
g2 = health-objective
g3 = Monster killing

Vector in range[-1,1]

Ha et al. [17]

[zt ht], where
zt=vector with compressed
input from the VAE,
ht = hidden state from the
RNN predictor.

at = Wc[zt ht] + bc
Wc and bc map input
vector to output

Based on the problem:
Car-racing outputs =
[steering left/right,
acceleration, brake]

Koutnik et al. [29]
3-d compact feature vector,
from the MP-CNN

Actions [o1, o2, o3]:
avg(o1,o2) = steering
o3=brake/throttle

Alvernaz et al. [1]
128-float values, representing
the environment, compressed
representation.

Actions [a1, a2, a3, a4]:
a1 = left
a2 = right
a3 = forward
a4 = Nr. times to
repeat actions

Poulsen et al. [43]

Angular representations:
[angle1, angle2, distance,
in sight]

Visual Partitioning Representation:
25-dimensions, where each element
is a place on the screen, element
containing 1 shows where the
enemy is

Actions [a1,a2,a3,a4]:
a1 = up
a2 = down
a3 = left
a4 = right

Table 2.1: Summary of inputs and outputs
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2.3.4 RL-problems solved

A variety of different RL-problems have been solved using this combina-
tion, the different environments is displayed in table 2.2.

Screenshot Experiment Paper
Model-based/
Model-Free

DL NE

VizDoom [11] Model-Based DL NEAT

VizDoom/
Car-Racing

[17]
Model-Based
and
Model-Free

VAE
RNN

CMA-ES

TORCS [29] Model-Free MPCNN CoSyNe

VizDoom [1] Model-Free VAE CMA-ES

FPS-Shoot [43] Model-Free CNN NEAT

Table 2.2: Summary of the different RL environments in related papers
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2.3.5 Summary and contribution

Finally, it is interesting to see the contribution of the different papers and
what underlying problems they were trying to solve. In Ellefsen et al.
[11], using an extension of the DFP algorithm were able to show that their
implementation allowed for the model to be successfully transferred back
to the environment even when the optimal policy was changed. Their
approach was also able to change the goals on-line, based on changes in
the environment, which is highly interesting with real-world applications
in mind, where the environment is ever-changing, and the goals will differ
based on the feedback from the environment.

In Ha et al. [17] the focus was to generate an entire model of the
environment, using visual sensory inputs and creating this model using
an RNN architecture. This approach allowed for training the agent inside
the generated environment and successfully transfer the learned policy
back to the original environment. While this method allows for training
the agent with less computational resources with a simpler predictive
model, this model is subject to errors and enables the agent to cheat and
exploit problems within the generated model, which will not be good when
transferred back to the real environment.

Koutnik et al. [29] experimented with evolving the DL part of the
combination by using a UL-ERL algorithm that evolved a CNN capable
of extracting features without the need for supervised learning. This
approach has its advantages and disadvantages; letting the algorithm itself
figuring out what features it needs to solve a problem can make the model
more effective, and this approach could easily be fitted to be an end-to-end
approach to new problems. The disadvantage, however, is that evolving
large structures is slow and computationally heavy.

In Alevernaz et al. [1], their goal was to show that the DL, or
more specifically the VAE model, could successfully compress the 3D
input so that an EA can be effective. Although they did not manage to
outperform a deep-q network, this approach showed that VAE successfully
decompresses the visual input to compact features, and this can be
promising with the VAE being able to be trained on-line while the game
is playing. Different representations of data have been shown in table 2.1,
and choosing which representation is best for a given problem is not an
easy task.

In Poulsen et al. [43] their main contribution was comparing the
different representations, angular and visual partitioning, given by the
DL component to the NE, and see how this affected training time and
result. They also experimented with different depths of their DL model,
comparing the difference. This can give useful insight on choosing the
representation given to the NE component. However, this looks pretty
problem-specific, and it is not apparent how this research can be applied
to problems that are not very similar to this.
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Chapter 3

Tools and frameworks

This chapter attempts to give an introduction to the different tools and
frameworks used throughout the thesis. The background chapter lays
the theoretical groundwork for the work in this thesis while this chapter
focuses on the environments and algorithms applied.

3.1 Environment

Every living organism is interacting with its environment and uses the
feedback from the environment to improve its actions to better survive
and thrive. Similar artificial environments are created to solve various RL
problems. These environments generally model a simplified version of a
more complex problem. Depending on the problem, these environments
give the agent situated in this artificial environment and controlled by the
algorithm feedback that can help it solve the problem. There is a huge
variety of RL environments available, and for this thesis, a few important
aspects are considered in choosing the environment. These aspects are
linked to the problem this thesis is trying to address: (1) It has to be
sufficiently complex so that DL and NE can benefit from a combination, (2)
the ability to work with high dimensional data, and (3) the ability to work
with both non-sparse and sparse reward, this implies that the problem and
the reward can be made sparse.

3.1.1 Bipedal Walker

The environment chosen for the experiments in this thesis is Open AI’s
gym environment Bipedal Walker v3 [3]. The Bipedal Walker is a two-
dimensional environment consisting of an agent walking horizontally,
portrayed in figure 3.1. In the environment, the agent experiences gravity
and friction, similarly to the real world. The anatomy of the agent consists
of a rigid five-sided body and two identical legs as seen in figure 3.1.
The legs are divided into two joints and are arranged as front-leg (light
brown color) and back-leg (dark brown color). The environment itself
produces 24 observations or sensor outputs. The sensor outputs consist
of different measurements, such as velocity in the x and y direction, the
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state of the agent and its legs, and ten lidar readings that provide different
distance measurements. The complete sensor output can be seen in table
3.1. The chosen algorithm receives the observations from the environment
and should produce an action vector consisting of 4 values. These four
values range between -1 and 1 and are the torque applied to the four
different parts of the legs, more precisely: knee1, hip1, knee2, and hip2. The
maximum number of time-steps in the bipedal walker environment is 1600;
time-steps are related to the number of actions received by the environment
from the algorithms.

Environment Goal

The goal is to walk as efficiently and fast as possible to accumulate the
highest possible reward. There are two different versions of the Bipedal
Walker environment, normal and hardcore. Normal has a flat ground,
while hardcore has obstacles, holes, and inclines. The threshold for
considering the environment solved is a mean reward of 300 over 100
episodes. The reward function is further discussed in the next section.

Figure 3.1: Bipedal Walker [3]. Table 3.1: Bipedal Sensors [3].

Reward Function

The reward is given from the environment; every time the agent performs
an action a, it receives a numerical reward value from the environment.
This value indicates if the action was good or bad. If the agents accumulate
sufficient speed without falling over, it will reach a total reward of 300+,
which is the goal of this environment.

r(t) = α(x(t)− x(t− 1))− β
3

∑
i=0
|ai| − 100(gt) (3.1)
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Equation 3.1 shows: gt = 1 if the body or hull hits the ground, and 0
otherwise. r(t) is the received reward at time-step t. x(t) is the x position
at time-step t and x(t− 1) is the last x position at time-step t− 1. α and β
are scaling variables.

The reward is accumulative, meaning that the agent receives a reward
for each action/time-step, and the total reward is all the reward accumu-
lated from one run in the environment. If the bipedal walker falls over, it
receives a reward of -100.

3.2 Algorithms

3.2.1 SAC

Soft Actor-Critic (SAC) [18] is the main RL algorithm used in this thesis,
chosen from initial experiments on the original implementation of the gym
environment bipedal-walker. Actor critic algorithms learn both policies
and values. The actor learns the policy while the critic criticise the actor’s
choice. The main part of the algorithm utilizes the Stable-Baselines [24]
python package. During the initial experimentation, SAC has shown to be
a fast algorithm to find a viable solution and completing the environment
without problems. SAC is defined for RL tasks involving continuous
actions, and it is an off-policy, model-free, deep learning algorithm. SAC
aims not only to maximize the lifetime rewards but also the entropy of
the policy. Entropy can be seen as the randomness in the policy. It
wants to maximize the entropy of the policy to encourage more exploration
explicitly. This encourages the algorithm to assign equal probabilities to
actions with the same Q-value, which ensures that the algorithm does not
repeatedly select the same actions. The objective function consists of both
the reward term r and the entropy termH:

J(π) =
T

∑
t=0

E(st,at)∼ρπ
[r(st, at) + αH(π(|̇st))] (3.2)

Equation 3.2 shows: α is a temperature variable that controls the relative
importance of the entropy against the reward. SAC uses three different
types of networks, (1) state-value function Vψ(st) , (2) soft Q-function
Qθ(st, at) and (3) policy function πφ(at|st) . Each of the separate networks
optimizes different error function, shown in equation 3.3, 3.4, 3.5 and 3.6.

Value network:

The state-value network is trained to minimize the squared residual error:

JV(ψ) = Est∼D [
1
2
(Vψ(st)−Est∼πφ [Qθ(st, at)− logπφ(at|st])

2] (3.3)

Equation 3.3 shows: D is the distribution of the replay buffer. The target
is to minimize the error between the prediction of the Q-function plus the
entropy of the policy function π.
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Q-network:

The Q network is trained to minimize the soft Bellman residual, showed in
equation 3.4:

JQ(θ) = E(st,at)∼D[
1
2
(Qθ(st, at)− Q̂(st, at))

2] (3.4)

where

Q̂(st, at) = r(st, at) + γEst+1∼p[Vψ̄(st + 1)] (3.5)

Equation 3.5 is calculating the squared difference between the predic-
tion of the Q-function and the immediate reward plus the discounted ex-
pected reward for the next state. This is done over all action, state pairs. In
equation 3.5 the term Vψ̄ is a target value network where ψ is the moving
average of the value network weights. This moving average has shown to
be good to stabilize the training [18].

Policy-network

Lastly, the final network aims to minimize the expected KL, or Kullback-
Leibler divergence noted as DKL

Jπ(ψ) = Est∼D[DKL(πψ(|̇st))||
exp(Qθ(st, )̇

Zθ(st
] (3.6)

This optimization, showed in equation 3.6, aims to make the distribu-
tion of the policy function similar to the distribution of the exponentiation
of the Q function normalized by a function Z. Minimizing the objective can
be done in multiple ways. The authors of the paper used a reparameteriz-
ation trick to make sampling from the policy a differentiable process, and
this results in avoiding problems with back-propagating the errors in the
neural network.

Reward

Scaling the reward down can lead to a nearly uniform policy that fails to
exploit the reward signal, leading to substantially lower performance [18].
With the reward scaled up, the policy can become nearly deterministic,
with a fast learning curve at first but leading to poor local minima due
to insufficient exploration. The only hyperparameter that needs tuning in
SAC is the reward scaling [18].

Summary

SAC is an actor-critic, off-policy deep learning algorithm, using entropy
to force the agent to maximize reward simultaneously with exploration;
in other words, it solves the environment while trying out random new
actions. SAC’s advantages are that it focuses on exploring new solutions
and gives up solutions that are unpromising and the ability to assign
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equal probability to the actions that seem equally attractive for solving
the problem. This is particularly useful in environments where several
different solutions are desirable.

3.2.2 NEAT

The neat-python package [36] that is based on the original paper from
Stanley et al. [53] is used for the experiments in this thesis. This section
aims to describe the specific parts of NEAT that stand out regarding EA
and NE described in the background section.

Initial Population

There are several different approaches to initializing the initial population
used in neuroevolution; while input and output nodes are fixed, the
number of starting hidden nodes and connections can be set. Some
algorithms start with a random population, but this can lead to several
problems, one being the input not being connected to the output. The
main goal of neuroevolution is to find a minimalistic solution to a problem.
Therefore creating random individuals with many potentially unnecessary
connections and nodes forces the network to spend time getting rid of
these. NEAT has as a design principle to start small, with only input
and output nodes, no hidden nodes, and evolve from there, leading to
minimalistic solutions [53]. A few initial experiments in this thesis focused
on the difference between an "unconnected" or "full" starting architecture.
"Full" means that all input nodes are connected to all output nodes, and
"unconnected" means that there are no connections at all. The number
of hidden nodes is set to zero to keep the networks as minimalistic as
possible. Depending on the problem, "full" and "unconnected" can be
beneficial, "full" takes more time initializing but can create connections that
might not be necessary. In more challenging problems, like using images
in the bipedal-walker environment, "full" seems to have a bigger chance
of leading to a solution rather than being stuck. "Unconnected" often
lead to minimalistic networks, less time initializing, faster generations,
and in easier problems can lead to a faster solution. Therefore in the
main experiments in this master thesis, the full implementation has been
used—both in regard that it performs overall better and that K.O. Stanley
et al. [53] apply full connect when doing experiments in the original paper.
One experiment has been conducted showing the difference between these,
and it can be found in Section A.1 in the appendix.

Activation function

One activation function has been used in the experiments of this thesis,
Tanh, which is shown in figure 3.2. This activation function keeps the
output values that range between -1 and 1.
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Figure 3.2: Activation function tanh

Crossover

In neuroevolution, where we are often dealing with complex structures,
there is no intuitively good approach to perform crossover without ruining
the performance of the two networks. Because of this, some researchers
have given up this option [54]. NEAT solved this by adding a ”global
innovation number" [53]. These numbers are markers that identify
each gene’s original historical ancestor, which gives an overview of the
chronological order of every added gene in an individual. This gives
NEAT two different matching genotypes, meaning that the innovation
numbers of the parents are lined up, or disjoint (middle nodes that do not
match)/excess (leaf nodes that do not match) depending on the differences
of the two parents. Crossover is performed by choosing random matching
genes from the parents, done by using the innovation numbers, and all of
the excess and disjoint genes are added from the parent with the highest
fitness of the two. An example of crossover can be seen in figure 3.3b.

Mutation

In neuroevolution, the mutation is performed by changing weights, adding
a node, a connection, or a combination of these; an example of mutation is
depicted in figure 3.3a.
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(a) Mutation
(b) Crossover

Figure 3.3: Evolutionary operators for NEAT [53]

Speciation

Performing mutations and crossover in NE usually do not give the network
an instantly better performance, rather the opposite. The network needs
time to optimize the newly added changes to see the full potential of
this mutation or crossover. To solve this, NEAT [53] uses speciation.
Speciation divides the individuals in a population into discrete niches,
and the individuals only compete with individuals in their own niche
rather than the entire population. This speciation process can result in
better diversity by giving the different individuals more time to optimize.
The speciation can be seen as a way of protecting the innovation of new
behaviors.

Selection

The selection process evaluates each of the individuals in the chosen
environment and looks at the fitness score. The selection process is then
based on these hyperparameters, how many species are there, how big the
difference should be between individuals to be constituted as a separate
species, and, finally, how many individuals in each species should be
chosen as parents. The parents are chosen, with the best performing
individuals having a higher chance of being chosen within each species.

Genotype

The genotype, depicted in figure 3.4, in NEAT, is two genes, node genes and
connection genes. The node gene specifies the type of node (input, hidden,
output), the innovation number (historical markings), activation function,
bias, aggregation (sum of input, or multiplication of input), and response
(all the attributes of a node: activation function, bias, and aggregation).
The connection gene specifies the innovation number, the weight, and if it
is enabled or not, input and output. A network can be created from this
representation, which is the phenotype.
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Figure 3.4: Genotype to Phenotype mapping example [53]

Parallelization

As mentioned in the background section, EAs are highly parallelizable; the
number of workers is limited to the number of threads and cores and can
also be applied to cloud computing, a network of computers working on
the same task. This results in a significant speedup when running EAs on
computers with many cores.

3.2.3 DL

Most of the deep learning theory was described in the background section
2.1.3, so this section will primarily describe how the deep learning model
was trained and the process of choosing the architecture, optimizer,
and loss function. The choice was conducted experimentally. Different
permutations of optimizers, loss functions, and architectures were cross-
tested to find which combinations resulted in the best possible model with
the dataset from Bipedalwalker. The selection of optimizers, loss functions,
and architectures are briefly explained in the following sections.

Keras

Keras [6] is a deep learning API running on top of the machine learning
platform Tensorflow. This python package is well documented and widely
used. This package was used to create and train the model.

Optimizers

Optimizers are the glue that ties the loss function together with the model
and its parameters; where the loss function tells which way to go, the
optimizers take the steps and update the model accordingly. This section
will describe the optimizers used in this thesis shortly.
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Momentum is a term used below. This term can be seen as how
big a step is taken in the steepest direction. Like a ball rolling down a
hill, it builds up momentum. This extra momentum value can, in some
cases, lead to faster convergence. Nesterov accelerated gradient, added
to a momentum term, can be seen as a more intelligent momentum term,
meaning that when it reaches near a minimum value which is the goal, it
slows down. Like momentum but with a look-ahead function.

Stochastic gradient descent (SGD) is based on gradient descent, ex-
plained in the background section. Instead of updating for every data point
as done in gradient descent, the stochastic gradient descent algorithm ran-
domly chooses a few samples from the dataset, saving a lot of time for a
large dataset. RMSprop and Adadelta came about the same time, and both
tried to solve the problem with fast vanishing learning rates. Adagrad, a
widely used optimization technique, suffers from this. It performs small
changes(low learning rate) for features that appear frequently and signi-
ficant changes (high learning rate) for features that appear infrequently.
The learning rate is based on the squared of all past squared gradients.
Adadelta and RMSprop solve this by only storing a fixed number of past
gradients. These gradients then decay according to an average of these
gradients, multiplied with a momentum value. Like Adadelta and RMS-
prop, Adam has an adaptive learning rate and, in addition, has an expo-
nentially decaying momentum value. Nadam is similar to Adam but using
Nesterov accelerated gradient.

Loss-Functions

Loss functions are used as an evaluation method for how well the model
fits the dataset. The model in this thesis is not classifying the data but
predicting numbers, meaning that this is a regression problem. The loss
functions chosen are some of the most commonly used in these kinds of
machine learning problems.

Mean Squared Error (MSE) loss function takes as the name implies the
mean and squares the error between the predicted and actual value showed
in equation 3.7. This squaring gives it the property that far-off predictions
get penalized heavily while close predictions get a small penalty. It exhibits
problems when nearing the minima, where the gradient might be too small.

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2 (3.7)

Huber loss, seen in equation 3.8, includes a δ term that controls how
small an error has to be to take the quadratic of the error. Depending on
this δ value, Huber loss is Mean Absolute Error (MAE) and becomes (MSE)
when the error is small. MSE when δ ∼ 0 and MAE when δ ∼ ∞. MSE has
a problem with small gradients, and MAE can have problems with large
gradients, meaning it might overshoot and miss the minima. Huber loss
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can work well in these cases, with small and large gradients, but the δ term
needs to be tuned, which can be a challenging and tedious task.

Li =

{
(z(i))2 for|z(i)| ≤ δ

2δ|z(i)| − δ2 for|z(i)| > δ
(3.8)

The logcosh loss function showed in equation 3.9 takes the logarithm of
the hyperbolic cosine of the prediction error. This makes it very similar to
MSE but will not be affected so strongly if there are a few predictions that
are far off. It has all the advantages of Huber Loss but is twice differentiable
everywhere.

L(y, yp) =
n

∑
i=1

log(cosh(yp
i − yi)) (3.9)

Cosine Similarity is a measurement of similarity between two n-
dimensional vectors, seen in equation 3.10, where a and b are vectors. In
this case, the similarity between the predicted vector and the actual vector.
It is defined as the cosine of the angle between the vectors. Giving a positive
value of 1 if the vectors are parallel in the same direction, 0 if they are
orthogonal, and -1 if they are parallel but pointing in different directions.

cos(a, b) =
ab

‖a‖‖b‖ =
∑n

i=1 aibi√
∑n

i=1 (ai)2
√

∑n
i=1 (bi)2

(3.10)

Architecture

One of the most challenging parameters to choose is the number of layers,
nodes, weights, and biases, so the simplest way is to look at earlier work
done in machine learning with images. Looking at competitions and
reputation in the field of image classification and processing over the last
decade, two models stand out: (1) AlexNet[31], showed in figure 3.5a,
won ImageNet Large Scale Visual Recognition Challenge on September 30,
2012, by a significant margin, (2) VggNet[50], showed in figure 3.5b, won
the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014
in the classification task and is the first deep learning classifier that got
an error rate below 10%. The author created a third model based on the
VGGNet model, with extra layers, shown in figure 3.5c.
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(a) Alexnet

(b) VGG16

(c) VGG Altered

Figure 3.5: 3 Different deep learning architectures
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3.3 Hardware

This section provides an overview of the hardware employed in this
dissertation, divided into CPU and GPU. The number of CPU hours is also
estimated to indicate the amount of work that has been done in this thesis.

• CPU:

– NREC (Norwegian Research and Education Cloud)

* 16 core, 32 GB RAM virtual computers

* 4 Nodes October to January, upgraded to 10 in January-May

* November-Present, rarely not running experiments, so up-
words to 100% percent active usage

– Rudolph (Threadripper)

* 2 x AMD Ryzen Threadripper 1950X 16-Core Processor,
3xGeForce GTX 1080 Ti

* 7 days

– ROBIN NREC Node

* 1 x 120 core, 460GB RAM

* 18 December to 21.january

– Personal Laptop

* Used throughout the entirety of the thesis, sums up to 20-30
full days of active usage

* Laptop: Intel Core i7-7500U CPU @ 2.70 GHz 4 core, 8 GB
RAM

• GPU:

– Dunder (GPU Computer at Department of Informatics at the
University of Oslo)

* 1 x Intel i7 8700K (6-core), Nvidia RTX3090

* 20 days of continous usage

– Dancer (GPU Computer at Department of Informatics at the
University of Oslo)

* 1 x Intel i7 8700K (6-core), Nvidia RTX3090

* 20 days of continuous usage

– Personal Computer

– Intel Core i5-7600K CPU @ 3.80GHz, 4 core, 8 GB RAM, GeForce
GTX 1060 6 GB

– 3 months of continous usage

Approximating the exact number of CPU-hours spent in this thesis is
hard, but a rough estimate is 550 000 to 600 000 CPU hours (62 years), over
all hardware through the entirety of the thesis, including all preliminary
experiments and main experiments ++.
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Chapter 4

Implementation

This chapter aims to describe the changes and customization to the tools,
algorithms, and environments in the thesis. This chapter also describes the
experimental setup and challenges that were faced during the experiments.

4.1 Environment

The environment itself can be optimized to save time and reduce the
dimensionality of the data. These strategies quickly became necessary to
stay within the computational budget of a master project. Some of these
challenges are further explained in section 4.5.

Time-steps

The maximum number of time-steps in an episode of bipedal-walker is
1600. However, initial experiments showed that, on average, the agent only
uses between 850-1050 time-steps to complete the environment, depending
on the walking pattern and algorithm. The maximum number of time-steps
was set to 1100 to save time and increase learning speed.

Sensor values

The original environment provides 24 sensor inputs, as described in the
last chapter, which is the agents’ state and terrain information through the
lidar values. However, in the normal version of the environment, the last
ten sensor values should not be needed to complete the environment. The
last ten sensor values are lidar values that give information about different
lengths and the road in front of the agent. However, without inclines, holes,
and obstacles in the normal environment, these values are not needed. So
when the algorithms are used together with a DL model that predicts only
the 14 first (state) values, the lidar values are not a part of the experiment.
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Image

The environment provides a method for extracting screenshots directly
from the environment, and with some small alterations in the code, this
was used as the high-dimensional observations in this master thesis. The
screenshot is an RGB NumPy array that provides an image of the agent and
its immediate surroundings. However, some optimizations can be done to
simplify the problem further and decrease learning time.

Size of environment The original bipedal-walker frame is 600x400x3.
However, this image size provides much information about the environ-
ment that is unnecessary for this task. More precisely, a lot of information
about the road ahead of the agent. This extra information can be helpful in
a hardcore version of the environment with obstacles, holes, uphills, and
downhills, but not in the normal mode, which is just flat ground. So by
cropping the frame to be 128x128x3, a high-dimensional environment is
still present, but with only necessary information.

Grey The image is an RGB NumPy array, meaning that it is a colored
image. The colors do not provide any necessary or beneficial information.
The images have been converted into a greyscale image to lower the
dimensionality from 128x128x3 to 128x128x1.

Other image processing A few other image processing steps have been
added to the algorithms, such as normalizing the pixel values between 0
and 1 and removing zero-valued pixels to avoid zero division which might
arise in some of the algorithms. Dimensionality reduction has also been
added as support to the algorithms struggling with high-dimensionality
to make them more competitive with the other algorithms. NEAT, for
example, is known for struggling with high-dimensionality. Other image
processing, like flattening and such, is added in response to what the
different algorithms expect as input.

Results By removing unnecessary information from the environment,
the dimensionality is reduced significantly. The actual change to the
environment image can be seen visually in figure 4.1 and the calculations
to the reduced dimensionality are showed in equation 4.1.

600x400x3 = 720000
128x128x1 = 16384

720000− 16384 = 703616
(4.1)
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(a) Original Bipedal Walker frame (600x400x3)

(b) Cropped frame
(128x128x3)

(c) Greyscale
(128x128x1)

Figure 4.1: This figure displays the changes done to the original frame in
the environment, by cropping and removing color channels. Screenshots
are extracted from bipedalwalker environment [3].

4.1.1 Sparse rewards

One of the central goals of this thesis is investigating challenges with sparse
rewards. Therefore, a change in the environment’s reward function is
needed. There are several ways of making the reward sparse; the main
focus of this thesis will be the agents’ position. The reward function
is modified so that only the x-position contributes to the accumulated
reward, implying that the agent needs to move forward to receive rewards.
However, one important aspect to note is that the starting x-position of the
bipedalwalker is around 4.66.
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The reward function is simple, using a start threshold, threshold
increase size, and a fitness value. The start threshold value is how far
the agent has to move in the forward direction before receiving its first
reward. The threshold increase size is the distance the agent has to walk
after reaching the start threshold to receive its next reward. In between
those threshold step sizes, the agent receives 0 in reward or -100 if it should
fall over. Figure 4.2 displays this fitness function graphically.

A constant threshold step size of 5 is used in our experiments, meaning
that when the agent reached the starting threshold, it has to walk another
5 to receive the next reward. The fitness value received at each step is 1.0.
Different starting thresholds are tested and experimented with, described
in the experiment and result chapter.

Figure 4.2: Sparse Reward Function

Maximum Reward: The max position in the environment is approxim-
ately 90 meters, and this means that when the reward function is changed,
so is the maximum achievable reward. The maximum achievable fitness is
naturally related to the starting threshold and is depicted in table 4.1.

Start Threshold Max Fitness
5 17
10 16
15 15
20 14
25 13
30 12

Table 4.1: Maximum Fitness values according to the start sparse threshold
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4.2 Dataset

When training the Deep Learning model used for feature extraction to the
NEAT controller, a dataset is required to train the DL model. Screenshots
extracted from the bipedal walker environment make up the dataset. The
initial idea was to create a dataset using only random actions. However, to
get a more diverse dataset, the dataset’s creation was divided into three
different parts, the first part is random actions, the second part is an
original environment solution from the NEAT algorithm, and a solution
from the SAC algorithm. Using all three should lead to a more diverse
dataset and a better, more robust, and accurate DL model.

To greatly simplify the prediction for the deep learning model, only
the 14 first (agent state) of the 24 original sensors, displayed in table 3.1,
values from the environment are predicted. As explained earlier, the last
ten digits are the lidar values, and these values are not useful in the normal
version of the environment. The first 14 values include the velocity in both
x and y directions and the speed of the joints. These values were extracted
simultaneously as the images in the dataset and are used as the correct
labels that the deep learning model will try to predict.

4.3 Algorithms

The experiment code used in this thesis is open source and is available at 1.

4.3.1 SAC and NEAT

Keeping these algorithms close to the original implementation has been
important. Since optimizing one or the other can make the comparison
unfair, it also increases the applicability of our work to others using the
same algorithms.

NEAT

The NEAT package was found by looking at the papers that have done
similar work. This package includes a config file with around 40+
hyperparameters that can be tuned. The first couple of months, NEAT
was being run with different activation functions, starting architectures,
speciation thresholds, survivor amount, the number of individuals in
each species and, more. These experiments were necessary for finding
what works well and what does not work well for this problem. High-
dimensionality data can be a problem, especially NEAT, so options for
downsampling the input have been added in the experiments where this
occurs.

1https://github.com/matstveter/master_thesis
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SAC

The RL algorithms were chosen based on the performance in the naive
implementation of the bipedal environment. A few different algorithms
were tested, and different implementations of the same algorithms.
Finding an implementation/package that could easily be modified and
easily understood has helped in the later stages of the thesis. The different
RL algorithms tested were: PPO, DQN, SAC, A2C, DDPG, and more.

From the initial experiments, SAC was chosen due to its fast time to
solve the environment and part of a python package that was easy to
change to fit the requirements of this thesis. This package was based
on the original paper on SAC. According to the original SAC paper,
hyperparameter tuning is not necessary other than the fitness function itself
[18].

4.3.2 DL

Activation functions

The original architectures below use the "relu" activation function on all
layers. However, in the authors’ take on the three architectures below,
a "relu" activation function was used on the convolutional layers, and a
"tanh" activation function was used on the fully connected dense layers.
The reason for this is that with the 14 sensor values depicted in 3.1, most
range from -1 to 1, with "relu", all negative values would be set to 0.
Therefore changing this activation function to "tanh" allows for keeping the
output between -1 and 1, which should fit perfectly for the environment.

Architectures

Figure: 3.5a,3.5b,3.5c, shows the different architectures experimented with
during the initial DL model training. The aim was to find the model that
best fit the data in the dataset. These figures represent the convolutional
layers and the dense layers, not the max-pooling layers. The max-pooling
layers can be spotted by looking at the difference in image size in between
layers. If there is a large decrease in the image size, it is due to a max-
pooling operation. The main difference between the architecture used in
this thesis and the original architectures is the sizes of the dense layer. For
example, the original alexnet architecture has these dimensions in the final
three dense layers, 4096–4096–1000, but only 14 values are needed in the
output for our experiments. So this resulted in changing the final three-
layer dimensions to 128-64-14 to better fit the problem. The same change
has also been done to the VGG16 model.

Alexnet Alexnet uses a Dropout layer between the third and second last
layer, with a probability of 0.5, meaning that there is a 50% likelihood for
each neuron to get dropped out.
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VGGNet and VGG These architectures are quite similar, but the VGG in
figure 3.5c was created from the VGGNet version by just adjusting some of
the dimensions of the convolutional layers and adding an extra layer.

Choice of architecture, optimizer and loss function

Extensive cross-testing was performed by varying the four different
optimizers, three model architectures, and four loss functions. All of the
different cross-tested parts resulted in 48 models trained and evaluated.
Alexnet with a mean squared error function and the Adam optimizer
performed slightly better than the rest, architecture displayed in figure 3.5a.
A few of the state predicted values were velocities that are not possible
to compute from images. Some hyperparameter tuning was tested,
adding more layers, adding dropout layers, and so on, without achieving
a substantial increase in performance. These experiments resulted in
choosing an Alexnet architecture, using an Adam optimizer with a Mean-
Squared-Error function.

4.4 Experimental Setup

The environment utilized in the experiments is the Bipedalwalker environ-
ment described in section 3.1.1. The types of data from the environment
are either sensor values from the original environment or images extracted
from the environment. The reward function is the normal original fitness
function or the authors’ custom sparse fitness function. The algorithms are
trying to accumulate the highest possible fitness, which is done by walking
at the highest possible speed in the environment without falling.

Goal of experiments

The goal or threshold for solving the original environment is accumulating
a fitness of 300+ over 100 generations. However, in this thesis, the
goal has been changed to reach a threshold of 300 or the equivalent in
the sparse reward domain which varies greatly with different starting
threshold. Although averaging above 300 in fitness over 100 generations
is ultimately the goal, the first steps are to see if the algorithms are able
to learn and improve from the supplied inputs and combinations, which
is the main focus of this thesis. The problems used in this thesis are more
complex than the original environment, so solving the environment might
require additional training time and may not be feasible with the time and
resources available in a master project.

Termination Criteria

The termination criteria are either maximum number of generations, which
is set to be 2500 generations or 500000 episodes. This maximum number
of generation was set, by looking at similar work in the related papers.
Finishing the environment based on a threshold fitness value (reaching
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300 fitness for neat) or a non-improvement threshold was set to be 100
generations or 20000 episodes. The non-improvement threshold was sat
mainly to finish the results in time and obtain the results needed. This can
bee seen in table 4.2

Fitness Naive Fitness Sparse Non-Improve Max
NEAT 300 See Fig: 4.1 100 Gens 2500 Gens
SAC 300 See Fig: 4.1 20000 Ep 500 000 Ep

Table 4.2: Maximum fitness thresholds, and termination criterias

Comparison

Generations vs. Episodes NEAT is a population-based algorithm that is
run in generations. One generation equals to one run in the environment
for all individuals in the population. SAC is not population-based, so it
is measured in episodes. This difference makes the comparison somewhat
difficult, but to attempt to make the comparison as fair as possible, the
relation between episodes and generations is episodes = generations ∗
neat_population. This is used when setting the different termination criteria
for the different algorithms in the experiments.

Plots All experiments have been run ten times, except for DL+SAC,
which is only run five times due to the time constraint of the master
thesis, and there was simply no time to complete ten runs. To visualize
the thesis results, a 95% confidence interval and the mean over ten runs
are also added to each of the plots in addition to the maximum over all
runs. NEATs plot is created using the maximum fitness at each generation
over ten runs, and the confidence interval is created from the ten best-
performing individuals at each generation. The maximum values are
used in these plots because and not the population average, in a complex
problem, the new individuals chosen in the selection process of NEAT have
no guarantee of performing as well as their parents. This process will lead
to a large portion of the new individuals not producing interesting and
good-performing solutions.

Gaussian filter

In the experiments involving reinforcement learning, there are a lot of
fluctuations in the data, along with a vast amount of data points, which
results in plots that are extremely hard to analyze visually. In these cases, a
Gaussian filter has been applied to the data; this is a smoothing or filtering
process that involves averaging neighboring data-point. Doing this makes
it easier to see trends and analyze the results, but it can also result in
losing some information. Figure 4.3 displays one run with SAC, where
the normal data is quite chaotic, but by applying Gaussian filters with
different sigma(standard deviation for the Gaussian kernel used) values,
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Figure 4.3: Gaussian Filter example

the performance and trends of the algorithm are easier to see. However,
some of the higher values are lost; for example, at 900 episodes in figure
4.3, the achieved fitness is 200 for sigma=80 line, 250 for sigma=20 line, and
300 for the normal data.

In all experiments involving RL, two for NEAT, this Gaussian filter has
been applied. The sigma values are reported in the plots, and the raw
version showing the original data is supplied in the appendix C.

4.5 Experimental Challenges

A few challenges quickly appeared during the preliminary experiments
and initial testing of the main experiments. These challenges were mostly
concerning the time it took to run a single experiment, primarily with
images. In order to produce some results in time for the delivery of this
thesis, these challenges needed solutions or at least optimizing parts of the
problem to work more efficiently. This section focuses on the problems and
solutions necessary for completing the result of the thesis.

Problems and solutions

Rendering The rendering function in the bipedal walker environment
draws the environment at every time step, and this is important so that the
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algorithm can get information about the effects of the last action. Extracting
these images, as done with the image experiments, took a lot of time and
required a lot of computing power. This drawing and extraction method
is part of the bipedal walker environment, and changing this would mean
changing a big portion of the environment.

Different approaches were tried to solve this problem, using various
methods and python packages, but the results were not as significant as
hoped. Two things were optimized, (1) Stopping the creation of a new
window at every time-step and (2) using a virtual-frame buffer instead of
the computer screen.

Keras Using the pre-trained Keras model together with NEAT turned out
to be challenging. Keras models do not support parallelization and being
shared among several workers. Initially, all the workers in the algorithm
were put in a wait queue and halted. To use the parallelization of NEAT,
the DL model had to be loaded separately for each individual in each
generation. This resulted in a considerable amount of time being spent
solely on initializing the models and algorithms at each generation (200
seconds per generation). Another problem with Keras is that the very
slow prediction method, 0.035 seconds per predict multiplied with the
number of time-steps, maximum 1600, resulted in worst-case 40+ seconds
per individual per generation.

However, there was no straightforward solution to this problem, but
this led to discovering other ways of optimizing the usage of the DL model.
At each time step, a screenshot is captured and sent into the DL model, and
Keras supplies a "predict" method for this purpose. But this turned out to
be quite slow, 0.035 per predict and multiplied with the number of workers,
population size, and generations result in a huge amount of time. Another
method is simply sending the screenshots through the model, skipping the
prediction method. This resulted in 0.025 seconds per prediction, which,
when multiplied for an entire run, leads to a significant speedup.

EA vs. RL Comparing EA and RL can be challenging, with the core al-
gorithmic differences, NEATs population-based search versus SACs singu-
lar global optimum search, parallelization versus not parallelized. With
NEAT being one of the more important elements of this thesis, it was nat-
ural to start experiments using NEAT. However, when multiple experi-
ments were done with NEAT, transferring the same criteria, generations,
and hyperparameter to SAC resulted in weeks and months of run time for
SAC. With 100 generations translating to 20000 episodes, and the maximum
number of generations 2500 equals 500 000 episodes.
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Allround Solution

With a large number of complex experiments and no simple, not time-
consuming solutions, the termination criteria were revisited, and tech-
niques for optimizing the agent in the environment were examined. This
resulted in adding a no-improvement threshold of 100 generations or 20000
episodes, in addition to the already present criteria, threshold, and a max-
imum number of generation. The maximum number of generations was
originally set to be 7500 but was lowered to 2500, both concerning the above
challenges and by looking at similar research.

The modifications done to the agent/environment have already been
described in section 4.1, but the most important element was scaling the
time-steps down from 1600 to 1100 per run. And finally, adding more
computational resources helped a lot, starting with only the personal
laptop and ending with the resource described in section 3.3
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Chapter 5

Experiments and results

In this chapter, the experiments and the results will be presented. Each
section has a motivation, a plot visualizing the results, and analysis or
short description of the result, the full overview of all experiments is shown
in figure 5.1. As mentioned in the previous chapter, the main goal of the
experiments is not necessarily to solve the environment but rather to see if
the algorithms can learn and improve from the given inputs and different
fitness functions. The code used in all these experiments is open-source
and supplied on github.

Non-sparse fitness
function experiment

State
information

State and
terrain

information
Image

Algorithms:
1.SAC
2.NEAT

Algorithms:
1.SAC
2.NEAT

Algorithms:
1.SAC
2.NEAT
3.DL+SAC
4.DL+NEAT

Sparse fitness
function experiment

State
information

State and
terrain

information
Image

Algorithms:
1.SAC
2.NEAT

Algorithms:
1.SAC
2.NEAT

Algorithms:
1.SAC
2.NEAT
3.DL+NEAT

Figure 5.1: Overview of the experiments presented in this chapter

5.1 Non-sparse Fitness Function

This section aims to investigate whether the algorithms can solve the
original environment with the non-sparse fitness function. The focus here
will mainly be to get an overview of how the algorithms perform with
various input types, starting with normal state and terrain sensor values,
clipped sensor values with only state information, and then finally, images.
These results will indicate if the termination criteria are balanced, if the
algorithms are able to solve this environment and the general robustness
and limitations of the algorithms.
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5.1.1 Sensor Values

5.1.1.1 State and Terrain Information

This experiment provides the algorithms with the original state and terrain
sensor outputs from the environment, displayed in 3.1. These values give
the agent information about its velocity, state of joints, and through the
lidar values, terrain information. This experiment aims to see how well
the different algorithms perform in the most straightforward version of
the environment, using the non-sparse fitness function. The results can
indicate if extensive hyperparameter tuning is needed and if the different
termination criteria are adequately balanced according to the algorithms
and the environment.
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Figure 5.2: RL - State and terrain information - Non-sparse
A Gaussian filter smooths out the graph due to the high fluctuations in the data to more
accurately get a sense of the actual improvement of the algorithm, with a sigma value of
80 in (a) and 20 in (b). Plot (a) displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark orange line. The ten
single runs can be seen in plot (b), showing that all runs are able to solve the environment
fast and reaches the threshold termination criteria.

Result

Using state and terrain sensor data and the original non-sparse fitness
function, SAC is able to solve the environment quickly and consistently
by reaching a fitness value of 300+. Figure 5.2 displays the accumulated
fitness over the episodes and is divided into plot, mean, confidence interval
and max in figure 5.2a and the ten separate runs in plot 5.2b. SAC solves
the environment in 1000-2500 episodes or 5-12.5 generations and is able
to solve it in every run. Although it might not look like it achieves 300
in fitness, it is due to the Gaussian filter, explained in section 4.4, which
smoothes out the graph. (more details and raw plots can be found in the
appendix C)
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Figure 5.3: NEAT - State and terrain information - Non-sparse Reward
Plot (a) displays the confidence interval over ten runs, which is the shaded area, the mean is
the blue line, and the maximum is the dark orange line. The maximum plot is the max of the
max at each generation. From plot b, it is apparent that most of the runs got stopped with
the first termination criteria, which is a non-improvement criterion over 100 generations.
Plot (b) displaying the ten single runs has used a Gaussian filter, with a sigma of 10.

Result

Using state and terrain sensor information and the non-sparse fitness
function, NEAT is able to perform well and accumulate a high fitness
value, although not reaching the "solve" threshold fitness value of 300+.
The figure 5.3 displays the accumulated fitness over the generations and
is further divided into plot 5.3a with the average, confidence interval and
maximum of the best performing individuals at each generation. Plot 5.3b
displays the ten runs independently with the best performing individuals
at each generation. From these plots, it is apparent that NEAT tends to get
stuck at certain fitness levels, 50 and around 150 in particular, and with this
short non-termination criterion of 100 generations, it is not always able to
improve beyond this.

5.1.1.2 Only State Information

In this experiment, the last ten sensor values are not supplied to the
algorithm, only the agent’s state. This experiment is conducted to examine
whether NEAT and SAC are still able to perform well in the environment
without the lidar values providing information about the terrain using the
non-sparse fitness function. This experiment is essential because these 14
values that provide agent-state information used in this experiment are the
same values predicted by the DL model used in later experiments. The
results from these experiments may indicate if a combination with DL is
possible.
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Figure 5.4: RL - Only state information - Non-sparse Reward
Gaussian filter with a sigma value of 80 in (a) and 20 in (b). This is the reasons why it is
difficult to see that SAC reached a threshold of 300. Plot (a) displays the confidence interval
over ten runs, which is the shaded area, the mean is the blue line, and the maximum is the
dark orange line. Plot (b) displays the ten single runs.

Result

In this experiment, SAC was provided with agent state sensor values,
and figure 5.4 displays the accumulated fitness over the episodes in two
separate plots: (1) Plot 5.4a displaying average, confidence interval and
maximum fitness over ten runs and (2) plot 5.4b displaying the ten runs
separately. The performance in this experiment is similar to the previous
state and terrain sensor experiment in that SAC is still able to solve the
environment quickly and consistently at each run. However, the average
solutions to the environment are found slightly faster with these sensor
values, with seven runs completed in 1250 episodes (6.25 generations) vs
three runs completed using state and terrain information. (more details
and raw plots without Gaussian filter can be found in the appendix section
C).
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Figure 5.5: NEAT - Only state information - Non-sparse Reward
The single plot shows that a couple of runs get stuck around 150 in fitness, but red manages
to reach the threshold value of 300+. Plot (b) has used a Gaussian filter, with a sigma of 10.
Plot (a) displays the confidence interval over ten runs (shaded area), the mean (blue line),
and the maximum (dark orange line). Plot (b) displays the ten single runs.

Result

In this experiment, NEAT is provided with only sensor values with
the agents’ state and a non-sparse fitness function. The performance
is displayed in figure 5.5 consisting of plot 5.5a displaying the average,
confidence interval and maximum of the best performing individuals in
the population at each generation. Plot 5.5b displays the performance at
the ten single runs. From these plots, it is apparent that NEAT continues
to perform well in this environment and is able to accumulate high fitness
values. Comparing the performance of this experiment with the previous
state and terrain experiment, it seems that NEAT performs better with
fewer sensor values, and NEAT managed to solve the environment with
a fitness of 304 in one of the runs. Furthermore, NEAT does not seem to get
stuck at the lower 50 fitness step as it did in the previous NEAT experiment.

5.1.2 Image Values

In this experiment, the values supplied from the environment are no longer
sensor values but extracted images from the environment. The reasons
why this experiment is conducted are twofold; (1) Can the algorithms solve
this problem directly from pixel-values, and (2) How well do they work in
combination with DL?

The underlying goal is that NEAT and SAC will attempt to solve
the problem with higher-dimensionality and directly from pixel-values.
A down-sample (from 128x128x1 to 32x32x1) option was supplemented
to help to solve this problem for NEAT at first because it is known to
struggle to work effectively with high-dimensional data and later to SAC
after running the with the original full-size image. The second test, when
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combined with DL, can indicate how well the DL model actually predicts
the sensor values and how well the algorithms can perform even if the
predictions are not perfect.
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Figure 5.6: RL - Image values - Normal reward - Full size
The plot displays the confidence interval over ten runs, which is the shaded area, the mean
is the blue line, and the maximum is the dark orange line. This graph shows that the
algorithm struggles to improve with this input, averaging its accumulated fitness around
-100. The best performing values are the yellow line, showing that even the best run did
not achieve high results. As with all RL experiments, a Gaussian filter was applied here
to smooth out the graph so that it is easier to see the actual performance of the algorithm
(sigma=80).

Result

SAC appears to have a difficult time learning and improving using the
full-size image with the pixels as input values and with a non-sparse
fitness function. Figure 5.6 shows that the accumulated fitness is averaging
around -95 and that the non-improvement threshold of 20000 episodes
ultimately stops SAC. (raw plot, without Gaussian filter, see appendix C).
From the plot, it is apparent that there are no tendencies of learning using
this input, as seen in previous experiments.
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(b) NEAT

Figure 5.7: NEAT and RL - Image values - Non-sparse Reward
The plots displays the confidence interval over ten runs, which is the shaded area, the mean
is the blue line, and the maximum is the dark orange line. In this experiment the input
image was down-sampled using SciPy [59], from 128x128x1 to 32x32x1. The figure shows
both SAC and NEAT using this down-sampled image as input, and this shows that SAC
performs badly with this input, while NEAT is able to accumulate a positive fitness. In plot
(a) a sigma=80 was used.

Result

In figure 5.7 a down-sampled image was used as input, with NEAT in
figure 5.7b and SAC in figure 5.7a. The down-sampling of the image
should help both algorithms to improve more efficiently with the decreased
dimensionality. However, SAC (a) struggles with this experiment as well as
with the full-size image and is not able to improve successfully. NEAT (b)
manages to reach positive fitness levels and proves that it can accumulate
some fitness and improve using this input. From NEATs plot, it also
appears that the confidence plot is a lot wider in these experiments than
with the two previous experiments, and also that it seems to improve
steadily before the no-improvement threshold stops it.

Result

From figure 5.8 showing the results from a DL+SAC combination in figure
5.8a and a NEAT+DL combination in figure 5.8b, it is apparent that
both algorithms struggles to improve effectively with this combination.
However, there is a difference between the performance, with SAC
struggling to improve at all, NEAT manages to accumulate a positive
fitness value, which relates to it learns how to move slightly in the right
direction in the environment, without falling. NEAT seems to have a steady
increase in fitness over the generation. Although it is slow, it has tendencies
to keep increasing.
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(a) Dl+SAC
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(b) DL+NEAT

Figure 5.8: Image values - Non-sparse Reward - NEAT and DL
Plot (a) was run five times and plot (b) was run ten times. These plots displays the
confidence interval, which is the shaded area, the mean is the blue line, and the maximum
is the dark orange line. These plots display a comparison of both SAC and NEAT combined
with DL, with the DL model receiving the extracted image from the environment and
predicting agent state values, which should be the same 14 agent state values provided
by the environment. The plot shows that both algorithms struggle to improve effectively
together with this DL model, but from plot (b), it can be seen that NEAT successfully
accumulates a positive fitness. In plot (a), a sigma of 80 were used.

5.1.3 Summary - Non-Sparse Reward

The three previous experiments have used the original non-sparse func-
tions, and the agent has received different types of information from the
environment. From the first experiment with the original state and terrain
information, both algorithms performed very well, with SAC being able
to solve the environment quickly and consistently in every run and NEAT
reaching high fitness values. In the second experiment, the terrain inform-
ation or lidar values were not given to the agent, only agent state informa-
tion. The results showed that SAC solved the environment slightly quicker,
and NEAT saw a significant increase in performance and on average fit-
ness over all runs. The last experiment gave the algorithms extracted im-
ages from the environment, either directly, down-sampled, or run through
a DL model that attempted to extract the agents’ state information from
images. With this experiment, the complexity was significantly increased.
This could be seen in the results and ended in lower performance overall.
SAC did not perform well with a full-image, down-sampled image, or in
combination with DL. It appeared that it struggled to learn anything at all.
NEAT was not run with the full-size images due to the time it would take
to complete such an experiment and that it is known to struggle to improve
with large input sizes. NEAT performed well with the down-sampled im-
age as input and accumulated small positive fitness when combined with
DL.
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5.2 Sparse Fitness Function

This section focuses on the performance of the algorithms when switching
the fitness function from the normal non-sparse fitness function to a
sparse fitness function, which is described in detail in section 4.1.1. The
experiments are similar to the previous section, but the goals are now
different. The focus of this section will be to see how the different
algorithms perform on a sparse problem with the same input values
provided as in the previous experiments.

The potential positive fitness values are small with the new sparse
fitness function, while the negative values are still -100. Negative values
are therefore normalized to -1 to simplify visualization. In this section, the
fitness values of the y-axis are changed from the original scale to the fitness
reward scale; please see section 4.2 for details on the sparse fitness function.

5.2.1 Sensor Values

5.2.1.1 State and Terrain Information

This experiment returns to the state and terrain sensor value experiment
but with the new fitness function. The goal of this experiment is twofold,
(1) Test whether SAC and NEAT can learn and improve with the new
fitness function, (2) test different levels of sparseness. The latter is an
experiment mainly to set a sparse threshold for later experiments, but also
interesting to see where the algorithms start to struggle.
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Figure 5.9: RL - State and terrain information - Sparse Reward
This plot displays the confidence interval (shaded area) over ten runs at different sparse
fitness levels and the average as a line, over ten runs, using SAC. Gaussian filter was
applied, with a sigma of 80. Due to a lot of fluctuations, it is hard to see what is going on
here, but the most important thins is that the average lies around -0.25 for all runs, except
for sparse-level 5 which has a average of 0.25.
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Result

In this experiment, state and terrain sensor information is provided to SAC,
and the environment has a sparse fitness function. Several different sparse
start threshold values are tested to see the potential of SAC with sparse
rewards. From figure 5.9 it is apparent that SAC struggles, in general,
to improve and learn using a sparse reward function, regardless of the
starting threshold. The Gaussian filter removes some information here,
indicating that SAC is able on the best run to accumulate some fitness at
the lower sparse levels (raw plots in appendix section C), but on average
seen in this plot, it struggles. The plot also shows that with five as the
sparse threshold, it accumulates positive fitness at the beginning of the run
but slowly decreases throughout the runs. It is also important to note that
the initial starting x-position of the agent is 4.66 on average, meaning that
the agent only have to extend a foot to receive the first reward when using
5 as the sparse threshold.
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Figure 5.10: NEAT - State and terrain information - Sparse Reward
This plot displays the confidence interval (shaded area) over ten runs at different sparse
fitness levels and the average as a line, using NEAT. It is able to learn and improve using
all different levels of sparseness that was tested.

Result

In this experiment, NEAT is provided with state and terrain sensor
information but with a change in the fitness function from non-sparse
to sparse. NEAT is tested with six different start thresholds, correlating
to how far it must walk to receive its first reward. The performance
is plotted in figure 5.10 and shows that it is able to learn and improve
with all different sparse levels. It performs better and learns faster with
lower sparse levels, and with a quite narrow confidence interval, it is also
apparent that it is pretty consistent in how it performs with the different
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values. The maximum achievable fitness is naturally correlated with the
start threshold and can be seen in table 4.1. (more details and singular
plots for all runs, with non-sparse fitness plots, see appendix section B.1)

5.2.1.2 Only State Information

In this experiment, the agent is given only state information and the sparse
fitness function. The sparse level is set to 10 to let both algorithms have a
genuine possibility of succeeding in this environment, based on the results
from the previous experiment. The sparse level 10 is also chosen based on
an the initial starting position of the bipedalwalker explained in section
4.1.1, that is around 4.66, so by choosing 5 as sparse level, would only
require the bipedal-walker to extend a foot to receive a reward.
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Figure 5.11: RL - Only state information - Sparse Reward
The plot displays the confidence interval over ten runs, which is the shaded area, the mean
is the blue line, and the maximum is the dark orange line. As with the state and terrain
sensory inputs, SAC continues to struggle with sparse rewards. It is, however, able to
reach the first threshold at the beginning of the run, achieving a reward of 1 but only in
the maximum performing run over ten runs. The average is below 0. A gaussin filter was
applied here, with a sigma of 80.

Result

Using the agent’s state information, a sparse fitness function, and a sparse
start threshold of ten, SAC continues to struggle in general with sparse
rewards. From figure 5.11 it can be seen that the fitness is averaging
between -1 and 0, meaning that it is altering between falling and not doing
anything. In other words, it is not able to learn and improve effectively
using this fitness function. From the maximum values in this plot, it
appears to be able to accumulate a high fitness level initially, yet cannot
effectively utilize the provided information and reward function and ends
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up it losing the fitness towards the end, this effect can be seen better in the
raw versions supplied in the appendix section C.
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Figure 5.12: NEAT - Only state information - Sparse Reward
The plot displays the confidence interval over ten runs, which is the shaded area, the mean
is the blue line, and the maximum is the dark orange line. NEAT is still able to perform well
with the agent state sensor input, even reaching the maximum fitness of 16. Additionally,
this sparse fitness function has a much narrower confidence interval than normal fitness
functions.

Result

Figure 5.12 shows that NEAT is still able to perform well when only
given agent state information and using the sparse reward function.
When comparing this performance with the previous experiment in figure
5.10 with sparse level 10, it seems like it performs slightly better in
this experiment, even solving the environment by reaching the threshold
value of 16. The same difference was apparent in the non-sparse reward
experiments with the same two values in the first two experiments in this
chapter. With this step size approach, one can also see that the confidence
interval is a lot smaller than it was with non-sparse fitness function.

5.2.2 Image Values

The final experiment combines all previous experiments, a sparse reward
function, with images extracted from the environment. This experiment
results in a problem with high-dimensional data with sparse rewards. The
experiment’s goal is twofold, (1) Can the algorithms solve this problem?
Furthermore, (2) How do they compare to the other algorithms. In these
experiments, a sparse level of 10 was used, a sparse level that requires some
walking before it receives a reward but is not too hard. Hopefully, choosing
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a lower sparse level can help the algorithms perform better with the more
complex problems.
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Figure 5.13: Image values - Sparse Reward - NEAT, DL and SAC
These plots displays the confidence interval over ten runs, which is the shaded area, the
mean is the blue line, and the maximum is the dark orange line. NEAT with and without
a DL component is performing quite similarly from this plot. SAC is struggling with this
problem, averaging between 0 and -1. NEAT was using a down-sampled version of the
image and was allowed to run for 250 generations without improvement as opposed to
only running 100 on all other experiments. In figure 5.13a a sigma of 80 were used.

Result

Figure 5.13a, shows that as with the other sparse reward problems, SAC on
average stays between 0 and -1, meaning that it varies between falling and
not creating a walking pattern that can reach the first threshold. However,
these results are not surprising by looking to the previous experiments,
with images and sparse rewards, where SAC also struggled. From figure
5.13b, NEAT is using a down-sampled image as input, and through this is
able to reach similar fitness values as with DL+NEAT, which is displayed in
figure 5.13c. Both were performing well with images and sparse rewards.
Using this down-sample option makes NEATs performances comparable
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with DL+NEAT, but DL can handle a vast increase in dimensionality,
resulting in a considerable decrease in NEATs performance if it were to
use the same input-dimensionality as DL. This increase would most likely
result in NEATs performance decreasing and would require a vast amount
of computing power to compare to a DL+NEAT combination on the same
problem. NEAT alone was allowed to run for longer by extending the non-
improvement threshold from 100 to 250 generations.

5.2.3 Summary - Sparse Rewards

The three previous experiments have been run with the same information
given to the agent as the first three experiments, state and terrain, only
state, and images. The difference in these experiments is that the fitness
function was switched to a sparse fitness function. In the first experiment,
involving state and terrain information, the goal was to test different levels
of sparseness and see how the algorithms performed. SAC struggled
with most of the experiments involving sparse rewards but managed to
accumulate rewards with the lowest level of sparseness. On the other
hand, NEAT performed well on all levels of sparseness, even completing
the environment in some cases. From the second experiment involving
only state information, and a sparse level of 10, SAC continued to struggle.
NEAT performed slightly better, a steeper learning curve with only state
information than state and terrain information. In the last and final
experiment, the sensor values were exchanged with images from the
environment. SAC continued to struggle with using images as input and
a sparse reward function. NEAT performed well using a down-sampled
image and reached the same fitness levels as the DL+NEAT combination.
NEAT alone were allowed to run for 150 additional generations to see the
potential and ended up performing equally to DL+NEAT.
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Chapter 6

Discussion

This chapter aims to discuss the results presented in the previous chapter in
light of the goals of the dissertation. This chapter’s format is linked directly
to the proposed milestones presented in the introduction to this thesis. The
final two sections address the limitations and a discovery made during the
experiments.

6.1 General discussion

In the background section, a thorough survey of the related field of NE+DL
was conducted. This research is highly promising and has achieved
excellent results in various complex environments. Utilizing different
algorithms and approaches, but with the core motivation being the same,
DL handles the high-dimensionality, and a controller is evolved using
neuroevolution for choosing actions. This completes the first goal G.1 of
the thesis.

The results presented in this thesis show that a DL and NE combin-
ation performs better on high-dimensional, sparse reward problems and
consequently completes the second goal G.2. All milestones were reached
and will be described in the subsequent sections.

6.2 Comparing the results of the algorithms with a
non-sparse fitness function

The results show that SAC is superior to NEAT in the non-sparse envir-
onment, given information about the agents’ state and terrain informa-
tion. SAC is able to complete the environment in 1000-2500 episodes, or
5-12.5 generations, by reaching the fitness threshold in all conducted runs.
While NEAT is performing well, it does not reach the same levels and
has the tendency to get stuck at certain levels, and is stopped by the non-
improvement termination criteria in 200-700 generation. This leads to two
interesting questions that need to be discussed further: (1) Why is SAC that
much faster than NEAT, and (2) Why does NEAT get stuck?
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In order to answer the first questions, it is helpful to take a closer look
at one of the differences between RL and EA in an RL problem setting
and the use of a value function. The value function estimates how good
it is for the agent to be in a state, which many RL algorithms uses and
estimates. Value function methods such as SAC allow for individual states
and actions to be evaluated, thus increasing the effectiveness of an optimal
policy search. However, this is not strictly necessary to solve RL problem,
where EAs is a prime example. EAs ignores much of the useful structure
of an RL problem, and this includes: "they do not use the fact that the
policy they are searching for is a function from states to actions; they do
not notice which states an individual passes through during its lifetime, or
which actions it selects." [56]. Taking NEAT as an example in the bipedal-
walker environment, a population of 200 candidate solutions is kept, all
individuals are evaluated by performing actions and receiving rewards and
feedback from the environment. The best individuals are chosen as parents,
thus pushing the population towards higher performing individuals. The
problem with this evaluation method is that it only considers the final
accumulated reward, not the individual actions or states that led to that
solution. This, in practice, means all actions taken by a well-performing
individual receive high credit, although these actions might be non-optimal
or unnecessary. In other words, SAC is learning while interacting with the
environment, which NEAT does not.

The second question is why NEAT tends to get stuck at some levels, and
an interesting observation can be seen when looking at the visual solutions
of these algorithms. Solutions produced by SAC have a more vertical,
running pattern, while NEAT often produces a very stable walking pattern,
dragging one leg behind as support and using the other to move forward.
With speed being one of the main factors for solving the environment, this
is an important observation, with NEAT often choosing more stable, secure
solutions, while SAC moves faster and more optimally, but with a higher
risk of falling. In order to accumulate higher rewards, NEAT has to produce
a more upright walking pattern, thus minimizing friction and increasing
the walking speed, similarly to SAC, but this also requires more balance.
Altering this behavior might, for a time, lead to a substantial decrease in
fitness through more falling, which is significantly penalized, and at least
in the short termination criteria in this experiment, it struggles to optimize
towards this behavior. SAC does not seem to have the same problem with
getting stuck and the reason for this is the same theory described in the
previous paragraph, with SAC interacting more with the environment with
continuous feedback and analyzing each action. This results in greater
agent control in the environment, knowing what to do and not to do at
every state, and can choose optimal actions at each time step.

The results, which complete the first milestone M.1, show that both
algorithms are able to perform well in the environment with the non-
sparse fitness function. SAC and NEAT are both able to learn and improve
effectively, but with SAC being superior in this experiment.
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Running Time: The actual time required to run these experiments is quite
similar. With SAC being faster at solving the environment when looking at
episodes and generations, but NEAT can use parallelization to speed up the
actual running time greatly. Therefore, the comparison of real-time usage is
not included, as both algorithms can use different hardware to speed up the
algorithm, cores for NEAT, and GPU for SAC, and a definite comparison
would not be fair.

6.3 Investigating possibilities of a DL combination

It is apparent that removing the lidar values from the standard version
of the environment did not result in a decrease in performance, but the
opposite. With SAC performing slightly better than it did in the previous
experiment, still being able to solve and reach the threshold value of the
environment quickly and consistently. NEAT performs better with only
state sensor inputs, achieving higher overall fitness over the separate runs,
with a narrower confidence interval and a steeper learning curve. One of
the reasons why this occurs is that NEAT thrives and performs better with
low-dimensionality, simplifying the optimization considerably with fewer
nodes and connections. In this experiment, NEAT also manages to solve
the environment in one of the runs, reaching a threshold of 304. NEAT
also does not get as easily stuck at lower fitness values as it did with the
previous experiment.

With the experiment being quite similar to the one discussed in the
previous sections, a lot of the same theory on the difference in performance
between SAC and NEAT applies to this experiment as well. SAC being
superior to NEAT, but NEAT performing better than in the previous
experiment.

The results in this experiment accomplished two goals; one, NEAT
and SAC proceeds to perform well in this environment, confirming that
in the standard version of the environment, as expected, the lidar values
are not necessarily needed, although it can provide the agent some extra
information. Second and most importantly, solving the second milestone
M.2, both algorithms should perform well when combined with a deep
learning model. The reason for this is that the values used in this
experiment are the same as the DL model aims to predict, so if the DL
model can predict values that are close to this, both algorithms should
perform well.
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6.4 Investigating the performance of the algorithms
with high-dimensional input

Increasing the dimensionality of the problem, and switching to pixel values
instead of sensor values, changed the performance of both algorithms.
Three types of experiments were run with SAC, full-size image, down-
sampled, and features extracted from the DL model, while only two
experiments were run with NEAT, down-sampled, and DL with NEAT.
Using a full-size image as input to NEAT was not feasible in the time frame
of this thesis due to the high complexity and huge time requirement to run
the experiment.

The DL model was responsible for receiving the image as input and
predicting the agent state, and with a perfect model, these values should
be the same as the state sensor values supplied by the environment.
With a perfect model, the results with DL+SAC and DL+NEAT should
be comparable to the experiments in the previous section with the state
sensor inputs. However, this was not the case, and it seems that the values
predicted by the DL model are too inaccurate for the algorithms to reach
the same levels. SAC struggled greatly with the features extracted from
images, while NEAT was at least able to reach a positive fitness of average
8, which is not walking but balancing and maybe falling forward on its
front foot. This is further discussed in section 6.7.

SAC continued to struggle with both the down-sampled image and
the full-size image. The reason it struggles with the full-size image was
briefly mentioned in the background section, with DRL algorithms being
known to struggle to explore and improve efficiently in high-dimensional
environments. However, it may also indicate that SAC struggles with
pixel-to-action mapping with it struggling with the down-sampled image
as well.

NEAT performed well with the down-sampled image as input and
achieved a positive fitness of over 50 with the best individual; this
corresponds to the agent being able to walk a reasonable distance without
falling. Through this experiment, it seems that NEAT is less dependent on
the information from the environment, and this fits well with the claim that
"Evolutionary methods have advantages on problems in which the learning
agent cannot sense the complete state of its environment" [56].

The results, which completes the third milestone M.3, show that NEAT
and NEAT+DL can accumulate positive fitness values using these high-
dimensional image input values, while SAC seems to struggle with high-
dimensionality, pixel-to-action mapping, and in combination with a DL
model.
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6.5 Investigating performance of the algorithms with
a sparse reward function

6.5.1 State and terrain sensor input

The first experiment using a sparse fitness function led to some interesting
discoveries and is promising in leading up to the final experiment. The
results from the experiments using state and terrain information sensor
values with a sparse fitness function show that NEAT manages to improve
with different sparseness levels effectively and that SAC struggles to
improve and learn effectively with these rewards.

NEAT performs very well with all the different levels, although the
performance drops with an increase in sparseness. This is not surprising
as the maximum achievable fitness also decreases in correlation with the
sparseness. These results also indicate how NEAT manages through
random mutations to solve different levels of sparse rewards.

The results show that SAC struggles with this fitness function by
looking at the different sparse levels’ confidence intervals. Although not
present in the plot, in the best max performing runs of SAC actually at
the lower sparse levels, SAC manages to accumulate a quite high-fitness
initially, but it struggles significantly to improve this solution further
effectively and ends up with 0 in fitness in the end. This is further described
in the next section, with state information only, where the best run is
included in addition to the confidence intervals.

These results support the claim that NEAT is good at solving problems
with sparse rewards and that RL, in general, struggles with sparse rewards.
These results and discussion and the next section also complete milestone
M.4.

6.5.2 Only state sensor input

The format of this experiment was similar to an earlier experiment where
the lidar values were removed, and the agent is only presented with
sensory inputs about its current state but with a sparse reward function.
From this experiment, the results show that NEAT still manages to improve
and perform in this sparse reward setting, while SAC continues to struggle
with sparse rewards, although some interesting behaviors emerged. In
these experiments and the final experiments, the sparse level was set to
10, allowing for both algorithms to have a chance of performing well in
this setting. This sparseness could have easily be set higher for NEAT to
further increase the difference between the results of the algorithms.

The same results can be seen here: with the difference in state and
terrain inputs and state inputs with the non-sparse fitness function, that
NEAT performs better with fewer input dimensions, with a narrower
confidence interval, steeper learning curve, and overall higher fitness
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levels. With only state sensor information and a sparse level of 10, NEAT
is even able to solve this environment a couple of times successfully. These
results show that NEAT is able to perform well with sparse rewards, using
the state sensor information, which in turn means that in combination with
DL predicting the same state values, it should yield a good combination.
With NEAT choosing the actions in a sparse reward problem, while DL is
responsible for extracting the features from high-dimensional images.

The results show that SAC continues to have problems with sparse
rewards and is not able to perform on similar levels as NEAT. As mentioned
in the last chapter, some information from the plots is naturally lost due
to the use of Gaussian filters, with the raw plots supplemented in the
appendix section C. The raw version of this experiment showing the best
of the ten runs shows that SAC manages to quickly reach a fitness value
of 10, which is relatively high with this sparse reward, but from there, this
fitness declines steadily down to 0 after 40000 episodes. This implies that
SAC struggles to improve with and properly exploit the reward function,
and with the confidence interval being relatively low, it might be a random
good performing individual that caused these high values. These results
also indicate that an experiment with DL and SAC in a sparse, high-
dimensional setting is not strictly necessary, with SAC struggling with this
problem overall.

6.6 High-dimensional, sparse reward problem

In the final experiment, the focus was to achieve the second main goal of
the thesis, which is solving a high-dimensional, sparse reward problem
and investigating whether this combination is better than the separate
algorithms on their own. Four important aspects need to be remembered
when looking at these results, (1) DL can handle a vast increase in
dimensionality, referring to the input image. This point will result in the
differences being even greater when comparing with NEAT and SAC. (2)
NEAT alone here was down-sampled with a factor of 8 in this experiment
and was allowed to run for 150 extra generations (3) The DL model was
not as accurate as initially hoped, so with better predictions, both SAC and
NEAT would be able to solve the environment with normal rewards. (4)
The sparse level was set to 10 to allow SAC to be competitive based on
previous experiments but could be sat even higher in respect to NEAT.

A combination of DL and SAC were tested with sparse reward but
not included. Due to the already large amount of plots and that the
performance was poor, which is also supported by earlier experiments.
It is not surprising that SAC continues to struggle with the experiment
being both sparse and high-dimensional. However, SAC was able to reach
a fitness level of 2 (seen in the raw plots without Gaussian filters, in the
appendix 12c), in a few runs, but it struggles to improve the fitness beyond
this, and often ends up at fitness of 0, at the end of the run. So it seems like
this is not necessarily a learned behavior but can be a product of especially
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two things: (1) Random actions that turn out to give some good behaviors,
and (2) the sparse level was perhaps a little bit too low and made it to easy
to accumulate fitness.

NEAT performed well alone and in combination with DL and reached
a fitness level of five in both cases. With the maximum fitness possible
being 16, five equals walking some distance without falling. These results
were achieved with a pretty low non-improvement of 100, resulting in the
maximum number of generations that DL+NEAT were allowed to run to
250 generations.

This experiment was conducted to allow all algorithms to be compet-
itive, which resulted in quite similar performances over all experiments.,
which was mentioned in the intro: (1) Low dimensionality, which DL
could handle a massive increase of, (2) down-sample and longer non-
improvement threshold for NEAT, and (4) low sparseness threshold. These
three points are essential when discussing the results of this main experi-
ment and whether a DL combo is better than the other approaches alone.
The deep learning model can handle a huge increase in dimensionality,
which for DL would not be very noticeable but would increase both the
time, complexity, and results of the other experiments, and they would not
be competitive with a DL combo just by looking at real-time training. As
mentioned, the DL model was not as accurate as hoped, and with a more
accurate model, the results would have been far greater, reaching similar
levels as with the sensor values. NEAT was allowed to run an extra 150 gen-
erations and use a down-sampled image, which contributed to NEAT being
competitive with DL in these experiments regarding results and training
time. Without these optimizations, NEAT would have struggled, at least
with a full-size image. Finally, the sparse threshold level was set to 10 to
give SAC a chance to learn something in this experiment, but a far larger
threshold (3 times) could be used, and DL+NEAT would still be able to
perform well.

With all the different points and results discussed in this section, the
second main goal G.2 was achieved.

6.7 DL Combination

With the environmental challenges explained and discussed in section 4.5,
and section 6.8, some of the results involving the DL model did not achieve
the same fitness levels as with the state sensory input experiment. With a
perfect DL model, these fitness levels should have been equal to the state
sensor input experiments in the same amount of generations/episodes, but
with the results presented in both section 6.3 and 6.5.2 it showed that this
was not the case. These results show that the values predicted by the DL
model are too inaccurate for some of the algorithms to improve. However,
this led to an exciting discovery when comparing the performance of
SAC and NEAT using the same DL model and its inaccurate predictions.
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From figure 5.8 from normal fitness function and the figure 5.13 using the
sparse fitness function, it can be seen that with an "inaccurate" view of
the environment, which is a problem in most complex RL environments,
NEAT still manages to learn and accumulate a satisfactory fitness level,
though not nearly as high as hoped. SAC and other RL algorithms are
far more dependant on information and interactions with the environment
and are therefore more sensitive to inaccuracy from the environment than
EAs. Nevertheless, the most important is that NEAT manages to learn and
overcome the challenges of an imperfect view of the environment, and if
given more time, probably achieving even higher fitness values. SAC, on
the other hand, is struggling with these imperfect predictions.

6.8 Limitations

A few of the limitations concerning the experiments conducted will be
discussed in this section. Some of the challenges faced in this thesis were
briefly explained in chapter 4, under Experimental Challenges, and how all
the different factors that played in, especially with the image experiments
and the usage of DL, resulted in very time-consuming experiments. With
time being one of the biggest challenges, getting the results needed to finish
on time resulted in some decisions that might have impacted the results of
this thesis.

The non-improvement threshold was an essential factor in finishing the
results. However, this might have also led to the algorithms not getting
enough time to optimize for the more complex experiments. By looking
at all the experiments, it is quite apparent that this non-improvement
threshold was the termination criteria that stopped the algorithms most
often for some of the complex experiments involving images and sparse
rewards.

The deep learning model did not predict as accurately as hoped,
resulting in not achieving similar fitness levels as with sensor values. There
are several reasons for this; firstly, as mentioned, predicting velocity values
from images is not possible, and therefore, a majority of the predicted
sensor values were inaccurate. Secondly, as mentioned in the previous
paragraph, the algorithms, or at least NEAT, did not get enough time to
learn to work with inaccurate environment predictions. However, these
limitations led to some exciting findings comparing NEAT and RL; when
given inaccurate information about the environment, NEAT successfully
overcame and learned to walk despite this.

With many complex, time-consuming experiments, other interesting
aspects that could help on the performance of the algorithms or explore
this NEAT+DL more thoroughly were left out due to the short time frame
of a master thesis. Parameter-search was mainly left out, although a
few parameters were experimented with during the preliminary results,
which helped choose some parameters. NEAT having around 40++
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parameters that could be experimented with and possibly helped improve
the performance. In the original SAC paper, the authors claimed that
the only hyperparameter that needed tuning was the reward signal,
which would also have been interesting to experiment more with different
sparse and normal reward functions and compare the performance across
different reward functions. Lastly, exploring more environments with
NEAT+DL to get an even more understanding of the strengths and
limitations of this combination.
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Chapter 7

Conclusion

The main goal of this thesis was to explore ways to combine deep
learning and neuroevolution to get the benefits of both, without their
weaknesses. This goal was split into two, with the first being to
survey the existing field of DL+NE with a thorough comparison of the
algorithms, approaches, problems, and representations. The second goal
of the thesis was to investigate the performance of a deep learning
and neuroevolution combination vs either of them alone, on high-
dimensional, sparse reward problems. This was achieved by deploying
a deep convolutional neural network as a feature extractor and an
evolved controller using neuroevolution. The deep convolutional network
functioned as a feature extractor, converting the high-dimensional data
to a compact feature representation. The neuroevolution controller was
responsible for choosing actions based on this compact representation in a
sparse reward environment. The experiments indicate that a deep learning
and neuroevolution combination outperforms either alone, NEAT or deep
reinforcement learning (SAC) on the same problem. This supports: (1)
NE+DL is good at solving high-dimensional sparse reward problems and
managed to outperform each of them alone. (2) NEAT through population-
based search is able to solve problems with sparse reward, which was
supported by various experiments that thoroughly compared RL and NE
performance with incremental sparseness. (3) Deep learning is good at
extracting features from high-dimensional data, although with lower than
expected performance in some experiments.

The work presented in this thesis is both exploratory and supplement-
ary in the relatively new field of NE+DL. Exploratory in that new types
of problems have been solved and analyzed, with a new format of the en-
vironment, newly created fitness function, and discoveries along the way.
More explicitly, contributing to a comparison between three approaches for
solving a problem, DRL, NEAT, and NEAT+DL, along with a thorough sur-
vey of the field. Supplementary in that it supports the earlier claim in the
related field that a NE+DL combination can solve high-dimensional, sparse
reward problems.
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We demonstrated that deep learning in combination with neuroevolu-
tion can be superior in solving high-dimensional, sparse reward problems,
suggesting that they can play a vital role in taking us from simplified RL
problems to complex real world environments.
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Chapter 8

Future Work

In this chapter, possible avenues for future work will be presented, which
could help to better understand the implications of the results in this thesis
and improve the quality of solutions.

Limitations

Addressing some of the limitations described in the discussion chapter
could contribute to achieving higher fitness values for the DL+NE combin-
ation primarily and support the results and conclusion in this dissertation.
This involves three elements: parameter-search, allowing the algorithms to
run for longer to give it more time to optimize, and discovering new ways
of applying the DL model.

The DL model had problems with accurately predicting the sensor
values, and the reason for this has been described in earlier sections. With
a big portion of the sensor values being velocities and speed, which is
impossible to predict from still images, additional training and further
optimization of the DL model will most likely not significantly improve
performance. Consequently, locating new ways of utilizing the DL model
would be the logical next step. Employing a VAE, for instance, could be an
excellent place to start. The difference between these approaches would be
that the input supplied to the NE component will be a compact/encoded
representation of the images from the VAE instead of predicted sensor
values from the DL model. The training process and usage of the VAE
would not involve the sensor values, therefore skipping the problem of
the velocity sensor values. The image is used as input and is encoded
into a compact representation of the input, which the decoder can decode
to recreate the input image. The loss would then be the difference
between the recreated output and the input. Hopefully, this can create
new representations of the environment that focuses on different aspects
than the current DL model, which can hopefully yield a high fitness when
used in combination with the NE component. Based on the results, NEAT
has performed well with different representations of the environment, from
sensor values, inaccurate predictions of the sensor values, and a down-
sampled version of the image. This is promising in that NEAT is highly
robust to the input it receives, so it should perform well with the new
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representation given by the VAE, given that this representation is useful.

Algorithms

The focus of future work regarding algorithms is quite broad but can be
divided into two sub-focuses: (1) improving performance or (2) comparing
or trying new algorithms.

The experiments conducted in this dissertation have been diverse and
complex, and choosing an algorithm that performs well in all experiments
is not necessarily possible. NEAT struggled with the high-dimensionality
and used a down-sample option to help it overcome this challenge.
Another approach could be to employ HyperNEAT [52] instead of NEAT
to help tackle the high-dimensionality problems. SAC showed to struggle
with pixel-to-action mapping, so applying the method described in the
background section that focuses on data augmentation could help improve
SACs performance on these experiments [28].

The second focus could be to change the algorithms to different related
algorithms and examine the difference in performance. For the NE part,
CMA-ES and CoSyNe were used in the related papers and could be
interesting to investigate this environment further. For the DL model, VAE
is particularly interesting to examine in this problem.

Environments

The simulated environments are created as a more simple, controllable
version of a real-world environment and are used to test promising
algorithms without getting a lot of noise, uncertainty, and other factors,
which are ever-present in the real world. The combination with deep
learning and neuroevolution showed some promising results in the
environment used in this dissertation.

Three distinct directions present themselves when looking at future
work regarding environments, (1) environment with the same complexity
but with different goals and variations, (2) applying sparse rewards
functions to other existing benchmarks, or (3) increasing the complexity,
nearing realistic real-world experiments. These directions can help explore
the NE+DL combination further to get a better overview of its capabilities.
The first direction can help explore the robustness of the approach by
changing the environment, and all that comes with this, change in input,
output, and goals. This can further relate to the capabilities of the DL
model with different types of input and NE capabilities in environments
with different goals. The second direction can help explore the strengths,
weaknesses of the DL+NE combination with other environments and
sparse rewards. The last direction is a step towards the ultimate goal for
this field: to perform well in a real-world environment and overcome all the
challenges that come with this. Changing the environment by gradually
increasing the complexity, adding noise, introduce uncertainty about the
perceived data, and the environment in general. Then overcome these
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challenges by finding algorithms that can thrive in these settings, overcome
uncertainty, handle multiple high dimensional data inputs and choosing
the correct actions to achieve the goal.

Fitness Function

The sparse fitness function applied in this dissertation was a simplistic,
sparse function, which solely focused on the agent’s x-position, supplied
reward in steps, 0 in-between steps, and -100 if the agent fell. There are,
however, countless ways of defining reward functions that can focus on
different aspects of the environment, the agents’ state, time, and so forth.
Evaluating the performance over many different reward functions can give
a better understanding of how to design reward functions that have a
greater probability of leading to better overall solutions when applying this
DL+NE combination to a problem.
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Appendix

A Additional Experiments

In this section, a few extra experiments are presented that was not included
in the experiment and result section.

A.1 NEAT - Fully Connected vs. Unconnected

An experiment was done with altering the starting architecture, full
connect, meaning that all input nodes are connected to all output nodes,
and unconnected meaning no connections.
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A.2 NEAT - Pretrained NEAT

In this experiment, NEAT was first trained using the sensor values from
the environment, then when stopped by the non-improvement threshold,
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switch to sensor values from the DL model.
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NEAT was first trained, using the original state sensor values provided
by the environment, then after 700 generations, the sensor values were
switched to using the predicted state sensor values provided by the DL
model. From these plots, it is apparent that the DL values are quite
inaccurate as the fitness drops significantly and remains quite low until the
non-improvement threshold stops it. Plot (a) displays one run of neat, plot
(b) displays confidence interval (shaded area) over 8 runs, average (blue
line) and maximum (dark orange line)

B Supplementary Plots

This section displays supplementary plots to some experiments in the
Experiments and results chapter.

B.1 Sparse Fitness Sensor Levels

This section extends from the section with the 24-sensor sparse fitness
function in chapter 5.Experiments and Results. These plots are with NEAT
only because RL did not perform well with this fitness function. In these
plots, both the max accumulated sparse reward and max accumulated
normal reward show how the agent performed with the sparse fitness
function with the normal fitness function.
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(a) Normal Reward
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 5, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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(a) Normal Reward
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 10, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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(a) Normal Reward
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 15, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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(a) Normal Reward
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 20, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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(a) Normal Reward
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 25, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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(b) Sparse Reward

These plots displays the confidence interval over ten runs, which is the
shaded area, the mean is the blue line, and the maximum is the dark
orange line. Neat with sparse level 30, using 24 state and terrain sensor
values - plot (a) and (b) displays the performance by looking at the different
accumulative fitness, with either the normal fitness function or sparse
fitness function
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C Raw plots

This section displays the raw versions of the plots from experiments and
results, without the Gaussian filters applied.
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