
Hardware Implementations of
the McEliece Cryptosystem for
Post Quantum Cryptography

Petter Nyland Røneid

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021





Hardware Implementations of
the McEliece Cryptosystem for
Post Quantum Cryptography

Petter Nyland Røneid



© 2021 Petter Nyland Røneid

Hardware Implementations of the McEliece Cryptosystem for Post Quantum
Cryptography

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

The ever-evolving threat landscape of cybersecurity has shown us that no bit
of information is secure once enough time has elapsed. New methods of attack,
analysis, and advancements in technology regularly break old cryptographic
methods.

Advancements in quantum computing are now becoming a concern for the
security of our asymmetric cryptography. Quantum algorithms will drastically
reduce the complexity of solving the underlying security primitives and have
created the need for quantum-resistant cryptosystems.

The NIST PQC is an ongoing process of selecting a quantum-resistant stan-
dard for asymmetric cryptography. One of the candidates to the NIST PQC is
Classic McEliece, a system based on the now 40-year-old code-based McEliece.
Despite its age, the McEliece cryptosystem with binary Goppa code is still re-
garded as secure and quantum-resistant with proper parameter choices.

This thesis outlines how linear codes can be used to construct cryptographic
schemes. It performs a performance comparison of the software and hard-
ware implementations of the code-based candidates Classic McEliece, BIKE,
and HQC.

Finally, the hardware implementation of Classic McEliece was examined in
the search for alternative designs and improvements. Some potential improve-
ments were found, and some alternate designs performed poorly, thus reaffirming
the choices of the Classic McEliece team.



Acknowledgements
I want to thank my supervisor Thomas Gregersen. Our regular meetings early
on helped me select a direction. I am very grateful for the opportunity to explore
this topic, and I appreciated the high degree of freedom and independence I was
given.

I would also like to thank my co-supervisors, Audun Jøsang and Åvald Ås-
laugson for being available when I needed help.

The current situation has been challenging for everyone, so I thank my
friends and family for attempting to keep me sane.

Lastly, I would like to thank my professor of cryptography Leif Nilsen. With-
out taking the introductory course TEK4500, I would never have chosen this
path. The course was a pivotal period in my life, and I wish Leif a happy
retirement.

1



Contents

Glossary 6

List of Figures 8

List of Tables 9

I Introduction and theory 11

1 Introduction 12
1.1 NIST PQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Performance Comparison . . . . . . . . . . . . . . . . . . 13
1.2.2 Hardware Description Language Generation . . . . . . . . 13
1.2.3 Optimizations and Alternative Designs . . . . . . . . . . . 14

1.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Theory 15
2.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 The end for classical PKE’s . . . . . . . . . . . . . . . . . 16

2.2 Symmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Asymmetric cryptography . . . . . . . . . . . . . . . . . . . . . . 18
2.4 128-Bit Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 IND-CPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 IND-CCA for a PKE . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 NIST PQC Categories . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Linear Codes 24
3.1 Distance Between Codewords . . . . . . . . . . . . . . . . . . . . 24
3.2 Generator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Parity Check Matrix and Syndromes . . . . . . . . . . . . . . . . 26
3.4 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



3.7.2 Decoding Cyclic Codes . . . . . . . . . . . . . . . . . . . . 29
3.8 Binary Goppa Codes . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8.1 Parameters and Setup . . . . . . . . . . . . . . . . . . . . 30
3.8.2 Decoding Goppa Codes . . . . . . . . . . . . . . . . . . . 30
3.8.3 Beyond t . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 McEliece 33
4.1 Niederreiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Keysizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Reduction in Message Space . . . . . . . . . . . . . . . . . 35

5 Programmable Logic 36
5.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Hardware Description Language . . . . . . . . . . . . . . 37
5.1.2 Manufacturers . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . 38
5.1.5 Xillinx FPGA Board Survey . . . . . . . . . . . . . . . . . 38

6 Attacking McEliece 41
6.1 Information Set Decoding . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Speed of ISD Attacks . . . . . . . . . . . . . . . . . . . . 42
6.2 Oracle Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.1 Operating System . . . . . . . . . . . . . . . . . . . . . . 43
6.3.2 TEMPEST . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 What is a Secure Cryptographic Implementation . . . . . . . . . 44
6.4.1 Anti Tampering . . . . . . . . . . . . . . . . . . . . . . . 45

II The code-based NIST PQC candidates 47

7 Classic McEliece 49
7.1 Niederreiter KEM . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.2 Kgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.3 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.4 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.5 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.6 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.7 Decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Classic McEliece Hardware Implementation . . . . . . . . . . . . 53

7.3.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3.2 Niederreiter . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



8 BIKE 55
8.1 Niederreiter KEM . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.2 Kgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1.3 Encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1.4 Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.1.6 Decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 58

9 HQC 60
9.1 HQC KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.1.1 Concatenated Codes . . . . . . . . . . . . . . . . . . . . . 60
9.1.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1.5 Decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 62

III Conclusion and future work 64

10 Comparison 66
10.1 Software Performance . . . . . . . . . . . . . . . . . . . . . . . . 66
10.2 Hardware Performance . . . . . . . . . . . . . . . . . . . . . . . . 67
10.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4 FPGA Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.5 Code-Based NIST PQC . . . . . . . . . . . . . . . . . . . . . . . 71

11 Niderreiter with binary Goppa codes - Hardware 72
11.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.1.1 Generating e . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.2 Finite field operations . . . . . . . . . . . . . . . . . . . . . . . . 74

11.2.1 Multiplication GF(2m) . . . . . . . . . . . . . . . . . . . . 74
11.2.2 Squaring in GF(2m) . . . . . . . . . . . . . . . . . . . . . 75
11.2.3 Inverting elements in GF(2m) . . . . . . . . . . . . . . . . 76

12 Conclusion 78
12.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12.1.1 Alternate Support Generation . . . . . . . . . . . . . . . . 78
12.1.2 Hardware Optimization for BIKE and HQC . . . . . . . . 78
12.1.3 AVX Optimizations . . . . . . . . . . . . . . . . . . . . . 79
12.1.4 BRAM Tuning of CM . . . . . . . . . . . . . . . . . . . . 79
12.1.5 ARM Compatibility . . . . . . . . . . . . . . . . . . . . . 79

12.2 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendices 81

4



A Mathematical background 82
A.1 Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Galois Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 Binary Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.4 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.5 Irreducible Polynomials . . . . . . . . . . . . . . . . . . . . . . . 83
A.6 Polynomial Reduction . . . . . . . . . . . . . . . . . . . . . . . . 83
A.7 Polynomial Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.8 Polynomial Addition . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.9 Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . . 84
A.10 Polynomial Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 85

5



Glossary

AES advanced encryption standard. 13

AT anti tampering. 45, 46

BIKE bit flipping key encapsulation. 55

BM Berlekamp-Massey. 31

CM Classic McEliece. 8, 9, 12–14, 35, 49–53, 67, 68, 71, 72, 78, 80

CMHW Classic McEliece Hardware Implementation. 9, 53, 54

coset leader The vector of smallest hamming weight in a coset of vectors. 28

DES data encryption standard. 13

DFR decoding failure rate. 29, 56, 61

DPA differential power analysis. 73

ELP error locator polynomial. 43

FPGA field programmable gate array. 36–39

hamming weight The number of non-zero entries in a binary vector. 33

HDL hardware description language. 14, 37, 38

HLS high level synthesis. 37, 38, 68

HQC Hamming Quasi-cyclic. 9, 35, 60, 61

IND-CCA Indistinguishability under Chosen Ciphertext Attack. 2, 8, 21, 45

IND-CPA Indistinguishability under Chosen Plaintext Attack. 8, 20, 22

ISD Information Set Decoding. 41, 42, 52

KEM Key Encapsulation Mechanism. 22, 45

LUT lookup table. 36, 38

6



NIST National Institute for Standards and Technology. 13

OW-CPA One-Wayness under Chosen Plaintext Attack. 20, 22

Pk Public key. 16, 33

perfect code A code in which the distance between all codewords is the same,
and decoding spheres around codewords cover the entire vector space.. 28

PKE Public Key Encryption scheme. 2, 8, 12, 16, 18, 19, 21, 22, 33, 49

PKI Public Key Infrastructure. 19

pl programmable logic. 36

PQC Post Quantum Cryptography. 13, 55

QC-MDPC Quasi-cyclic Moderate Density Parity Check. 9, 35, 55

Sk Secret/Private key. 33

TEMPEST Telecommunications Electronics Material Protected from Ema-
nating Spurious Transmissions. 44

7



List of Figures

2.1 Communication over an insecure channel . . . . . . . . . . . . . . 16
2.2 Encrypted communication over an insecure channel . . . . . . . . 17
2.3 Public key encryption . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Indistinguishability under Chosen Plaintext Attack described in

pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Indistinguishability under Chosen Ciphertext Attack described in

pseudo-code for a PKE . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Error occurs during transmission. . . . . . . . . . . . . . . . . . . 25
3.2 Error is detected and corrected. . . . . . . . . . . . . . . . . . . . 25
3.3 Hamming bounds around valid codewords (red) in a perfect code

with d = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Bit flipping algorithm in [15] . . . . . . . . . . . . . . . . . . . . 30
3.5 Parity Check matrix for A Goppa Code . . . . . . . . . . . . . . 31
3.6 Parrerson Decoding algorithm with a Goppa Code . . . . . . . . 31
3.7 Berlekamp-Massey algorithm in pseudo code . . . . . . . . . . . . 32

4.1 Encryption in a standard McEliece Cryptosystem. . . . . . . . . 33
4.2 Decryption in a standard McEliece Cryptosystem. . . . . . . . . 34

6.1 Exploitable leakage in an unprotected symmetric cryptographic
implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 CM timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Parity Check matrix for A Goppa Code . . . . . . . . . . . . . . 51
7.3 Parity check matrix reduced to semi-systematic form . . . . . . . 51
7.4 SimpleKem Encapsulation used in CM . . . . . . . . . . . . . . . 51
7.5 SimpleKem Decapsulation used in CM . . . . . . . . . . . . . . . 52

8.1 Key generation for BIKE . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Encoding subroutine for BIKE . . . . . . . . . . . . . . . . . . . 56
8.3 Encoding subroutine for BIKE . . . . . . . . . . . . . . . . . . . 56
8.4 Black-Gray-Flip decoding algorithm used in BIKE . . . . . . . . 57
8.5 Maximal message space size for BIKE . . . . . . . . . . . . . . . 58
8.6 Encapsulation procedure in BIKE . . . . . . . . . . . . . . . . . . 58
8.7 Decapsulation procedure in BIKE . . . . . . . . . . . . . . . . . . 58

9.1 Encapsulation procedure in HQC . . . . . . . . . . . . . . . . . . 61
9.2 Decapsulation procedure in HQC . . . . . . . . . . . . . . . . . . 62

8



List of Tables

2.1 NIST PQC security categories . . . . . . . . . . . . . . . . . . . . 23

4.1 Standard McEliece Cryptosystem . . . . . . . . . . . . . . . . . . 34
4.2 Niederreiter Cryptosystem . . . . . . . . . . . . . . . . . . . . . . 34
4.3 McEliece Systems with different codes . . . . . . . . . . . . . . . 35
4.4 Maximum message bits for a McEliece scheme with CM parameters 35

5.1 Spartan®-6 board specifications . . . . . . . . . . . . . . . . . . . 39
5.2 Spartan®-7 board specifications . . . . . . . . . . . . . . . . . . . 39
5.3 Artix®-7 board specifications . . . . . . . . . . . . . . . . . . . . 40
5.4 Zynq®-7000 board specifications . . . . . . . . . . . . . . . . . . 40

7.1 Parameters for CM . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Perfomance of CM [3] . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Perfomance of CMHW [46] . . . . . . . . . . . . . . . . . . . . . 54
7.4 Footprint of the CM hardware implementation [3] . . . . . . . . . 54

8.1 BIKE QC-MDPC encoding and decoding . . . . . . . . . . . . . 55
8.2 Parameters for BIKE . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Perfomance of BIKE [6] . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 Perfomance BIKE hardware implementation [6] . . . . . . . . . . 59
8.5 Footprint of the BIKE implementation [6] . . . . . . . . . . . . . 59

9.1 HQC PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2 Parameters for the concatenated code used in HQC . . . . . . . . 61
9.3 Sizees in bytes for HQC . . . . . . . . . . . . . . . . . . . . . . . 61
9.4 Perfomance of HQC [7] . . . . . . . . . . . . . . . . . . . . . . . . 62
9.5 Perfomance HQC hardware implementation [7] . . . . . . . . . . 62
9.6 Footprint of the HQC implementation [7] . . . . . . . . . . . . . 63

10.1 Key pair generation ranked by performance . . . . . . . . . . . . 66
10.2 Encapsulation ranked by performance . . . . . . . . . . . . . . . 67
10.3 Decapsulation ranked by performance . . . . . . . . . . . . . . . 68
10.4 Hardware footprints and performance of the code based NIST

PQC submissions. Ranked by time×area . . . . . . . . . . . . . . 69
10.5 Ranked Bandwidth (public key + ciphertext) requirements of the

code based NIST PQC submissions . . . . . . . . . . . . . . . . . 69
10.6 Minimum FPGA requirements for the code based NIST PQC

candidates per operation . . . . . . . . . . . . . . . . . . . . . . . 70

9



10.7 FPGA requirements for the code based NIST PQC candidates . 70
10.8 Advantages/disadvantages of HQC . . . . . . . . . . . . . . . . . 71

11.1 Performance of encoder . . . . . . . . . . . . . . . . . . . . . . . 73
11.2 Parameter choices probability of generating t unique values on

the range [0, n− 1] by uniform random generation . . . . . . . . 74
11.3 Estimated LUTs after synthesis for multiplication modules of el-

ements in GF (213) . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.4 Estimated LUTs after synthesis for squaring modules of elements

in GF (213) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.5 Estimated LUTs after synthesis for inversion modules of elements

in GF (212−14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.6 Performance comparisons for squaring modules in GF (213) . . . 77
11.7 Estimated LUTs after synthesis for inversion modules of elements

in GF (212−14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

12.1 CM (semi systematic) performance achieved by [55] for category
1 security on the ARM Cortex M4 . . . . . . . . . . . . . . . . . 79

A.1 Addition and multiplication of elements in Z3 . . . . . . . . . . . 82
A.2 Addition and multiplication in GF (2) . . . . . . . . . . . . . . . 83

10



Part I

Introduction and theory

11



Chapter 1

Introduction

Quantum computers are coming, and with them, they bring potentially catas-
trophic effects on modern cryptography. If quantum computers become suf-
ficiently powerful, the encryption techniques we use today to ensure secure
communication over the internet could be broken entirely overnight, thereby
compromising the confidentiality of business processes in the financial, military,
commercial, government, and private sectors.

Although the quantum threat is not a certainty, [1, p. 2], the consequences
of a quantum computer are too devastating to ignore.

There are two primary categories of cryptography; symmetric (Section 2.2)
and asymmetric (Section 2.3). Asymmetric is the category that is used for
internet communication, and the security of most asymmetric schemes rely on
the difficulty of solving the factoring, and the discrete logarithm problem. With
today’s technology, these problems are considered to be hard (NP complexity),
but if quantum computers become sufficiently powerful, they will be able to solve
these problems in polynomial time. This reduction in complexity from non-
polynomial to polynomial time, will render the most widely used asymmetric
schemes completely broken.

This creates a considerable incentive to find replacements algorithms that are
quantum resistant. NIST [2] has an ongoing selection process, the NIST PQC,
that aims to select the new standard for asymmetric cryptography. Among the
candidates for this selection process we find Classic McEliece (CM) [3].

CM is based on the McEliece PKE introduced by Robert McEliece in 1978
[4]. There are no known attacks that break the security of McEliece in a signif-
icant way. Because of this, McEliece is especially interesting in the NIST PQC,
as it is regarded as the most tested and mature candidate to PQC.

McEliece has, however, a significant drawback: its key size. To achieve
classical 128-bit security in the post-quantum world, the public key is about 1
MB. This is a far cry from our current PKEs, where for instance, an RSA key
providing 128-bit security will be 3074 bit.

CM is not, however, the only McEliece based candidate in the NIST PQC.
Other proposals offer smaller key sizes, but their security is still under scrutiny
because they are based on newer and less tested codes. The proposals all have
strengths and weaknesses, and it is not very obvious which is superior.

In addition to the numerous code-based proposals, they all have accompa-
nying hardware implementations that can improve execution time or hardware

12



cost. To thoroughly compare the proposals, these will also have to be included
in the analysis.

1.1 NIST PQC
National Institute for Standards and Technology (NIST) is a US governmental
agency with a long-standing history in developing and maintaining standards
regarding cybersecurity. Data encryption standard (DES) was announced as the
standard for data encryption in 1976. When it many years later was assumed
to be insecure, NIST began a selection process to find a new standard; the
advanced encryption standard (AES). The winner of this selection process was
Rijndael [5], and it is not known as the AES. AES is now the defacto symmetrical
encryption algorithm.

It is a similar process we find ourselves in now. The quantum threat to mod-
ern asymmetric cryptographic standards has created a need for replacements.
This is where the NIST Post Quantum Cryptography (PQC) comes in. NIST
PQC is a selection process for post asymmetric cryptography, with separate
categories for key exchange and digital signatures.

There are four security primitives that are believed to be quantum resistant,
and all the submissions are based on one of these:

1. Lattices
2. Linear Codes
3. Isogenies
4. Multivariate-quadratic
It is in this context that this work is done. The key exchange implemen-

tations that are based on linear codes will be examined to achieve insight into
their construction and performance.

1.2 Research Questions
This work will attempt to answer the following questions that arise when devel-
oping code-based cryptographic implementations.

1.2.1 Performance Comparison
Though the structure of the three code based candidates for the NIST PQC
are McEliece based, they depend on the security of different linear codes. The
binary Goppa codes of Classic McEliece [3] enjoy a maturity that the cyclic codes
of BIKE [6] and HQC [7] do not. If the cyclic codes maintain their security in
the future, will the performance of these three systems have a clear winner?

1.2.2 Hardware Description Language Generation
The hardware implementation of CM generates some of its modules from Sage-
Math scripts. The scripts are quite straightforward, and in most cases, they
will generate the logic in terms of elementary ’xor’, ’not’, and ’and’ gates. This
is not an unusual practice, but it poses some interesting questions. It is easy
to assume that generating an ideal logic like this will create a minimal circuit,
but that is not necessarily true when synthesizing designs on an FPGA. The

13



synthesized designs are complex interactions between lookup tables and not
elementary gates.

It is advantageous to have a solution written in pure HDL, and because we
will have a generated module and a written module, we can directly compare the
footprints of each. We can then get an idea if ideal logic produces the smallest
hardware design.

1.2.3 Optimizations and Alternative Designs
When designing hardware solutions for cryptographic purposes, the goal is often
to reduce the runtime. It is, therefore, an obvious goal to look for optimizations
in either footprint or runtime in the hardware designs.

Alternative designs are could also lead to performance improvements or
trade-offs. If an alternative design is found, it should be compared to the refer-
ence design and discussed.

1.3 Research Methods
To answer the questions in Section 1.2 requires a thorough study of code-based
cryptography. This included studying the three code-based systems in the NIST
PQC, getting familiar with abstract algebra and its application in cryptography,
and studying hardware description languages.

To not fall into every pitfall, it was also emphasized to get familiar with the
literature around attacking McEliece. Any cryptographic implementation must
be created with the knowledge of the threats to its security.

Because Classic McEliece is the only code-based finalist in round 3, it was
given special attention.

Running hardware synthesis requires some proprietary tools. A virtual ma-
chine running Ubuntu 16.04.07 Xenial was set up, as this was one of the only
versions that support the entire toolchain. To conduct hardware simulation,
Modelsim was used, and to perform synthesis, Vivado WebPack was used. In
addition, to run the CM hardware code generation scripts SageMath 7.4 was
installed. Note that the version numbers are important when they are explicitly
stated.

The software implementation of classic McEliece was modified to produce
keys, messages, and ciphertexts to be used in the hardware experiments. Then
modules from the hardware submission were isolated to perform experiments.
The code for the experiments can be found at:

https://github.uio.no/petternr/McElieceAPI

14

https://github.uio.no/petternr/McElieceAPI


Chapter 2

Theory

2.1 Quantum Computing
Quantum computers, should they become a practical, will allow us to design
new types of algorithms that cannot run on classical computers that are limited
by the classical laws of physics. By leveraging quantum mechanics to do com-
putations we will be able to solve new and old problems with incredible speeds
by today’s standards.

Unfortunately, two of these problems are the discrete logarithm problem
and the factoring problem; the two bases for computational security of modern
asymmetric cryptography.

2.1.1 Shor’s Algorithm
Shor’s Algorithm [8] was designed by Peter Shor in 1994, and is an algorithm
for factorization designed to run on a quantum computer. In classical com-
puters, factorization is assumed to be hard and can not be done better than
non-polynomial time, but in a quantum computer, Shor’s can do this in poly-
nomial time.

Shor later revised his algorithm to also solve discrete logarithms [9].

2.1.2 Grover’s Algorithm
Grover’s Algorithm [10] was designed by Lov Grover in 1996. It does not reduce
the complexity of any one cryptosystem like Shor’s, but it reduces the complexity
of all search problems.

Grover’s will allow finding an element in an unstructured dataset in O(
√
n)

where n is the size of the dataset. This is a huge improvement (and also quite
counter-intuitive) as we traditionally would have to search through all elements
and scale with O(n).

This means that every single cryptographic technology, symmetric, asym-
metric and hash functions will at least have the cost of a brute force attack cut
by about O(

√
n) (assuming that Grover can be implemented efficiently).

For this reason, it is common to scale the security level in bits by a factor of 2.
This indicates a squaring search space, and will therefore negate the worst-case
effects of Grover’s.

15



2.1.3 The end for classical PKE’s
All PKE’s in use today have security based on the hardness of either the factor-
ing problem or the discrete logarithm problem. These problems are believed to
be in the classical category NP, which means that the program that solves them
will have running time-scaled exponentially with the numbers that are being
computed.

Shor’s algorithm [8] was invented by Peter Shor in 1994 and is an algorithm
for integer factorization in polynomial time, which can be generalized to solve a
general discrete logarithm problem. This is terrible news for the crypto world,
as it completely breaks the security of all widely used PKE’s. Luckily it can
not be implemented on classical computers and can only work if larger quantum
computers can be built. So if quantum computers of an arbitrary qubit-length
become feasible, our current asymmetric cryptography will be completely bro-
ken.

That is not to say that RSA, DH, and EC can no longer be used, but they
will require absurdly large keys to maintain the current level of security. A
post-quantum RSA scheme would require a one terabyte Pk, and the cost of
each new encryption and decryption would be on the scale of $1 [11].

2.2 Symmetric Cryptography
Cryptography is the practice of protecting communication between two parties
against an adversary which wants to read or tamper with the messages. In
other words, cryptography allows us to send a message that only the intended
recipient can read.

Consider Figure 2.1. Alice can send Bob a message, but everything sent over
the insecure channel is visible to Oscar. To have secure communication, we have
to make the information unreadable for Oscar. Sensitive data is indicated as
red, while black indicates non-sensitive data.

♀ ♂

♂>
Plaintext

Alice Bob

Insecure channel

Oscar

Figure 2.1: Communication over an insecure channel

Now consider Figure 2.2, with the addition of encryption and decryption,
the data sent over the insecure channel is no longer sensitive. Granted that
Alice and Bob have a shared key they can use for encryption and decryption.
Oscar can not obtain their communication without first obtaining the shared
key.

16



♀
Alice

♂
Bob

♂
Oscar

>

Ciphertext

�
Encrypt

>
Plaintext

�
Decrypt

ö
Shared key

Insecure channel

Secure channel

Figure 2.2: Encrypted communication over an insecure channel

Symmetric cryptography is cryptography where the communicating parties
share a secret key.

This also creates a new problem, namely, how can Alice and Bob exchange
a shared key in the first place? Traditionally a secure channel will mean that
they will have to exchange the key physically, but this is not always practical.
For n parties to communicate securely, we need n(n − 1)/2 key pairs. This is
the key distribution problem.

During the cold war, the United States and the Soviet Union had a commu-
nication channel based on the one-time-pad, which requires a keystream of the
same length as the message. Due to the high-security risk of these keys, armed
couriers had to deliver them. Now, this was difficult enough for two parties, but
imagine what it would be like for the entire world. This is the problem that
asymmetric cryptography helps us avoid.

So, in summary, let us define what a symmetric scheme is. To do this; we
have to create some other definitions first.

Definition 1. Spaces
A space is the set of all possible values within the context of a cryptographic
scheme, where
K is the key space,
M is the message space,
C is the ciphertext space.

Definition 2. Encryption
Let E : K ×M → C, encryption of a message m ∈ M under a key k ∈ K is
done by:

Ek(m) = c

where the subscript k of E implies the call E(k,m) where k is fixed.

Definition 3. Decryption
Let c be the encrypted ciphertext of m under the key k, and

17



let D : K × C →M be the function that can perform decryption by:

Dk(c) = p

where the subscript k of D implies the call D(k, c) where k is fixed.

Definition 4. Symmetric Cryptographic Scheme
let k ∈ K be generated by the function,
Kgen : ()→ K,
E : K ×M→ C,
D : K × C →M
be the function that allows decryption of E so that:

Dk(Ek(p)) = p

A symmetric cryptographic scheme is Π = (Kgen, E ,D).

Note that these definitions do not define any properties that make a crypto-
graphic scheme secure, and if Ek and Dk where the functions that just returned
the input these would be a valid cryptographic scheme according to this defini-
tion. To have secure cryptographic scheme additional properties are necessary
(Section 2.5).

2.3 Asymmetric cryptography
Symmetric cryptography created a problem of key distribution: how do we
distribute keys to communicating parties. Asymmetric cryptography allows two
parties with no prior knowledge to exchange a shared secret key over an insecure
channel.

Public Key Encryption scheme (PKE) is often used interchangeably with
asymmetric cryptography.

So like with symmetric cryptography, let us define what a PKE is.

Definition 5. Public Key Encryption scheme (PKE)
Let the tuples of keys Pk and Sk in the respective keyspaces Kp,Ks,
M be the message space, and C be the ciphertext space.
Kgen : ()→ K,
E : Kp ×M→ C,
D : Ks × C →M so that:

D(Sk, E(Pk, p)) = D(Sk, c) = p

A PKE is the tuple (Kgen, ESk
,DSk

, )

So unlike a symmetric scheme, a PKE C will have two keys; one for encryp-
tion (public key), and one for decryption (private or secret key). The public
key will as the name implies be known to the public, but the private key is the
secret part of the decryption algorithm and will be kept secret by the owner of
the key. There is a unique relation between kpriv and kpub and they can not be
used interchangeably; one can not use a private key to decrypt a message that
was not encrypted using the corresponding public key.

18



The flow of a PKE is illustrated in 2.3. Here Alice will use Bob’s public key
to encrypt the message, and Bob can decrypt it using his private key.

We also see that Oscar has access to Bob’s public key, but he can not use
this key to discern anything about what the plaintext is. The public key must
be distributed using a Public Key Infrastructure (PKI). In short, a PKI is a way
of distributing public keys so that their integrity is assured. If Alice requests
Bob’s public key, Oscar could potentially intercept and replace Bob’s public key
with his own. This is the problem that a PKI solves. We will not be concerned
about how a PKI works, but if the reader is curious an explanation can be found
in [12, p. 566].

♀
Alice

>
Plaintext

>
Ciphertext

♂
Bob

♂
Oscar

�
Encrypt

�
Decrypt

ö
Bob’s Public Key

ö
Bob’s Private Key

Insecure channel

Public key infrastructure

Figure 2.3: Public key encryption

2.4 128-Bit Security
A security goal is an abstract concept that allows us to compare the security of
two heterogeneous cryptosystems. The gold standard of security is regarded to
be 128-bit. This means that to break the security of a scheme, there must exist
no attack better than a brute force search of a keyspace of 128-bit.

Breaking RSA, for instance, is equivalent to factoring the public key, which
is a large number. Factoring a number has lower complexity than just brute-
forcing the keyspace, and therefore an RSA key must be quite a bit larger than
128-bit to achieve 128-bit security (3072 bit).

Due to Grover’s, the security goal for post-quantum cryptography is consid-
ered to be 256 bit.

19



2.5 IND-CPA
We saw from Section 2.2 that the definitions of a Cryptographic scheme does
not say anything about the security of them. They could potentially completely
expose the messages that they intended to encrypt, but still, meet the definition
of a cryptographic scheme.

To say something about the security of a cryptographic system, we have
some useful properties they can achieve that guarantees that an attacker will
not be able to break the system.

One of the primary target properties is Indistinguishability under Chosen
Plaintext Attack (IND-CPA), and to achieve this property, a cryptographic
system must be demonstrated to win a game. The game is defined in Figure
2.4.

ExpIND-CPA
Π (A) describes an experiment where a challenger will allow any

adversary to gain access to an encryption oracle Ek which will allow them to
encrypt any message they want under the secret key k. In step 3, the adversary
will select two messages, where one of them will be encrypted based on b. The
adversary will then make a guess whether b was 0 or 1. If they are correct they
win, and if they can consistently beat the game, then Pr[b = b′] will be greater
than 1/2. Just by guessing an adversary will be expected to win half the time,
so AdvIND-CPA

Π (A) should be close to 0 to guarantee that any adversary can not
do better than guessing.

There is a weaker security goal called OW-CPA where the adversary will
not be allowed to encrypt messages, so this property only guarantees that an
adversary can not find a connection between plaintext and ciphertext.

ExpIND-CPA
Π (A)

1. k $← Π.KeyGen
2. b← {0, 1}
3. M0,M1 ← AEk(·)

4. C∗ ← Π.Ek(Mb)
5. b′ ← AEk(·)(C∗)
6. return [b = b′]

AdvIND-CPA
Π (A)

def
= |2Pr[b = b′]− 1|

Figure 2.4: Indistinguishability under Chosen Plaintext Attack described in
pseudo-code

If a cryptosystem is proven to be IND-CPA, it will imply several desirable
properties of that system that apply to any adversary. Any adversary will not
be able to:

• Learn what the message is by encrypting the M1 or M2 after step 3. This
means that every encryption of the same message is different.

• Learn a connection between message and ciphertext.
• learn any bit of the message given a ciphertext even when the plaintext is

known.

20



2.6 IND-CCA for a PKE
In a modern cryptosystem, only the key should be secret. The inner workings of
an algorithm is assumed to be known to an attacker, so we need to create cryp-
tosystems in a way that an attacker can not learn anything about the plaintext
when observing the ciphertext.

A cryptosystem can achieve formal security if it can be shown to achieve
Indistinguishability under Chosen Ciphertext Attack (IND-CCA). IND-CCA is
defined as a game and is described in Figure 2.5. ExpIND-CCA

PKE (A) describes how
an attacker A can win. A secret and public key is fixed from the keyspace of
the algorithm. Then a bit is fixed, and the attacker will select two messages
with access to the decryption oracle D̃Sk

and the public key. The decryption
algorithm will allow the attacker to decrypt any ciphertext, but after C∗ has
been selected, they can not decrypt the selected messages’ ciphertexts. The
attacker will then guess if the bit was 0 or 1, and wins if they guess correctly.

ExpIND-CCA
PKE (A) D̃sk(C)

1. (sk, pk)
$← PKE.KeyGen

2. b← {0, 1}
3. M0,M1 ← AD̃Sk

(·)(pk)
4. C∗ ← PKE.Epk(Mb)

5. b′ ← AD̃Sk
(·)(C∗)

6. return [b = b′]

1. if C = C∗

2. return ⊥
3. else
4. return DSk

(C)

AdvIND-CCA
PKE (A)

def
= |2Pr[b = b′]− 1|

Figure 2.5: Indistinguishability under Chosen Ciphertext Attack described in
pseudo-code for a PKE

AdvIND-CCA
PKE (A) is the advantage an attacker can achieve over the system

which fall on the interval [0, 1]. If an attacker can correctly guess b they must
have broken the system, so we should expect an attacker to gain no advantage
better than 0 + ε, where ε is very small. So we expect an adversary to obtain no
better advantage than ≈ 0, which implies that the best they can do is guessing
at b.

The definition of IND-CCA might look a bit arbitrary, but if we consider
what it would take for an adversary to win this game, we can see that the
definition implies some very favorable properties of our PKE.

If an adversary can not obtain a meaningful advantage in this game, they
can not:

1. Obtain the key.
2. Learn a connection between plaintext and ciphertext.
3. Learn a connection between similar-looking ciphertexts.
4. Encrypt the same message again to compare with the given ciphertext.
5. Learn any bit of the plaintext given the ciphertexts.
6. Predict the structure of the ciphertext.

21



2.7 KEM
A Key Encapsulation Mechanism (KEM) is often very similar to a PKE, but
instead of encrypting a message, a KEM will will encrypt a symmetric key
directly. This is how most asymmetric cryptography works because symmetric
cryptography is much more effective in terms of time and therefore cost. A Key
Encapsulation Mechanism (KEM) is usually a PKE that has been modified to
encapsulate a key instead of a message, and one can then construct a PKE using
the KEM to derive a shared encryption key.

A common way of constructing a KEM is to take an existing PKE with a
weak security goal like OW-CPA and add an encapsulation stage to ensure that
derived secret is cryptographically secure.

As seen in Definition 7, encapsulation will generate a random element m
from the message space and use a function H to derive a shared secret. H is
commonly selected to be cryptographically secure hash function, a function that
works as a random oracle.

Definition 6. Hash function
A hash function H :M→H,
where H is some fixed space {0, 1}l,
andM is the space of all messages {0, 1}∗

Definition 7. KEM scheme
let (Kgen, E ,D) be the components of a IND-CPA secure PKE,
H :M→K∗
K∗ a symmetrical keyspace
Encapsulate : K → C ×K∗
Decapsulate : C × K → K∗ so that

Encapsulate(Pk) = (c,K), Decapsulate(Sk, c) = K

The components of a KEM are (Kgen, E ,Encapsulate, ,D,Decapsulate, H).

2.8 NIST PQC Categories
The security of the NIST PQC proposals are measured by adhering to 5 cat-
egories, where 5 is the highest and 1 is the lowest. The categories are listed
in Table 2.1. The type defines that the system must be at least as hard as
exhaustive search for AES, or a collision search for SHA corresponding to the
given size of either AES or SHA. For key exchange, categories 1,3, and 5 are
the most interesting categories. 2 and 4 are more interesting when discussing
signature schemes which are also subjects for the NIST PQC.

22



Category Minimum security level type
1 128 AES
2 256 SHA
3 192 AES
4 386 SHA
5 256 AES

Table 2.1: NIST PQC security categories

23



Chapter 3

Linear Codes

To understand what a linear code is, let us first build an intuition for what a
code is. The word code in this context means that we are talking about encoding
something. That is to use a symbolic representation to represent an object that
is not the same as the object itself.

Mathematically a code C is uniquely identified as a subspace of a space P .
That is to say that a code can be the entire space P or any proper subspace
of P . This definition is not very useful as it does not tell us how to encode
anything.

To encode a message from another spaceM we create a mapping G : M → C
so that every element m ∈ M corresponds to an element in C. With this
mapping, we have a way to encode elements in M , but it does not guarantee
us a way of decoding them. For instance if every element m ∈ M maps to the
same codeword c ∈ C it is impossible to go the other way.

To be able to decode our encoding, the mapping needs to be reversible. In
other words, it needs to be injective and therefore invertible.

The injective mapping between our two spaces G : M → C implies that
there exists an inverse function.

Definition 8. A code C over Fn is is a linear code iff
1. u− v ∈ C for all u, v ∈ C
2. au ∈ C for all a ∈ F, i ∈ C

Where F is a field

3.1 Distance Between Codewords
Every element of our code is a codeword and can be represented as a vector.
We then observe that every invalid codeword y in the larger body P will have
some distance d to a valid codeword c. If we create a linear code with a clever
choice of d, we will then be able to uniquely express y = c+ e where e ∈ P with
some low weight. So if a low weight vector e is added to c we will be able to
detect it and hopefully correct it.

If we consider fig 3.2 we see that an error occurred under transmission. This
low weight error changed the message, and Bob cannot determine what the
original message was.

24



♀
Alice

♂
Bob

U
Error occurs

⊕
1101 1001

0100

Figure 3.1: Error occurs during transmission.

If now Alice uses a linear code to encode the message as in figure 3.2, Bob
will be able to detect that an error occurred during transmission. Because
this invalid message has a determinable distance to a valid codeword, it can be
corrected.

♀

Alice

♂
BobU

Error occurs

Encode Decode⊕
1101 11011101 010 1001 010

0100 000

Figure 3.2: Error is detected and corrected.

Definition 9. Hamming weight hwt(v)
The number of non zero elements in a binary vector GF (2)n. Ex hwt(v) =
hwt([1, 1, 0]) = 2

Definition 10. Hamming distance
hd(u, v) = hwt(u− v) for any u, v ∈ GF (2)n

Ex u = [1, 1, 0], v = [1, 0, 1]→ hd(u, v) = hwt(0, 1, 1) = 2

So by using linear codes, we cannot only detect errors in messages but also
correct them. To identify the closest codewords uniquely, we need to define
our code so that the distance between valid codewords is the same and an odd
number. Any invalid codeword can be uniquely decoded into a valid one. This
distance between valid codewords is called minimum Hamming distance.

To understand the interaction between minimum Hamming distance and
correctable errors, consider Figure 3.3. We can see the entire space a code C
exists on, where the codewords are evenly spaced out. Each valid codeword has
its hamming bound drawn around it, which here is a circle of radius (d−1)/2) =
1. The bound indicates that every invalid codeword within the bound is uniquely
decoded to the valid codeword it belongs to. A code where the bounds cover
the entire space (as seen in the Figure) is a perfect code.

25



Figure 3.3: Hamming bounds around valid codewords (red) in a perfect code
with d = 3

Definition 11. C is a q-ary linear [n, k, d] code if
1. C is a subspace of GF (q)n

2. C has dimension k
3. C has minimum Hamming distance d

3.2 Generator Matrix
We have talked about a mapping G : M → C that can be expressed as a matrix
G′. This matrix G′ is called the Generator matrix for C and the structure of
G′ is so that the rows of G′ form a basis for C.

Definition 12. Let C be a (n, k) linear code over Fq. If a matrix G’s rowspace
equals C then G is the generator matrix for C.

3.3 Parity Check Matrix and Syndromes
A parity check matrix H is defined as the matrix that has the relation HcT = 0
for any c ∈ C.

26



Definition 13. Let C be an (n, k) linear code over Fq. Then a matrix Hfor
which HcT = 0 iff c ∈ C

The parity check matrix is particularly useful because by definition it will
essentially negate the any valid codeword when multiplied. If we have a valid
codeword c ∈ C, and an error is introduced to the vector y = c + e, then the
syndrome s = Hy will only be a product of e as s = Hc+He = 0 +He

The syndrome is, as the word implies, a symptom of an underlying problem
and it can tell us where the error is located in y.

3.4 Encoding
Encoding using a Linear code is very fast. If we have a (n, k) linear code C over
F2 with generator matrix G, we select a message from m ∈ F k2 and encode it
to x ∈ Fn2 by mG = x.

This is a linear operation and can be implemented very effectively.

3.5 Decoding
Decoding a word r = c+e where c ∈ C and e is some error, is to find the closest
codeword to r → c or to find the error e.

Definition 14. The general decoding problem
let C be a linear code and r be a received word on the form

r = c+ e

Where c ∈ C and e is a random low weight vector.
The Decoding Problem is to find m or e given r and C, and is split into two
problems.

Definition 15. Decoding problem 1 - Syndrome decoding
let C be a (n, k) linear code with parity check matrix H.
Given a syndrome s = He, determine e of weight t such that

He = s

Definition 16. Decoding problem 2 - Codeword finding
let C be a (n, k) linear code with parity check matrix H.
determine c of a given weight t such that

Hc = 0

In some cases, the error vector will have a predetermined weight that will
allow unique decoding. As long as the code has minimum hamming distance
d, unique decoding will be possible with hwt(e) <= dd−1

2 e. This is called half-
distance decoding, and most decoding algorithms target this type of decoding.

If e can also be dd−1
2 e < hwt(e) <= d, then decoding is still possible, but

decoding will not have a unique answer. There might be several codewords
with the same minimum distance from r therefore decoding might produce a
list of closest codewords and different solutions for r = c + e. This is called

27



full-distance decoding and requires list decoding algorithms that will produce
a list of solutions. This also makes consideration of which error weight to be
prioritized. There might be different solutions with different error weights, and
it is not obvious which one is the correct weight.

Decoding algorithms depend on what code one is using. The simplest way
of decoding is to create a syndrome using the parity check matrix of the code.
By adding an error to a code C, one will create a new code C ′ in which all the
elements c′ ∈ C ′ will have the same syndrome. If the code is sufficiently small,
one can enumerate all these sets and find which set r belongs. The lowest weight
vector, coset leader, in this set will be the error e.

Coset decoding is impossible to perform if the code grows too large to feasibly
enumerate all the cosets, and this is why there are decoding algorithms tailored
for each class of code.

The general decoding problem does not require a decoding algorithm. It
is possible to decode any word r = c + e, as an attacker will have access to
the generator matrix 1, and because the rows of this matrix form a basis for C
they have access to the entire code. It is then possible for the attacker to solve
r = c + e by at least enumerating c ∈ C. The general decoding problem has
proved to be computationally hard, and is classified as NP-complete [13].

3.6 Hamming Codes
Hamming codes are an easy-to-understand subset of linear codes. They are
constructed by adding parity check bits to create a codeword. These parity
check bits will be a function of the message bits.

They are parameterized with [n, k, d]. Hamming codes are perfect codes as
long as n = 2r − 1 and k = n− r for r ∈ Z and r > 2 and d = 3.

To construct a [7, 4, 3] hamming code, one only needs to decide three parity
check bits x, y, z to append to the message bits m1−.

x = a+ b+ d

y = a+ c+ d

z = b+ c+ d

Where all arithmetic is done in Z2. We can then construct the generator
matrix for the code:

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Because the generator matrix is already in the form:
G = [Ik | Tn−k×k] we can easily construct the parity check matrix by H =

[−T t | In−k].
1An attacker might have access to a scrambled version of the generator matrix, but they

will be able to construct an equivalent code through linear algebra.

28



H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


Now every vector in m ∈ Z4

2 encoded with G by y = mG+ e with e being a
random error of weight 1, will be uniquely identifiable by the syndrome s = Hy.
If s is non zero, this means that e is non zero and because e can only be of
weight 1, and that mG cancels out by H; then the syndrome is only a function
of the column in which the error occurred.

So to decode a hamming code, one can simply determine the syndrome which
will be the same as a column in H, and the index of this column will be the
location of the error in y. This only works because the syndrome is a function
of only one error, and if there were multiple errors; then the syndrome would
be some linear combination of multiple columns, which is harder to determine.

3.7 Cyclic Codes
Definition 17. A cyclic code is a linear code C where any circular shift of a
codeword c ∈ C is also in c.

Cyclic codes are constructed using polynomial rings R = F2[X]/(Xr − 1).
The generator matrix is then uniquely defined by the first row:

r1 = p0 + p1x+ · · ·+ prx
r−1

The second row:
r2 = xr1 mod Xr − 1

The third row:
r2 = x2r1 mod Xr − 1

and so on.

3.7.1 Parameters
A cyclic code has codelength n, dimension k, and row density w, where typically
w = O(

√
n).

3.7.2 Decoding Cyclic Codes
Cyclic codes are often decoded using probabilistic algorithms and must be ad-
justed to have an acceptable decoding failure rate (DFR). DFR is the rate at
which decoding either fails.

Bit Flipping

Gallager’s bit flipping [14] is a probabilistic decoding algorithm that allows
correction of O(

√
n) errors with high probability.

Because cyclic codes are sparse, it is possible given a syndrome s = He to
check the probability that every position of e is in error.

Bit flipping is sequentially guessing that ei = 1 based on the Pr[ei = 1 | s]
which can be calculated.

29



Input parity check matrix H, ciphertext c Maximal iterations X, Maximal syn-
drome weight u
Output error vector e

1. s→ Hc
2. for i in 0...X:

(a) th = computeThreshold(s, e)
(b) for j in 0...n− 1:

i. unsatifiedParityChecks = Hi · s
ii. if unsatifiedParityChecks > th e[j] = e[j]⊕ 1

(c) s = H(c+ e)
3. output e if hwt(s) = u else ⊥

Figure 3.4: Bit flipping algorithm in [15]

3.8 Binary Goppa Codes
A (n,m, t) Goppa code C is a linear code of length n that correct t errors and
m is the size of the finite field used. C is uniquely defined by a irreducible
polynomial g(x).

3.8.1 Parameters and Setup
To construct a Goppa code n,m and t are selected for desired error correcting
capability t. When the parameters are chosen, the code is constructed by select-
ing a random list L of n elements in GF (2m) called the Support, and a random
monic polynomial g(x) ∈ GF (2m)[X] of degree t for which g(L) = 0 called the
Goppa Polynomial.

Support

The support is a set of n elements from the finite field GF (2m). This field is
usually constructed with an irreducible polynomial h of degree m and all field
arithmetic is done in the extension field GF (2)/h. The support L is then n
random elements in this field.

L = [α0, α1, · · · , αn−1]

Generating the support is done:

Goppa Polynomial

A Goppa polynomial g is a monic polynomial of degree t and coefficients in
GF (2m), with the added requirement that g(αi) 6= 0 for i ∈ [0, · · · , n − 1].
This can be achieved by selecting an irreducible polynomial, or a square-free
polynomial.

3.8.2 Decoding Goppa Codes
There are two common algorithms for decoding Goppa Codes; Patterson [16]
and Berlekamp-Massey [13].

30



H =


1

g(α0)
1

g(α1) · · · 1
g(αn−1)

α1
0

g(α0)
α1

1

g(α1) · · · α1
n−1

g(αn−1)

...
...

. . .
...

αt−1
0

g(α0)
αt−1

1

g(α1) · · · αt−1
n−1

g(αn−1)



Figure 3.5: Parity Check matrix for A Goppa Code

The main idea of decoding a received word encoded with a Goppa code is
finding an error locator polynomial σ that will have roots in L. When σ is found
L is evaluated such that σ(αi) = 0 indicates a 1 in the error vector e.

Patterson’s Algorithm

The algorithm is outlined in Figure 3.6. Step a) can be done with Euclid’s
Algorithm, which will have a variable runtime. It is unknown if Patterson’s
can be completed in constant time, and there are timing attacks that have
been shown to exist in [17]. This makes Patterson unsuitable for cryptographic
purposes without mitigation.

1. Compute syndrome s(z) =
∑n
i=1

ri
z−αi

2. Determine error locator polynomial σ(z) by:
(a) Determine h(z) such that s(z)h(z) = 1 mod g(z). if h(z) = z let

σ(z) = z
(b) Calculate d(z) such that d2(z) ≡ h(z) + z mod g(z)
(c) Find a(z) and b(z) with b(z) of least degree, such that d(z)b(z) ≡ a(z)

mod g(z)
(d) Put σ(z) = a2(z) + b2(z)z

3. Determine the set of αi such that σ(αi) = 0
4. The error positions are then found by the corresponding indices i.

Received word is z, g(z) is the Goppa Polynomial, and the set of {αi} is the
Goppa support.

Figure 3.6: Parrerson Decoding algorithm with a Goppa Code

Berlekamp-Massey

Berlekamp-Massey (BM) [13] is a decoding algorithm that allows decoding of
t/2 errors under a Goppa code. In order to find all errors a trick was proposed
in [18] where the syndrome is doubled and arithmetic is done under the Goppa
polynomial g(x)2.

BM initializes the error locator polynomial σ(x), β(x) ∈ GF (2m)[x] and inte-
gers l, δ ∈ GF (2m). It then incrementally updates these values for 2t iterations
and leaves σ(x) as the true error locator polynomial.

31



Input: t, syndrome S(x)
Output: Error locator polynomial σ(x)

1. Initialize σ(x) = 1, β(x) = x, l = 0, δ = 1
2. for k ∈ [0, 2t− 1]
3. d =

∑t
i=0 σiSk−i

4. if d = 0 or k < 2t:
5. [σ(x), β(x), l, δ] = [σ(x)− dδ−1β(x), xβ(x), l, δ]
6. else:
7. [σ(x), β(x), l, δ] = [σ(x)− dδ−1β(x), xσ(x), k − l + 1, d]
8. return σ(x)

Figure 3.7: Berlekamp-Massey algorithm in pseudo code

3.8.3 Beyond t

If a linear code C has error correction capability t, it is possible to introduce
additional errors to break the uniqueness of decoding. As mentioned in Section
3.5 this requires list decoding and also has the benefit of making attacks more
complicated [19].

A list decoding algorithm for binary goppa codes is outlined in [20] which
can decode approximately n−

√
n(n− 2t− 2) errors.

32



Chapter 4

McEliece

McEliece is a code based Public Key Encryption scheme (PKE), and was in-
troduced by Robert McEliece in 1978 [4]. In a general McEliec scheme the
compents are:
C : A linear code with generator matrix Ĝ, parity-check matrix H and a

chosen error-correction capability t.
S : A non-singular matrix to provide diffusion.
P : A permutation matrix to provide confusion.
The public key is constructed G = SĜP , and data is encrypted by c =

mPk+e where e is a vector of hamming weight t (see Figure 4.2).
The Secret/Private key consists of S, P and a decoding algorithm D, and

the c is decoded using S−1, P−1 and D. What is important to notice that
decryption is more complicated than encryption, and some decoding algorithms
cannot be implemented in constant time.

♀
Alice

♂
Bob

�
GBob

ù
Random generator

⊕

>
mk

>
ĉn

>
cn

en

Figure 4.1: Encryption in a standard McEliece Cryptosystem.

4.1 Niederreiter
Now that we have all the building blocks defined, we are ready to look at the
Niederreiter variation of McEliece. Niederreiter is a dual variation of McEliece
and was proposed by Harald Niederreiter in 1986 [21]. In the system, one uses
the parity check matrix for encryption, essentially going backward.

33



>
cn

>
mk

�
P−1

�
S−1

ß
Decoding algorithm

>
en

Figure 4.2: Decryption in a standard McEliece Cryptosystem.

Codelength n, Dimension k and t correctable errors
Ĝk×n - Generator matrix for random linear code C
Sk×k - Non singular matrix
Pn×n - Permutation matrix
Key Sk Pk

(S, Ĝ, P ) Gk×n = SGP
Encryption hwt(e) = t

E(e) = mG+ e = c
Decryption ĉ = cP−1 = mSG+ eP−1

D(ĉ)→ mS
m = mSS−1

Table 4.1: Standard McEliece Cryptosystem

It is possible to construct a Niederreiter system from any linear code, but
many systems using codes that allow smaller key sizes have been found to be
insecure.

The most confidence-inspiring code is still the same as the original proposal
[4] which uses binary Goppa codes.

Codelength n, Dimension k and t correctable errors
Ĥ(n−k)×n - Parity check matrix for random linear code C
S(n−k)×(n−k) - Non singular matrix
Pn×n - Permutation matrix
Key Sk Pk

(S, Ĥ, P ) Hk×n = SĤP
Encryption Encode m as e, hwt(e) = t

c = He

Decryption ĉ = S−1c = ĤPe
Decode(ĉ)→ Pe
e = P−1Pe→ m

Table 4.2: Niederreiter Cryptosystem

34



4.1.1 Keysizes
Key sizes using Goppa codes are relatively large in the PQC landscape. From
table 4.3 we see that even when limiting the analysis to only code-based systems,
Goppa codes are orders of magnitude larger than the others.

Code Implementation Security level Size %
Goppa CM [22] 266 1022 kB 100%
HQC HQC [7] 256 7.245 kB 0.7%

QC-MDPC BIKE [6] 256 5.121 kB 0.5%

Table 4.3: McEliece Systems with different codes

4.1.2 Reduction in Message Space
Using the Niederreiter scheme, one has to encode the message to a binary vector
of length n and weight t. This means that not the entire code can be used.

In the regular setup, the dimension would be k, which would allow the
encryption of 2k distinct messages.

By representing the message as an error, the maximal possible messages are
instead the number of vectors of length n and weight t. So for a (n,m, t) code
C, if used in a Niederreiter scheme:

|CNiederreiter| =
(
n
t

)
And we can find the message bits of our code by log2(|CNiederreiter|). The

parameter choices for [3] are listed and compared in Table 4.4

Parameters McEliece Niederreiter
n/m/t message bits message bits

3488/12/64 2720 456
4608/13/96 3360 668
6688/13/128 5024 908
6960/13/119 5413 863
8192/13/128 6528 946

Table 4.4: Maximum message bits for a McEliece scheme with CM parameters

35



Chapter 5

Programmable Logic

We often encounter problems where computational time is a bottleneck. Modern
CPUs are highly versatile but often unsuitable for solving specific problems in
real-time on low-cost hardware. To address this issue, it is common to design
specialized hardware that drastically reduces the time needed for computation.

Examples of problems like these are decoding Reed-Solomon codes in CD
players [23], [24], or image recognition in demanding areas [25]. Without spe-
cialized hardware to perform computations; it would be impossible to have these
technologies working in real-time.

It is assumed that the reader has some knowledge about programming and
software implementations, and in this chapter, the basic outlines of hardware
development will be outlined.

To test hardware components, it is vital to have platforms that allow us to
change the designs without creating the circuits physically. Devices that allow
the user to configure the physical layout of the chip are called programmable
logic (pl) devices. There are many types of pl devices and some will allow the
user to reconfigure the device any number of times.

5.1 FPGA
A field programmable gate array (FPGA) is an integrated circuit that can be
programmed to replicate a hardware design. An FPGA is one of many pro-
grammable logic devices, but for this text, we will use FPGAs and programmable
logic interchangeably.

The basic idea is that a FPGA is a chip with a set number of IO ports.
Within the chip is a large number of LUTs that can be configured and routed
arbitrarily to produce any desired behavior of the IO ports. What is so re-
markable about this is that this can be done within a single clock cycle, and the
programmer is only limited to how fast the actual electrical signal can propagate
through the inner circuits. This is a common problem in hardware development
and more complex logic will result in a longer path for the signal to travel, and
thus the clock speed might suffer to make sure the signal has time to propagate.

36



5.1.1 Hardware Description Language
There are two primary language’s that are used for FPGA development; Verilog
and VHDL. These languages are called hardware description languages (HDLs)
and are similar to programming languages but function quite differently.

Verilog, or SystemVerilog, is standardized as IEEE 1800 [26]. At the time
of writing, there are about 8 thousand repositories on GitHub that contains
Verilog or SystemVerilog.

VHDL, or Very High-Speed Integrated Circuit Hardware Description Lan-
guage, was developed in 1983, and the latest version is standardized as IEEE
1076-2008 [27]. At the time of writing, there are about 450 repositories that
contain VHDL.

As Norwegian businesses more widely use VHDL, it is the target language
of this work.

In order to use a hardware design written in a HDL one can not compile it
and run it on a CPU. First, the design is usually verified in simulation software.
When it has been shown to behave as expected, it synthesized using proprietary
tools to produce an actual hardware design for the target platform. Unfor-
tunately, these tools are often quite expensive, and there are no open-source
alternatives for design synthesization.

5.1.2 Manufacturers
The two leading manufacturers of FPGA are Intel/Altera and Xilinx. They
both offer a wide range of FPGA, and both have proprietary synthesization
software. Intel’s software is Quartus®, and Xilinx has Vivado®.

5.1.3 HLS
High level synthesis (HLS) is a new way of synthesizing hardware designs from
more conventional programming languages. With HLS the user can take existing
functions written in c, and synthesize these as hardware components.

Performance of HLS is not as good as writing components directly in a HDL,
but this can be improved by writing/rewriting the function specifically for HLS.
Kris Gaj et al. reported in a seminar [28] that by using HLS for their various
NewHope [29] and Kyber [30] implementations, the clock frequency was reduced
by 17%, and LUT usage was increased by 14 − 76%. So if this is a general
trend, using HLS, we can expect slightly slower clock speeds and higher logic
usage.

HLS also dramatically reduces development time by eliminating the need for
component simulation. To verify a component written in a HDL one typically
will need to write an extensive test bench and run in through simulation software
such as Modelsim®. This is a time-consuming and often difficult effort as bugs
or unexpected behavior will leave the developer staring at wave plots for hours
on end. With HLS the developer can verify the behavior of the components in
software, and writing unit tests for a function is often much more straightforward
than writing a good test bench.

These are reasons to be optimistic about HLS as a concept, and there is no
reason to believe that the technology will not improve with time and additional

37



iteration. If HLS closes the performance gap to traditional HDL development
it will leave little argument to even use HDLs.

5.1.4 Performance Metrics
To compare how good a hardware component is, we often look at its footprint on
the FPGA. This footprint is measured in LUTs, as this is the primary building
block the FPGA uses to construct circuits. Additionally, different hardware
components may allow different maximal clock speeds, which means that two
similar components may differ in both utilization and timing, which leads to the
performance metric time × space.

For this work, we will be mainly concerned about the utilization in LUTs
and the simulated speed in clock cycles to obtain the time × space metrics.

Performance metrics to compare FPGAs are also number of LUTs and maxi-
mal clock frequency, but modern FPGAs have become increasingly sophisticated
devices with many features that, in some cases, makes them hard to compare
to each other. Some boards like those in the Xilinx Spartan®series are low cost
I/O optimized boards, while those in the more expensive Zynq®series will have
built-in ARM processors that greatly increases the functionality of the board.

Further, it is essential to note that specific hardware designs must be syn-
thesized for a specific platform to give an accurate number on utilization, and
the LUT usage may vary from board to board.

5.1.5 Xillinx FPGA Board Survey
This section will look at some of the Xilinx FPGA boards on offer to get more
familiar with what is on offer. There are numerous boards that are split into
some notable families. We will limit the survey to the following cost-optimized
families. The goal is to give the reader an idea of what boards are on the market
and how board selection can be made.

Numbers are gathered from Xilinx’s cost-optimized product selection guide.
Each slice contains 4 Luts and eight flip-flops.

Spartan®-6 Models in the Spartan®-6 family are general-purpose I/O FP-
GAs. Typical use cases for these boards are any projects that require custom
any-to-any connection like traffic lights, elevators, or vending machines.

The Spartan®-6 family was hugely popular and received an extended life-
cycle support until at least 2027. They have short lead times, and Xilinx rec-
ommends this board as the default choice if the customer needs to start devel-
opment immediately.

Models in this family are built on a 45nm process.
A summary of specifications of the Spartan®-6 family is found in table 5.1.

Spartan®-7 The Spartan®-7 family is an iteration of the spartan®-6 family.
The models in this family are built on a 28nm process and provide roughly 2.5
times the performance per watt as Spartan®-6.

The use cases for Spartan®-7 models are the same as the Spartan®-6, but if
performance or power consumption is an issue, the Spartan®-7 is to be preferred.

1Each slice contains 4 usable LUTs and 8 flip-flops

38



Spartan®-6 Family

Models (13)

XC6SLX4, XC6SLX9, XC6SLX16, XC6SLX25,
XC6SLX45, XC6SLX75, XC6SLX100,

XC6SLX150, XC6SLX25T, XC6SLX45T,
XC6SLX75T, XC6SLX100T, XC6SLX150T

Minimum Maximum
Logic Cells 3840 147443

Differential I/O Pairs 66 288
Single-Ended I/O Pins 132 576

Slice1 600 23,038
Total Block RAM (Kb) 216 4824

LUTs 2400 92,152

Table 5.1: Spartan®-6 board specifications

A summary of specifications of the Spartan®-7 family is found in table 5.2.

Spartan®-7 Family

Models (6) XC7S6, XC7S15, XC7S25, XC7S50, XC7S75,
XC7S100

Minimum Maximum
Logic Cells 6000 10,2400

Differential I/O Pairs 48 192
Single-Ended I/O Pins 100 400

Slices 938 16,000
Distributed RAM (Kb) 70 1100

LUTs 3,752 64,000
DSP Fmax MHz 464 550

BRAM Fmax MHz 388 461

Table 5.2: Spartan®-7 board specifications

Artix®-7 Models in the Artix®-7 family will, unlike the Spratan®families,
have high-speed transceivers that enable them to perform tasks that require
high bandwidth. Applications that involve communication over USB, PCI-E,
or driving HDMI signals will be best suited with models in this family.

This family is also suited for cryptographic purposes, as interfacing with the
hardware will usually require some connection to a computer from PCI-E or
USB interface.

A summary of specifications of the Artix®-7 family is found in table 5.3.

Zynq®-7000 The models in the Zynq®-7000 family are different from the
previous families as they will have integrated CPUs. This enables these models
to be fully SoC as an application can run on the CPU, which can interface
directly with the FPGAs.

A summary of specifications of the Zynq®-7000 family is found in table 5.4.

39



Artix®-7 Family

Models (8) XC7A12T, XC7A15T, XC7A25T, XC7A35T,
XC7A50T, XC7A75T, XC7A100T, XC7A200T

Minimum Maximum
Logic Cells 12,800 215,360

Differential I/O Pairs 72 240
Single-Ended I/O pins 150 500

Slices 2000 33,650
Total Block RAM (Kb) 720 13,140

LUTs 8000 134,600
PCIe Gen2 x1 x1

DSP Fmax MHz 464 628
BRAM Fmax MHz 388 509

Table 5.3: Artix®-7 board specifications

Zynq®-7000 Family

Models (10)
XC7Z007S, XC7Z012S, XC7Z014S, XC7Z010,
XC7Z015, XC7Z020, XC7Z030, XC7Z035,

XC7Z045, XC7Z100

Processors
Single-core ARM®Cortex®A9 766 MHz
Dual-core ARM®Cortex®A9 766 MHz
Dual-core ARM®Cortex®A9 1 GHz

Minimum Maximum
Logic Cells 23,000 444,000
Flip-Flops 28,800 554,800

Total Block RAM (Kb) 1800 26,500
LUTs 14,400 277,400

PCIe Gen2 - x8

Table 5.4: Zynq®-7000 board specifications

40



Chapter 6

Attacking McEliece

The security of McEliece has stood the test of time rather well. With decades
of attack papers, only marginal compromises have been achieved.

6.1 Information Set Decoding
Information Set Decoding (ISD) is an unstructured decoding attack against a
linear code. ISD will allow the decoding of a word r = c+ e with a given code
C.

In short ISD are clever ways of searching a linear code for a codeword of
some property. Given a random linear code C ISD will either find e given the
syndrome s = He and parity check matrix H, or it will find e given y = c + e
where c ∈ C.

ISD was originally proposed in [31], and has since seen a number of improve-
ments.

There are many variation’s of attacks, but one prevalent method is to use
Stern’s attack algorithm [32]. In the case that an attacker has obtained a ci-
phertext y = c + e and has access to the generator matrix G, the attacker can
create a new code C + 0, y. With this new code, they can be sure of two things,
it definitely contains y, and it definitely contains e as C contains c and c+y = e.
They can then use Stern’s attack algorithm to find e in C + 0, y. This increases
the complexity of the decoding attack as it increases the dimension of the code
by 1.

Stern’s attack algorithm [32] is an algorithm for finding a low-weight code-
word in a random linear code. It has inputs: an integer w >= 0 and a parity
check matrix H for a random (n, k) linear code C. With linear algebra, an
attacker can construct the modified parity-check matrix from the modified gen-
erator matrix as discussed above, which includes the ciphertext.

The attacker then feeds Stern the modified parity-check matrix and w = t,
and stern can solve to find e.

An improved variant of Stern’s attack algorithm was in [19] used to suc-
cessfully break the original parameters suggested by McEliece in [4]. The same
article also suggests new parameters, which are some of the same as the ones
used later in Classic McEliece [33].

41



6.1.1 Speed of ISD Attacks
The dimension k of a code C tells us the size of the code is 2k. A brute force
to look for a specific element in this body, the running time will be on average
2k/2 = 2k−1.

The original ISD proposed [31] achieved a worst-case running time of 20.121n,
and has seen several improvements since it was published. A more recent work
[34] achieved a running time of 20.0885n. These running times are for full length
decoding, and [34] achieves higher speedups on higher error rates.

ISD attacks are the best-known attacks to the general decoding problem.
We can see that they hold substantial improvements in running time over a
brute force search, and it is, therefore, vital to consider the cost of ISD attacks
when choosing parameters for a code-based cryptosystem.

6.2 Oracle Decryption
The structure of the McEliece cryptosystem, in this case, the Niederreiter vari-
ation, unfortunately, lends itself to a very simple oracle decryption attack.

If a McEliece scheme explicitly rejects invalid ciphertexts, it is vulnerable to
this attack.

If an attacker intercepts a ciphertext encrypted by this scheme, they may use
the public key to iteratively modify the ciphertext. The modified ciphertext is
then submitted to decryption, and if it is rejected, the attacker learns something
about the plaintext.

In the Niederreiter scheme, the plaintext m corresponds to an error vector of
weight t. It is encrypted with the public key c = Pkm and the attacker obtains
c. The attacker will then add the i-th column of the Pk to c, and submit it to the
oracle for decryption. The addition of the i-th column will then correspond to
a flipping of the i-th bit in m. If this already was a 1, then an error is canceled
out, and the decryption will not fail. If it was not a 1, then a new error was
introduced to m. This will result in an error vector of weight t+ 1, and because
the code can only correct t errors; the decryption will fail.

If the system informs the attacker that encryption has failed, they will then
have a way of determining the entire m in n iterations. They will be able to do
this by iteratively selecting i ∈ [0, n − 1], adding the i-th column of Pk. They
can then determine i-th position of m by decrypting this modified message, 1
in it is successful and 0 if it fails.

This attack method was improved in [35]. Because of the sparse nature of
m it proved more effective to submit changes in batches to determine more
of m per decryption. The oracle was constructed by listening to decryption on
hardware. This shows that even if the implementation is protected with implicit
rejection, the implementation might still be broken if an attacker can find other
channels of analysis.

It is challenging to mitigate such an attack fully. The system must not
explicitly inform the user of failed decryption, and instead present the user
with some value. Further, the interaction with the system must be done in
constant time so that the attacker can not determine successful decryption by
timing the execution. We also see from [35] that the system must be protected
from unauthorized access during execution. Side-channel attacks are outlined

42



in section 6.3.

6.3 Side-Channel Attacks
A cryptographic scheme might have unintended behavior that leaves it vulnera-
ble through direct interaction plaintext and ciphertext. Additionally, a consid-
erable threat to security is the information that leaks during interaction with
the system.

As seen in Figure 6.1, an attacker (which as always is Oscar) can access
information by observing the system through a side channel. A side channel
can in this context be regarded as any way of obtaining information about a
cryptographic system without direct interaction. When a cryptographic system
is executing on a device, it will leak information in various forms. It will consume
more power, components will emit electromagnetic radiation, it will produce
more heat, the execution might vary in timing, or the device might produce a
sound that can identify operations.

It is not always obvious that a cryptographic scheme leaks information. In
[17] it is demonstrated that a straightforward Patterson implementation is vul-
nerable to two message recovery side-channel attacks in the form of timing.

The first lets the user detect differences in time-based on polynomial eval-
uation in the error locator polynomial (ELP). The degree of the ELP relies on
the weight of the error vector, so if the attacker sequentially flips the bits of an
intercepted ciphertext, they can learn by timing the execution of the bit was an
error or not. When the entire n-bit ciphertext is analyzed like this the attacker
has reconstructed the entire error vector and can easily obtain the message. To
mitigate this attack, a technique is proposed of artificially raising the degree of
the ELP if it is of a lower degree than t.

The second allows the attacker to time the determination of the ELP. The
attack procedure is quite similar, but in this case, when the bits are flipped, the
determination of ELP will take longer if the bit was not an error and shorter if
not. The effect is also the same, allowing the attacker to fully recover the error
vector and more easily determine the original message. The increased time
comes from iterations of the extended euclidean algorithm, and the proposed
countermeasure is to assure that the algorithm continues. This is done by
modifying the degree of the intermediate polynomials a and b.

In [17] a similar attack was implemented by constructing an oracle from
differential power analysis. By being able to detect decoding failure in power
consumption, the authors were able to construct an oracle. Even though the
implementation was protected, it leaked the information it tried to obscure in
the form of power consumption.

6.3.1 Operating System
In recent years several side channels have been found in the operating sys-
tem/hardware itself. Vulnerabilities like Meltdown [36] and Spectre [37] show
that an application might be secure but still, be vulnerable because of the plat-
form it runs on.

43



Õ

Radiation

U

Power
Y

Heat

Ê

Sound

À

Timing

>

Plaintext

>

Ciphertext

ö
Key

♂
Oscar

ö/ >

Key/Plaintext

Encryption

Leakage

Statistical Analysis

Figure 6.1: Exploitable leakage in an unprotected symmetric cryptographic im-
plementation

6.3.2 TEMPEST
Telecommunications Electronics Material Protected from Emanating Spurious
Transmissions (TEMPEST) [38] is a security standard that defends against
another form of side-channel; the electromagnetic radiation the device emits. A
device will produce radiation when it consumes power, which can be detected
and analyzed.

One of the most common ways this can be exploited is through leakage
of video signals on computers [39], [40], [41] which can allow an attacker to
eavesdrop on the video signal. This is a huge security concern and needs to be
mitigated if confidential information is to be shown on a computer screen.

To mitigate against attacks like this, devices and video cables have to be
shielded from emitting radiation. An interesting mitigation is discussed in [42],
where the authors developed a font that becomes unreadable through minimal
noise.

6.4 What is a Secure Cryptographic Implemen-
tation

By looking at these attacks and vulnerabilities, it is clear that a secure cryp-
tographic implementation is quite hard to produce, and perhaps impossible to
ever guarantee that it truly is secure.

However, we can identify some properties that characterize a secure system.
A secure asymmetric cryptographic system
• Encrypts information under a scheme (usually symmetric) that provides

128-bit security

44



• provides a KEM that has 128 bit security and IND-CCA.
• runs on a trusted platform.
• is shielded from emitting electromagnetic radiation to threat agents.
• executes in constant time for all inputs.
• consumes a constant power during execution or hides the power consump-

tion of cryptographic operations.
• is protected from unauthorized access. This can be done either by having

the device in a secure environment or having anti-tampering mechanics
that can detect hardware changes or if the device has been opened.

We can summarize from this that the design of the cryptographic scheme
is just a tiny part of a secure implementation. Many of these properties are
completely impossible to guarantee, and we never know what will happen in
the future to compromise them. This is why most cryptographic systems or
security measures are only designed to provide security for an estimated period,
and there is no such thing as indefinite security.

6.4.1 Anti Tampering
It is pretty common to see self-destructing messages in spy movies. These are
often quite impractical as they do not authenticate the listener, and an adversary
can potentially obtain the message before James Bond gets access to it. These
messages could use anti tampering (AT) in that they should detect when they
have been obtained by an untrusted party and destroy the message before they
can obtain it.

AT, or tamper-proofing, is any mechanism or device which purpose is to
detect or prevent changes and potentially trigger a reaction. It can be things
like packing tape that leaves marks on the package when removed, but in this
context we are concerned about AT mechanisms that prevent attackers from
modifying or obtaining secret information.

A device might have mechanical systems that destroy the device if it is
dismantled. It might have electrical trip devices that detect that it is being
opened. It might have anti-tamper chips on the device itself to detect strange
behavior. The detected malicious behavior might then be set to trigger a number
of actions. It might wipe the device’s memory, be rigged to destroy a vital
component or modify all confidential data to be useless.

Cybersecurity is a well-known and often emphasized issue. AT is equally
important and, in many cases, a lot harder. AT is asking for security even when
a device falls into enemy hands. In comparison, cybersecurity only protects
against adversaries interacting with known endpoints.

Xilinx and Altera both provide guidelines on how to develop tamper-resistant
FPGA designs [43], [44]. These documents outline how to make use of built-in
AT mechanisms.

Xilinx categorizes its mechanisms as active or passive measures. Passive
measures are security measures that protect the user’s design by default. These
are measures like authenticating and encrypting the bitstream to ensure no
leakage occurs while the designs are configured. Active measures are security
measures that require the user to implement them in the design. These will, for
instance, allow the user to specify that an AES key is to be deleted on power
loss.

Xillinx also splits AT into three categories.

45



1. Prevention
2. Detection
3. Response

These categories help understanding the scope of AT in general. They can either
prevent tampering, detect it, or respond to tampering.

46



Part II

The code-based NIST PQC
candidates

47



Here we will look at the code-based NIST submissions and gather informa-
tion that will allow us to directly compare them. Some will also have partial
hardware implementations that demonstrate the speedups that can be achieved.

48



Chapter 7

Classic McEliece

Classic McEliece (CM) [3] is a NIST PQC finalist for round 3, and is a Nieder-
reiter based McEliece KEM. It was selected to be a finalist because of the
well-known construction of the Goppa code McEliece system [45]. The scope of
CM is to be a KEM achieving IND-CCA2 with parameters for category 1,3 and
5 security levels (see NIST). The main focus of the implementation is security.
It is implemented in C.

CM builds on multiple McEliece implementations as seen in Figure 7.1.

Round 3 submission for CM [3]

Round 2 submission for CM [33]

Auxillary FPGA implementation [22], [46] for
CM is added to the submission

CM [47] is subitted as a candidate for NIST
PQC

Revision of McBits [48] with further improve-
ments

McEliece implementation McBits [49] is pub-
lished

McEliece [4] is proposed by Robert J.
McEliece

Oct 2020

Apr 2019

May 2018

Dec 2017

Jul 2017

Jun 2013

1978

Figure 7.1: CM timeline

7.1 Niederreiter KEM
CM is a full KEM (Section 2.7) implemented with the Niederreiter variant of
McEliece (Section 4.1) using binary Goppa codes (Section 3.8).

We have seen from Section 2.3 that a PKE consists of (Kgen, EPk
,DSk

), and
from Section 2.7 a KEM additionally requires (Encaps,Decaps, H). Let us go
through these and define these for the KEM used in CM [33].

In underlying PKE is defined in [49] and [48].

49



7.1.1 Parameters
The adjustable parameters for a CM KEM are:
n - Codelength of the goppa code used.
m - Size of the finite field used q is defined by q = 2m.
t - Number of correctable errors for the Goppa Code.

The code dimension k = n−mt.
The submission also has parameter choices for category 1,3, and 5 as seen in

Table 7.1. The parameter set 6960/13/119 appears to be the best trade-off in
most cases for category 5, so this is the parameter set that will be used in the
later comparison with BIKE and HQC.

NIST PQC Category n m t
1 3488 12 64
3 4608 13 96
5 6688 13 128
5 6960 13 119
5 8192 13 128

Table 7.1: Parameters for CM

7.1.2 Kgen

Key generation generates the public key Pk and the secret key Sk.

Definition 18. Secret key Sk in CM KEM

Sk = (s,Γ)

Where Γ = (g, L), g is the goppa polynomial and L = [α1, α2, · · · , αn] is the
support for the Goppa Code C, and s is a uniform random n-bit string.

Definition 19. Public key Pk in CM KEM

Pk = T

Where T is the part H = [In−k | T ], and H is the semi-systematic form of the
parity check matrix H ′ of the Goppa Code C (see figures 7.2).

Key generation for a given set of CM parameters is done by:
1. Generate uniform random monic irreducible polynomial g(x) ∈ Fq[x] of

degree t.
2. Select uniform random sequence L = (α1, α2, · · · , αn) of n distinct ele-

ments of Fq.
3. Compute the t× n parity check matrix H ′ for the Goppa Code Γ defined

by (g, L) (fig 7.2).
4. Form the mt × n matrix H∗ by replacing each entry with a column of t

bits where the bits correspond to the coefficient of the polynomial repre-
sentation of the entry.

5. Reduce H∗ to semi systematic form H (fig 7.3). If step fails return to step
1.

6. Generate uniform random n-bit string s.
7. Output Sk = (s,Γ), Pk = T

50



H ′ =


1

g(α0)
1

g(α1) · · · 1
g(αn−1)

α1
0

g(α0)
α1

1

g(α1) · · · α1
n−1

g(αn−1)

...
...

. . .
...

αt−1
0

g(α0)
αt−1

1

g(α1) · · · αt−1
n−1

g(αn−1)



Figure 7.2: Parity Check matrix for A Goppa Code

H =
[
In−k | T

]
Figure 7.3: Parity check matrix reduced to semi-systematic form

7.1.3 E
Given the the public key T and a vector e of length n and weight t, encoding 1

is done by:
1. Define H = (In−k | T )
2. Compute and return C0 = He ∈ Fn−k2

7.1.4 H

In CM H is chosen to be Keccak 256 bit [50] but is interchangeable with any
cryptographic hash function. H is used in encapsulation and decapsulation.

7.1.5 D
Given the private key (Γ, s) and the ciphertext C0.

1. Decode using BM(C0,Γ) = e Berlekamp-Massey (see Section 3.8.2)
2. output e if hwt(e) = t, else ⊥

7.1.6 Encapsulation
Encapsulation follows the SimpleKem proposed in [51]. The complete key en-
capsulation is done by:

1. Generate a uniform vector e ∈ Fn2 of weight t.
2. Encode E(T, e) = C0.
3. Compute C1 = H(2, e). Put C = (C0, C1).
4. Compute K = H(1, e, C)
5. Output session key K and ciphertext C.

Figure 7.4: SimpleKem Encapsulation used in CM

1The term encoding is used instead of encryption because this is only part of the encap-
sulation process. Further the goal of the KEM is to encapsulate a key, and not to encrypt a
message.

51



K is then used as the session key for the communication, and the sender
sends the ciphertext C to the receiver.

7.1.7 Decapsulation
The reciever decapsulates the session key K from C by:

1. Split the ciphertext C as (C0, C1).
2. Set b← 1.
3. Use D(Γ, C0) = e, if the subroutine returns ⊥ then set e← s and b← 0.
4. Compute C ′1 = H(2, e)
5. If C ′1 6= C1 set e← s and b← 0.
6. Compute K = H(b, e, C)
7. Output session key K.

Figure 7.5: SimpleKem Decapsulation used in CM

CM is a full KEM (see Section 2.7). That is to say that it is not used to
encrypt and decrypt messages. Instead, it is used to encapsulate a shared secret
between the communicating parties.

CM uses the SimpleKem scheme [51], and a SHA-3 hash function to derive
the key.

Simply put in CM the sender generates a random error vector e and calcu-
lates the syndrome C0 = [In−k | T ]e using the pubic key T . They then compute
the ciphertext C and session key K using the encapsulation scheme outlined in
Figure 7.4.

The receiver then uses their private key to perform the decapsulation scheme
outlined in Figure 7.5. If the decapsulation succeeds, then they will derive
the same session key as the sender. If not, they will get a different key, and
communication will not be possible.

Implicit rejection of invalid ciphertexts is essential as it does not allow an
attacker to use the receiver as a decapsulation oracle. Explicit rejection can leak
information about the encrypted message or key and can be utilized in an ISD
attack [52]. Implicit rejection does not inform an attacker that the modified
ciphertext they submitted was valid or not.

7.2 Performance
Performance of CM is measured in average clock cycles. During key generation,
the public key will only be reducible to systematic form for 29% of random
binary Goppa codes. That means that the system will reject 3-4 random Goppa
polynomials on average, making the procedure restart.

To make the implementations more directly comparable, latency is calculated
to be the time of each operation on a 3.5 GHz CPU.

Overall we see that the hardware implementation offers a substantial latency
improvement in key generation.

Latency is worse for encapsulation and decapsulation because the linear al-
gebra lends itself well to optimization with AVX in software, and the lower clock
speed in hardware results in worse performance.

52



CM software performance
Parameters keypair Encapsulation Decapsulation
n/m/t cycles latency cycles latency cycles latency
3488/12/64 5.8 · 107 14.51 ms 4.4 · 104 0.01 ms 1.3 · 105 0.03 ms
4608/13/96 2.2 · 108 53.95 ms 1.2 · 105 0.03 ms 2.7 · 105 0.07 ms
6688/13/128 5.6 · 108 140.00 ms 1.5 · 105 0.04 ms 3.2 · 105 0.08 ms
6960/13/119 4.4 · 108 109.55 ms 1.6 · 105 0.04 ms 3.0 · 105 0.08 ms
8192/13/128 5.1 · 108 127.50 ms 1.8 · 105 0.05 ms 3.2 · 105 0.08 ms

CM software performance - semi systematic form
Parameters keypair Encapsulation Decapsulation
n/m/t cycles latency cycles latency cycles latency
3488/12/64 3.7 · 107 9.16 ms 4.4 · 104 0.01 ms 1.3 · 105 0.03 ms
4608/13/96 1.2 · 108 29.27 ms 1.2 · 105 0.03 ms 2.7 · 105 0.07 ms
6960/13/119 2.5 · 108 61.63 ms 1.6 · 105 0.04 ms 3.0 · 105 0.08 ms

Table 7.2: Perfomance of CM [3]

7.3 Classic McEliece Hardware Implementation
Classic McEliece Hardware Implementation (CMHW) is part of the CM [3]
NIST PQC submission. Key generation is explained in [22] and the entire
implementation in [46].

The implementation provides adjustable parameters that through a Make-
File produces synthesizable Verilog code.

7.3.1 Dependencies
The hardware implementation of CM generates some of its modules from Sage-
Math scripts. These scripts require the user to install a large (≈ 5 GB) and
specific version of the SageMath runtime environment.

7.3.2 Niederreiter
CMHW is not a full hardware implementation of the Niederreiter KEM, and is
only the Niederreiter part of the CM cryptosystem.

The supported operations are:
1. Sk, Pk ← Kgen (Section 7.1.2)
2. c← E(Pk, e) (Section 7.1.3)
3. e← D(Sk) (Section 7.1.7)
The parameters can be seen in Table 7.1.

7.3.3 Performance
The performance numbers from Table 7.3 are collected directly from [3]. The
implementation allows the user to adjust parameters to optimize for either size
or time, and the numbers shown are the time-optimized numbers.

Performance can be seen in Table 7.3, and footprint in Table 7.4.

53



BRAM modules are 36 kB each. Note that CM hardware implementation
only performs encoding and decoding, not the entire encapsulation and decap-
sulation operations.

CM hardware performance
Parameters Fmax keypair Encoding Decoding
n/m/t MHz cycles latency cycles latency cycles latency
3488/12/64 104 4.8 · 105 4.64 ms 2.7 · 103 0.03 ms 1.2 · 104 0.12 ms
4608/13/96 108 1.4 · 106 12.81 ms 3.4 · 103 0.03 ms 1.9 · 104 0.17 ms
6688/13/128 143 3.3 · 106 23.40 ms 5.0 · 103 0.04 ms 3.2 · 104 0.22 ms
6960/13/119 136 3.1 · 106 22.69 ms 5.4 · 103 0.04 ms 2.7 · 104 0.20 ms
8192/13/128 131 4.1 · 106 31.42 ms 6.5 · 103 0.05 ms 3.4 · 104 0.26 ms

Table 7.3: Perfomance of CMHW [46]

CM hardware sizes
Parameters LUTs FF BRAM

Keypair 24227 44016 192
3488/12/64 Encoding 2648 3351 0

Decoding 12890 23084 20
Total 39765 70451 212

Parameters LUTs FF BRAM
Keypair 34809 60637 315

4608/13/96 Encoding 3804 4617 0
Decoding 18520 31800 33
Total 57133 97054 348

Parameters LUTs FF BRAM
Keypair 38766 72210 460

6960/13/119 Encoding 4237 5498 0
Decoding 20625 37870 48
Total 63628 115578 508

Parameters LUTs FF BRAM
Keypair 40585 69536 444

6688/13/128 Encoding 4435 5295 0
Decoding 21593 36467 47
Total 66613 111298 491

Parameters LUTs FF BRAM
Keypair 41098 72360 516

8192/13/128 Encoding 4492 5510 0
Decoding 21866 37948 55
Total 67456 115818 571

Table 7.4: Footprint of the CM hardware implementation [3]

54



Chapter 8

BIKE

Bit flipping key encapsulation (BIKE) [6] is an alternate candidate to the NIST
PQC. It was not selected to be a finalist in the NIST PQC because of the
performance suffered in encoding to target IND-CCA (due to decoding failure
rate) [45].

Block length r, row weight w and t correctable errors
R = F2[X]/(Xr − 1),(h0, h1) ∈ Hw
Private key space Hw = {(h0, h1) ∈ R2 | hwt(h0) = hwt(h1) = w/2}
Error space Et = {(e0, e1) ∈ R2 | hwt(e0) + hwt(e1) = t}
Key Sk Pk

(h0, h1) h = h1h
−1
0 ∈ R

Encode Encode m as (e0, e1) ∈ Et
c = e0 + e1h ∈ R

Decode Decode(sh0, h0, h1)→ (e0, e1)

Table 8.1: BIKE QC-MDPC encoding and decoding

BIKE is built as a Niederreiter scheme using QC-MDPC codes. The system
uses the Fujisaki-Okamoto transformation with implicit rejection [53], [54] to
transform the PKE to a KEM.

8.1 Niederreiter KEM
BIKE is a KEM (Section 2.7) using the Niederreiter (Section 4.1) variant of
McEliece. It uses Quasi-cyclic Moderate Density Parity Check (QC-MDPC)
codes.

8.1.1 Parameters
BIKE has parameter choices for NIST security categories 1, 3, and 5. These
paramter choices are for the QC-MDPC and are listed in Table 8.2.

55



NIST
Category r w t DFR

1 12323 142 134 2−128

3 24659 206 199 2−192

5 40973 274 264 2−256

Table 8.2: Parameters for BIKE

8.1.2 Kgen

The private key consists of the tuple (h0, h1) ∈ Hw and a randomly chosen
σ ∈ M. Note that h0 needs to be invertible in R, and therefore w/2 must be
odd. M is the message space

Keygen
Input parameters n,w, t
Output Sk, Pk

1. (h0, h1)
$← Hw

2. h = h1h0−1

3. σ $←M
4. output Sk = (h0, h1, σ), Pk = h

Figure 8.1: Key generation for BIKE

8.1.3 Encode

Encode
Input error vectors (e0, e1) ∈ Et, public key Pk = h ∈ R
Output ciphertext c

1. s = e0 + e1h
2. output c

Figure 8.2: Encoding subroutine for BIKE

8.1.4 Decode

Decode
Input syndrome c, secret key Sk
Output e ∈ Et

1. (e0, e1) = decoder(sh0, h0, h1)
2. output (e0, e1) if ∈ Et else ⊥

Figure 8.3: Encoding subroutine for BIKE

56



Decoding Algorithm for BIKE

The decoder in the decoding subroutine 8.3 is the Black-Gray Bit flipping (BGF)
algorithm described in [15].

The parity check matrix H = (H0 | H1) ∈ Zr×2r
2 is built from the circulant

blocks H0, H1 derived from (h0, h1) respectively.
A Black iteration is a bit flipping (see Figure 3.4) that occurs only if the

number of unsatisfied parity checks are greater or equal to th. In other words
we assume ei = 1 if unsatifiedParityChecks = His ≥ th

A Gray iteration is a bit flipping that occurs if the number of unsatisfied
parity check are greater or equal than th − δ, where δ is an integer. In other
words we assume ei = 1 if unsatifiedParityChecks = His ≥ th− δ. For BIKE
δ = 4.

The decoding BGF algorithm is outlined in Figure 8.4, and it’s decoding
failure rate is listed in Table 8.2.

BGF Decoder
Input parity check matrix H and ciphertext c = e0 + e1h
Output (e0, e1)

1. Initialize e = 0
2. For i = 0...N iterations:

(a) Calculate threshold for e, c, and H based on i
(b) Update e, black, gray from a normal bit flip
(c) If i = 0, update e from black bitflip with threshold (d+ 1)/2 + 1
(d) If i = 0, update e from gray bitflip with threshold (d+ 1)/2 + 1

3. output e if c = He else ⊥

Figure 8.4: Black-Gray-Flip decoding algorithm used in BIKE

8.1.5 Encapsulation
BIKE encapsulation require the functions:

H : M→ Et

K : M×R×M→ K

Where K is the shared key space,M is the message space andR = Z2[X]/(Xr−
1).

The functions are modeled as random oracles. The encapsulation procedure
is outlined in Figure 8.6

Note that because H needs to output a vector of length n = 2r with weight
t, we limit the input spaceM to

|M| =
(
n
t

)

8.1.6 Decapsulation
Decapsulation also requires H, K, and additionally L : R2 →M.

57



Parameters r/w/t |M|
12323/142/134 21068

24659/206/199 21671

40973/274/264 22302

Figure 8.5: Maximal message space size for BIKE

Encapsulate
Input h ∈ R
Output K ∈ K, c ∈ R×M

1. m←M
2. (e0, e1)← H(m)
3. c← (e0 + e1h,m⊕ L(e0, e1))
4. K ← K(m, c)
5. Output K, c

Figure 8.6: Encapsulation procedure in BIKE

Decapsulate
Input Sk = (h0, h1, σ), c ∈ R×M
Output K ∈ K

1. e′ ← decoder(c0h0, h0, h1)
2. m′ ← c1 ⊕ L(e′)
3. K ← K(m′, c) if e′ = H(m′) else K(σ, c)
4. Output K

Figure 8.7: Decapsulation procedure in BIKE

8.2 Performance
The performance of BIKE is listed in Table 8.3. The BIKE submission does not
provide performance numbers for category 5 parameters.

Latency is calculated on a CPU with a clock speed of 3.5 GHz.

BIKE software performance
Parameters keypair Encapsulation Decapsulation
r/w/t cycles latency cycles latency cycles latency
12323/142/134 6.0 · 105 0.15 ms 2.2 · 105 0.06 ms 2.2 · 106 0.56 ms
24659/206/199 1.8 · 106 0.44 ms 4.7 · 105 0.12 ms 6.6 · 106 1.65 ms

Table 8.3: Perfomance of BIKE [6]

8.3 Hardware Implementation
BIKE also supplies a hardware implementation for category 1. The performance
can be seen in Table 8.4, and the footprint is seen in Table 8.5.

BRAM modules are 36kB each.
The hardware implementation of BIKE offers no latency improvement over

the software implementation.

58



BIKE hardware performance
Parameters Fmax keypair Encapsulation Decapsulation
n/m/t MHz cycles latency cycles latency cycles latency

96 2.6 · 105 2.70 ms
12323/142/134 122 1.2 · 104 0.10 ms

100 1.9 · 105 1.90 ms

Table 8.4: Perfomance BIKE hardware implementation [6]

BIKE hardware sizes
Parameters LUTs FF BRAM

Keypair 12654 1044 10
1 Encryption 14894 3477 10

Decryption 29908 5075 29
Total 57456 9596 49

Table 8.5: Footprint of the BIKE implementation [6]

59



Chapter 9

HQC

Hamming Quasi-cyclic (HQC) [7] is an alternate candidate the NIST PQC.
It uses the Fujisaki-Okamoto transform to construct a KEM from an under-

lying PKE based on a concatenated code.

9.1 HQC KEM

9.1.1 Concatenated Codes
HQC uses a concatenated code, consisting of an internal Reed-Solomon (length
n1) code and an external Reed-Muller code (length n2).

The underlying PKE can be seen in Table 9.1, and the parameters for the
varying security levels in Table 9.2.

Code length n, dimension k, δ correctable errors
w weight of x and y, wr weight of r, and we weight of e
R = F2[X]/(Xn − 1)
x, y, h, e ∈ R
Generator matrix G ∈ Fn1n2

2

Key Sk Pk

(x, y)
$← R2 (h, s = x+ h · y)

Encode e
$← R

(r1, r2)
$← R2

u = r1 + h · r2

v = mG+ s · r2 + e
Output c = (u, v)

Decode m← Decode(v − u · y)
Output m

Table 9.1: HQC PKE

60



NIST
Category n1 n2 n w wr = we DFR

1 46 384 17,669 66 75 < 2−128

3 56 640 35,851 100 114 < 2−192

5 90 640 57,637 131 149 < 2−256

Table 9.2: Parameters for the concatenated code used in HQC

NIST
Category Sk Pk ciphertext session key

1 40 2249 4,481 64
3 40 4522 9,026 64
5 40 7245 14,469 64

Table 9.3: Sizees in bytes for HQC

9.1.2 Encoding
Because HQC has a concatenated code, encoding is done in two steps. First
the message m ∈ Fk2 is encoded into m1 ∈ Fn1

28 by the internal Reed Solomon
code, and then each coordinate is encoded into m̃1,i ∈ Fn2

2 so we end up with
mG = m̃ = (m̃1,0, ...m̃1,n1−1)) to match the definition in Figure 9.1.

9.1.3 Decoding
Decoding is performed by decoding both codes individually. Because these codes
require extensive preliminary explanations, the decoding details will be omitted.

The detailed decoding process can be found in [7, pp. 24–26].

9.1.4 Encapsulation
To perform encapsulation, HQC additionally needs hash functions G,H, and
K.

Encapsulate
Input Pk
Output K ∈ K, c ∈ R2 ×M, d ∈ Zl2

1. m $←M
2. θ ← G(m)
3. c← PQC.PKE.Encode(Pk,m, θ)
4. K ← K(m, c)
5. d← H(m)
6. Output K, (c, d)

Figure 9.1: Encapsulation procedure in HQC

9.1.5 Decapsulation
Decapsulation procedure can be seen in Figure 9.1.

61



Decapsulate
Input Sk, Pk ∈ R2, (c, d) ∈ R2 ×M×Zl2
Output K ∈ K

1. m′ ← PQC.PKE.Decode(Sk, c)
2. c′ ← PQC.PKE.Encode(Sk, c)
3. K ← K(m, c) if m′ = m and H(m′) = d else ⊥
4. Output K

Figure 9.2: Decapsulation procedure in HQC

9.2 Performance
The performance of the HQC software version can be seen in Table 9.4. Latency
is calculated on a CPU with a clock speed of 3.5 GHz.

HQC software performance
NIST keypair Encryption Decryption
Category cycles latency cycles latency cycles latency
1 1.4 · 105 0.03 ms 2.2 · 105 0.06 ms 3.8 · 105 0.10 ms
3 3.0 · 105 0.08 ms 5.0 · 105 0.13 ms 8.2 · 105 0.21 ms
5 5.5 · 105 0.14 ms 9.2 · 105 0.23 ms 1.5 · 106 0.38 ms

Table 9.4: Perfomance of HQC [7]

9.3 Hardware Implementation
HQC also supplies a hardware implementation for category 1. The performance
can be seen in Table 9.5, and the footprint is seen in Table 9.6.

BRAM modules are 36kB each.

HQC hardware performance
NIST Fmax keypair Encapsulation Decapsulation
Category MHz cycles latency cycles latency cycles latency
1 180 5.9 · 104 0.33 ms 1.6 · 105 0.88 ms 2.7 · 105 1.48 ms

Table 9.5: Perfomance HQC hardware implementation [7]

62



HQC hardware sizes
Category LUTs FF BRAM

Keypair 12654 1044 10
1 Encryption 14894 3477 10

Decryption 29908 5075 29
Total 57456 9596 49

Table 9.6: Footprint of the HQC implementation [7]

63



Part III

Conclusion and future work

64



Here we will look at possible improvements to the hardware implementations.
It is very often the goal of a hardware implementation to be minimal, and any
improvement that can be made can be made in either size or speed can make a
difference in the hardware requirements.

Minimizing time × area is an obvious goal, but alternative designs might
also have different use cases. Even if an alternative design might be slower, it
might require less logic and therefore be able to run on a less expensive device.

This outlines the rationale to optimize time × area and investigate alterna-
tive designs.

65



Chapter 10

Comparison

Now that we have defined all the code based NIST candidates, we can accurately
compare their performance.

10.1 Software Performance
Some of the implementations have C99, AVX-2, and AVX-512 optimized im-
plementations. Because the newer AVX-512 is only available in very recent
server-grade CPUs, the AVX-2 optimizations where preferred in this compari-
son as it is more widely available.

The schemes are ranked by the cost in cycles. The normalized column is
cycles normalized to the smallest value in the category and relative cost is
normalized to the largest.

Category 1 keypairs
rank scheme cycles normalized relative cost
1 HQC 1.4 · 105 1 2.3 · 10−3

2 BIKE 6.0 · 105 4.41 0.01
3 CM_f 3.7 · 107 269.42 0.63
4 CM 5.8 · 107 426.72 1

Category 3 keypairs
rank scheme cycles normalized relative cost
1 HQC 3.0 · 105 1 1.4 · 10−3

2 BIKE 1.8 · 106 5.84 8.2 · 10−3

3 CM_f 1.2 · 108 383.83 0.54
4 CM 2.2 · 108 707.49 1

Category 5 keypairs
rank scheme cycles normalized relative cost
1 HQC 5.5 · 105 1 1.2 · 10−3

2 CM_f 2.5 · 108 452.31 0.56
3 CM 4.4 · 108 804.07 1

Table 10.1: Key pair generation ranked by performance

66



For key pair generation, the alternative design in CM [3] is included. This
design uses a semi systematic form of the public key generation, which gives
it better performance in key generation. From Table 10.1 we can see that this
method roughly cuts the cost of key generation by a third.

HQC and BIKE have a substantially lower cost for key generation than CM.

Category 1 Encapsulation
rank scheme cycles normalized relative cost
1 CM 4.4 · 104 1 0.20
2 BIKE 2.2 · 105 4.96 1
2 HQC 2.2 · 105 4.96 1

Category 3 Encapsulation
rank scheme cycles normalized relative cost
1 CM 1.2 · 105 1 0.24
2 BIKE 4.7 · 105 3.95 0.93
3 HQC 5.0 · 105 4.25 1

Category 5 Encapsulation
rank scheme cycles normalized relative cost
1 CM 1.6 · 105 1 0.18
2 HQC 9.2 · 105 5.69 1

Table 10.2: Encapsulation ranked by performance

Encapsulation performance is listed in Table 10.2. Here we see that CM
has lowest cost. BIKE and HQC appear to be quite similar, but BIKE loses
some ground to HQC for category 3. Because BIKE did not supply performance
numbers for category 5, we can not know if this performance delta grows for
category 5.

Note that CM only performs Encoding and not the entire encapsulation
procedure.

Finally, decapsulation performance is listed in Table 10.3. Here we see that
CM has the lowest cost by a large margin, followed by HQC. BIKE has the
highest cost of decapsulation, and we see that the performance delta grows for
each category. CM appears to scale better with the higher categories, and the
relative cost of CM reduces with an increase in category.

Overall, CM has a high cost in key generation but a very low cost of both
encapsulation and decapsulation. HQC has an extremely low cost of key gener-
ation but suffers a bit in encapsulation.

10.2 Hardware Performance
The CM [46] hardware implementation supplies customizable parameters for all
NIST categories. The CM numbers are collected from [3], but these numbers
supply footprint numbers for the entire system. The numbers in Table 10.4 are
collected by using this total footprint and multiplying with the ratio’s from [46]

67



Category 1 Decapsulation
rank scheme cycles normalized relative cost
1 CM 1.3 · 105 1 0.06
2 HQC 3.8 · 105 2.85 0.17
3 BIKE 2.2 · 106 16.48 1

Category 3 Decapsulation
rank scheme cycles normalized relative cost
1 CM 2.7 · 105 1 0.04
2 HQC 8.2 · 105 3.02 0.12
3 BIKE 6.6 · 106 24.33 1

Category 5 Decapsulation
rank scheme cycles normalized relative cost
1 CM 3.0 · 105 1 0.20
2 HQC 1.5 · 106 5.10 1

Table 10.3: Decapsulation ranked by performance

for the "balanced" configuration. This configuration is optimized for a balance
between time and size.

BIKE and HQC only supply performance numbers for category 1 parameters.
Because of this, the comparison is limited to category 1. It should be noted that
the CM implementation is far more customizable than the other two, and that
HQC has used HLS (Section 5.1.3) which greatly increases the maintainability
of their code.

Performance rankings for category 1 security can be found in Table 10.4.
Time×area measures:

LUTs · cycles
clock frequency (MHz)

LUTs were chosen to represent logic as it is the building block of the logic
in an FPGA design, and often the limiting factor. Both FF and BRAM should
also be considered if they are a limiting factor.

10.3 Bandwidth
In this section, we will look at the bandwidth requirements of the submissions.
In the general case, a key exchange must transfer the public key and also a
ciphertext. Some use cases will benefit from small ciphertexts, and some might
benefit from smaller keys.

The key sizes are listed in Table 10.5 where they are ranked by their band-
width. BIKE has the smallest bandwidth requirements, while HQC requires
more than double. CM has the most significant bandwidth requirements, but
their very small ciphertext sizes might give it an advantage in other use cases.

68



Category 1 keypairs
rank scheme cycles MHz LUTs FF BRAM time×area normalized
1 HQC 59485 180 5174 2358 3 1.7 · 106 1
2 BIKE 258750 96 12654 1044 10 3.4 · 107 19.95
3 CM 482893 104 24227 44016 192 1.1 · 108 65.79

Category 1 Encapsulation
rank scheme cycles MHz LUTs FF BRAM time×area normalized
1 CM 2720 104 2648 3351 0 6.9 · 104 1
2 BIKE 12240 122 14894 3477 10 1.5 · 106 21.58
3 HQC 158251 180 7766 4643 11 6.8 · 106 98.59

Category 1 Decapsulation
rank scheme cycles MHz LUTs FF BRAM time×area normalized
1 CM 12036 104 12890 23084 20 1.5 · 106 1
2 HQC 265836 180 11236 7836 12 1.7 · 107 11.12
3 BIKE 189615 100 29908 5075 29 5.7 · 107 38.02

Table 10.4: Hardware footprints and performance of the code based NIST PQC
submissions. Ranked by time×area

Category 1 bandwidth
rank scheme Pk (B) Sk (B) ciphertext (B) session key (B) Bandwidth (kB)
1 BIKE 1540 280 1572 32 3.11
2 HQC 2249 40 4481 64 6.73
3 CM 261129 6492 128 32 261.26

Category 3 bandwidth
rank scheme Pk (B) Sk (B) ciphertext (B) session key (B) Bandwidth (kB)
1 BIKE 3082 418 3114 32 6.20
2 HQC 4522 40 9026 64 13.55
3 CM 524160 13608 188 32 524.35

Category 5 bandwidth
rank scheme Pk (B) Sk (B) ciphertext (B) session key (B) Bandwidth (kB)
1 BIKE 5121 580 5153 32 10.27
2 HQC 7245 40 14469 64 21.71
3 CM 1047319 13948 226 32 1047.55

Table 10.5: Ranked Bandwidth (public key + ciphertext) requirements of the
code based NIST PQC submissions

10.4 FPGA Requirements
We have compared the implementations in terms of logic requirements, so let us
now look at the minimum required FPGA board. We will consider the Artix®as
potential boards.

The prices are collected from avnet.com, which is an authorized distributor
of Xilinx FPGAs. They are also bulk prices, meaning that the price is per unit

69



for purchase of 40-60+ units. The lowest cost unit price was gathered for this
comparison.

Category 1 requirements - keypair Utilization %
rank scheme Family Board price LUTs FF BRAM
1 HQC Artix-7 XC7A12T $ 25.95 64.7 14.7 15.0
2 BIKE Artix-7 XC7A25T $ 33.60 86.7 3.6 22.2
3 CM Artix-7 XC7A200T $ 210.69 18.0 16.4 52.6

Category 1 requirements - Encapsulation Utilization %
rank scheme Family Board price LUTs FF BRAM
1 CM Artix-7 XC7A12T $ 25.95 33.1 20.9 0.0
1 HQC Artix-7 XC7A12T $ 25.95 97.1 29.0 55.0
3 BIKE Artix-7 XC7A35T $ 34.68 71.6 8.4 20.0

Category 1 requirements - Decapsulation Utilization %
rank scheme Family Board price LUTs FF BRAM
1 HQC Artix-7 XC7A25T $ 33.60 77.0 26.8 26.7
1 CM Artix-7 XC7A25T $ 33.60 88.3 79.1 44.4
3 BIKE Artix-7 XC7A50T $ 61.73 91.7 7.8 38.7

Table 10.6: Minimum FPGA requirements for the code based NIST PQC can-
didates per operation

From Table 10.6 we can see that CM key generation is very expensive, while
BIKE and HQC are relatively cheap.

Encapsulation can be done on the same part for CM and HQC, while a
slightly more expensive part is needed for BIKE. HQC has higher utilization
than CM.

Decapsulation can also be done on the same part for CM and HQC, while
BIKE requires a part of almost twice the cost. CM has higher utilization than
HQC. Note that CM does only perform decoding and not the entire decapsula-
tion procedure.

Category 1 requirements Utilization %
rank scheme Family Board price LUTs FF BRAM
1 HQC Artix-7 XC7A50T $ 61.73 74.2 22.8 34.7
2 BIKE Artix-7 XC7A100T $ 126.84 90.6 7.6 36.3
3 CM Artix-7 XC7A200T $ 210.69 29.5 26.2 58.1

Category 3 requirements Utilization %
rank scheme Family Board price LUTs FF BRAM
1 CM Artix-7 XC7A200T $ 210.69 42.4 36.1 95.3

Category 5 requirements Utilization %
rank scheme Family Board price LUTs FF BRAM
1 CM Virtex-7 XC7VX330T $ 4478 31.2 28.3 67.7

Table 10.7: FPGA requirements for the code based NIST PQC candidates

70



From Table 10.7 we see that the increased logic cost of CM (primarily key
generation) makes it require a substantially more expensive part to run. Due
to the high BRAM requirements in category 5, CM can no longer run on an
Artix®board but requires one from the larger Virtex®family. If the BRAM
usage could be limited, it can quite easily fit on a cheaper board.

Overall, HQC can run the cheapest hardware, followed by BIKE.

10.5 Code-Based NIST PQC
Now that we have looked at all the code-based NIST PQC submissions, how
did they compare? They all offer different performance profiles with advantages
and disadvantages.

Based on the information presented in this chapter, Table 10.8 shows some
of the highlights of each submission.

HQC
Advantage Disadvantage
++ Low cost key generation - High cost encapsulation
++ Runs on low cost hardware - Low security maturity
+ Low bandwidth requirements
+ Small public key

BIKE
Advantage Disadvantage
++ Low bandwidth requirements - High cost decapsulation
++ Small public key - Low security maturity
+ Low bandwidth requirements
+ Runs on low cost hardware

CM
Advantage Disadvantage
++ Small ciphertext -- Large public key
++ Low cost encoding -- Large bandwidth requirements
++ Low cost decoding -- Requires more expensive hardware
++ High security maturity - not full hardware KEM

Table 10.8: Advantages/disadvantages of HQC

71



Chapter 11

Niderreiter with binary
Goppa codes - Hardware

To find improvements to the Niederreiter scheme some components were isolated
and rewritten. To produce known answer tests the CM software implementation
was modified to produce public and secret keys, as well as error vector e and
ciphertext c.

The goal of these improvements is to reduce time×space by either reducing
run time or design footprint in the FPGA. FPGA utilization is counted in
LUTs, and runtime is counted in clock cycles from simulation. In some cases, it
is necessary to use optional metrics to compare two different designs accurately.

The produced components were simulated in ModelSim and synthesized in
Vivado. They were not tested on hardware.

The reference implementation discussed in this chapter is the FPGA imple-
mentation described in [46].

11.1 Encryption
Encryption under a (n,m, t) Niederreiter scheme Π is the linear operation of
c = Pke where e has weight t and length n, and where Pk (Section 4.1) is the
public key. You can then split e into parts e0 as the first mt bits of e, and e1 as
the last k bits.

Pke = Imte0 + Te1 = e0 + Te1

Further e is a low density vector with t non-zero elements. This means that
c will be a sum of t columns of Pk, and if this can be exploited this can save
operations.

A possible way to do this is to represent the error vector as a list of indices
e′ = [e1, e2, · · · , et] where ei represents a 1 in the ith position of the length n
vector e. Having e on this form has two effects:

• The indices require log2(n) · t bits to store, and for all possible parameter
choices this means that log2(n) · t < n.

• Encrypting can be done by looking up t columns of the public key.
An implementation of this method can be found in the file

FPGA/ s r c / encoder . vhd

72



The performance of this module can be seen in Table 11.1. The encoder has
a register for columns of T and drives the address from another register. The
memory module is used in testing is the same as the reference and can look up
columns within a clock cycle. Because the encoder drives the address signal,
there is a delay from setting the address and reading the column of 2 clock cycle
cycles.

e is stored as a bit vector of log(n) ·m, which the encoder iterates over. The
encoder sets the address to the value of the log(n) chunks of e. If the value is
less than l = n−k, then the bit in the given index is flipped, as this corresponds
to the multiplication of the I portion of the public key Pk = [I | T ]. This is
completed in a single clock cycle.

This means that encoding is not guaranteed to be in constant time, as the
delay incurred by a memory lookup in the last index of e would mean that
encoding is completed in 121 − 122 cycles based on the previous value. The
encoder is pipelined, so it will always at most take 123 cycles, so it would be
very easy to modify to always take this long.

Because of this invariability in encoding time breaks IND-CPA, and it can
not be used as-is. A mitigation to this will be to account for the possible 2 or
1 cycle delay incurred from encoding.

Another side effect of this variability in encoding time is that it might be
easier to determine the structure of e from DPA. If two error vectors e with
differing amounts of bits in the mt- and k portions are encoded; the one with
the most bits in the k portion would incur more memory lookups and more
additions. This would likely be very visible in power consumption, and an
adversary would be able to distinguish the two. This would also break IND-
CPA.

cycles logic time×logic
Reference [46] 5413 4276 2.31 · 107

Encoder 123 4584 5.6 · 105

Table 11.1: Performance of encoder

11.1.1 Generating e

In [3] the error vector e needs to be a uniform randomly generated vector of
weight t. A possible way to do this is to randomly generate the t indices that
are used in the alternate encoder.

Generating the alternate error vector e′ = e1, e2, · · · et where ei ∈ [0, n− 1],
will then fail if ei = ej for i 6= j.

The probability of generating a unique random list where ei ∈ [0, n − 1] is
enumerated in Table 11.2

73



Parameters Unique list
n/m/t probability %

3488/12/64 56
4608/13/96 37
6688/13/128 29
6960/13/119 36
8192/13/128 37

Table 11.2: Parameter choices probability of generating t unique values on the
range [0, n− 1] by uniform random generation

11.2 Finite field operations

11.2.1 Multiplication GF(2m)
The addition in GF (2m) is very simple. It maps to the binary xor operation
for the representation of elements in GF (2m), and is very cheap and fast to
implement in hardware. Multiplication, however, is not quite so simple and
requires additional steps. The finite field is constructed with the polynomials
Z2[x]/h where h is an irreducible polynomial of degree m. Multiplying two
elements g and h then becomes.

y =

m−1∑
i=0

fih

And because every entry is either 1 or 0, this maps to a sum of bit-shifted entries
of h, which is straightforward to implement in hardware. To save on clock
cycles, the reference implementation has implemented this multiplication as a
combinatorial module. This means that multiplication of these base elements
are completed within 1 clock cycle (as long as the total delay of the component
allows it).

The way the authors achieved this is to generate the ideal logic from Sage-
Math This poses an interesting question, as the produced HDL script is very
minimal. It can, however, be implemented directly in a HDL, but how will this
affect the synthesized module?

To find some insights into this question, the following experiment was con-
structed. The reference module was synthesized and compared to a HDL solu-
tion, and a fully generic HDL solution.

Having more generic modules is also useful as the reference implementation
is written in an older version of SageMath, and getting it to run was not so
straightforward. Further, it is easier to modify a solution written in a single
language rather than multiple, and having a fully generic solution would be
beneficial.

The results of these experiments can be seen in Table 11.3. The expectation
was that the ideal logic produced by the SageMath script was to be the lowest
cost in logic. We see, however, that the gf_mul.vhd has comparable but lower
logic cost. To make sure this was not a function of Vivado preferring VHDL code,
the Verilog reference (gf_mul_ref.v) was translated to VHDL (gf_mul_ref.vhd)
and also synthesized.

74



LUTs SageMath dependant h changeable
gf_mul_ref.v 90 yes no

gf_mul_ref.vhd 90 yes no
gf_mul.vhd 80 no no

gf_mul_g.vhd 250 no yes

Table 11.3: Estimated LUTs after synthesis for multiplication modules of ele-
ments in GF (213)

The worst total delay of the implementation was 10.8 ns (4 ns logic delay,
6.8 net delay), which translates to roughly 92.6 MHz clock speed.

Further, we see that the generic module which can be instantiated with any
number of m where the field polynomials h can be hot-swapped, the logic cost
is quite a lot higher.

From this experiment, we get the sense that the synthesis tool is robust
enough to be trusted when it comes to writing source code. It is not very obvious
that creating ideal logic in the source file will lead to a smaller synthesized
module.

11.2.2 Squaring in GF(2m)
Squaring is a finite field is possible with a multiplication module, but due to
the structure of a finite field Z2[x], squaring has a very simple structure as all
multiples of 2 are equivalent to 0. This leads to the general solution for squaring
polynomials in GF (2m):

(xm−1 + xm−2 + · · ·+ x+ 1)2 = (x2(m−1) + x2(m−2) + · · ·+ x2 + 12)

This general solution makes it possible to implement squaring in substan-
tially lower logic. This is implemented in the reference as code generated by
SageMath. To continue comparing with ideal generated logic and manually
written components, the vhd equivalents were written (see Table 11.4).

LUTs SageMath dependant generic
gf_sq_ref.v 7 yes no
gf_sq.vhd 3 no no

gf_sq_alt.vhd 7 no no
gf_sq_hin.vhd 39 no yes

Table 11.4: Estimated LUTs after synthesis for squaring modules of elements in
GF (213)

Some variations were tested to see their impact on space usage. First,
gf_sq.vhd is the straightforward implementation where the field polynomial
needs to be specified in the file, and all the powers of the polynomial is calcu-
lated.

The second is gf_sq_alt.vhd, where only the needed powers of the polyno-
mial are calculated, as the odd powers are not needed when squaring. We can
see that it made no difference in space usage.

75



The third is gf_sq_hin.vhd, where the powers of the field polynomial are
fed to the component in a flat array. This makes the component generic and
would allow swapping and computing powers of a new field polynomial from the
outside.

The total delay of the gf_sq.vhd was 6.2 ns (3.4 logic and 2.8 net) which
approximately translates to a clock speed of 161.3 MHz.

11.2.3 Inverting elements in GF(2m)
In [22], inversion is done with a pre-computed Lookup table that is stored in
BRAM (read-only). They do not compare their solution to an inversion module,
so this is what we will be looking at here. Different implementations might have
an excess of either BRAM or LUTs, so it would be advantageous to have a choice
as to what resource to use. In order to compare a combinatorial circuit to the
lookup Table, BRAM was disabled in synthesized, and the reference design was
forced to use LUTs instead.

LUTs
Field Size GF (212) GF (213) GF (214)
Modulus (x12 + x3 + 1) (x13 + x4 + x3 + x+ 1) (x14 + x5 + 1)
gf_inv_ref.v 1758 3776 8126
gf_inv.vhd 1118 1950 2314

Table 11.5: Estimated LUTs after synthesis for inversion modules of elements
in GF (212−14)

From the results of synthesis seen in Table 11.5 we can see that the implemen-
tation in pure combinatorial logic is smaller than the lookup method. Further,
for generic fields, they will expect the lookup method to at least double in size
for every increment in m.

We also observe that the combinatorial method’s size relies on the complexity
of the modulus, that is to say, that a smaller field polynomial will lead to less
required logic. We see that there is a substantial increase when going from
GF (212) to GF (213) as the modulus has more coefficients. Then we see a
comparatively lesser increase in logic when going from GF (213) to GF (214), as
this modulus has fewer coefficients.

Even though the combinatorial method is smaller in all cases, it is not obvi-
ous which to chose for m = 12, 13. Because the lookup method is implemented
using dual port ram modules; they can potentially double the throughput of the
modules.

The worst total delay of the gf_inv.vhd module is 43 ns (7.8 ns logic and
35.2 ns net) for GF (213). This translates to a clock speed of approximately 23.2
MHz. This means that with the use of BRAM in the lookup method, which
can have an Fmax = 500MHz, the maximal throughput of the lookup method
is 2 · 500 · 106/s, while the combinatorial method is 23.2 · 106/s.

Because the two components are so different in how they operate, we must
devise some comparable metrics to gauge their relative performance. Table
11.6 we can see the estimated throughput of the modules (Inverses/s) and the
latency, which will be the time from when you request the inverse to when
you can read it. Because the reference uses synchronized memory lookup, the

76



memory address is set at one clock cycle and then read the next. This means
that the value is not available for two clock cycles after the request.

Module Area Inverses/s % latency (ns) %
reference (BRAM) 3.5 109 100 4.0 100
reference (LUTs) 3776 108 10 37.6 940
gf_inv.vhd (LUTs) 1950 23.2 · 106 0.02 43.0 1075

Table 11.6: Performance comparisons for squaring modules in GF (213)

So we have seen that a combinatorial inverse is possible and has a smaller
footprint than the lookup method. The combinatorial method does, however,
suffer in terms of performance. It has about 0.2h of the throughput and roughly
ten times the latency.

This should give the observer an intuition that highly sequential operations
cannot always be made to go faster in hardware. Hardware implementations
can substantially speed up parallelizable problems, but when more logic is used
to complete a longer sequence of operations it occurs substantial logic and net
delays (the time the signal needs to propagate through the circuit).

The only case where the combinatorial method could have a use case is if
BRAMs are not available, and the throughput is not an issue. In this case, the
relative latency × area of the combinatorial method is better at 3776·37.6

1950·43 = 1.7.
It is also improbable that a design will fully utilize the maximal throughput of
the lookup method.

So to conclude, the lookup method with the use of BRAM outperforms the
other solutions by a great margin in all cases. But the the theoretical max
speed will not be achievable in most cases, and in the performance numbers
from Table 7.3 we see that the max clock speed is about 100 MHz. This means
that the throughput in a real-world scenario would be divided by 5. It is also
likely that the net delay will be shorter should the combinatorial method is
used in an actual design. When simulating singular components, the net delay
is artificially high as it will count the path from a physical input pin, through
the component, and then to a physical output pin.

On a side note, the combinatorial method is essentially a square and multiply
for elements in GF (213). By modifying the module to have a target exponent,
it was made a general solution in gf_sq_mul.vhd, and the footprint can be seen
in Table 11.4.

LUTs
Field Size GF (212) GF (213) GF (214)
Modulus (x12 + x3 + 1) (x13 + x4 + x3 + x+ 1) (x14 + x5 + 1)
gf_inv.vhd 1118 1950 2314
gf_sq_mul.vhd 1178 2593 2386

Table 11.7: Estimated LUTs after synthesis for inversion modules of elements
in GF (212−14)

77



Chapter 12

Conclusion

12.1 Future work

12.1.1 Alternate Support Generation
CM generates the Goppa support by sorting a randomized list. They utilize a
merge sorting algorithm. The basic idea is that a list of n sorted elements in
the underlying GF (2m) are appended with a random 32-bit integer. The list is
then sorted by comparing this 32-bit integer.

The merge sorting algorithm used has a complexity of O(n log(n)). By
using some type of radix sort, this could potentially be improved, as radix has a
complexity of O(n). Radix does, however, introduce substantial overhead, and
this will most likely suffer a performance loss.

If, for instance, we use a radix sort with lists, where we select the number of
lists to be 4, we would end up having 5 total registers with the size (m+ 32) ·n.
This is up from the 2 registers used by the merge sort. We could then sort the
list in 8 iterations, which is lower than log(n) = 13. Further, Each iteration
would require us to move the value into a list and back into the sorted list, so
the number of operations is at least a factor of 2.

From this, we could expect a radix sort module to be (8 · 2)/13 = 1.2 the
speed of a merge sort, and 5/2 = 2.5 of logic required.

12.1.2 Hardware Optimization for BIKE and HQC
We have looked at the hardware implementation of CM in detail, and found a
highly adjustable and comprehensive solution. BIKE and HQC has, however,
not been examined, and they give the impression that they are not as developed
as the CM.

More substantial improvements can likely be found when examining HQC in
particular, as they have made a hardware implementation using HLS (Section
5.1.3). This makes the implementation far more easily maintained, but in many
cases it does not produce an optimal solution in terms of performance.

78



12.1.3 AVX Optimizations
The AVX instruction set can offer substantial speed-ups when performing linear
operations. All the submissions already target AVX for speed improvements,
but the design room for AVX improvements have not been looked at in this
work.

Newer CPUs will have AVX512, which double the size of the registers. This
leaves a massive potential to bit-slice operations, and it is very likely to find
improvements if looked into.

12.1.4 BRAM Tuning of CM
In Table 10.7 we see that for category 5 security, CM needed a Virtex®board due
to its high BRAM usage. By tuning the implementation for these parameters
with the intent to bring BRAM usage down, we could potentially drastically
reduce the part cost for category 5 security.

This could be achieved by looking at alternative ways of inversion as in
Section 11.2.3, or by using an alternative ’ polynomial evaluation method. The
high BRAM usage comes primarily from the additive FFT used for polynomial
evaluation, which is used in both key generation and decryption.

12.1.5 ARM Compatibility
The performance of the systems looked at in this work (BIKE, CM, and HQC)
all have AVX optimized implementations that offer substantial performance
improvements.

However, the AVX instruction set is limited to newer CPUs with a relatively
high operating cost in terms of power. Lower powered CPUs like ARM would be
interesting to target to see if how feasible code-based PQC is on a more limited
platform. These will have more limited resources and a more limited instruction
set.

Progress in this field has already been achieved in [55], where the authors
managed to get key generation for category 1 security to run on the ARM
Cortex-M4 platform.

For context, the numbers in Table 12.1 show the performance. The latency
for key generation is about 570 times the software implementation, encapsula-
tion 350 times, and decapsulation 530 times.

Category 1 CM on the ARM Cortex M4
Clock Keygen Encapsulation Decapsulation
Mhz cycles latency cycles latency cycles latency
168 1.4 · 109 8.3 s 5.8 · 105 3.5 ms 2.7 · 106 16.1 ms

Table 12.1: CM (semi systematic) performance achieved by [55] for category 1
security on the ARM Cortex M4

The work also offers many space optimization algorithms that allow it to
run on a limited platform. Some of these might also offer insights into reducing
resource consumption in other areas.

79



12.2 Closing
The work done by the NIST PQC is very important. We have now seen that
we have multiple viable systems for post-quantum cryptography, with NIST
commenting that CM might be ready to standardize at the end of round 3.

Although quantum computers are not quite a threat yet, we already have
robust cryptographic schemes that are ready to be adopted. The systems do,
however, widely differ in their performance and bandwidth profiles. Within the
code-based systems, we have seen the extremely small ciphertexts and huge keys
of CM, and the very small keys and large ciphertexts of HQC. Depending on
requirements this leaves any implementor with a fair deal of choice.

The current status of the NIST PQC suggests that Classic McEliece will
be standardized. The bandwidth requirements of CM might not be an issue
when communicating over the internet with large bandwidths and high power
computers, but there are many situations where low-cost hardware needs to
communicate with limited bandwidth with high security. In situations like this,
CM is not suitable.

We saw that CM needed 8.3 seconds to generate a key on an ARM Cortex
M4, and because of the logic cost, it could not fit the platform used in [55] for
category 2 parameters. If we cannot generate keys on the devices and manually
load the keys into the devices. This means that it probably would be a a lot
easier to use symmetrical keys and have some central key distribution service
which keeps track of them, which would bring us back to square one.

For these reasons, it appears very unlikely that we will see CM used in
situations with limited bandwidth or low-cost hardware.

80



Appendices

81



Appendix A

Mathematical background

A.1 Finite Field
A finite field is a commutative division ring with a finite number of elements.
A ring is a set of values with addition and multiplication. Commutative means
that the order of operations is arbitrary specifically for multiplication, i.e., that
ab = ba. And finally, a division ring means that division is possible for all
elements in the set.

Performing division in a finite field requires some special attention. Any
element a in a finite field will have an inverse a−1. The inverse is another
element in the finite field where aa−1 = e, where e is the identity element of
the multiplicative group (usually 1). In a finite field, all elements have inverses,
and the inverse is unique.

The easiest way of constructing a finite field is to look at the natural numbers
modulo a prime number. These groups are represented as:

Zp, p is a prime number.

If we look at the elements of Z5, we can see that a finite field can be con-
structed, as addition, multiplication and division are defined for all elements
in the set as seen in table A.1. Further, we can see from the multiplication
table that every element has an inverse, and dividing by a number is the same
as multiplying with the inverse of that number. Therefore the elements of Z5

define a finite field.

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

×5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table A.1: Addition and multiplication of elements in Z3

82



A.2 Galois Field
All finite fields will have a prime- or prime power number of elements. A Galois
field is a finite field defined by the number of elements in the field. The notation
for a Galois field is:

GF (pn), p is prime and n is a natural number.

A.3 Binary Arithmetic
A very important finite field is the finite field with only two elements: GF (2)
(see table A.2). This field is used to represent the behavior of single bits.

+2 0 1
0 0 1
1 1 0

×2 1
1 1

Table A.2: Addition and multiplication in GF (2)

A.4 Polynomials
Polynomials are expressions consisting of variables and coefficients. We will
look at polynomials with a single variable, and these polynomials will have the
form:

n∑
i=0

cix
i = cix

n + ci−1x
n−1 + · · ·+ c1x

1 + c0

Where ci are coefficients and xi is the variable.

A.5 Irreducible Polynomials
An irreducible polynomial is a polynomial that can not be expressed as the
product of lesser polynomials. So if we have an irreducible polynomial f(x),
there are no. Polynomial’s g(x) and h(x) such that:

g(x)h(x) = f(x)

It can be helpful to think of an irreducible polynomial as the equivalent to a
prime number in the set of polynomials.

A.6 Polynomial Reduction
Like taking the modulo of a natural number, one can reduce a polynomial
g(x) by a given polynomial f(x). If we have g(x) = x6 + x2 + x + 1, and
f(x) = x4 + x+ 1, then:

83



g(x) = x2(x4) + x2 + x+ 1

≡f(x) x
2(−x− 1) + x2 + 1

≡f(x) −x3 + 1

Notice that because x4 + x+ 1 ≡f(x) 0, we substitute x4 ≡f(x)= −x− 1.

A.7 Polynomial Fields
Just like constructing fields with prime numbers, Polynomial fields can be con-
structed by using irreducible polynomials. To create a polynomial field, we can
take a field F and extend it to the polynomial space by:

F [x]/f(x)

Here F [x] are the polynomials with coefficients in F , and the field F [x]/f(x)
define a ring where are the elements are reduced by f(x). Iff f(x) is irreducible
than this polynomial ring is a field. Notice that coefficients of the polynomial
must also be a field.

A.8 Polynomial Addition
To add two polynomials, the coefficients are added together.

f(x) + g(x) =

n∑
i=0

(fi + gi)xi

Where fi are the coefficients of f(x) and gi the coefficients of g(x). n is the
highest degree of g(x) or f(x).

If a polynomial has coefficients in GF (2) it is very simple to do addition in
hardware. The polynomials can be represented as binary strings, and addition
is the same as the xor operation, which is extremely cheap when implementing
this in hardware.

A.9 Polynomial Multiplication
Multiplication between polynomials is done by multiplying the coefficients and
variables.

f(x)g(x) =

n∑
i=0

fixig(x)

Where fi are the coefficients of f(x). This can also be simplified when dealing
with coefficients in GF (2), as the summation is very cheap. There are other
ways of implementing a multiplication algorithm (like Karatsuba) that trade
multiplications for additional additions. These methods perform favorably as
addition is cheaper in hardware implementations.

84



A.10 Polynomial Inversion
A very important operation is the ability to find the inverse of a polynomial in
a polynomial field, as multiplying with the inverse of a polynomial is the same
as dividing.

The inverse is defined as:

f(x)f(x)−1 = 1

85



References

[1] R. DeWolf, “Quantum computing: Lecture notes,” arXiv preprint arXiv:1907.09415,
2019.

[2] NIST. (). “Nist,” [Online]. Available: https://www.nist.gov/about-
nist. (accessed: 2020.06.16).

[3] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R.
Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al.,
“Classic mceliece: Conservative code-based cryptography,” NIST submis-
sions, 2020.

[4] R. J. McEliece, “A public-key cryptosystem based on algebraic,” Coding
Thv, vol. 4244, pp. 114–116, 1978.

[5] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[6] N. Aragon, P. S. Barreto, S. Bettaieb, F. Worldline, L. Bidoux, O. Blazy,
P. Gaborit, T. Güneysu, C. A. Melchor, R. Misoczki, et al., “Bike: Bit
flipping key encapsulation,”

[7] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, E. Persichetti, G. Zémor, and I.-C. Bourges, “Hamming quasi-
cyclic (hqc),” NIST PQC Round, vol. 2, pp. 4–13, 2018.

[8] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124–134.

[9] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[10] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, 1996, pp. 212–219.

[11] D. J. Bernstein, N. Heninger, P. Lou, and L. Valenta, “Post-quantum
rsa,” in International Workshop on Post-Quantum Cryptography, Springer,
2017, pp. 311–329.

[12] D. Boneh and V. Shoup, “A graduate course in applied cryptography,”
Draft 0.5, 2020.

[13] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent in-
tractability of certain coding problems (corresp.),” IEEE Transactions on
Information Theory, vol. 24, no. 3, pp. 384–386, 1978.

86

https://www.nist.gov/about-nist
https://www.nist.gov/about-nist


[14] R. Gallager, “Low-density parity-check codes,” IRE Transactions on in-
formation theory, vol. 8, no. 1, pp. 21–28, 1962.

[15] N. Drucker, S. Gueron, and D. Kostic, “Qc-mdpc decoders with several
shades of gray,” in International Conference on Post-Quantum Cryptog-
raphy, Springer, 2020, pp. 35–50.

[16] N. Patterson, “The algebraic decoding of goppa codes,” IEEE Transactions
on Information Theory, vol. 21, no. 2, pp. 203–207, 1975.

[17] A. Shoufan, F. Strenzke, H. G. Molter, and M. Stöttinger, “A timing attack
against patterson algorithm in the mceliece pkc,” in International Con-
ference on Information Security and Cryptology, Springer, 2009, pp. 161–
175.

[18] S. Heyse and T. Güneysu, “Code-based cryptography on reconfigurable
hardware: Tweaking niederreiter encryption for performance,” Journal of
Cryptographic Engineering, vol. 3, no. 1, pp. 29–43, 2013.

[19] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the
mceliece cryptosystem,” in International Workshop on Post-Quantum Cryp-
tography, Springer, 2008, pp. 31–46.

[20] D. J. Bernstein, “List decoding for binary goppa codes,” in International
Conference on Coding and Cryptology, Springer, 2011, pp. 62–80.

[21] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding the-
ory,” in Problems of Control and Information Theory 15, 1986.

[22] W. Wang, J. Szefer, and R. Niederhagen, “Fpga-based key generator for
the niederreiter cryptosystem using binary goppa codes,” in International
Conference on Cryptographic Hardware and Embedded Systems, Springer,
2017, pp. 253–274.

[23] J. VOGEL, A. KRAVTCHENKO, and F. ROMINGER, Error correction
with a cross-interleaved reed-solomon code, particularly for cd-rom, eng ;
fre ; ger, 2001.

[24] K. Kato and S. Choomchuay, “An analysis of time domain reed solomon
decoder with fpga implementation,” IEICE TRANSACTIONS on Infor-
mation and Systems, vol. 100, no. 12, pp. 2953–2961, 2017.

[25] M. Zhao, C. Hu, F. Wei, K. Wang, C. Wang, and Y. Jiang, “Real-time un-
derwater image recognition with fpga embedded system for convolutional
neural network,” Sensors, vol. 19, no. 2, p. 350, 2019.

[26] IEEE Computer Society and the IEEE Standards Association Corporate
Advisory Group, Ieee standard for systemverilog— unified hardware de-
sign, specification, and verification language, 2017.

[27] IEEE Computer Society, Ieee standard vhdl language reference manual,
2009.

[28] K. Gaj, Implementation and benchmarking of round 2 candidates in the
nist post-quantum cryptography standardization process using fpgas, Lec-
ture, 2020.

[29] Thomas Pöppelmann et al., Newhope, 2019.

87



[30] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber,” NIST,
Tech. Rep, 2017.

[31] E. Prange, “The use of information sets in decoding cyclic codes,” IRE
Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.

[32] J. Stern, “A method for finding codewords of small weight,” in Interna-
tional Colloquium on Coding Theory and Applications, Springer, 1988,
pp. 106–113.

[33] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R.
Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al.,
“Classic mceliece: Conservative code-based cryptography,” NIST submis-
sions, 2019.

[34] L. Both and A. May, “Decoding linear codes with high error rate and its
impact for lpn security,” in International Conference on Post-Quantum
Cryptography, Springer, 2018, pp. 25–46.

[35] N. Lahr, R. Niederhagen, R. Petri, and S. Samardjiska, “Side channel
information set decoding using iterative chunking,” in International Con-
ference on the Theory and Application of Cryptology and Information Se-
curity, Springer, 2020, pp. 881–910.

[36] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S.
Mangard, P. Kocher, D. Genkin, et al., “Meltdown: Reading kernel mem-
ory from user space,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 973–990.

[37] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, et al., “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy
(SP), IEEE, 2019, pp. 1–19.

[38] C. Goodman, “An introduction to tempest,” 2021.

[39] P. De Meulemeester, B. Scheers, and G. A. Vandenbosch, “Differential sig-
naling compromises video information security through am and fm leakage
emissions,” IEEE Transactions on Electromagnetic Compatibility, vol. 62,
no. 6, pp. 2376–2385, 2020.

[40] ——, “A quantitative approach to eavesdrop video display systems ex-
ploiting multiple electromagnetic leakage channels,” IEEE Transactions
on Electromagnetic Compatibility, vol. 62, no. 3, pp. 663–672, 2019.

[41] N. Zhang, Y. Lu, Q. Cui, and Y. Wang, “Investigation of unintentional
video emanations from a vga connector in the desktop computers,” IEEE
Transactions on Electromagnetic Compatibility, vol. 59, no. 6, pp. 1826–
1834, 2017.

[42] I. Kubiak, “Tempest font protects text data against rf electromagnetic
attack,” Tehnički vjesnik, vol. 27, no. 4, pp. 1058–1065, 2020.

[43] Altera, “Anti-tamper capabilities in fpga designs,” 2008.

[44] Xillinx, “Developing tamper resistant designs with xilinx virtex-6 and 7
series fpgas,” 2018.

88



[45] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta, et al., “Status report on
the second round of the nist post-quantum cryptography standardization
process,” US Department of Commerce, NIST, 2020.

[46] W. Wang, J. Szefer, and R. Niederhagen, “Fpga-based niederreiter cryp-
tosystem using binary goppa codes,” in International Conference on Post-
Quantum Cryptography, Springer, 2018, pp. 77–98.

[47] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R.
Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al.,
“Classic mceliece: Conservative code-based cryptography,” NIST submis-
sions, 2017.

[48] T. Chou, “Mcbits revisited,” in International Conference on Cryptographic
Hardware and Embedded Systems, Springer, 2017, pp. 213–231.

[49] D. J. Bernstein, T. Chou, and P. Schwabe, “Mcbits: Fast constant-time
code-based cryptography,” in International Conference on Cryptographic
Hardware and Embedded Systems, Springer, 2013, pp. 250–272.

[50] Q. H. Dang, “Secure hash standard,” 2015.

[51] D. J. Bernstein and E. Persichetti, “Towards kem unification.,” IACR
Cryptol. ePrint Arch., vol. 2018, p. 526, 2018.

[52] N. Lahr, R. Niederhagen, R. Petri, and S. Samardjiska, Side channel infor-
mation set decoding using iterative chunking, Cryptology ePrint Archive,
Report 2019/1459, https://eprint.iacr.org/2019/1459, 2019.

[53] N. Drucker, S. Gueron, D. Kostic, and E. Persichetti, “On the applicability
of the fujisaki-okamoto transformation to the bike kem.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 510, 2020.

[54] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the
fujisaki-okamoto transformation,” in Theory of Cryptography Conference,
Springer, 2017, pp. 341–371.

[55] M.-S. Chen and T. Chou, “Classic mceliece on the arm cortex-m4,”

89

https://eprint.iacr.org/2019/1459

	Glossary
	List of Figures
	List of Tables
	I Introduction and theory
	Introduction
	NIST PQC
	Research Questions
	Performance Comparison
	Hardware Description Language Generation
	Optimizations and Alternative Designs

	Research Methods

	Theory
	Quantum Computing
	Shor's Algorithm
	Grover's Algorithm
	The end for classical PKE's

	Symmetric Cryptography
	Asymmetric cryptography
	128-Bit Security
	IND-CPA
	 for a 
	KEM
	NIST PQC Categories

	Linear Codes
	Distance Between Codewords
	Generator Matrix
	Parity Check Matrix and Syndromes
	Encoding
	Decoding
	Hamming Codes
	Cyclic Codes
	Parameters
	Decoding Cyclic Codes

	Binary Goppa Codes
	Parameters and Setup
	Decoding Goppa Codes
	Beyond t


	McEliece
	Niederreiter
	Keysizes
	Reduction in Message Space


	Programmable Logic
	FPGA
	Hardware Description Language
	Manufacturers
	HLS
	Performance Metrics
	Xillinx FPGA Board Survey


	Attacking McEliece
	Information Set Decoding
	Speed of ISD Attacks

	Oracle Decryption
	Side-Channel Attacks
	Operating System
	TEMPEST

	What is a Secure Cryptographic Implementation
	Anti Tampering



	II The code-based NIST PQC candidates
	Classic McEliece
	Niederreiter KEM
	Parameters
	Kgen
	E
	H
	D
	Encapsulation
	Decapsulation

	Performance
	Classic McEliece Hardware Implementation
	Dependencies
	Niederreiter
	Performance


	BIKE
	Niederreiter KEM
	Parameters
	Kgen
	Encode
	Decode
	Encapsulation
	Decapsulation

	Performance
	Hardware Implementation

	HQC
	HQC KEM
	Concatenated Codes
	Encoding
	Decoding
	Encapsulation
	Decapsulation

	Performance
	Hardware Implementation


	III Conclusion and future work
	Comparison
	Software Performance
	Hardware Performance
	Bandwidth
	FPGA Requirements
	Code-Based NIST PQC

	Niderreiter with binary Goppa codes - Hardware
	Encryption
	Generating e

	Finite field operations
	Multiplication GF(2m)
	Squaring in GF(2m)
	Inverting elements in GF(2m)


	Conclusion
	Future work
	Alternate Support Generation
	Hardware Optimization for BIKE and HQC
	AVX Optimizations
	BRAM Tuning of CM
	ARM Compatibility

	Closing

	Appendices
	Mathematical background
	Finite Field
	Galois Field
	Binary Arithmetic
	Polynomials
	Irreducible Polynomials
	Polynomial Reduction
	Polynomial Fields
	Polynomial Addition
	Polynomial Multiplication
	Polynomial Inversion



