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Abstract

Obstructive sleep apnea is a common sleeping disorder estimated to affect
nearly one billion adults worldwide. It occurs when soft tissues block
the airways during sleep, causing a stop of airflow into the body. Apnea
events often occur multiple times per night and can last from ten seconds
to over a minute. People who suffer from obstructive sleep apnea often
report feelings of fatigue and sleepiness, and the disease has been linked
to increased risks of heart disease, stroke, and even traffic accidents. Many
patients are undiagnosed and do not receive the treatment they need. A
sleep study, polysomnography, needs to be performed to diagnose a person
with sleep apnea. It consists of recording the biophysical changes of a
patient overnight in a sleep lab and manually examining the gathered data
to score every sleep apnea event that occurs. For a patient with severe
sleep apnea, the number of apneas is over 30 per hour. This diagnostic is
both time-consuming and expensive. A common treatment for obstructive
sleep apnea is using a CPAP, a breathing machine that creates positive
air pressure in the airways allowing the patient to continue breathing.
This master thesis presents a novel approach for detecting obstructive
sleep apnea events in real-time by using signal data from only two simple
sensors.

Our approach uses Yolo, a fast and robust object detection algorithm
that is typically used for detecting objects in images. We generate images
of signal data from abdominal and thoracic plethysmograph sensors and
detect apnea events in these images. Yolo is well suited for detecting objects
with similar features but with varying shapes and sizes. Therefore, it might
work well for detecting apnea events of varying lengths and intensities.
We have created a model that shows the possibility of using this approach
for detecting obstructive sleep apnea. It can be used as a tool to pre-
screen possible sufferers of obstructive sleep apnea so that a sleep study
is only performed on patients that suffer from obstructive sleep apnea. The
tool can also be used as a real-time detection tool, where it was able to
detect 87% of apneas that occurred, but it also had almost as many false
predictions as it had true predictions. A further possibility of a real-time
detection tool like this is treating the apneas as they happen by triggering
actuators that disrupt the apneic event.
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Chapter 1

Introduction

1.1 Motivation

Obstructive sleep apnea (OSA) is a common sleeping disorder that is
estimated to affect nearly one billion people worldwide [4] and can have
large consequences in the lives of those affected. It involves a reduction or
complete stop of oxygen intake during sleep caused by soft tissue in the
mouth blocking the upper airway. It is time-consuming and invasive to
test for the disorder as you need to record a whole night sleep at a sleep
lab with multiple sensors attached to the body to gather all the required
data and later analyze it. There have been some attempts at detecting
obstructive sleep apnea from the patients own home using only a few
sensors combined with machine-learned models, but none have achieved
good performance. One of the hypotheses of why they do not work so
well is that obstructive sleep apnea can vary significantly in length from
10 seconds to over a minute. We are interested in finding out if a neural
network trained for object detection, normally used to detect objects in
images, can detect obstructive sleep apnea if the signal data is projected
as an image. The reasoning behind why such a model might work is that
object detection networks are normally used to detect objects of varying
shapes and sizes and may therefore be robust enough to detect apneas of
varying sizes from a single sensor.

We are interested in using Yolo, a real-time object detection neural
network that has shown fast inference and robust performance [5]. This
approach has another advantage because of its speed, and that is that
it opens up the possibility of detecting sleep apneas in real-time. The
potential for this in the future is that there might be a possibility to mitigate
the effects of sleep apnea using actuators like nerve stimulation devices
that send electric signals to the nerves that control the muscles to keep the
airways open [24] without having to use a sleeping apparatus like a CPAP.

1.2 Research questions

The research questions that we have chosen for this project are these:
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• RQ1: How does changing hyperparameters influence the perform-
ance of an object detection model for detecting OSA?

• RQ2: How well does Yolo work for detecting OSA compared to
human annotations?

• RQ3: How does Yolo compare to other machine learning approaches
for detecting OSA?

1.3 Approach

To experiment and evaluate our results to answer the research questions,
we will need a rigid final solution that evaluates models and compares
relevant metrics to see if our model performs well. We will need to compare
our results to other approaches using machine learning and the state of the
art methods used for detecting apneas.

To accomplish this, we will start the project by reading relevant papers
to understand what has been tried before. We have chosen to use the "You
only look once" real-time object detection algorithm as our back-end model.
Therefore, we will need to be familiar with how this model works before
training the models and evaluating them. Therefore, the programming part
of this thesis will start by exploring this tool to be familiar with it. The plan
is to create a prototype tool that shows that it is possible to detect events in
a time series. If this works, we will develop a reproducible model that can
be used to detect apneas. We will also develop a way to evaluate the model
and a real-time tool to visualize the predictions.

1.4 Results

The experiments done in this thesis have shown promise for using an
object detection model for detecting sleep apnea from a combination of
abdominal and thoracic sensors. We have explored which features and
hyperparameters are important when using this approach, and found that
the best results occur when we project 120 seconds of signal data, with
the signal being a combination of data from the abdominal and thoracic
sensors, with an overlapping stride of 30 seconds between each image
generated. This resulted in an MCC-score, which is a score well suited
for an imbalanced dataset, of 0.432. Simulating a real-time detector has
shown a detector that detected 6679 of the 7644 apneas in the dataset, or
87.38% of all apneas. At the same time, the model detected 6282 apneas that
were not annotated as being sleep apnea. This real-time model detected
apneas more aggressively than the model with 30-second overlap and had
a slightly lower MCC-score of 0.398. We have created a tool for detecting
and visualising obstructive sleep apnea in real-time. We have attempted to
compare our findings against previous work using machine learning, but
because of differences in how the performance is measured, it is difficult
to compare models equally. Our model generally has slightly lower scores,
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but we predict apneas occurring with decisecond precision, while other
approaches use 30 seconds or one-minute precision. We have also learned
that training models using images is quite resource-intensive, and we
believe that we have only grazed the surface regarding what is possible
by using an object detection model for detecting events in one-dimensional
data.

A paper from an early iteration of this approach has been presented at
the Internation Joint Conference on Artificial Intelligence Demonstrations
Track [16].

1.5 Structure of thesis

The thesis is divided into the following Chapters:

Chapter 2, Background. Description of the technical background ma-
terial needed to understand the approach, including information about
apneas and the basics of machine learning. Some information about met-
rics used for evaluating machine-learned models and earlier approaches
attempted similarly to our approach.

Chapter 3, Approach. A chapter describing the tools developed during
this thesis to ensure reproducible models and accurate evaluations. It
describes the changeable parameters for configuring our model to perform
as good as possible, our tool to wrap the model to ensure comparable
evaluations, and our real-time tool created to visualize the detection in real-
time.

Chapter 4, Evaluation. A chapter describing the research questions and
our attempts to answer them. Includes an evaluation of multiple models
and parameters and how the model performs. Threats to validity are also
included in this chapter.

Chapter 5, Conclusion. Summary of the thesis, summary of our results,
critical reflections, and opportunities for future works.

3
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Chapter 2

Background

This chapter will focus on the theoretical information we need in this thesis.
In Section 2.1 we will describe sleep apnea and present the different types of
apneas, we will describe how a polysomnography is normally performed,
and we will explore the dataset we will be using for our project. In Section
2.2 we will provide some background on machine learning basics and
details about the implementation we will be using. Section 2.3 will look at
the metrics that can quantify the performance of a machine learning model.
In Section 2.4 we will look at some of the previous approaches to using
machine learning to detect sleep apnea.

2.1 Sleep Apnea

Sleep apnea is a common respiratory disorder occurring when a person has
a cessation or large reduction in oxygen intake during sleep. It is estimated
to affect nearly 1 billion people worldwide [4]. Many sleep apnea cases are
going unnoticed as the symptoms of the disease are difficult to notice, and
testing for the disease is expensive. An apnea event is when a person has
a reduction in oxygen intake lasting from 10 seconds to over 60 seconds. If
this occurs when a person is sleeping, it is known as a sleep apnea event.
As the events occur during sleep, it is often difficult to discover that you
have symptoms of the disorder yourself. It is often a partner or someone
near the vicinity that reports abnormal breathing observations. People may
also suspect having sleep apnea based on fatigue when awake as your body
does not get the long rest it needs during the night because of the constant
arousal’s caused by the apnea.

To diagnose somebody with sleep apnea, the patient needs to have a
polysomnography performed. A polysomnography (PSG) is a recording of
bodily changes during the night that is recorded in a sleep lab or hospital
with many sensors attached to the body. The signal data then needs to
be manually analyzed and scored by a sleep technician who can finally
diagnose the patient. This is expensive and time-consuming. An example
of the large amount of data from the multiple sensors a sleep technician
needs to look through can be viewed in Figure 2.1.

A person with sleep apnea receives a lower quality of sleep than a
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Figure 2.1: Example of multiple signals in a polysomnoagraphy
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person without and often feels fatigued when awake. Sleep apnea and the
fatigue caused by it has been linked to many other diseases. It can increase
the risk of heart disease by 3 times, stroke by 4 times and car accidents by
7 times [14].

2.1.1 Classification of sleep apneas

Sleep apnea is a common intrinsic sleep disorder estimated to occur in
nearly 1 billion people worldwide [4]. An apnea is commonly referred to as
a reduction or complete cessation of oxygen intake in person for a duration
of time. Apneas can further be divided into different categories based on
the amount of oxygen reduction occurring and the cause of the cessation.
An apnea event is when there is a complete stop of oxygen intake for a
person, while a reduction of oxygen intake is classified as hypopnea. We
can further divide apneas into obstructive and central sleep apneas based
on the cause of the complete stop of oxygen intake. If the apnea is caused by
blocking in the airway, it is an obstructive sleep apnea event. If the brain
is not sending signals to the body to breathe, it is a central sleep apnea
event. A combination of these apnea types is also possible and is called
mixed sleep apnea. We will examine these types of apneas further in the
following paragraphs.

Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is caused by blocking in the respiratory
tract. Is the most common type of sleep apnea [41]. One common cause
is that the tongue blocks the airway in the back of your throat when the
tongue relaxes during sleep. A visualization of this form of apnea can
be seen in Figure 2.2. When this occurs, there is no oxygen flow into the
lungs even though respiratory movements in the abdomen and thorax are
maintained. The apnea event is disrupted by the brain arousing the body
from a deep sleep so that the patient clears the airway and can inhale.
This is often accompanied by loud snores and vocalizations that consists
of gasps, moans, and mumbling [41]. A bed partner might also notice the
cessation of breathing and might nudge the patient to wake him up out
of concern about the stopped breathing. These actions disrupt sleep and
cause the patient to feel fatigued when awake. When the patient is awake,
they typically feel unrefreshed and may describe feelings of disorientation,
grogginess, mental dullness, and incoordination. Sleepiness during the
day is a common effect, which can cause incapacitation, resulting in job
loss, accidents, self-injury, marital and family problems, and poor school
performance [41].

Obstructive sleep apnea syndrome can occur at any age, with the
highest incidence occurring between the ages of 40 and 60, with a majority
of cases being male. Obesity is often associated with obstructive sleep
apnea, but some patients are not overweight, and morbid obesity is present
only in a minority of patients [41].
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Figure 2.2: Illustration of obstructive sleep apnea[24]

Central Sleep apnea

Another common type of apnea is Central Sleep Apnea. This occurs
when the brain does not send signals to the body to start the breathing.
Therefore the person does not activate its respiratory muscles even though
the oxygen levels in the body are dropping below normal levels. Similarly
to obstructive sleep apnea, feelings of daytime tiredness, fatigue, and
sleepiness are common. A central sleep apnea event typically lasts from
10 to 30 seconds, followed by either gradual or abrupt resumption of
respiratory effort. Central sleep apnea is most commonly diagnosed in
people over age 65 or people who have neurodegenerative diseases [7].

Mixed Sleep apnea

Patients with central sleep apnea often have respiratory events that consist
of both obstructive and central sleep apnea. This is referred to as Mixed
Sleep Apnea. Many apneic episodes have an initial central component
followed by an obstructive component [41].

Hypopnea

Hypopnea is an episode of shallow breathing (airflow reduced by at least
50%) during sleep, lasting 10 seconds or longer, usually associated with
a fall in blood oxygen saturation [41]. The symptoms for hypopneas are
the same as both obstructive and sleep apneas, with typical symptoms
being snoring, fatigue, and difficulties with concentration. In comparison
to apneas, a hypopnea event does not fully block the intake of air into the
body but limits the amount the body receives. It is combined with the

8



count of obstructive sleep apneas used for calculating the severity of the
diagnosis of a patient.

2.1.2 Polysomnography

A polysomnography, also called a sleep study, is the test used to detect
sleeping disorders in a patient. It is performed by recording multiple
biophysical changes of a patient sleeping over the duration of a night. An
illustration of some sensors attached to the body can be seen in Figure
2.3. It is commonly done in a hospital or a sleep lab. To perform a
polysomnography, the patient needs to sleep overnight in a sleeping area
with multiple sensors attached to the body and in the room [18]. Figure
2.4 shows five relevant signals and examples of events being classified as
obstructive, central, or mixed. A polysomnography usually consists of a
minimum of twelve different signals, and usually, more than twenty is
used. An example of the number of signals a sleep technician needs to
view at the same time can be seen in Figure 2.1 In an article by Ibáñez,
Silva and Cauli which summaries current methods for evaluating sleep,
we can find an exhaustive list of tests and information gathered during a
polysomnography [18].

Figure 2.3: Examples of some polysomnography sensors and how they are
attached to the body [26].

• Electroencephalogram (EEG) – measures and records the brainwave
activity to identify sleep stages and detect seizure activity.

• Electrooculogram (EOG) — records eye movements. These movements
are important for identifying the different sleep stages, especially the
REM stage.
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Figure 2.4: Example of obstructive, central, and mixed sleep apnea [13].

• Electromyogram (EMG) — records muscle activity (e.g., teeth grinding
and face twitches; but also, limb movements using surface EMG
monitoring of limb muscles, periodic or other). Chin EMG is
necessary to differentiate REM from wakefulness. Limb EMG can
identify periodic limb movements during sleep (PLMS).

• Electrocardiogram (EKG) — records the heart rate and rhythm.

• Pulse oximetry — monitors oxygen saturation (SO2)

• Respiratory monitor — measures the respiratory effort (thoracic and
abdominal). It can be of several types, including impedance,
inductance, strain gauges, etc.

• Capnography — measures and graphically displays the inhaled and
exhaled CO2 concentrations at the airway opening.

• Transcutaneous monitors — —measure the diffusion of O2 and CO2
through the skin

• Microphone — continuously records the snoring volume and kind

• Video camera — continuously records video. It is useful to identify the
body motion and position.

• Thermometer — records the core body temperature and its changes.

• Light intensity tolerance test — determines the influence of light
intensity on sleep

• Nocturnal penile tumescence test — is used to identify physiological
erectile dysfunctions
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• Esophageal tests — includes pressure manometry, to measure pleural
pressure; esophageal manometry to assess peristalsis and esophageal
pH monitoring (acidity test).

• Nasal and oral airflow sensor — records the airflow and the breathing
rate.

• Gastroesophageal monitor — is used to detect Gastroesophageal Reflux
Disease (GERD)

• Blood pressure monitor — measures the blood pressure and its changes

A polysomnography is the most advanced tool used to diagnose many
sleep disorders. One of the reasons is that it uses advanced tools that are
extremely precise, which in turn allows a sleep technician to apply his
knowledge to detect apneic events in the recording. Polysomnography is
considered the gold standard for detecting sleep apnea. The downsides of
detecting sleep apnea using polysomnography is that it is time-consuming
to record, and it requires trained professionals to annotate the data. This
is why the polysomnography is costly to perform, and it is common to
only record a single night’s sleep for analysis. Another downside is that
the patient is sleeping away from home, which might cause the sleep to be
different from normal.

After the night has been fully recorded, a sleep technician needs to
analyze the gathered data to annotate the apnea events. The recording
is analyzed and annotated according to the International Classification of
Sleep Disorders, [33]. To classify events, a sleep technician needs to look at
patterns in the sensor data to try to understand what is happening in the
body. A report from a sleep study can be as many as five pages long [11]
and it might take up to two weeks until the scoring is complete [44]. Before
the recording, the technician usually spends around 45 minutes completing
the hook-up of all electrodes and sensors [17]. The fact that the recording
and scoring is time consuming combined with the space requirement of
each patient needing his or her own bed and room is a large barrier in
testing for sleep apnea. One of the values reported in the report generated
from polysomnography is the apnea-hypopnea index.

Apnea-Hypopnea Index. The Apnea-Hypopnea Index (AHI) is a calcu-
lated value used to indicate the severity of sleep apnea a patient has. Equa-
tion 2.1 shows the equation for calculating the Apnea-Hypopnea Index.

AHI =
Apneas + Hypopneas

Hours of sleep
× 100 (2.1)

This Apnea-Hypopnea Index is calculated by adding the number
of distinct apneas occurring during sleep with the number of distinct
hypopneas occurring during sleep, and then dividing this value by the
number of hours of sleep. The index represents how many apneas and
hypopneas occur on average per hour. An AHI value of less than 5 is
considered normal sleep. An AHI value between 5 and 15 is categorized
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as mild sleep apnea, a value between 15 and 30 is moderate sleep apnea,
and more than 30 is considered severe sleep apnea.

2.1.3 Treatment

A continuous positive airway pressure machine (CPAP) is one common
treatment for managing obstructive sleep apnea. It is a machine that causes
constant positive air pressure in the upper respiratory tract, hindering the
obstruction occurring. The use of CPAP is not without its drawbacks.
Common complaints after use is general discomfort, nasal congestion,
abdominal bloating, mask leaks, claustrophobia and inconvenience of
regular usage [28]. The adherence to the use of CPAP for treatment is often
low. Eight to fifteen percent of patients stopped using the treatment after a
single night use, and within one year, up to 50% of patients stopped using
the CPAP [3].

A lifestyle change might help treat obstructive sleep apnea in mild
cases. Some other recommendations are losing weight, exercising, quitting
smoking, not sleeping on your back, not drinking alcohol, and not using
sedative medications [24]. There are also some other approaches to treating
obstructive sleep apnea, like surgically removing tissue, jaw surgery,
implants, and mouthpieces that open up the airways[24].

2.1.4 Sleep Heart Health Study

The Sleep Heart Health Study (SHHS) is a multi-centre cohort study
conducted by the American National Heart Lung & Blood Institute [40].
It is a study that consists of sleep recordings from two distinct date ranges.
The first recording range is between September 1995 to January 1998 and
will be referred to as SHHS-1. The second recording range is between
January 2001 to June 2003 and will be referred to as SHHS-2 and is a follow
up on a subset of patients from SHHS-1.

SHHS-1 consists of sleep data from 6441 individuals selected from a
collection of patients that had already participated in one of nine existing
epidemiological studies. The Sleep Heart Health Study invited patients
that fulfilled the following criteria:

• Age is 40 years or older

• No history of treatment of sleep apnea

• No tracheostomy

• No current home oxygen therapy

Among the patients that fulfilled these criteria, 6441 individuals were
enrolled in the SHHS-1 study, and of these individuals, 5804 patients are
available in the dataset. The number of individuals is reduced due to
data sharing rules on certain cohorts and subjects [37]. The SHHS-2 study
consists of recorded data from a follow-up clinic visit from 4080 patients
from the SHHS-1 study.
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The dataset from the study consists of sleep recordings of patients
recorded from a total of 19 sensors with a sample rate occurring between
125 Hz and 1 Hz [39]. Each patient has a recording from one night at a
minimum. Associated with each recording is an annotation file scored by a
sleep technician. This file contains information about events scored during
the recording.

Signals

The signals included in the Sleep Heart Health study are signals from EEG,
EOG, thermister, chin EMG, ECG placement, respiratory bands, position,
light, and oximetry [39]. SHHS-1 contains 17 distinct signals, and SHHS-2
contains 16 distinct signals. All signals were recorded using Compumedics
P-Series Sleep Monitoring System consisting of a main unit and a patient
interface box.

This master thesis will focus on the abdominal and thoracic expansion
and contraction signals which are available in both SHHS-1 and SHHS-
2. Respiratory bands are used for measuring, and both use the Respitrace
Inductance Plethysmography sensor to detect the volume changes [39].
The dataset has two signals labelled "abdo_res" and "thor_res", referring
to these sensors. The signals are sampled at every decisecond (sample rate
of 10 Hz). The signals have been normalized and the values range between
minus one and plus one.

Annotations

The recorded signals have been annotated and scored by sleep technicians.
The findings from the sleep technicians scoring are stored in .xml files in
the dataset and contain the events they have scored. They also record and
store the sleep stages of the patient.

Every sleep recording is broken into a hypnogram representing the
different sleep stages during a recording. These sleep stages can be: Awake,
sleep stage one to four, and REM sleep. These stages are recorded every 30
seconds and are represented with an integer between and including zero
and five. A value of zero is awake, one to 4 is sleep stages, and five is REM
sleep.

The annotation file also usually contains multiple scored events. Each
event has an event name (f.ex Obstructive Apnea), the start time in seconds
since the start of recording, the duration in seconds, and the input sensor
the scoring is tied to. The information about the start of the recording
and the duration is stored as a positive floating point value. The input
sensor information is scored as a string. Optionally, scoring may also
contain information about the lowest Sp02 and the desaturation level in
this duration. Examples of scored events are Sp02 desaturation, obstructive
apnea, hypopnea, arousal, Sp02 artefacts, and central apnea.

The annotations are stored in the dataset in two different file formats
containing the same data. One is the XML annotation exported from
Compumedics Profusion [38], The other is stored as XML-NSRR. Both
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. . .
<ScoredEvent>

<EventConcept>Recording S t a r t Time</EventConcept>
< S t a r t >0</ S t a r t >
<Duration>30600 .0</Duration>
<ClockTime> 0 0 . 0 0 . 0 0 2 3 . 0 0 . 0 0 </ClockTime>

</ScoredEvent>
. . .

<ScoredEvent>
<EventType>Respira tory|Respira tory</EventType>
<EventConcept>

Obstruct ive apnea|Obstruct ive Apnea
</EventConcept>
< S t a r t >7898 .9</ S t a r t >
<Duration> 1 5 . 4 </Duration>
<SignalLocat ion>ABDO RES</SignalLocat ion>

</ScoredEvent>
. . .

Figure 2.5: Example of parts of XML file with the first scored informing us
that the recording started 23.00 and lasted for 30600 seconds (8,5 hours).
The second scored event is a scoring of Obstructive apnea, starting after
7898,9 seconds after the start of the recording, and lasted for 15,4 seconds.

formats allow for easy extraction of scored events and sleep stages, and we
have chosen to use XML-NSRR in this thesis. Figure 2.5 shows an extract
from an XML-NSRR annotation file.

Dataset characteristics

The total dataset is around 374 gigabytes in size. SHHS-1 consist of 5804
patients with an average age of 63.1 years old, with a standard deviation
of 11.2 years. The minimum and maximum ages in this dataset is 39 years
and 90 years. 52.3% of patients were female. The average AHI value was
9.6 [8].

2.2 Machine learning

Machine learning is the practice of making computers modify or adapt
their actions to get more accurate, where accuracy is measured by how well
the chosen actions reflect the correct ones [21]. This section will present
multiple paradigms within machine learning, some network architectures
commonly used and their use cases, how object detection works in machine
learning, and finally, some information about the machine learning process.
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2.2.1 Machine Learning Paradigms

Machine learning is commonly divided into three categories. It is also
not uncommon to combine parts of these different approaches. The main
categories are as follows:

Supervised learning

Supervised learning is machine learning where the algorithm has some
data points as input with the desired output associated with each data
point, commonly called a label, ground truth, or class. When a machine
learning model learns using the supervised learning paradigm, it takes
data points from a training dataset, runs it through an neural network, and
calculates a prediction of the same type as the label. Typically, predictions
are a class name or a value. The model can then calculate how far away
from the true label the prediction was and use this error information to
recalculate the model. To avoid the model changing too much at every step
in the learning process, it is common to group multiple data points and
annotations into a batch. By calculating a change to the model that returns
a better score for most of the data points in the batch, we can recalculate
the model and make it more applicable for generalization.

Unsupervised learning

Unsupervised learning is also machine learning on data, but in comparison
to supervised learning, we don’t have (or use) labels noting the true value
of our data points. The main reason for using unsupervised learning is
that it helps to find clusters and features in the data automatically. It may
discover some similarities between each input vector that humans would
not recognize. Since labelling of data is quite expensive, it may also be
more cost-effective to use unsupervised learning than supervised learning,
as it does not need the same ground truth as supervised learning does.
Unsupervised learning is often used for image recognition, spam detection,
and analysis of customer segments [46].

Reinforcement learning

Reinforcement learning is similar to unsupervised learning in that it does
not use ground truth labels to evaluate performance. In reinforcement
learning, you create an environment to train in and an actor capable of
performing actions. When an actor performs single or multiple actions,
it receives a reward if the outcome of the action is a preferable outcome.
After many iterations, the actor can explore and try new things and try to
find new solutions and approaches to challenges to better perform in the
environment. In real life, it has been used for finding solutions for elevator
scheduling, robot movement, and logistics, among other things.
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2.2.2 Neural Networks

Neural networks can be explained as a series of algorithms that take input
data, processes it, and outputs some predictions. A neural network is
a combination of algorithms built in a way to emulate the human brain
[9]. The building blocks for these algorithms are neurons, which are a
mathematical model inspired by neurons in the brain. In Figure 2.6 we
see a model of a single neuron. The inputs xi are multiplied with the
weights wi, and the neuron sums the values. It runs through an activation
function which may be a simple threshold function that decides whether
the neuron fires or not for the current input if it is a binary neuron. If the
neuron is not a binary neuron, it may output a floating-point or integer
value [21]. This subsection will describe the Perceptron, a simple network
and a building block and precursor to many other neural networks and
convolutional neural networks commonly used for object detection.

xn

x2

x1

∑ σ

Inputs Sum Activation

Figure 2.6: A model of a neuron

A neural network consists of multiple connected neurons performing
mathematical operations to output a prediction. By stacking these neurons
after each other in different configurations, we can generate networks that
work great for different types of tasks. In Figure 2.7 we see an example of
a simple Neural Network with an input layer created out of two features, a
hidden layer with four neurons and a single output layer.

Perceptron

The Perceptron is one of the simplest forms of a neural network and is
a great example for understanding the basics of how a neural network
is created. The perceptron can be created using only a single neuron or
a collection of multiple neurons. Each of these neurons are independent
of each other. If a neuron’s input depends on another neuron, we have
created a multi-layer perceptron and have started implementing a more
advanced network. Perceptrons are quite similar to a single neuron. The
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Figure 2.7: A simple network consisting of three layers [9]

main difference between a perceptron and a single neuron is the possibility
of using multiple neurons in the network and weights for each input to the
neuron. These weights can be updated in a training stage so that the model
learns to perform better.

xn

x2

x1

1

∑

wn

w2

w1

w0

σ

Inputs Weights Sum Activation

Figure 2.8: A perceptron

Figure 2.8 shows a perceptron with n inputs. The first input is a bias;
its function is a value that can be used to shift the activation function to
the left or right. Each of the other inputs is multiplied with a weight and
summed together. The summed value is then run through an activation
function that modifies the value somehow. If the value is not as expected,
we will need to adjust the weights until we get a better result, or the data
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might not be linearly separable.

Convolutional neural networks

A convolutional neural network is a type of neural network often applied
for image recognition. It is more advanced than the perceptron. In its
simplest form is based on a multilayer perceptron with a few regulations to
avoid overfitting the model to the training data. Something which would
give worse performance when applied in the real world. The Neocognitron
proposed by Fukushima is one of the first types of convolutional neural
networks and introduced the two basic layers in a convolutional neural
network: the downsampling layer and the convolutional layer. A
convolutional layer aims to detect features and feed them to the next layer
in the network. In convolutional neural networks, you often have small
filters that convolve over the whole input image and detects shapes, edges,
colours, and gradients. An abstraction of a convolutional neural network
can be seen in Figure 2.9. A combination of many filters gets fed to the
next layer in the network, which uses its own filters to look for patterns.
Since these are hidden layers, it is difficult to give examples of what they
are detecting.

A downsampling layer is a layer that reduces the input dimension from
the previous layer to the next. It combines a cluster of neurons into a single
neuron, of which the output can be fed into the next convolutional layer.
Using a downsampling layer, we can move from detecting small features in
the images to detecting larger objects in a more efficient way than checking
a large number of small features. A downsampling layer is also known as
a pooling layer.

Figure 2.9: A convolutional neural network illustration [36]

2.2.3 Object detection

Object detection is a topic in computer science within the subsection of
computer vision. The main goal of an object detection algorithm is to
identify and classify objects in an image. This is quite a difficult task as the
visual features of an object can vary substantially in an image in different
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situations. An object can look different depending on things like light
and shadows, proximity to a camera, rotation, and occlusion behind other
objects. An object of a class can also look quite different from other objects
in the same class. If we have a class called "bird", we should classify both
an eagle and a flamingo as the same "bird" class, even though they appear
very different visually. There are many implementations of object detection
networks, many of which build on convolutional neural networks. In this
thesis, we will use the You Only Look Once algorithm, which is a fully
convolutional neural network. A fully convolutional neural network is a
convolutional neural network that can take an input of arbitrary size.

You Only Look Once

You Only Look Once (Yolo) is an approach to object detection first
presented in 2015 by Redmon et al. [31]. Redmon et al. reframes object
detection as a regression problem to spatially separate bounding boxes and
associated class probabilities. By making the detection pipeline as a single
network, it can be optimized and perform very fast. Compared to other
object detection algorithms, it only needs a single pass through an image to
perform all detections. Other algorithms usually examine several regions
in images to find objects, while Yolo reasons about the whole image and
predicts multiple boxes for each object.

Figure 2.10 shows examples of using Yolo for predicting objects in
images. It can reason globally about the whole picture when making
predictions[31]. Yolo can be very specific if trained on a large and well
annotated dataset. The images in this figure show its capabilities for
discovering small objects, overlapping objects, and objects with small
differences like three different types of dogs, even discerning photos of
malamutes and husky’s which looks quite similar. As seen in the figure,
Yolo predicts bounding boxes for each prediction.

Yolo divides each image into S x S regions. If an object has a centre
in one of these regions, then this cell in the S x S grid is responsible for
predicting boxes of the object’s boundaries and the confidence level of this
bounding box being correct for this class. Unifying the prediction in this
way allows Yolo to perform object detection with high performance, with
only a small reduction of accuracy. The architecture of Yolo can be seen in
Figure 2.11.

Yolo has further been improved and is currently at version 4 [5].
Bochkovskiy, Wang and Liao are the current developers for Yolo and have
improved the model further with their version 4. Figure 2.12 shows a
comparison of Yolo’s performance in image detection against other neural
networks. The x-axis represents how many predictions can be done per
second, and the y-axis represents the average precision on the dataset.
We can see that Yolo performs slightly worse than the best other neural
networks, but a lot faster. The best models can predict around 5 images per
second, while Yolo can predict over 30 per second with only a small penalty
in accuracy. This is good for us as this allows for a faster evaluation.
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Figure 2.10: Examples of Yolo used for detecting animals, objects, and
people [30].

2.2.4 Machine Learning Process

Humans have naturally trained on detecting objects our whole life, and we
are quite adept at this task. A computer starts without any knowledge of
the world and needs to learn everything from scratch. To train a model that
performs well, there are many considerations to be had, and there are some
common steps in the process that should be followed. In this section, we
will be explaining some important steps in a machine learning process.

Data collection. Data collection is the first step when training a model. A
new type of model is often trained and evaluated on an existing dataset.
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Figure 2.11: The architecture of Yolo [31].

This allows the developer to compare the new algorithm to the results of
others. If we are learning about a new problem, we might have to collect the
data from scratch or assemble and prepare the data from various sources
[21]. Often, large amounts of available data might be relevant but can
be hard to use as it exists in many places and formats, and merging it is
difficult. It might also be a challenge to ensure that the data is clean without
large errors or missing data.

Generally, a larger dataset will result in a better and more robust trained
model than a model trained on a small dataset. One of the most common
datasets for image recognition has 328 000 images and 2,5 million labelled
instances for 91 object types [20]. A model generally performs better with
a larger collection of good data than a small one, but the cost is more time
spent on computing.

Featurisation When we have our data collected, we can extract the
features we need and discard the unneeded features. If we are doing
something novel that needs data collection, we might have done this
already if we only collected the data we need. We might also apply
algorithms to the data to scale it or combine it to generate new features if
we believe this might affect the next steps in the machine learning process.

Algorithm choice With the data collected and featurized, we can select
the appropriate algorithms for learning on this data. We can choose to use
algorithms that have previously been used for similar data or problems, or
we may try to do something novel. Some algorithms are good for detecting
sequences of data. Some are great for analyzing and discovering clusters
and segments of data. Some are good for detecting objects or calculating
values from new data.

Most of the algorithms have parameters that can be tweaked. Finding
good parameters can be difficult, but you can learn what other approaches
have tried, or you can try doing experiments and comparing the results
you get from the multiple parameter settings. This might be quite
computationally expensive if you are training on a large dataset or with
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Figure 2.12: Comparison of speed and accuracy of different object detectors
[5]

a slow algorithm. Still, it is an important part of configuring the model to
perform well.

Training, validation and test sets. It is recommended to split the data we
have into multiple sets and only train on one part of the data. If we were
to train a model on all the available data we have, we might experience
something called overfitting. This happens when the model has seen every
available training point and optimized its algorithm to perform well on
this. When using the model in the real world later, it will see new data, and
it will probably not perform as well as it did on the training data because it
is expecting only the training data.

To ensure that the model can work as a general model, we often train
on only part of the dataset. We create a training dataset with the data
we wish the model to train on, a validation used intermittently to check
for overfitting, and a test set that is used for the final evaluation of the
model. If the model starts performing worse on the validation dataset, we
can assume that we have started to overfit our model and should stop the
training. The test set is kept away from all training to make sure that we
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are evaluating only unseen data.

Training After doing the previous stages, we can train the model. We
need to choose how long we want to train the model for. Typically, we
choose to train a model for a set number of batches or train until the average
performance gain after a batch is below a certain threshold. Stopping
the training when the performance on the validation dataset starts getting
worse is also a way to stop the training. For advanced models, it is
common to train using a graphical processing unit, which is very effective
at doing calculations in parallel. For simpler algorithms, a computational
processing unit might perform fast enough.

Evaluation We evaluate the model we have trained to see how well
it performs. We choose some metrics to measure how well the model
performs, and then we can evaluate using our model on our test dataset.
If testing on data without labels, it can also be evaluated by comparing
to a human expert who evaluates the predictions. In the next section, we
will look at some metrics that are commonly used to evaluate a model’s
performance.

2.3 Measuring a models performance

If we are not using an expert for manually evaluating the model’s
performance, it is common to select a representative metric for evaluating
the model. When choosing a metric, it is important to keep in mind the
type of data we are evaluating and what a good model should perform
well at. Especially in medicinal use and in others, it is important to think
about two types of errors. Type 1 errors are false-positive conclusions,
while type 2 errors are false negative conclusions. The consequences of
classifying wrong can have big implications and need to be kept in mind
when choosing a metric. In this section, we will present multiple metrics
that can be used to quantify the model’s performance and the pros and cons
of the metrics.

2.3.1 Confusion Matrix

The confusion matrix is a two-dimensional matrix with all possible classes
in the horizontal and the vertical axis, with one axis representing the
predicted class and the other representing the true class. An example of
a confusion matrix for a binary predictor can be seen in Table 2.1 [21]. Here
we see that when we predict a class to be true, and the actual class is true,
we get a true positive. Similarly, we have false positives, false negatives
and true negatives in the other cells.

In a perfect classifier, we want to have all the predictions fit in either the
true positive or true negative cells. The values from the confusion matrix
are often used in other metrics such as recall, accuracy and precision.
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Predicted
Positive Negative

Tr
ue Positive True Positive False Negative

Negative False Positive True Negative

Table 2.1: Confusion matrix of a binary detector

2.3.2 Metrics

Accuracy. Accuracy is one of the quantifications of how close we are to
true values. Equation 2.2 shows the formula for calculating accuracy. It
tells us how many correct predictions we made as a fraction of all possible
predictions. A disadvantage with using accuracy is when the dataset
is highly imbalanced. If the data consisted of 95% of class A, and the
remaining 5% was of class B, then a classifier that predicted everything to
be class A would have an accuracy score of 0.95, which might be misleading
regarding the performance of the classifier.

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative
(2.2)

Precision. The precision value tells us how relevant each prediction we
make is, i.e. if we predict something, how likely is it that the prediction
was correct. Equation 2.3 shows the formula for calculating precision. The
precision is the ratio of true positive detections against the true positive and
the false positive detections. The precision does not give any information
about how many predictions were not predicted.

Precision =
TruePositive

TruePositive + FalsePositive
(2.3)

Recall. Recall is the metric that tells us the ratio of true predicted classes
predicted against the total number of true classes. Equation 2.4 shows the
formula for calculating recall. A high precision value tells us how good we
are at detecting all the true classes but ignores the number of predictions.

Recall =
TruePositive

TruePositive + FalseNegative
(2.4)

F1 score. The F1 score is a metric that balances the recall and precision
values. Precision tells us the ratio of correct prediction vs the total predicted
positives. The recall tells us the ratio of true positive predictions results
divided by all the true positive truths. The best value the f1-score can have
is one, indicating perfect precision and recall, and the lowest is zero if either
precision or recall is zero. Equation 2.4 shows the formula for calculating
the f1-score.
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F1 = 2 ∗ Precision ∗ Recall
Precision ∗ Recall

(2.5)

ROC. The receiver operating characteristic curve (ROC curve) is not a
metric but a graphical plot that illustrates the ratio of precision and recall
when a minimum confidence threshold is changed in the classifier. It plots
the true positive rate against the false-positive rate,

AUC. The area under the ROC curve (AUC) measures the area under the
ROC curve. It is a metric that aggregates the classifier’s performance in
all thresholds. A perfect classifier has an AUC of one. It can be used to
figure out which threshold your classifier should use if you were to value
precision and recall differently.

MCC. Matthews correlation coefficient (MCC), or a phi coefficient, is a
metric for evaluating a binary classifier that works well for unbalanced
datasets. It is a correlation coefficient between the observed and predicted
binary classifier. An MCC-score of one means a perfect prediction, a zero
is random predictions, and minus one means predictions and ground truth
differ perfectly. Equation 2.6 shows the formula for calculating MCC.

The reason for using this metric is that it is not sensitive to data
imbalance [6]. It has, together with AUC, been chosen as a best practice
metric for validation of predictive models for personalized medicine by a
study employed by the United States Food and Drug Administration. [35]

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.6)

2.4 Earlier machine learning approaches to detect
Obstructive Sleep Apnea

The consequence of undiagnosed sleep apnea, combined with the diffi-
culties of testing, is a great motivator for developing reliable, quick ways
to test for it. The hope is that a simpler test can make sure more people can
get the treatment they need to treat sleep apnea. There are automated tools
in use for helping predict sleep apnea events for the technicians. However,
the technician still needs to spend time looking through the whole dataset
to see that the classifications are correct, and the polysomnography needs
to be recorded correctly.

There have been many different approaches towards using machine
learning models for apnea detection without needing to do a full poly-
somnography. Many of these approaches have been quite successful, but
there is still room for improvement to detect apneas with more precision
using less invasive sensors. The optimal model should be able to predict
all apneas and hypopneas perfectly. In Section 2.1 we mentioned AHI as
a value that represents the severity of sleep apnea in a patient. A machine
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learning model could also have value if it can predict the patient’s AHI
value. As the gold standard in detecting apnea is the expensive and time-
consuming polysomnography, it would be good to do some prescreening
of severity. This is so that the polysomnography analysis will mainly be
done on patients with a high percentage of having sleep apnea, utilizing
the sleep technicians on patients with a high chance of suffering from sleep
apnea. It is also important that we predict few false negatives, as the con-
sequences can be quite large for patients if they go undiagnosed. In Table
2.2 we can look at a few selected papers of earlier approaches, which classi-
fiers they used, and the results that each classifier reported. We can also see
from Thorey et al. (2019) who compared results from 5 different sleep tech-
nicians annotating the same data, and see that the human experts reached
an average inter-scorer accuracy of 75% [43].

Table 2.2 shows that there are several different approaches towards
detecting apnea from sleep data. They have attempted to detect obstructive
sleep apnea using different sensors, multiple different classifiers, and
population sizes varying from twenty to one hundred. We have also
included some of the metrics they have been used for evaluating and can
see that there is no single metric used by all papers. The closest is the
accuracy, which we in Section 2.3 discussed as a measurement that’s not
very good for an imbalanced dataset. The papers referenced attempt to
tackle the problem of a full polysomnography being expensive and time-
consuming and propose ways to test from home using fewer sensors.

Haidar, Koprinska and Jeffries informs us that the current state of
the art method when the paper was written in 2017 was using support
vector machines. They used f1-scores for evaluating their model. Using
support vector machines, they reached an f1-score of 0,72, and by using a
convolutional neural network Haidar, Koprinska and Jeffries managed to
reach an f1-score of 0,746. They hypothesise that the convolutional neural
network can automatically learn statistical features from data, while a
support vector machine needs manually extracted features. When humans
are satisfied with the extracted features, there will be no more optimisation
of choices. At the same time, a convolutional neural network can continue
to improve to try to find better solutions. Their approach to predicting the
apneas is done by splitting the dataset up into 30 second segments without
overlap, that are labeled as either being normal breathing, or abnormal
breathing. The dataset they use have been balanced with 12240 abnormal
segments, and 12240 normal segments.

Pathinarupothi et al. uses sensors for blood oxygen saturation and in-
stantaneous heart rate for predicting apnea. Based on earlier information,
they suspect a dependence of instantaneous heart value based on obstruct-
ive sleep apnea condition and a dependence of blood oxygen saturation
based on the obstructive sleep apnea condition. To explore this, they con-
vert the recordings into vectors and save the classification of either apnea
or non-apnea. They then group them using k-means clustering and PCA,
which are algorithms for grouping data and reducing dimensionality. They
then see that the centroids of both classes are far apart, which informs the
researchers that there is a dependency. Visualisation of this can be seen
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(a) IHR centroids

(b) SpO2 centroids

Figure 2.13: Centroids of IHR and SpO2 from vectors [27].

in Figure 2.13. The training of their model is done on a dataset consisting
of one-minute segments containing apnea annotations for each minute of
data. The one-minute segments are labeled as being either apnea or non-
apnea minutes.

One of the more interesting measurements of accuracy is from Thorey
et al.(2019) where they used five different technicians to annotate the same
data. They then compared the results to each other using a majority ruling
as a ground truth. They only reached an inter-scorer accuracy of 75%,
which means that even sleep technicians annotations used for ground truth
are not guaranteed to be correct.

There are many ways to detect apneas without doing a full polysom-
nography. Some models use data from sensors related to the heart and
pulse, expanding and contracting body movements from breathing or oxy-
gen levels in the blood. We see that these sensors can be applied in the
machine learning models for predicting, and most are getting good results.

When comparing the different approaches, there is an important thing
to consider: they are using different ways of reporting results. One paper
uses only the AHI classification as ground truth. It predicts and compares
only AHI scores of either non-apnea, which they define as AHI less than
15, or having apnea which they define as AHI of more than 15. This means
that the ML model is a binary classifier. If this were to have any clinical
significance, it should have more precision than just if the AHI is above or
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below 15, and preferably it should predict when the apnea events happen.
When you compare an approach like this to an annotated polysomno-

graphy, you see a large difference between a polysomnography and ma-
chine learning predictions. The sleep technicians pinpoint their exact pre-
dictions for when the apnea starts and ends. They do this by analyzing
all the different signals simultaneously to predict confidently. Doctors can
not give a patient a diagnosis if they cannot explain why the diagnosis is
predicted. In a analyzed polysomnography, they can look at all the sleep-
ing data related to each other and pinpoint exactly why a classification was
made. In many of these ML models, they only output a prediction of AHI
values for the whole night or classify a time window as either normal or
abnormal. There is no way for the doctor to see and understand why the
prediction was made. It may help to show images of the recorded sleeping
data for the predicted time, or an explainable framework for AI could be
used so that the doctors can understand what is happening.

The advantages of these machine learning approaches are that they
are quick to compute predictions. Even though none of the papers talked
about the running time of the model, it is fair to assume it is done almost
instantaneously. Training the model on the data is the slow part of using
machine learning for prediction, but a new patient can be diagnosed
quickly when that already is done. It is good practice to train the model on
different people with different physiological features and different grades
of sleep apnea. This is so that when a new patient comes in, the model
hopefully already has trained for someone with similar features. As seen
in the Table 2.2 the datasets are quite limited in size, and it may be hard
to generalize for the population as a whole. As body types are quite
dissimilar, a good dataset should balance humans with different features to
avoid bias. However, as these are research papers, it is more important to
show the possibilities of machine learning models rather than generalizing
them for a final product.

Compared to a polysomnography, the sleep technicians time usage for
annotation is magnitudes slower than a machine that can process the data
nearly instantaneously. The time usage of a technician may only be limited
by his employer regarding how much time can be used for one single
patient, and a report from a polysomnography might take up to two weeks
to deliver to the patient. Some of the patients might not even have apnea.
This is probably the first thing an ML algorithm using fewer sensors can
be applied for, to do a sort of pre-screening on the patient so that the
polysomnography is mainly done on people with apnea. An important
factor in this is limiting the number of false negatives the model predicts.
A patient getting a negative prediction while actually being positive will be
sent home without the needed treatment. This is not good for the patient,
as all the negative effects of sleep apnea will still be there even though a
breathing apparatus like a CPAP could significantly increase the patient’s
sleep quality. The advantage of a wearable sensor in contrast to a full PSG
is that the test does not take up a hospital bed and does not need to be done
only during a few or a single nights. A patient with a wearable sensor may
use this sensor for a week, the first night may be discarded as people sleep
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the first night differently with things attached to the body, and you can
use the rest of the data to make a more generalized prediction than if you
only had one single night. In that case, the ML frameworks with sensors
win over the polysomnography as they can generate data over a much
longer period than a polysomnography can. With multiple repetitions, it
can become more certain.

Another comparison between the ML models and the polysomno-
graphy analysis is that a doctor may understand the patient better than
an ML model. If a doctor sees patterns that he has never seen before, he
can gather resources from his peers and earlier studies to understand what
is happening and maybe even detect other diseases that are not apneas. A
machine learning model will treat everybody the same based on the train-
ing data that has been fed to the network. A doctor may also see that a
person has many events that almost are classified as hypopnea, but since
they are not, they do not count towards the AHI index. A doctor may still
classify this patient as an apnea patient and give the correct treatment be-
cause they see that they do not get the sleep they need.

Comparing experiments Looking at the implementation details from the
papers referred to in Table 2.2 we see a large variance in the evaluation
and parameters, making it difficult to compare them to each other. In
these papers, they all report their findings using different parameters that
make it hard to compare which models are working well and which are
not. Some split the recording into time intervals of 10,15 and 30 seconds
and classify each of these as either apnea or non-apnea and use this to
generate performance results. Some use the AHI index calculated from
these intervals to generate their performance results. The way we report
these findings is important regarding how well we can understand the
models. A good model should identify when each apnea event happens
and have as few false negatives as possible. The datasets are heavily
skewed towards non-apnea, making the accuracy metric give a high value
that’s not really fair because of the imbalance in the dataset. It is also
hard to get a good accuracy as we can see an inter-technical accuracy
of only 75%, which influences our training model. Maybe the models
detect something on patient A because it has seen it on patient B, but
the technician studying patient A did not classify this as an apnea. In
contrast, if the technician that classified patient B had classified patient A,
he would have classified this as an apnea. This may cause a lower grade of
accuracy in the report. Therefore, it may be important that the predictions
are understandable for the technician to judge if the algorithm is correct.

2.4.1 Sensors

The choice of sensors for detecting apnea using machine learning is
important. It is directly related to which data we can analyze and can
impact cost and sleep quality. As mentioned earlier, a polysomnography
uses a large number of sensors. Still, a machine learning model may be
able to see trends using fewer data points than a sleep technician needs,
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and therefore we can use less invasive sleep recording techniques to only
record the signals that it needs.

Single sensors. Many approaches use a single-sensor approach for
training the machine learning model. One way to gather the data is using a
single sensor from an available sleep dataset where sleep technicians have
already annotated the apnea and hypopnea events. The advantage of this
is that the datasets can be quite large, but the disadvantage is that there is
no customization if you want to try something that is not recorded in the
dataset. Another way is to gather a new dataset the normal way by doing
a polysomnography and add an extra new sensor. Researchers can then
have a sleep technician annotate the dataset using the polysomnography.
The researchers can use this annotation as ground truth for training the
model on the new sensor.

Multiple sensors. Multiple sensors are using more than a single sensor
for predicting the apnea event. Since an apnea can have multiple causes, it
may be relevant to include multiple sensors to increase the ML model’s
knowledge about the patient. An example may be the thoracic and
abdominal expansion and contractions. When breathing normally, they are
in phase, moving up and down simultaneously, and the body is therefore
exhaling and inhaling since they are working together. If, however, they
end up out of phase, there is no pressure change in the lung, and no
air is inhaled or exhaled. If we were to just look at a single one of the
sensors, say the abdominal sensor, we would just see a completely normal
breathing pattern. However, by adding a thoracic sensor, we can see that
the abdominal movement is not generating any airflow as the movements
are ’countered’ by the thoracic movements.
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Chapter 3

Approach

In this chapter, we present an approach to (a) object detection models
using Yolo to observe patterns and detect obstructive sleep apneas in
images generated from abdominal breathing data, (b) create a tool,
YoloApneaPredictor, around the learned model to analyze and evaluate a
whole nights recording, and (c) build a client application, Yolo4Apnea,
in cooperation with a server application for predicting obstructive sleep
apnea in real-time.

3.1 Training the model

When we train a model for detecting obstructive sleep apneas using the
Yolo object detection algorithm, we have some steps we need to follow.
We will first be discussing how we preprocess the original dataset and we
extract the relevant data. Secondly, we will discuss the conversion from
raw data into plotted annotated images and the parameters that can be
changed. Third, we will talk about the training of the model using these
plotted images. An overview of the most relevant parts of this process can
be seen in Figure 3.1

3.1.1 Preprocessing the data

In Section 2.1.4 we discussed the data provided in the sleep heart health
study dataset. The dataset consists of 374 GB of data, including data from
19 sensors and annotations of all events occurring during a night. By
removing parts that are not relevant for us, we can create a subset of the
dataset that is more portable and manageable because of a smaller file size.
The large dataset makes it difficult to work with when stored on the cloud
as the latency is too high and the throughput is too low. Because of the
coronavirus, a large portion of the research has to be done on a laptop with
limited storage space. Earlier experiences have shown that external hard
drives often disconnect, which is going to cause problems when training
the model. Since there is not enough room for the dataset and all other
required software and data, we need to compress the complete dataset as
much as possible. We can extract only the needed features from the data
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Figure 3.1: Overview of the process of training the ML model from raw
data to evaluated model.

34



and discard the rest. By creating this subset, we can also read the data more
efficiently using a more appropriate data structure for the data.

The choices we need to make when preprocessing this data are which
signals we should keep, which annotation we should keep and the data
structure for storing and pairing the signals and annotations. These choices
influence the final data size used for training, but we limit the capabilities
for training and evaluating our model later if we remove too much.

Choosing patients. We are lucky to have a large dataset consisting of data
from 9884 nights of recording from 5804 distinct patients. Most of these
recording having multiple apnea events scored, which gives us a large
dataset to work on. We wish to have a model that generalizes as well as
possible. Therefore we keep the data from all patients when preprocessing
the data.

Choosing Signals. The Sleep Heart Health Study dataset contains record-
ings of 17 distinct signals in the first visit and 16 distinct signals from the
second visit, as explained in Section 2.1.4. This thesis focuses on predicting
obstructive sleep apnea from the expansion and contractions of the abdo-
men or thorax using a simple device to measure fluctuations in volume. We
keep the signal from the abdominal plethysmograph and the signal from
the thoracic plethysmograph. All other signals are then discarded as they
are not needed for training our model.

Choosing annotations Every recording of a visit has an accompanying
annotation file that a sleep technician has labelled. It is recorded in a .xml
file with a data structure similar to Figure 2.5 from page 14. By traversing
through the hierarchical data structure, we extract the events that have the
labels: "Obstructive Sleep Apnea | obstructive sleep apnea", "Hypopnea
| hypopnea", or "Central sleep apnea | central sleep apnea" as we wish
to train a model for both obstructive sleep apnea and hypopnea events in
addition to comparing how the model performs against a model trained
on central sleep apnea. We store the events in a table with the start and
end times in relation to the start of the recording. An example of the
datastructure can be seen in Table 3.1

Data structure The data structure we choose after this preprocessing can
be seen in Figure 3.2. It allows for small file size [23], a logical grouping of
signals, data, and patients, and retains all the relevant original data from
the Sleep heart health study dataset. Our data is stored as a collection of
NumPy arrays of signals and annotations for each visit grouped together
in files representing every patient.

We create a separate file for each patient when we store it on disk so that
we can load each patient when needed. Every patient has partaken in the
first study, but only a subset has partaken in the second study. We group
both studies into the same patient’s file, if applicable, or just the first if that
is all that exists. The effect of storing only two signals, the NumPy file
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start end type

161 7865.3 7882.1 Obstructive
162 7898.0 7916.0 Hypopnea
163 7932.0 7958.0 Obstructive
164 7979.0 7999.0 Obstructive
165 8013.7 8042.5 Obstructive
166 8060.8 8080.1 Hypopnea
167 8087.0 8113.0 Hypopnea
168 8133.7 8148.9 Obstructive
169 8156.0 8172.0 Hypopnea

Table 3.1: Annotation table for a random patient showing scored events 161
to 169.

format, and the conversion from XML to tables reduced the file size from
374 GB to a much more manageable and portable size of 3,15 GB, which
is only 0,84% of the original dataset, which is much more manageable and
portable.

3.1.2 Plotting and annotating

The plotting of the images is vital for generating the training data for the
training of the model. We need to convert the one-dimensional signal data
to a graphical 2-dimensional representation in an image. MatPlotLib [22]
is a plotting library with functions that allows us to plot one-dimensional
array data as line graphs, but when plotting the images, we need to know
what to plot and how large each image should be.

Annotations. We want to train our model on apneas, and since a full
night recording contains a majority of normal breathing, we can choose
to plot only the parts we know that contain apneas. We iterate through
the annotations we saved in the previous section to plot one image for
each apnea event. The position of the apnea is randomised in each picture
to mimic the real-life scenario of an apnea happening at any time. If we
were always to centre the apnea in an image, there is a possibility that the
machine learning model would only detect apneas when they are in the
middle of the image. When randomising the apneas position in the plot,
there is also a large chance that part of the apnea is outside the image, and
we only see a subsection of the whole apnea event. This trains the model
to be more robust as we never know where in the picture the apnea is, and
we also wish to detect the apnea as it occurs, not only when it is complete.
Especially in a real-time setting, it is important that the model detects apnea
when it has only seen a subsection of it.

Each plotted image is saved and annotated following the Yolo
guidelines. The guidelines say that each image needs an accompanying text
file that describes the class and location of each object in the image we wish
the model to train on. The objects we are detecting are apnea events, and
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Figure 3.2: Figure of saved datastructure.

we label the class "apnea". Each label for an object in the image must follow
the format of "<object-class> <x> <y> <width> <height>". The x, y width
and height values are percentage values relative to the width and height
of the training image. Since we only have a single class we are detecting,
the first value will always be 0, representing the class "apnea". The second
value informs us of the centre of our apnea event in the x-axis of the image
and will vary based on the position of the apnea in the image. We only care
about the prediction boundaries on the x-axis as this is one-dimensional
data projected as a two-dimensional image. Therefore, we wish to set the
centre of the object to always be in the middle of the y axis of the image at
0.5, and the height value will always be one to fill the whole image. We,
therefore, set the y value always to be 0.5 and the height equal to one. The
width parameter will have to vary based on the duration of the apnea.

Image size The Yolo algorithm is robust regarding scaling images
for predicting objects. When training the model, it resizes images
automatically to be more robust, so the most important part for us is
generating training images of high quality. We save our plotted images
as .png images that are 1000px wide and 1000px high.

3.1.3 Training parameters

There are multiple parameters we can change when we are training the
model. It is difficult to know which parameters affect the final result most,
so the experiments need to be run with different configurations and be
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compared later. Some of the things that can be changed are the selection
of training and evaluation data, the signal type, the apnea types, and the
display window.

Test-Train split It is recommended to split the dataset into three sets, as
discussed in Section 2.2. We have two options for splitting the dataset. The
first is splitting the dataset on apnea events, and the other is splitting the
dataset on a patient basis. We choose to split the dataset on a patient basis
for our approach. This means that all apneas for one patient are either
included in the test set, the training set, or the holdout set. This allows us
to evaluate our model on patients from the holdout dataset that we are sure
that it has not been trained on, increasing the validity of our findings.

The first set we choose is the training set: This is the set that the model
trains and learns on. We select the training set by choosing a selected
number of patients and including all OSA events from this patient as part
of the training set. The second dataset is the validation set. Its function is
to prevent overfitting as the model trains on the test dataset. Finally is the
holdout dataset, which is not used for training. In our case, the holdout
dataset will be the remaining patients that are not selected in the first two
datasets. The function of a holdout dataset is being a dataset that is kept
separate from all other training. We will be using the holdout dataset as the
dataset that we run our evaluation on.

Signals. There are multiple signals in the sleep heart health study dataset,
and we have already chosen to focus on the abdominal and thoracic signals.
We can choose to train on these signals, or we can combine them in some
way. If we combine them, we can average the signal data, so we still have a
single line to plot. An example of the two main signal types and how they
are combined can be seen in Figure 3.3

Apnea Types In the dataset, there are 3 apnea types. Obstructive sleep
apnea, hypopnea, and central sleep apnea. Variations of which of these
chosen for our training and evaluation data can influence the quality of the
model.

Display window. The apneas recorded in the SHHS dataset can last
between 0.8 seconds and 256 seconds, with the middle 50% of values
are apneas lasting between 17 seconds and 31.4 seconds. The number
of seconds we include in our plot can influence how the model detects
sleep apnea. A shorter display window for each image might lose some
of the needed data before the apnea, which might be important for apnea
detection. A long window might remove resolution in the data, making
detection difficult for the model.
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Figure 3.3: Plots of abdominal signal, thoracic signal, and the combined
signal of abominal and thoracic signal.

3.1.4 Example of training data

An example of the plotting and annotation step results can be seen in
Figure 3.4. In the image, we have plotted the abdominal signal on a
1000x1000 pixel image and labelled it according to our guideline. Here
is an explanation of the labels:

0 Object class: The 0 represents apnea class

0.58 Center of the object on X-axis: The centre of the apnea is 58% into the
image on the X-axis

0.5 Center of the object on the Y-axis: the centre of the apnea is in the middle
of the image on the Y-axis

0.3033... Relative size of the object in the image on X-axis: The apnea last for
0.3033333...% percentage of the image

1 Relative size of the object in the image on the Y-axis: The apnea fills 100%
of the y-axis of the image

When we use Yolo to train a model using all these parameters, we
output a .weights file containing the trained weights for all the layers. In
combination with a .cfg file with the layers and their configuration, we now
have a trained network. These two files represent our trained model and
can be used for inference.
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Figure 3.4: A plot with an apnea occurring in the middle of the image with
label: "0 0.58 0.5 0.30333333333333334 1"

3.2 YoloApneaPredictor

In the previous section, we explained the process and the parameters
we can change when training our obstructive sleep apnea detector using
Yolo. This detector can now detect obstructive sleep apnea objects in
single images. We expand this model to a detector capable of predicting
multiple OSA events in a whole night sleep by developing a tool called
YoloApneaPredictor. This tool wraps a trained model into a tool that
generates images of the whole recording, including overlapping images,
runs detections on these images, handles the predictions, and allows for
comparing the predictions to the annotated files to measure the quality of
the model which we will be doing in Section 4

Interface

We create YoloApneaPrector as a tool that can handle many different
evaluation settings. It ensures that we evaluate our models in comparable
settings, with only the parameters changing. It can be initialized with
parameters affecting the detection of the apneas. These parameters are:
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1. ML model

2. Types of apneas to look for

3. Duration of each image generated

4. Overlap between each image

5. Size of images generated

6. Minimum confidence threshold

7. Non-maximum suppression threshold

The YoloApneaPredictor has two main functions. The first is inserting
signals to predict, and the other is getting predictions and comparisons to
the annotated ground truth. The append signal function receives a new
signal and runs detection on the data. This function abstracts the image
generation and handles creating images and predicting apnea events. This
function can be used in the real-time model as it handles the concatenation
of the new data with the previously received data and handles the image
generation of the correct new parts.

Loading the model

The YoloApneaPredictor can be configured with any Yolo model. We have
chosen to use OpenCV’s DNN module [25] for loading the trained model
as it can be used to run inference on our model from python. The flexibility
of being able to load any model allows us to compare and evaluate multiple
models to see which performs best in a robust manner.

Image generation

The images we plot from the signal data use the same plotting script we
used to train the model. This helps improve validity as the only difference
between the images we run inference on and the images we have trained
on is the signal data. We can either generate images of distinct signal
data segments, or we can create images that overlap each other somewhat.
Overlapping means that we predict the same signal data multiple times.
We do this as our model might be better at predicting apneas if it sees the
abdominal and thoracic movement either before or after the apnea. Figure
3.5 shows how we can generate images with overlap. In this figure we use
a signal duration of 90 seconds for each image, and an overlap stride of 45
seconds between each image generated.

Predicting apneas

When we run an inference on a generated image, the model returns the
x and y positions of the lower-left corner and the height and width of all
objects it detects in pixel values. Since we represent a time series as a 2d
image with time on the x-axis, we define that a detection of an event covers
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Figure 3.5: Example of how multiple images overlap the same signal data.
Example is using a window size of 90 seconds and overlap stride of 45
seconds.

the whole image in the y axis. Therefore we only retain the x position and
width.

As our final representation of the predictions of obstructive sleep apnea
during sleep is represented as a floating-point array with indices for every
decisecond, we need to convert these relative positions to a fixed position
with an offset based on image size in the array. The method for inserting the
prediction can be seen in Equation 3.1, 3.1 and 3.3where Pn is the prediction
array.

INDEXstart = Image_Start + Xpos ∗Window_size (3.1)

INDEXend = Image_Start + (Xpos + width) ∗Window_size (3.2)

∀n ∈ {INDEXstart, ..., INDEXend}.Pn =max (Pn, New_predictionn) (3.3)
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Figure 3.6: Figure of Yolo bounding box on generated image.

As there will be multiple images overlapping the same region of time
from the signal data, this algorithm will always retain the prediction with
the most confidence, even when multiple detections are occurring for the
same time. See also Figure 3.7, which shows an abstraction of how an apnea
is detected in signal data and inserted into the previously detected apneas,
still retaining the prediction with the highest confidence.

Ground truth

The ground truth data we stored in section 3.1.1 was stored as tables with
the type of data as one column, the start time of each apnea in another,
and the end time as another. To evaluate our predictions effectively, we
can convert these annotations to the same one-dimensional-array data
structure as we use for storing our predictions. The annotation array
starts by being represented by a zeroed array of the same length as the
signals from a patient in deciseconds. Each index in the array will then
be representative of the time in deciseconds since the recording start. We
then iterate over every apnea event in the table and fill the array’s values
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Figure 3.7: The process from detecting an apnea and inserting it into the
whole prediction array

from the start index to the end index with a value representing the type
of apnea in the annotation. If there is no apnea event registered, the value
will be 0. If there is obstructive sleep apnea, the value will be 1, and if it is
a hypopnea, the value will be 2.
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Comparison

As we now represent the prediction and the ground truth as arrays, we can
easily extract scores. We pad the ground truth array to the same length as
the prediction array with zeroes to have the same size. The ground truth
array may be shorter than the predicted array because the ground truth
array is only of the length of the last observed apnea, while the prediction
array is observing the complete data. The reason for padding the data with
zeroes is that there is no apnea occurring here in the annotation data. Since
we now have two arrays of the same length, we can easily use the scoring
functions from Scikit-learn [1] which ensures that we score our model using
functions that have been rigorously tested. The scores we use are detailed
in Section 2.3 and include scores like accuracy, MCC, f1, precision, and
AUC.

3.2.1 Yolo4Apnea

Yolo4Apnea is the real-time tool developed to see the detection happening
in near real-time. An example of the interface can be seen in Figure 3.8.
It consists of a server connected to the YoloApneaDetector backend and a
client that interface with the server that is running the machine learning
model. The client visualizes all apneas in a more user-friendly way.

Client

Yolo4Apnea client is a real-time tool connected to the Yolo4Apnea server.
It is made to be a visualization of the predictions from YoloDetector.
It features a scrollable graph of the signal with predictions including
confidence superimposed onto the graph, a list of all predictions, and
metrics like the AHI index for the signal. It sends the most recent signals to
the Yolo4Apnea server and receives predictions from the latest 90 seconds
when running. It always overwrites the last 90 seconds of predictions with
the new information received, as the newest received information should
always be the most correct information.

The web interface also allows viewing specific apneas and seeing the
calculated metrics of the recording. It can either be used in the real-time
mode where each signal is analyzed when the signal is generated, or it can
be used for predicting a stored signal to get measurements from a whole
nights recording.

Server

The Yolo4Apnea server provides an API endpoint to the Yolo4Apnea Client
using the Python library Flask. It receives new signals from a client and
passes them to the YoloDetector interface explained in Section 3.2. The API
endpoint will then return the latest 90 seconds of predictions to the client.
The reason for returning the last 90 seconds is that YoloApneaPredictor can
detect new apneas anywhere in the last viewing window. By returning the
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last 90 seconds, we make sure that we always view the predictions that the
model has been most confident in during this viewing window.
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Chapter 4

Evaluation

4.1 Research questions

In Chapter 1 we proposed three research questions that we wish to answer
in this thesis. In this section, we will explore the reasons behind selecting
the chosen research questions, and we attempt to answer the questions.

RQ1: How does changing hyperparameters influence the perform-
ance of an object detection model for detecting OSA?

We are doing a novel approach for event detection in a time series where
we are rendering the one-dimensional array as a two-dimensional image
and using an object detection algorithm on it to detect events. Since there
is no heuristics for this, we need to explore multiple settings to figure out
what performs well and what doesn’t. When attempting to answer this
question, we will attempt to answer how the hyperparameters we set and
the features we select from the data influence our model’s evaluation. We
have chosen this question as the first question to answer as it influences the
next research questions greatly and could be an important part of detecting
sleep apnea.

The guidelines for Yolo inform us that it is recommended to train for a
minimum of 6000 batches, or 2000 batches times the number of classes we
wish to predict if the resulting number is higher than 6000 [2]. To ensure
that the model receives enough training time, we have chosen to train each
model for 10000 batches. Experimenting shows that training using the Yolo
machine learning algorithm for 10000 batches takes around 9 hours using
a Nvidia RTX3080 graphics processing unit. In addition to the training,
there is also the time needed to generate the training images and the time
needed to evaluate the trained model. This cost in training the model
makes it expensive to check many configurations of hyperparameters.
Therefore, we need to be selective regarding which configurations we wish
to evaluate.

Hyperparameters are parameters used for tuning the machine learning
model’s performance. It is impossible to know beforehand what the
optimal parameters are, so we need to manually or automatically search
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some possible solutions and choose the parameters where the learned
model performs best according to some predefined metrics [10]. We will
focus on changing one parameter at a time and comparing the results to
each other, retaining the parameter value that performs best. This type of
gradient descent has a large chance of ending in a local minima instead of
the global minima but is an effective way to improve our model when the
search space is large and expensive to search.

In Section 3.1 we explored some of the parameters that can be changed
in our model. In this section we will evaluate the effects on our model by
changing these parameters:

• Signal type

• Window size

• Window overlap

• Sample size

• Apnea Types

We will be evaluating the model based on the MCC score and the
f1-score as mentioned in Section 2.3 because they are good metrics for
comparing imbalanced dataset. We will mainly focus on maximising the
MCC score and keeping an eye on the f1-score and the AUC score. The
MCC value is a balanced measure that is no better than random chance
when the value is 0 and is a perfect predictor when the value is 1. If a
model has quite a similar MCC score but improves significantly in one of
the other scores, we will keep that value as the best result. The model with
the best result will be the model that is used when answering the next two
research questions.

Results

The following results are all trained using the same pipeline to ensure
comparable results. All random selections are equal for models with the
same number of training patients or evaluation patients. Each model with
the same evaluation size and training population size has the same patients
used for training, testing, and evaluation. This also ensures that every
model we are comparing in each section is evaluated on the same data
as the others, ensuring comparable results. Every model is trained on
a dataset made from data from 100 patients and tested on data from 40
patients. The signal type, the window size, and the overlap models are
evaluated on data from 20 patients. The sample size models are evaluated
on data from 20, 100, and 500 patients, and the apnea types models are
evaluated on 100 patients. A summary of all results and the parameters
can be found in Table A.1 in Appendix A. We have divided the research
question into five sub-questions:
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RQ1.1: How does the chosen signal affect the performance of our model?
In this thesis, the focus is on using non-invasive and easy to use sensors for
detecting sleep apnea instead of doing a polysomnography. We wish to use
plethysmograph sensors that measure volume changes and have chosen
the thorax and abdomen sensors for this task. These two sensors give us
two distinct signals to select from. One is the signal from the abdominal
sensor, while the other is the signal from the thoracic sensor. We can also
combine these as one signal. Table 4.1 shows the comparison between
training a model using the abdominal signal, the thoracic signal, and the
combined signal of both signals.

Signal type F1 MCC AUC

Abdominal 0.568 0.428 0.777
Combined 0.571 0.455 0.819
Thoracic 0.520 0.387 0.752

Table 4.1: Metrics for different signal types.

Table 4.1 shows the f-1 score, the MCC score, and the AUC for each
of the three signal types. The MCC score we have chosen to focus on is
the highest with a value of 0.455 when using the signal consisting of a
combination of the abdominal and thoracic signals. The highest f1-score
is also observed when using the combined signals. Similarly is the AUC
also the highest score when the model is trained on the combination of the
signals. A model trained on the signal from the abdominal sensor appears
to be the best single sensor model. The thorax sensor scores the lowest
on all relevant parameters. We continue to use the combined signals from
the two sensors for our hyperparameter exploration as these have the best
results with all other parameters equal.

RQ1.2: How does the chosen window size affect the performance of our
model? Window size represents how many seconds of signal data each
image used for training the model contains. A higher value will keep
more data about what happens before and after an apnea but will have less
detail as the signal is more compressed. It also has a higher probability
of containing the whole apnea, not just parts of it, which might affect
the performance. Table 4.2 compares the evaluation metrics with sliding
window length values in the range of 30 seconds - 180 seconds with 30-
second intervals.

In this table, we have 6 distinct experiments. The highest MCC score
occurs when the sliding window is 120 seconds with a score of 0.456,
closely followed by the MCC score when the sliding window is 90 seconds,
which is 0.455. We see lower scores when we increase the sliding window
and when we decrease it. The sliding window of 120 seconds also has the
highest score on the f1 metric, but the AUC is quite close to the scores from
the 60 second and 90-second models. We choose to keep the 120-second
sliding window parameter value for our next steps in experimenting. One
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Sliding window (s) F1 MCC AUC

30 0.413 0.274 0.662
60 0.541 0.421 0.815
90 0.571 0.455 0.819

120 0.576 0.456 0.780
150 0.528 0.423 0.695
180 0.457 0.370 0.650

Table 4.2: Metrics for different window sizes.

thing to remember when viewing these metrics from this search is that
all other parameters are kept the same, including the window overlap.
There is a high chance that the window overlap is highly linked to the
sliding window duration, but evaluating all the possible combinations is
too computational difficult within the scope of this thesis. This means that
there is a high probability that a more exhaustive search in combination
with changing the window overlap value may return other promising
configurations as the window size and overlap probably are highly linked.

RQ1.3: How does the chosen window overlap affect the performance of
our model? The window overlap is the stride we move forward between
each picture we generate when evaluating our model. A lower overlap
value will mean that we predict apneas in the same period multiple times,
while a higher overlap stride value will predict fewer times in the same
period. In a real-time version, we should optimally have a low value to
predict as often as possible. Table 4.3 shows the results of a model trained
on the combined signal, with a 120-second sliding window with overlap
strides of 15 seconds, 30 seconds, 45 seconds, and 60 seconds.

Overlap stride (s) F1 MCC AUC

15 0.560 0.445 0.819
30 0.575 0.456 0.800
45 0.576 0.456 0.780
60 0.577 0.455 0.770

Table 4.3: Metrics for different window overlap values.

The highest MCC score occurred when the overlap is 30 seconds with a
value of 0.456. The highest f1-score was when the overlap was 60 seconds.
The AUC scores increased when lowering the overlap values, ranging
from 0.770 to 0.819. When comparing the consequence of changing this
parameter compared to the previous parameters, we see that the effect is
diminishing. The lowest MCC score in this pass was 0.445 and the highest
was 0.456. In Table 4.1 the range of MCC was between 0.387 and 0.455.

RQ1.4: How does the chosen sample size affect the performance of our
model? Predicting obstructive sleep apnea and evaluating the results
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using our model usually takes between 1-2 minutes for each recording.
Each patient has a minimum of 1 recording and a maximum of two. The
signal type, sliding window size, and overlap evaluation were evaluated
using a sample size of 20 patients. Because the variation in scores when
changing parameters diminished greatly, we wanted to see the effect of
evaluating our model on varying sample sizes. We assume a large variation
between patients and therefore evaluate three models with varying sample
sizes to see how this affects the results. These sample size values are 20, 100
and 500. These experiments were evaluated using the same parameters as
previous experiments, but with a sliding window overlap of 45 seconds.
Table 4.4 shows the results from these experiments

Samples F1 MCC AUC

20 0.576 0.456 0.780
100 0.570 0.448 0.772
500 0.548 0.432 0.765

Table 4.4: Metrics for different sample sizes.

We can see a noticeable deviation between the metrics when changing
the sample size parameter. The f1-score has a standard deviation of 0.015,
the MCC has a standard deviation of 0.012, and the AUC has a standard
deviation of 0.007. A higher sample size will give us more accurate results,
but evaluating our early models on 20 patients is a good tradeoff between
accuracy and evaluation expensiveness. The gain from the tuning of
parameters is more than the standard deviation. The score was lower for
each metric when we increased the sample size, which might be because
the model evaluates a larger variation of people, many of who might have
physiological features that the model has not trained enough on yet.

RQ1.5: How does the chosen apnea types affect the performance of
our model? This focus is on detecting obstructive sleep apnea, but as
mentioned in Section 2.1 there is another type of sleep apnea called central
sleep apnea. We can try our model on this type of apnea to see how well
it performs. It should be made clear that similarly to obstructive sleep
apnea, we also use the hypopnea events for training and evaluating our
model. There is no distinction in the annotations by sleep technicians,
or in the Sleep Heart Health Study dataset, about whether the hypopnea
is caused by an obstruction in the airway or a central blocking. In Table
4.5 we see the results from training and evaluating a model for central or
obstructive sleep apnea events together with hypopnea events using the
previous parameters and a stride of 60 seconds.

This table shows us that we get the best result when we have a model
trained for obstructive apnea. Why this worked better could be explored
further, but it might be because there are a lot more obstructive sleep apnea
events than central sleep apnea events in the dataset. Another possibility is
that during an obstructive sleep apnea event, the body maintains breathing
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Apnea Types F1 MCC AUC

Central and Hypopnea 0.499 0.401 0.740
Obstructive and Hypopnea 0.570 0.450 0.766

Table 4.5: Metrics for different apnea types.

attempts even though the airways are blocked. An obstructive sleep apnea
event occurs when the brain is not sending signals to the body to attempt
breathing, which might not be discoverable from the polysomnography
signals as well as the obstructive events. Another possibility is that we
have optimized our parameters for obstructive sleep apnea events and are
now applying the same parameters to central apneas without doing the
same hyperparameter search. Therefore, it is not a good comparison, but it
is a topic that could be investigated further.

Summary and discussion

In Table 4.6 we see the parameters that gave is the best possible result.

Signal Type Sliding Window Overlap Apnea Types
Combined 120 Seconds 30 Seconds Obstructive and Hypopnea

Table 4.6: Parameters chosen for best results.

F1 AUC MCC Accuracy Precision Recall
0.549 0.784 0.432 0.828 0.445 0.667

Table 4.7: Averaged scores from 500 samples.

In Table 4.7 we can see the average scores from 500 sampled patients.
We are in this evaluation comparing the predictions to the ground truth
in a decisecond interval. This means that if we are not exactly predicting
the start and end of the sleep apnea event, we will get lower scores, even
though a few seconds earlier or later might not matter too much. The sleep
technician annotating the data is not this exact. The accuracy score we end
up with is 82.8%, but this metric does not tell us too much because of the
imbalanced dataset. The MCC-score of 0.432 is a good indicator that our
model is better than random chance and promising for the future of the
model. Our precision is 0.445, and our recall is 0.667, which indicates that
our model is far from perfect yet. It should also be noted that this is a novel
way of detecting obstructive sleep apnea, and there is a large chance that
this model can be improved further.

In Section 2.4 we explored a paper by Thorey et al. who had looked at
the accuracy of five sleep technicians annotating the data and reaching an
inter-scorer accuracy of 75%. Our model is trained on a dataset from many
sleep technicians from multiple hospitals over a large period of time. It
isn’t easy to know if our prediction of a sleep apnea event could have been
a true apnea event if another technician annotated the data.
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RQ2. How well does Yolo work for detecting OSA compared to
human annotations?

Introduction

When we attempted to answer the first research question, we searched for
good parameters for a machine learning model focusing on good f1-scores
and MCC scores. We found the best performance with a model trained on
a combination of abdominal and thorax sensors, a sliding window size of
120 seconds, an overlap of 30 seconds between each image, and looking for
both obstructive apneas and hypopneas. That model was evaluated using
single metrics like MCC and f1-scores representing the performance. When
answering this research question, we wish to answer how well this model
performs from a clinical perspective.

We are using the same model with the same training parameters except
for the sliding window duration. We are evaluating two versions of this
model. One where the sliding window value remains at 30 seconds, this
model is used for analyzing and predicting the severity of obstructive sleep
apnea for whole night sleep. We evaluate the other model where the sliding
window value is one second. This one-second overlap model is meant to
represent a real-time detector of sleep apnea where it is more important to
discover all events quickly after they happen. We will present these two
evaluations after each other and see how well they detect apnea events.

30-second overlap evaluation

In this section, we have evaluated our 30-second overlap model on 500
patients consisting of one or two recordings each. We have explored
the quality of our model by exploring more evaluation metrics than the
previous sections. These are the ratio between the recall and specificity at
different confidence thresholds, the calculation of the predicted AHI value
and comparing it to the human annotation AHI values, and looking at a
confusion matrix using apnea events instead of decisecond precision.

ROC. The Receiver operating characteristics curve shows the perform-
ance of a binary classifier at different threshold levels. Figure 4.1 shows the
ROC curve for our model. The red dotted line shows the performance of a
completely random binary classifier, while the blue lines show the curves
for all our recordings. The thickest blue line close to the centre shows the
average ROC performance of our model, while the slightly coloured blue
area shows the boundaries of one standard deviation of the average ROC
curve. In our case, we can see that our classifier is performing better than
random guessing but still having a large variance between patients.

Confusion matrix. The confusion matrix is another way to present
prediction quality. In this matrix, we have defined a true positive apnea
event to be an event where we have detected more than the whole event,
the whole event, or a subset of the event. A false positive event is an
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Figure 4.1: ROC curve of Yolo model.

event we have predicted which not appear in the annotated file. A false
negative event was an apnea event where there was an apnea, but we did
not detect an apnea at all. The reason for evaluating the model like this is
the dependency on counting events when calculating AHI. A metric like
this focuses on which apnea events we detected instead of the exactness of
the start and end of the apnea. Table 4.8 shows the confusion matrix for
events.

Type True Positive False Positive False Negative
Apnea count 96693 71154 42307
% of all apneas 69.56% 51.19% 30.44%

Table 4.8: Confusion matrix.

Of the 500 patients evaluated, there was a total of 139000 apnea events
occurring. Our model predicted 96693 of them, or nearly 70% of these
correctly, and missing around 30% of apneas. In addition, we predicted
71154 apneas that were not annotated in the ground truth data. This
number is very high, and compared to the true positive events, it is around
a 51% chance of a detection being a false positive apnea. These results show
many apneas going undetected and many false predictions.
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AHI prediction vs ground truth. The AHI index indicates how severe
a patient sleep apnea diagnosis is (see Section 2.1.2). The AHI number is
calculated as the number of apnea and hypopnea events occurring per hour
of sleep, with higher values being more severe than lower. Figure 4.2 is a
scatterplot of our predicted AHI values against the calculated values from
the ground truth.

Figure 4.2: Predicted AHI index vs true AHI index.

We calculate our predicted AHI value by counting distinct segments of
predicted apneas and divide by the hours of recording in the signal file. We
calculate the AHI value of the ground truth as the number of annotations
divided by the hours of recording in the signal file. The plot in Figure 4.2
is a plot of our predicted AHI index represented by a green dot against the
true AHI represented by a red triangle. It is sorted in ascending order based
on the predicted AHI index. A visual inspection of this plot shows a large
variance in the calculated value, where we generally predict a higher AHI
index then the AHI index that was calculated from the dataset. A theory
of why this might happen is that our model are predicting more apneas in
each dataset because it has trained using other sleep technicians annotation
that might have scored the apnea as an event. The labels we use for our
ground truth are human annotations that have been shown to differ when
different sleep technicians score the same recording.

One-second overlap evaluation

We are also looking into the real-time capabilities of our model. We got
the best results from our model when analyzing patients with a stride of 30
seconds, but this stride is too coarse to detect apnea in close to real-time.
We, therefore, wish to try evaluating the model using a stride of low value;
in our case, we test it with a stride of 1 second.

For an 8 hour recording with a stride of 30 seconds and 120 seconds
sliding window, we need to generate 957 images of the breathing pattern
that can be fed into the Yolo network. When evaluating our model in real-
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time and changing the stride to 1 second, we have to generate 28681 images
for each 8-hour recording which causes the evaluation to take more time.
This is why we have only evaluated using a sample of 20 patients instead of
the 500 patients we used in the 30-second overlap model. We are, therefore,
less confident in the quality of our scores in the real-time model. If the
findings from the previous research question results holds for low stride
models, we will have a slightly better score than if we were to evaluate
larger datasets.

Type True Positive False Positive False Negative
Apnea count 6679 6282 965
% of all apneas 87.38% 82.18% 12.62%

Table 4.9: Confusion matrix from real-time detection.

In Table 4.9 we see the results from our real-time detection on 20
patients. We see that we detect 87.38 % of all apnea events that occur.
This is a larger percentage of apneas in the dataset than in the 30-second
evaluation, which was only 69.56%. In this table, we also see that we detect
6282 false apnea events, 397 less than the number of true positive apneas.
This large percentage of false-positive apneas might be because of the
dataset training with evaluations from multiple sleep technicians. As the
annotations we are using for ground truth actually are human-annotated
data, it might be that the apneas we are detecting as false-positive apneas
might have been a true positive apnea if another technician scored the data
we use for ground truth. It is, however, good that we are predicting 87.38%
of all apneas and only not predicting 12.62% of them. These results are
good if we want to manage the effects of apneas in real-time. Still, the
severe amount of false positives might indicate that the patient has a higher
apnea-hypopnea index than the patient should have for a final evaluation.
One possibility in a real-world application is using this aggressive predictor
for real-time data and storing all the signal data for analyzing later using
30-second strides if we want aggregate scores like AHI.

F1 AUC MCC Accuracy Precision Recall
0.502 0.848 0.398 0.726 0.341 0.864

Table 4.10: Scores from real-time detection.

Figure 4.3 Shows the ROC curve of the real-time detection. Table
4.10 shows that we have a higher AUC-score than the results in Table
4.7 which shows the values from the model with 30 seconds stride and a
lower MCC score. The results from evaluating the model using one-second
overlap seem to be less accurate predictions, but with more events correctly
predicted than using a 30-second overlap.

In Figure 3.8 on page 47 we see the Yolo4Apnea real-time interface. It
shows the most recent 90 seconds and the confidence the model has for
an apnea event occurring at a specific time. This tool can be used by
a technician to visualise the breathing leading up to each event, and the
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Figure 4.3: ROC curve of real-time Yolo model.

confidence the model has for this being an apnea event.

Discussion

Overlap (s) Samples MCC F1 AUC TP FN FP

1 20 0.398 0.502 0.848 6679 965 6282
30 500 0.432 0.548 0.784 96693 42307 71154

Table 4.11: Comparison of real-time model and model with 30 second
overlap.

Table 4.11 is a table comparing the results from the previous experi-
ments in a single table. We managed to detect parts of 87,38 of all apneas
and hypopneas occurring with our model in the real-time model and
69.56% of apneas in the 30-second stride model. Looking at some other
scores in Table 4.11 we see that we have a lower value in the f1-score, MCC,
accuracy, precision and a higher score in AUC and recall for the real-time
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model compared to the 30 second overlap model. We must have in mind
that when we trained our model we search for the best hyperparameters
when evaluated on a 30 second overlap model. It is probably possible to
search the hyperparameter space to find parameters that give better res-
ults for real-time detection, but because of computational costs, it was not
feasible to accomplish within the scope of this thesis.

RQ3: How does Yolo compare to other machine learning ap-
proaches for detecting OSA?

This is a difficult question to answer as there is a huge variance in the
metrics used for evaluating a machine-learned obstructive sleep apnea
detector. We have combined our results with the results from the other
machine learning approaches in Table 4.12. When we explored the previous
approaches, we saw that the models differed in how they reported their
models performance. Some use accuracy, some specificity, some f1-score
and some AUC, among other measurements. They also varied their stride
when predicting, as some used a dataset that classified 30-second or 1-
minute segments without overlap as either apnea or non-apnea. Our model
improves this significantly as our model predicts apneas every decisecond,
and each decisecond is evaluated multiple times on account of a stride
value that guarantees overlap. This causes our model to grow more
confident over time. Our model is also better suited for real-time detection
than the other approaches because of prediction with decisecond precision.

Because of the differing ways of evaluating models, we cannot compare
the scores directly, but it is interesting that our accuracy and f1-score is close
to the inter-scorer accuracy and f1-score of expert annotations.

Paper Classifier Sen Prec Acc F1 AUC

[15]
CNN
SVM

74.7%
72%

74.5%
72%

74.7%
72%

74.6%
72%

[14]
CNN
LSTM
CNN+LSTM

[19] CNN 68,75%

[27]

LSTM(SpO2)
LSTM(IHR
LSTM(SpO2+IHR)
LSTM(IHR)

92.9%
99.4%
84.7%
99.4%

95.5%
89%
92.%

0.98%
0.99%
0.99%

[43]
CNN(DOSED)
Expert Annotations

81%
75%

57%
55%

Yolo 30 second overlap
Yolo 1 second overlap

44.5%
34.1%

82.8%
72.6%

54.9%
50.2%

78.4%
84.8%

Table 4.12: Comparison of our model with the approaches from Section 2.4.
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4.2 Threats to validity

We have now attempted to answer each of the research questions. We
wish to mention some threats to the validity of these results, sectioned into
threats to internal validity and threats to external validity

4.2.1 Threats to internal validity

The internal validity is referring to the validity of our findings regarding
cause and effect.

Predicting central sleep apnea as obstructive. One threat to the internal
validity is that the labels in the dataset are wrong. If many apnea events
in the sleep heart health study dataset is classified wrongly then our model
will predict wrong as well. Since there is no way of controlling for this we
have to assume that the annotations are true.

Hyperparameter search is in a local minima. Another threat to the
internal validity is that our search for parameters that results in good MCC-
scores has resulted in a model that only performs well on the MCC-score.
When we answered research question 2 we evaluated our model using
other metrics, but we might have gotten better results if we were to have
other hyperparameters.

4.2.2 Threats to external validity

The external validity is referring to validity of the results found if applied
to a generalized setting.

Population selection. One of the threats to the external validity in this
thesis is the population selection in the sleep heart health study dataset.
The average patient was 63.1 years old and every patient was over 40 years
old. No patient has history of treatment of sleep apnea, but the studies
was done because patients had some problem with sleep. A threat is that
our model might predict apnea events in healthy individuals as it only has
trained on patients that have a high probablity of having obstructive sleep
apnea. We are unsure of how well the model trained on the sleep heart
health study dataset generalizes to the general populace

Variability in technician Another threat to the external validity is that
the scoring done by sleep technician varies. We know sleep technician only
have an average accuracy of 75 % from Thorey et al. [43]. This may cause
our predictions to be incorrect.
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Chapter 5

Conclusion

5.1 Summary of thesis

This thesis presents a new way of detecting obstructive sleep apnea events.
We have used an object detection algorithm to detect events in a time
series with good results. The use of object detection for detecting events
in time series is a novel approach that has an unknown potential in further
research. It seems to be performing well for detecting patterns in a time
series of varying length, but the results still leave a lot to be desired.

5.2 Main results

In this thesis, we have shown that real-time detection of obstructive sleep
apnea using only two sensors can be a less invasive and expensive way to
test for obstructive sleep apnea. Our model is still far from being mature
enough to be used in a real application but has shown promising results.
Compared to other approaches, we have a more exact detector that predicts
apneas with deciseconds precision and have created a tool to visualize
the apneas and detections in real-time, which can be used to gain further
insight into when apneas happen. Our model can detect large portions of
all apneas, but also predicts many false positive apneas.

5.3 Critical assessments

This has been an extensive project for a master thesis, and the progress has
been difficult to maintain when working from home without daily contact
with other persons in the field. It has been a large project requiring much
computational power and much storage space for training the models. I
had to extract only the data I needed from the original dataset to be able
to have all the data locally, which has worked well. However, it would
have been an interesting experiment to train a model using only data from
a single technician to see if my low scores might be affected by a high inter-
scorer accuracy of the sleep technician. As I did not extract this or other
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data from the large dataset, I could not do it without extracting all the data
again.

I am happy to have all my experiments being fully reproducible if
someone has access to the dataset. My code is available on www.gith
ub.com/shamnvik/ApneaModelPipeline [34] and can be inspected by
anyone to look for errors and forked to improve it later. I have trained
many models to check the results of changing hyperparameters, but I wish
I could try even more to optimize the model. I believe that object detection
models can be used with success on time series data with events of varying
sizes, and my approach has probably only started to graze the surface of
this application.

It has been difficult to compare my results against other approaches,
as other approaches have used a myriad of different evaluation metrics to
evaluate their models. I am confident that my choice of mainly focusing on
the MCC-score is a good choice as it is a balanced measurement for highly
imbalanced datasets.

The use of Yolo for detection has worked well. However, I have been
hindered by not being able to use a more mature machine learning platform
like TensorFlow [42] or PyTorch [29] as they have libraries that can more
easily be integrated into the workflow and offers extensions that can be
used for creating explainable predictions [32],[45] in a way that I do not
have the capacity to do manually for Yolo. My coding skills have improved
significantly during this thesis, and I have learned a lot regarding the
architecture, testing and structuring of large codebases. The code has been
rewritten multiple times, and the implementations have changed wildly as
I ran into problems. All the experiments provided in Chapter 4 are from
the final iterations of my tools.

5.4 Future work

A large part of this thesis has focused on creating a pipeline for creating
training data, training, and evaluating the data, and not enough time has
been spent on considering the real-world performance of the model. The
thesis has focused more on applying an object detection algorithm to detect
occurrences of an event in a one-dimensional array than examining the
quality of such a model in a real-world application. The thesis has used
data recorded from high precision hardware, but it would need to be tested
on simpler low-cost hardware that the user can use in his own home if
applied to real-life deployment.

Another interesting thought we have considered during this thesis is
the application of having a real-time detector of sleep apnea. A CPAP
is in the "on" state the whole night, but with a real-time detector, there
might be a possibility to interrupt the apnea without using a CPAP which
is considered quite invasive. It would have been interesting to connect the
real-time detector to actuators that interrupt the apnea by shaking the bed
or pillow, sound, or smell to attempt to get the patient to resume normal
breathing. This, of course, needs a model that performs more accurate than
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the currently developed model.
We have, throughout the project, mentioned that the search for

hyperparameters is computationally expensive. We believe that a more
exhaustive search could be done to find better parameters.

We also did not find time to train and evaluate models with other ways
for combining the abdominal and thoracic signals. We used the sum of
both values, but featurizing this by averaging the values or representing
the signal values in some other way could be a vector to achieve a higher
performing model. The training of our model seemed to reach a state where
it was not improving with the inclusion of more batches, but it would have
been interesting to train for a long time to see if the model improved since
we have so much data available.
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Appendix A

Results from the experiments

Table A.1 shows all relevant experiments for this thesis. It contains columns
for different parameters like signal type, duration in seconds, overlap
stride, apnea types, sample size, and how many batches the model was
trained on. It also inclused the MCC-score, the f1-score, AUC, Recall, and
the count of true positive, false negative and false positive apneas detected.
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