Continuous Ratings in Discrete Bayesian
Reputation Systems

Audun Jgsang, Xixi Luo and Xiaowu Chen

Abstract Reputation systems take as input ratings from members imanzmity,
and can produce measures of reputation, trustworthinesdiability of entities in
the same community. Binomial and multinomial Bayesian tafion systems are
discrete in nature meaning that they normally take disai@iags such as “aver-
age” or “good” as input. However, in many situations it isurat to provide input
ratings to reputation systems based on continuous meadurisspaper describes
the principles of discrete Bayesian reputation systemd,hemv continuous mea-
sures can provide input ratings to such systems. The methioalsed on fuzzy set
membership functions.

1 Introduction

Online reputation systems have emerged as important dacssipport tools that
can help reduce the risk of engaging in transactions andaictiens on the Inter-
net. Reputation systems stimulate higher quality onlimeises, and are also being
investigated as a general method of social control in thmemnvironment.

The same basic principles for creation and propagationmftedion in the phys-
ical world is also used by online reputation systems. Thennd#ference is that
online reputation systems are supported by extremely effiaietwork and com-
puter systems. While reputation formation in the physiaadldiis mostly limited to
local communities, online reputation systems have no ggagcal limits.
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Reputation systems collect information about the perforceaf a given entity
as ratings from other community participants who have hagctliexperience with
that entity. In the typical case of centralised reputatisiems, the reputation centre
collects all the ratings and derives a reputation scorevieryeparty. The reputation
scores are published online so that they represent thecpréputation of every
party in the community. Participants can then use each 'stbeores, for example,
when deciding whether or not to transact with a particulatypdhe idea is that
transactions with reputable parties are likely to resuthiore favourable outcomes
than transactions with disreputable parties.

Fig.1 shows a typical centralised reputation system achite, wheré andB
denote parties with a history of transactions in the pastyaro consider transacting

with each other in the present.
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Fig. 1 General reputation system architecture

Fig.1.a shows that the parties provide ratings about eauwbr'stperformance
after each transaction. The reputation centre collecisgaffrom all the agents,
and continuously updates each agent'’s reputation scortuastion of the received
ratings.

Fig.1.b shows that updated reputation scores are providitedor all the par-
ties to see. These are used by pa&gndB to decide whether or not to transact with

each other.
Two fundamental elements of reputation systems are:

1. Communication protocolhat allow participants to provide ratings about trans-
action partners to the reputation centre, as well as to wiégutation scores of
potential transaction partners from the reputation centre

2. A reputation computation enginesed by the reputation centre to derive reputa-
tion scores for each participant, based on received ratangspossibly also on

other information.

This paper focuses on the reputation computation engingedtan reputation
systems represent a type of mathematically sound and welilest computation en-
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gines. We have previously proposed and studied binomiatartinomial Bayesian
reputation systems [3, 4, 5, 8]. Binomial reputation systetfow ratings to be ex-
pressed with two values, as either positive (g@pd or negative (e.ghad). Multi-
nomial reputation systems allow the possibility of promigliratings with graded
levels such as e.gnediocre - bad - average - good - excellelmt addition, multi-
nomial models are able to distinguish between the case @airipet ratings (i.e.
a combination of strictly good and bad ratings) and the césmly average rat-
ings. The ability to indicate when ratings are polarisedmavide valuable clues to
the user in many situations. Multinomial reputation systéherefore provide great
flexibility when collecting ratings and providing reputatiscores.

However, it is common that the subject matter to be rated @swed on a con-
tinuous scale, such as time, throughput or relative rankongame a few examples.
Even when it is natural to provide discrete ratings, it magiffecult to express that
something is strictly good or average, so that combinatidufiscrete ratings, such
as“average-to-good"would better reflect the rater’s opinion. Such ratings camth
be considered continuous. To handle this, it is importatatee a sound and con-
sistent method for including continuous measures as noratialgs in reputation
systems. This paper investigates principles for includatghgs based on continu-
ous measures in reputation systems, and combining themtradftional discrete
measures. We show that this can be done through membersieijioios in the same
way as fuzzy set membership is computed in traditional fisetytheory.

The rest of the paper is structured as follows. Sec.2 briefliews the Bayesian
multinomial model, and Sec.3 describes how to design réipataystems based on
this model. Sec.4 describes how continuous measures cakdyeds input ratings in
Bayesian reputation systems, and Sec.5 describes an exafmysing this method.
Sec.6 concludes.

2 The Multinomial Bayesian Model

This section briefly reviews the principles of the multinahBayesian model which
forms the basis for Bayesian reputation systems. For detak [5, 1].

2.1 TheDirichlet Distribution

Multinomial Bayesian reputation systems allow ratings ¢oploovided ovek dif-
ferent levels which can be considered as a s& disjoint elements. Let this set

be denoted ad = {Li,...Lx}, and assume that ratings are provided as votes on

the elements of\. This leads to a Dirichlet probability density function oviee k-
component random probability variatpélL,), i = 1...k with sample spac®, 1]k,
subject to the simple additivity requiremeﬁplp(Li) =1.
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The Dirichlet distribution with prior captures a sequentelaservations of the
k possible outcomes witk positive real rating parameteréL;), i = 1...k, each
corresponding to one of the possible levels. In order to llaeempact notation
we define a vectop = {p(Li) | 1 <i < k} to denote th&-component probability
variable, and a vectar= {r; | 1 <i <k} to denote th&-component rating variable.

In order to distinguish between tlagriori default base rate, and thgosteriori
ratings, the Dirichlet distribution must be expressed vpittor information repre-
sented as a base rate vecarver the state space. This will be called the Dirichlet
Distribution with Prior.

Definition 1 (Dirichlet Distribution with Prior).

LetA = {L1,...Lx} be a state space consistingkahutually disjoint elements. Let
r represent the rating vector over the element4 aind leta represent the base rate
vector over the same elements. Then the multinomial prdibatiensity function
overA is expressed as:

_r(Ekarr)+cam) —k A (r(L)+CalL) 1
fplr.a) = e i e My p(Ly) b)) =1
k k
.Elp(l-i) =1 _Zla(l-i) =1 (1)
1= 1=
where and
p(Li) > 0,Vi a(Lj) >0,vi.

The vectoip represents probability variables, so that for a gipehe probability
densityf(p | r,a) represents their second order probability. The first-ovdeables
of p represent probabilities of rating levels, whereas theitiefigp | r,a) represents
the probability of specific values for the first-order vatesh Since the first-order
variablesp are continuous, the second-order probabifity | r,a) for any given
value ofp(Li) € [0,1] is vanishingly small and therefore meaningless as sucs. It i
only meaningful to computﬁppl2 f(p(Li) | r,a) for a given intervalps, p2] and level
L;, or simply to compute the expectation valuggt; ). The most natural is to define
the reputation score as a function of the expectation valbe provides a sound
mathematical basis for combining ratings and for expressputation scores. The
probability expectation of any of tHerandom probability variables can be written
as:

Elp(L) 1.8) = g e

Thea priori constan€ will normally be set taC = 2 when a uniform distribution
over binary state spaces is assumed. Selecting a largerfeal will result in new
observations having less influence over the Dirichlet ithigtion, and can in fact
represent specifia priori information provided by a domain expert or by another
reputation system. It can be noted that it would be unnatoreg¢quire a uniform
distribution over arbitrary large state spaces becauselutdvmake the sensitivity
to new evidence arbitrarily small.

(2)
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For example, requiring a uniforia priori distribution over a state space of car-
dinality 100, would forceC = 100. In case an event of interest has been observed
100 times, and no other event has been observed, the derdfealylity expectation
value of the event of interest will still only be abo%u which would seem totally
counterintuitive. In contrast, when a unifomrpriori distribution is assumed in the
binary case, and the same 100 observations are taken astimputerived proba-
bility expectation of the event of interest would be closeltas intuition would
dictate.

The value ofC determines the approximate number of votes needed for a par-
ticular level to influence the probability expectation &lof that level from O to
0.5

2.2 Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging beait is a density function over

k — 1 dimensions, wherk is the state space cardinality. For this reason, Dirichlet

distributions over ternary state spaces are the largetstamebe easily visualised.
With k = 3, the probability distribution has 2 degrees of freedond, e equa-

tionp(L1) + p(L2) + p(L3) = 1 defines a triangular plane as illustrated in Fig.2.

p(Ls)

0.8

0.6

0.4

0.2

(L)

Fig. 2 Triangular plane

In order to visualise probability density over the triaregydlane, it is convenient
to lay the triangular plane horizontally in they plane, and visualise the density
dimension along the-axis.

Let us consider the example of a reputation system with thiserete rating
levels:Ly, Ly andLs (i.e. k = 3). Let us first assume that no other information than
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the cardinality is available, meaning that the default base isa(Li) = 1/3 for

all states, and(L1) =r(Lz) =r(Ls) = 0. Then Eq.(2) dictates that the expected
a priori probability of picking a ball of any specific colour is the daft base rate
probability, which is%. Thea priori Dirichlet density function is illustrated in Fig.3.

Density
f(plr,a)

Fig. 3 Prior Dirichlet distribution in case of three rating levels

Let us now assume that ratings have been given(lag) = 6, r(L,) = 1, and
r(Ls) = 1. Then thea posterioriexpected probability of level; can be computed
as Hp(Ly)) = 2. Thea posterioriDirichlet density function is illustrated in Fig.4.

3 The Dirichlet Reputation System

Multinomial Bayesian systems are based on computing répatacores by statis-
tical updating of Dirichlet Probability Density FunctioRIPF). This can be called
Dirichlet reputation system [5]. The posteriori(i.e. the updated) reputation score
is computed by combining treepriori (i.e. previous) reputation score with the new
rating. The same principle is also used for binomial Bayeseputation systems
based on the Beta distribution [2, 4, 6, 7].

In Dirichlet reputation systems, an agent is allowed to saiether agent or ser-
vice, with any level from a set of predefined rating levels] #re reputation scores
are not static but will gradually change with time as a fumctdf the received rat-
ings. Initially, each agent’s reputation is defined by theebeate reputation which
is distributed evenly among all agents. After evidence alaoparticular agent is
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Density
f(p[r,a)

L 1
p(L2) o(Ly)

Fig. 4 A posterioriDirichlet distribution after @_4-ratings 1Lp-rating and 1L3-rating

gathered, its reputation will change accordingly. Moreptre reputation score can
be represented on different forms.

3.1 Collecting Ratings

A general reputation system allows for an agent to rate amabent or service,
with any level from a set of predefined rating levels. Somefof control over what
and when ratings can be given is normally required, suchgasfter a transaction
has taken place, but this issue will not be discussed hetehkee bek different
discrete rating levels. This translates into having a stpece of cardinalitk for
the Dirichlet distribution. Let the rating level be indexagli. The aggregate ratings
for a particular agent are stored as a cumulative vector, expressed as:

Ry = (Ry(Li) |i=1...K) . 3)

The simplest way of updating a rating vector as a result ofva raging is by
adding the newly received rating vectotto the previously stored vect®. The
case when old ratings are aged is described in Sec.3.2.

Each new discrete rating of agerty an agenk takes the form of a trivial vector
r;‘ where only one element has value 1, and all other vector elenave value 0.
The indexi of the vector element with value 1 refers to the specific galiavel.
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3.2 Aggregating Ratings with Aging

Ratings may be aggregated by simple addition of the compsifeector addition).

Agents (and in particular human agents) may change theavhedr over time,
so it is desirable to give relatively greater weight to mageent ratings. This can
be achieved by introducing a longevity facfoe [0, 1], which controls the rapidity
with which old ratings are aged and discounted as a functigime. With A = 0,
ratings are completely forgotten after a single time peritth A = 1, ratings are
never forgotten.

Let new ratings be collected in discrete time periods. Letdhim of the ratings
of a particular agent in periodt be denoted by the vectoy;. More specifically, it
is the sum of all ratings;; of agenty by other agents during that period, expressed
by:

lyt = re 4
y % ¢ (4)
whereMy; is the set of all agents who rated aggmiuring period.

Let the total accumulated ratings (with aging) of aggafter the time period
be denoted byRy:. Then the new accumulated rating after time petiedL can be
expressed as:

Ry,(t+l) =A- Ry,t + ry7(t+1), where 0< A <1. (5)

Eq.(5) represents a recursive updating algorithm that esxbcuted once every
period for all agents. Assuming that new ratings are recebatween time& and
timet -+ n, then the new rating can be computed as:

Ry,(t+n) =" Ry,t + ly,t+n) » 0<A< (6)

3.3 Convergence Values for Reputation Scores

The recursive algorithm of Eq.(5) makes it possible to cotepgonvergence values
for the rating vectors, as well as for reputation scoresuissg that a particular
agent receives the same ratings every period, the Eq.(5)ededi geometric series.
We use the well known result of geometric series:

2 1

M=—"r1 for-1<A<1. (7)
= 1-A
Letry represent the rating vector of aggrfor each period. The Total accumu-

lated rating vector after an infinite number of periods isitegpressed as:

;
Ryw = ﬁ, where 0< A < 1. (8)

Eq.(8) shows that the longevity factor determines the cayerece values for the
accumulated rating vectors.
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3.4 Reputation Representation

A reputation score applies to member agents in a commuwitefore any evi-
dence is known about a particular aggnits reputation is defined by the base rate
reputation which is the same for all agents. As evidence tadbparticular agent is
gathered, its reputation will change accordingly.

The reputation score of a multinomial system can be reptedesn different
forms, which can bevidence representatipdensity representationmultinomial
probability representationor point estimate representatiokach form will be de-
scribed in turn below.

3.4.1 Evidence Representation

The most direct form of representation is to simply expréssaggregate evidence
vectorRy. The amount of ratings of levefor agenty is denoted byRy(Li).

It is not necessary to express individual base rate veasrs,will be the same
for all agents.

3.4.2 Density Representation

The reputation score of an agent can be expressed as a mitirprobability den-
sity function (PDF) in the form of Eq.(1). For ternary stagmses, the PDF can be
visualised as in Fig.4. Visualisation of PDFs for state sgdarger than ternary is
not practical.

3.4.3 Multinomial Probability Representation

The most natural is to define the reputation score as a funoficghe probability
expectation values of each element in the state space. Tpectation value for
each rating level can be computed with Eq.(2).

Let R represent a target agent’s aggregate ratings. Then ther&defined by:

_ Ry<Li>+Ca<Li>.|i:1mk> |
C+3i1Ry(L))’

is the corresponding multinomial probability reputaticoe. As already stated,
C = 2 is the value of choice, but larger value for the cons@aotan be chosen if a
reduced influence of new evidence over the base rate is esjuir

The reputation scor® can be interpreted like a multinomial probability measure
as an indication of how a particular agent is expected to\meafuture transac-
tions. It can easily be verified that

S <Sy(|-i) 9)
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k
-;S(Li) =1. (10)

The multinomial reputation score can for example be visedlias columns,
which would clearly indicate if ratings are polarised. Assufor example 5 lev-
els:

L; : Mediocre,
L, : Bad,
Discrete rating levels; L3 : Average, (11)
L4 : Good,
Ls : Excellent.

We assume a default base rate distribution. Before anygstiave been received,
the multinomial probability reputation score will be eqtal /5 for all levels. Let us
assume that 10 ratings are received. In the first casgydf@dgeratings are received,
which translates into the multinomial probability repigatscore of Fig.5.a. In the
second case, 5 mediocre and 5 excellent ratings are receitéch translates into
the multinomial probability reputation score of Fig.5.b.

1+ 1
0.8 0.8
0.6 0.6
0.4 04 1l il
0.21 0.2

0+ 0

1 2 3 4 5 1 2 3 4 5
(a) After 10 average ratings (b) After 5 mediocre and 5 excellent rat-
ings

Fig. 5 lllustrating score difference resulting from average aolhpsed ratings

With a binomial reputation system, the difference betwéasé two rating sce-
narios would not have been visible.

In case an agent receives the same ratings every periodepl¢ation scores
will converge to specific values. These values emerge bytingehe convergence
values of Eq.(8) into Eq.(9). Let, be the constant ratings that aggneceives every
period. The convergence score value for each rating iea# then be expressed as:

_ A-ry(Li)+ (- A)Ca(Li)
(1-A)C+A TS iry(L))

Sy (Li) (12)
In particular it can be seen that when no ratings are recgivedy is the null

vector), then the convergence score value for each levéhisly the base rate for
that level.
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3.4.4 Point Estimate Representation

0 Va g Y2 %/a 1
g-scale: I ' ' ' i
Levels: L, i Ly Ls
Sliding Window

Fig. 6 Sliding windows

While informative, the multinomial probability represatibn can require con-
siderable space to be displayed on a computer screen. A roongact form can be
to express the reputation score as a single value in somefpred interval. This
can be done by assigning a point valué each rating level, and computing the
normalised weighted point estimate score

Assume e.gk different rating levels with point values evenly distribdtin the
range [0,1], so thav(L;) = ﬁ The point estimate reputation score is then com-
puted as:

k
o= .;V(Li)S(Li) . (13)

However, this point estimate removes information, so thaékample the differ-
ence between the average ratings and the polarised rafifig.5.a and Fig.5.b is
no longer visible. The point estimates of the reputationesof Fig.5.a and Fig.5.b
are both 0.5, although the ratings in fact are quite differénpoint estimate in
the range [0,1] can be mapped to any range, such as 1-5 sipescentage or a
probability.

3.5 Dynamic Community Base Rates

Bootstrapping a reputation system to a stable and consex&iaite is important. In
the framework described above, the base rate distribatwifi define initial default
reputation for all agents. The base rate can for example éelyydistributed, or
biased towards either a negative or a positive reputatidis must be defined by
those who set up the reputation system in a specific marketronwinity.

Agents will come and go during the lifetime of a market, and important to be
able to assign new members a reasonable base rate repuitatioa simplest case,
this can be the same as the initial default reputation that girgen to all agents
during bootstrap.
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However, it is possible to track the average reputationesobthe whole com-
munity, and this can be used to set the base rate for new agéhisr directly or
with a certain additional bias.

Not only new agents, but also existing agents with a standaudy record can get
the dynamic base rate. After all, a dynamic community bateredlects the whole
community, and should therefore be applied to all the membkthat community.

The aggregate reputation vector for the whole communityreg t can be com-
puted as:

Rmt = Ryt (14)

yj€
This vector then needs to be normalised to a base rate vextoll@vs:

Definition 2 (Community Base Rate).Let Ryt be an aggregate reputation vector
for a whole community, and &by + be the corresponding multinomial probability
reputation vector which can be computed with Eq.(9). The roomity base rate
as a function of existing reputations at tirne- 1 is then simply expressed as the
community score at time

am,(t+1) = SMt- (15)

The base rate vector of Eq.(15) can be given to every new dbganjoins the
community. In addition, the community base rate vector Ganged for every agent
every time their reputation score is computed. In this wag ftase rate will dynam-
ically reflect the quality of the market at any one time.

If desirable, the base rate for new agents can be biasedharaiegative or
positive direction in order to make it harder or easier teettie market.

When base rates are a function of the community reputati@expressions for
convergence values with constant ratings can no longer firedewith Eq.(8), and
will instead converge towards the average score from alldtiegs.

4 Taking Continuous Ratings

This section describes a method for taking continuousgatas a basis for input to
multinomial and binomial Bayesian reputation systems.

4.1 The Multinomial Case

For a multinomial reputation system withdiscrete levels, the parameters of the
Dirichlet distribution arer. Our method is based on a sliding window for determin-
ing the discrete rating as a function of the continuous gatin
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In general, when there akerating levels, the parametegL;),r(L2),...,r (L))
can be computed as a function of the continuous ragiagcording to fuzzy trian-
gular membership functions.

Let each rating level; be a fuzzy subset, and each ratopgs assigned a mem-
bership grade(L;,q) taking values if0, 1], with r (Lj,q) = O corresponding to non-
membership irL;, 0 < r(Li,q) < 1 to partial membership ih;, andr(L;,q) =1
to full membership irL;. According to the above analysis, the fuzzy set triangular
membership functions can be expressed in terms of Eq.(§6)1 B, and Eq.(18).

Membership function fok; :
1-q(k—1) IF 0<g< ﬁ
16
r(LlaQ) = ( )
0

ELSE

Membership function fok; where 1< i < k:

i—q(k-1) IF{cg<a<qt

k-1)

17
r(Li,a) =2—i+q(k—1) IF <—>) q<(T11)) (17
0 ELSE
Membership function foky :
2-ktq(k—1) IF {2 )<q<1
18
(L) = (18)
0 ELSE

For example with five rating levels the sliding window fumetican be illustrated
as in Fig.6.

The continuous-value determines the position of the sliding window. THa-te
tive overlap between the window and a specific level detegmiher-value for that
level.

As an example, Fig.6 indicates the continuous vajue3/8, which causes the
sliding window to overlap with rating levels, andLs. It can be seen that= 3/8
results in the level rating vector expressed by:

r(Ly) =0.0

Discrete level ratings r(Lz) =05
resulting fromq = 3/8: r(ls) =05 (19)

"1 r(Lsy) =0.0

r(Ls) =0.0

Theser-ratings can then be fed into the reputation system desthib8ec.3.

Visualisation of fuzzy membership functions provide arilative way of in-
tuitively deriving the discrete level ratings. The fuzzymigership functions in the
case of 5 discrete rating levels are illustrated in Fig.7.
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Membership

r(L;q)
1

2

0

t } } } i ¢g-scale:
0 Va V2 Y 1

Fig. 7 Fuzzy triangular membership functions

A discrete rating vector derived from a continuous meastiléave either one
or two vector elements with positive value, where the sunwas one. This prop-
erty emerges from the formal expressions of Eqs.(16), (Ad)&8). The same prop-
erty becomes immediately obvious through the visualisadiothe fuzzy member-
ship functions in Fig.7.

4.2 The Binomial Case

The binomial case is simply a special case of the multinon@ae. Lefry,ry) be
the parameters of the Beta distribution. lgdbe the continuous rating in the range
[0,1]. Then(ry,r2) can be determined by the fuzzy set membership function

r@=1-q
20

{ r2(a) =q (20)
For every continuous rating, we can compute its membersalipevto each rat-
ing level, and then taking this membership value to be thHagaif that level. The
Eq.(4)--Eq.(13) are the same with continuous ratings, and the pdeamés al-
lowed to be any number between 0 and 1, but not limited to bedQLan

5 Example

In this example, agents can be rated on continuous measutesiangg0, 1], and
the reputation system has 5 discrete levels, with baseeaggsy distributed. Let an
agent be rated over 10 time periods as expressed in Tableelompevity factor is
settoA =0.9.

Computing the rating levels with Egs.(16), (17), and (18, ean get the level
ratings expressed in the middle row of Table 1.

Then applying Eq.(9), we can get the corresponding multinbmeputation
scores in the bottom row of Table 1. The same scores are idedals a function of
the time period in Fig.8.
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Time Period 0 1 2 3 4 5 6 7 8 9 10
Continuous ratings: 0.05 0.05 0.05 0.00 0.10 0.90 0.80 0.8080 0 0.90

Level ratings ! ! ! ! ! 1 ! ! ! !

Ly 0.8 0.8 0.8 1.0 0.6

Lo 0.2 0.2 0.2 0 0.4

L3

Lg 04 0.8 0.8 0.8 0.4
Ls 0.6 0.2 0.2 0.2 0.6
Level scores | l l 1 l 1

Ly 0.2 04 04923 05452 06161 05998 04982 04209 03604 03121 02728
Lo 02 02 02 02 0163202033 01728 01496 01315 01170 01052
L3 0.2 0.1333 01026 00849 00735 00656 00598 00554 00520 00492 Q0470
Lg 0.2 0.1333 01026 00849 00735 00656 01197 02162 02916 03519 03540
Ls 0.2 0.1333 01026 00849 00735 00656 01496 01580 01645 01698 02210

Table 1 Scalar ratings translated into level ratings that in tumegate level scores

B O @2 W @ 0 @ 0o o8 @ oo

Scores

Fig. 8 Evolution of an agent’s reputation scores after the rateguence of Table 1

It can be seen that the first five periods are characteriseetylow continuous
ratings, resulting in the score fof increasing rapidly. Then in the five last periods,
the continuous rating is relatively high, resulting in ieasing scores fdr; andLs
and decreasing scores fot, L, andLs.
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6 Conclusion

Bayesian reputation systems normally take discrete rmtisgnput. This could rep-
resent a limitation to the applicability of such reputatsystems when the observa-
tions to be rated are continuous in nature. This paper facoisé¢ransforming con-
tinuous ratings into discrete ratings by using fuzzy set imenship function. This
work makes the Bayesian reputation systems more practichbanerally appli-
cable. The traditional reputation system principles suchggregating rating with
aging, convergence value for reputation scores, methadgputation representa-
tion, and dynamic community base rates are equally appédadith with discrete
and continuous ratings.
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