Internet Security Scanner

An extendable internet security scanner
and analyser

Kristian Helgesen Torkveen

Thesis submitted for the degree of
Master in Programming and System Architecture:
Information Security
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Internet Security Scanner

An extendable internet security scanner
and analyser

Kristian Helgesen Torkveen

© 2021 Kristian Helgesen Torkveen
Internet Security Scanner
http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The use of computers and networks in our daily lives is a fact at this
point, and it is difficult to avoid interacting with computer systems and the
internet. As more of our life depend on transmitting data over the internet,
it’s important that we can facilitate this data transmission in a secure
manner. In short, this means ensuring that developers and applications
have access to use secure encrypted protocols for communication, and that
these protocols are kept up to date and used in a proper manner.

For the World Wide Web (WWW) and Hypertext Transfer Protocol
(HTTP) the solution to facilitate this secure data transmission has become
the Transport Layer Security (TLS) encrypted protocol, but the unencryp-
ted HTTP protocol is still in use. Additionally, HTTP clients and servers
implement several protocol specific security measures in the form of HTTP
headers.

This presents a challenge. Considering the decentralized nature of
the world wide web and the various independent servers hosting web
applications, how can we monitor the adoption and support of various
versions of the TLS protocol and support for security features? In this
thesis, I have created a scanner to monitor the use of TLS versions and
various security features in the TLS and HTTP protocols. The scanner is
be designed to be extendable in order to allow collection of more data and
analysis of collected data.

ii

Contents

1 Introduction
1.1 Motivation e
1.2 Contribution

2 Background

2.1 Certificates
2.2 Anoverviewof a TLSconnection
23 Relatedwork.
24 Commonattacks,
2.5 Checking TLSsecurity

2.5.1 Security mechanisms
26 TheTrancolist

3 The data collection method

31 HTIPresponses
32 TLSwversions o o i i e e
3.3 Certificates

4 The scanning process

5 The implementation

51 Technologiesused
511 OpenSSL
512 Python
513 DPostgreSQL
6 Running a scanner instance
6.1 Installing the necessary software
6.2 Configuration
6.3 Runningthescan
64 Servingthedata,
7 Expanding the scanner and analysis
7.1 Viewingscanreport.
7.2 Accessingthe RESTAPI
7.3 Scanning forotherdata

iii

N R =

O N3 O U1 Ul = = W

11
11
12
12

15

17
17
17
18
18

21
21
21
22
23

8 Evaluation

8.1 Automated testing

8.2 Comparing the results to other scanners

8.3 Performance and storage use

9 Conclusion

91 Summary............
9.2 Further development

10 Appendixes
10.1 Appendix A: The source code

iv

29
29
30
32

35
35
35

41

List of Figures

5.1 The database table schema. Data view is exluded.

8.1 Storage use in KB for number of websites scanned

Vi

List of Tables

51

52

5.3

54

8.1

8.2

8.3

Table: scans

This table keeps track of the scans themselves. Every time
someone runs a scan, it willbeanewentry.
Table: scan_websites

This is the list of websites processed in a scan. It stores the
hostname, and the positionon thelist.
Table: scan_values

This stores keys and values containing the scan results for
eachwebsite.
View: data

This is a view which combines the data from each table, in
order to simplify querying.

Scan results, comparing to Qualys SSL Labs SSL Pulse (4th
of May 2021) [44]
Scan results, comparing to Crawler.Ninja (10th of May 2021)
[17] . . o
Scan results, combineddata

vii

19

20

viii

Acknowledgements

I want to thank my thesis supervisor at UiO Nils Gruschka for his support
and guidance while writing this thesis.

I also want to thank my family, friends, and those close to me for their
continued support during my studies.

ix

Chapter 1

Introduction

1.1 Motivation

We use more and more computers and networks in our daily life, and
avoiding these interactions using the internet is difficult. If someone
don’t personally access the internet or a computer, some organisation they
interact with will do so. Personal communications, private businesses and
public government services are all online or moving there, and most forms
on paper will at some point be digitized. If we pay for a product with
our card, call a friend on the phone, or catch up on news the information
needed will likely be sent through the internet, where it can pass through
various unknown networks with unknown owners and equipment. Even
the content of a physical paper newspaper is likely to have been sent over
the internet at some point during it’s creation.

Hypertext Transfer Protocol (HTTP) has become the standard for a lot
of our internet use, primarily relying on Transport Layer Security (TLS)
to prevent man-in-the-middle attacks (MITM). TLS is a protocol which
provides the necessary confidentiality and integrity through encryption.
The confidentiality aspect means ensuring that the network and equipment
the message passes through is unable to read the content of the message,
while the integrity aspect means ensuring that any attempted modification
of the message can be discovered by the recipient. The recipient can then
discard the modified message. These qualities are fundamental to many
aspects of online life.

These are not just theoretical threats, real world attacks that have been
done at scale. Hotel wifi and ISPs have injected advertisements into
websites [55][28], airlines inject flight information into websites [33][24],
and even nation states have used this kind of man-in-the-middle attack
[32]. It can also be used in combination with other attacks, in order to route
more traffic through the networks doing the man-in-the-middle attacks
[15]. While not every attack mentioned here is nefarious, they are all still
worrying as they use methods which can just as well be used to monitor
the user without their consent, read sensitive information from websites,
or even trick the user.

All specifications and software can have flaws, leading to bugs and

vulnerabilities which can enable attacks man-in-the-middle and other
attacks, so TLS and implementations of TLS need updates to be secure. All
of these factors makes it important for us to know the current state of TLS.
Which versions are used by websites? How many websites use various
security features built into TLS and HTTP?

1.2 Contribution

While scanners analysing TLS use and settings exist, they often offer either
limited options for anyone to do further analysis of the raw data or no
way for outside contributors to extend the scan to collect more data. When
only summaries of data is available this is of limited utility, as you often
cannot make connections between various datapoints. This can make it
hard to answer questions that examine these connections, for example
when examining the use of security features for each TLS version, or which
top level domains tend to have stronger settings.

In this thesis, I will create an extendable scanner which can collect data
regarding it’s connections to websites using TLS at scale to help answer
questions around the use of HTTP over TLS (HTTPS). This scanner will
collect information about which TLS versions are supported by a website
and whether a series of TLS and HTTP security features are utilized by the
website, then save the collected data in a database. This database can then
be used to generate a scan report or for further analysis.

Enabling further analysis is also a core part of the scanner project. The
project will also contain a web application with a json based REST api
which enables easy export of data as well as easy execution of queries in
the database. The web application will also contain a simple report of each
completed scan, which can be used to get an overview of the results. This
gives easy access to the data from many programming languages, as many
languages have access to a HTTP client and a json library.

This is important because specifications and software are not perfect
[26], and cannot cater to every use case without configuration. We
do sometimes need to update implementations of TLS or even the TLS
protocol itself to fix potential flaws, or add additional security features.
These features might additionally allow or require further configuration.
This opens us up to websites having misconfigured software or running
old versions. Collecting more information about this allows us to measure
adoption of new versions and features better, which in turn can be used to
improve the design and implementation of future updates.

Chapter 2

Background

This chapter describes some of the technology used on the internet today
relevant to this topic, as well as previous research, and some known
vulnerabilities.

Hypertext Transfer Protocol (HTTP) is a stateless application level
network protocol for sending information to and loading information from
remote servers. It allows a client to send a request and receive a response,
depending on the content of their request. A request contains a verb,
such as GET or POST, along with other header fields, and potentially a
body with information in it. Most header fields in use have been given
special meanings, but an application developer can also create their own.
A response contains a status, headers, and can also contain another body
of data for the client [46]. A request and its response can be used to fetch
information, update information, or trigger some kind of action in the
target application. Examples of this is to register an account on a website
(update), fetch your account information, and to request a password reset
email (trigger action).

Transport Layer Security (TLS) is a cryptographically secure, applica-
tion independent, reliable network communication protocol. It’s primary
goals are to provide privacy and data integrity between two applications.
This means that any application developer should be able to use TLS in
their applications, and to build secure protocols on top of TLS. Addition-
ally, TLS itself is extendable, and anyone can build application protocols
and extensions on top of TLS [47].

TLS is fundamental to the security of many systems today. 88% of page
loads by Google Chrome Windows users utilized HTTPS (HTTP over TLS),
as of the 2nd of May 2020 [23]. For a growing amount of services, including
healthcare and banking services, HTTPS is the primary way to use them.
This can, for example, be through web interfaces or through application
programming interfaces, and these services then rely on TLS to keep the
information sent between the user and the service secure. This makes the
security of TLS very relevant, so that we can ensure that the services our
society relies on remain secure.

All software has bugs and vulnerabilities. Since 2014, Google Project
Zero has found 1808 bugs listed on their public bug tracker [26], including

several vulnerabilities affecting implementations of TLS. The importance of
TLS for the security of our systems also means we need to be aware of these
vulnerabilities, as well as to what extent these vulnerabilities are patched
in systems. To get an overview of this, it’s useful to scan and aggregate
the status of a large amount of websites, using lists such as Alexa Top
Sites [3] or Tranco [30]. Knowing what vulnerabilities are common and to
what extent patches have been installed is a useful step towards improving
the patching process and knowing whether all available patches work as
intended.

2.1 Certificates

TLS uses X.509 certificates and public key infrastructure for its authentica-
tion handshake protocol [47].

Public Key Infrastructure refers to a hierarchical tree of signed certific-
ates. A trusted entity can create a root certificate, and use this to sign other
certificates. These certificates may then be able to sign other certificates
again (an intermediate certificate), or they may only be used to identify a
host (a leaf certificate). A set of trusted certificates can then be stored on
the relevant hosts [11]. To validate a certificate, we can then see which cer-
tificate was used to sign it, and follow the path until we reach a trusted
certificate or the path runs out. If we find a trusted certificate, we can val-
idate the identity, otherwise we should not trust it.

There are multiple certificate types used for HTTPS, providing different
kinds of identity assurance [11] [7]. While there are more, I will primarily
look at Domain Validation certificates (DV) and Extended Validation
certificates (EV) certificates in this thesis. A domain validation certificate
should validate that a host is permitted to serve a response to certain host
names, whether that hostname is a domain name or an IP address [11].
For example, this allows the server serving example.com to prove that it is
the legitimate example.com, rather than some other device attempting to
trick the client application. An Extended Validation certificate takes this a
step further, by also validating that a domain name owner actually legally
exists, and that the domain name belongs to them [7] [16]. It is, however,
important to note that this does not prove that the owner does legitimate
business, nor are business names unique accross different countries [36].

2.2 An overview of a TLS connection

At the heart of TLS is the TLS Record Protocol, which has several protocols
layered on top of it, including the TLS Handshake Protocol and the
TLS Application Data Protocol. The record protocol’s task is to take the
messages to be transmitted and fragment them, compress them, sign them,
and encrypt them before transmitting the result. On the receiving end, it
will decrypt the data, verify signatures, decompress, and reassemble the
data before delivering it to the higher level client. The fragmentation,
compression, signatures, and encryption used is defined by the current

4

shared connection state. The handshake and application data protocols are
built on top of the record protocol, and are both higher level clients of the
record protocol. [47].

The TLS Handshake Protocol is performed when a client and a
server first start communicating, setting the shared connection state and
optionally authenticating each other. First they exchange hello messages
agreeing on algorithms, and exchange random values. They will then
exchange the necessary cryptographic parameters to agree on a premaster
secret value. At this point they may also exchange certificates, allowing the
client and the server authenticate themselves. To finish the handshake they
provide the security parameters to their record protocols, and verify that
their peer has the same security parameters and that the handshake was
not tampered with by an attacker [47]. After this is complete, they should
have a secure connection to each other.

2.3 Related work

There are some services doing similar work today. The Qualys SSL Labs
SSL Pulse monitors and provides snapshots of the TLS support and security
for the top 150 000 websites on the Alexa Top Sites list [44]. Independent
researcher Scott Helme does daily crawls of the top 1 000 000 websites on
the Tranco list [20], checking various security metrics and providing the
raw data, daily statistics, and a more in depth report every 6 months at
crawler.ninja [17].

Qualys SSL Labs SSL Pulse provides a good overview, but lacks the
option to do further analysis of the data or check other mechanisms than
those included. You are also unable to get more frequent data than their
monthly scans. All of this limits the usefulness of the service for many
research purposes.

Scott Helme, on the other hand, does provide raw data downloads
which can be used for further analysis, if his crawler checks for what
you are interested in. The closed source nature of the crawler limits it’s
extensibility, other developers cannot easily add to it.

This leaves a void which I intend to fill. By creating an extensible
scanner, with both raw data and the source code available, I can create a
valuable research tools for other researchers. On it’s own, it can provide
a useful overview, and provide in depth data about single websites for
further analysis. When combined with existing solutions, such as Scott
Helme’s crawler.ninja, we can get raw data and start to draw connections
between the different datasets.

24 Common attacks

There are some attacks which are common against TLS, and several of the
vulnerabilities I will mention utilize these as a part of a larger attack. While
these patterns are of limited use against TLS on their own, they can be used
to enable other attacks.

A man-in-the-middle (MITM) attack is when an attacker can access
or control the connections between two peers, for example a client and a
server. The attacker can then see and modify the data sent between the
client and the server. With a secure TLS connection, this is not a problem, as
certificate signature validation, handshake anti-tamper mechanisms, and
data encryption can prevent insight into the actual data as long as failed
certificate validation is not ignored. However, it still gives an attacker a
way to manipulate what is sent, or even prevent it from arriving [8]. If
a part of the connection is unencrypted, a MITM attack can be used to
change the information sent, which can sometimes prevent a change to
an encrypted channel completely. For example, when a website redirects
a user from HTTP to HTTPS, an attacker could prevent that redirect and
serve the website unencrypted, giving the attacker full access to what the
client sends and receives.

A version downgrade attack can make exploitation of older vulnerabil-
ities possible, by somehow causing the connection to use an older version
of TLS or even dropping encryption completely. An common way to do
this is to block the connection using a man-in-the-middle attack, and hope
that the client will fall back to less secure settings and attempt to connect
again, which many devices do in order to support legacy servers [2] [35].
Alternatively, an attacker can attempt to use application specific ways to
influence the security settings used. Making a target use older versions or
weaker settings can be very valuable for an attacker, as it can allow the
exploitation of known vulnerabilities in these older versions to spy on the
content of the encrypted connection, either by seeing the content itself or by
being able to access more information about it than they could otherwise.

An oracle is a mechanism that will expose some information that is not
ordinarily available, and some some of the mentioned attacks will utilize
these. In cryptography, this can often be some unintended side effect
caused by the implementation, exposing information. For example, when
attempting to send arbitrary data to a server that would attempt to decrypt
the received data, it might respond slightly differently depending on the
type of error caused when it attempts to decrypt the arbitrary data, which
can expose information about whether some property of the arbitrary data
might be correct. If an attacker knows which properties might be correct
and the data they sent, they might then be able to use the information the
oracle exposes to break the algorithm or as a part of a larger attack.

2.5 Checking TLS security

In this section I will write about some of the security mechanisms and
vulnerabilities we will be checking for.

2.5.1 Security mechanisms

Cryptography

The TLS standard specifies several cipher suites [47], which are sets of
cryptographic algorithms used for the key exchange, bulk encryption, and
verifying the integrity of a received message. The key exchange algorithm
will typically be using a asymmetic public key cryptographic algorithm,
meaning different keys are used to encrypt and decrypt the data. After
these keys have been established, the peers will exchange a symmetric bulk
encryption key, which is more efficient at encrypting large amounts of data.
Finally, a hashing algorithm is used along with cryptographic signatures to
verify the integrity of a received message [50].

Selecting secure algorithms and using sufficiently long keys is of course
important, in order to ensure that communication over TLS is secure. I will
not argue about which algorithms and key lengths are secure in this thesis,
but I will refer to existing standards on the matter, such as the American
NIST SP 800-57 revision 5 [4]'.

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a method to make web browsers
default to HTTPS when connecting to a server, and refuse to connect over
plain HTTP [27]. Ordinarily, a web browser will try to connect using HTTP
by default, and then often be redirected to HTTPS. This initial request can
be hijacked by an attacker in a MITM attack (see 2.4), so being able to
default to HTTPS is preferable. Strictly speaking, this is a security feature
in HTTP rather than TLS, but it is a relevant case of an application adding
an additional security measure to prevent attacks against the initial plain
HTTP request.

HSTS works by setting a HTTP header, which causes the browser to
save that it may not use plain HTTP to reach the website for a given amount
of time [27]. This means that after the first connection a browser can
skip the insecure first HTTP request, which often only redirects to HTTPS
regardless. In addition, a website administrator can have their website
preloaded [22] [25], meaning that it will be added to the list when the user
installs a web browser. This eliminates the initial insecure HTTP request
for the first connection to a website as well.

OCSP stapling

There are several ways to check if a certificate has been revoked. The
most well known ones are Certificate Revocation Lists (CRL) and Online
Certificate Status Protocol (OCSP). A CRL is a signed list of serial numbers
of certificates which have been revoked, which the client can download
and then look up certificates in. The problem with these lists is that
they get large and difficult to manage and distribute to the clients. Over

ICan be downloaded from https://csrc.nist.gov/publications/detail /sp/800-57-part-1/
rev-5/final

https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

time, they grow to require a significant amount of bandwidth to distribute
to all the devices connected to the internet. As a solution, OCSP was
introduced, letting the client check the status of a single certificate by
contacting an OCSP responder [54] [18]. The OCSP response from the
certificate authority contains timestamps describing it’s validity and is
cryptographically signed to prove its legitimacy [49]. This also had some
problems, however, and OCSP stapling was presented as a new solution.

The original way to deliver the OCSP response is generally unreliable
[19] [42]. It is that the client would contact the OCSP responder directly
for it. However, this means that if the OCSP responder is down the client
would not get any response, and if it is slow, it might delay the client’s
connection by as much as several seconds. As a result, clients will typically
ignore it if there is no response, or it takes too long. This also opens up for
an attacker performing a MITM attack to block OCSP, so that the client will
not be aware that a certificate has been revoked [48] [39].

OCSP stapling provides way for the client to request that the server
adds the OCSP response when sending it’s certificate, as opposed to the
client contacting the OCSP responder itself [39]. This means that the server
can cache it, so that a client connection requires less roundtrips to other
servers and it causes less load on the OCSP responder. It also increases
the reliability of the OCSP revocation checks, making it so that OCSP
responder downtime is less likely to impact the revocation check. The fact
it uses the same signed response as the client could get from the OCSP
responder also ment that very little new infrastructure was necessary to
implement it.

Certificate Authority Authorization

Certificate Authority Authorization (CAA) is a mechanism that allows
site owners to specify which certificate authorities are allowed to issue
certificates for their website, in a DNS record. A certificate authority is
required to check this record before issuing a certificate, and only issue the
certificate if they are listed [21]. While it does not completely prevent a
malicious certificate being issued, it can prevent certificates being issued
without proven control of the website due to bugs in the interface of other
certificate authorities, and similar issues [9].

Certificate Transparency

Certificate Transparency (CT) refers to the logging of issued certificates
in public certificate logs, combined with browsers now requiring issued
certificates to be logged to consider them valid [51] [29]. When a certificate
is sent to a log, the log will return a Signed Certificate Timestamp (SCT),
which will be stored in or with the certificate. When a client connects to a
server the server will return the SCT along with the certificate, so that the
client may validate the signature using the key for the relevant log [29].
Certificate Transparency allows anyone to audit the certificates issued
by a certificate authority. This allows service owners to monitor for

certificates issued for their domains, so that they may notify the certificate
authority about any unknown certificates and have them revoked. This
makes it possible to hold certificate authorities responsible for incorrectly
issued certificates [29] [10].

Protocol Downgrade Defense

Protocol downgrade defense is a way for a client to indicate that it
is attempting to reconnect with weaker security than it can potentially
support. The way it works is that the client adds a "false" cipher suite to it’s
list of supported cipher suites, if it is currently retrying the connection with
weaker settings due to a previous connection failure. If the server supports
protocol downgrade defense and supports a more secure version of TLS,
it can then instruct the client to retry with more secure settings and end
the connection, letting the client reconnect with more secure settings again.
If the server does not support it, it will assume that it is an unsupported
cipher suite, and ignore it [35].

2.6 The Tranco list

Tranco is a research-oriented list of the top 1 000 000 websites, freely
available from tranco-list.eu [30]. It is a reproducible list which is also
hardened against potential manipulation by malicious actors. The latest
Tranco list is always available from tranco-list.eu/top-lm.csv.zip, and
there are also links to the lists for other days on their website. It is the
recommended basis for scans of the top X websites with this tool.

https://tranco-list.eu/
https://tranco-list.eu/top-1m.csv.zip

10

Chapter 3

The data collection method

In this chapter I will list and explain the data the scanner collects, and their
use.

3.1 HTTP responses

Browsers still generally attempt to connect using unencrypted HTTP by
default, rather than using TLS encrypted HTTPS. In these cases, the
server needs to give a HTTP response directing the browser to use a TLS
encrypted connection instead.

The primary way of doing this is by returning a redirect response [45].
In this regard, the scanner checks whether the server redirects the browser
to load the website using HTTPS and how many insecure redirects that
occur before the website itself is returned. A website is considered loaded
when the server returns a response code which does not indicate a redirect
and considered as using HTTPS when the final page is loaded uses HTTPS.
While any redirect to HTTPS is more secure than simply using HTTP, every
insecure plaintext HTTP request sent while following redirects provide an
additional opportunity for an attacker to modify or monitor the data sent
using a Man-in-the-middle attack, possibly even preventing the redirect to
HTTPS completely(see 2.4).

HTTP Strict Transport Security enables the server to tell the browser
to never try to load a hostname using HTTP, only HTTPS (see 2.5.1),
eliminating the potential initial insecure request. The scanner checks for
the presence of this header, and attempts to parse it and extract the lifetime
and whether it’s preloaded or includes subdomains if it’s present [53]. The
raw header value is also saved for possible future analysis.

This data is collected by sending a HTTP request to the website and
following redirects until we hit a max limit or get a non-redirect result. We
then store the security of the final page and count the number of insecure
redirects, as specified above.

11

3.2 TLS versions

First of all, the scanner collects which TLS versions are supported by a host,
ranging from TLS 1.0 to TLS 1.3. SSL 3.0 and lower are excluded as their
support is disabled in the OpenSSL versions distributed with several Linux
distros, and according to Qualys SSL Pulse less than 300 of the top one 150
000 websites support these older versions (per 11th of April 2021) [44].

Knowing what versions of TLS are supported can provide valuable
information about how quickly new major updates are rolled out. As
with most software, bugs and vulnerabilities are sometimes discovered
in TLS or TLS implementations, and the versions supported can give an
indication about whether individual hosts are vulnerable to these. Some
vulnerabilities are tied to specific TLS versions, while others might be tied
to a software implementation version which only supports certain TLS
versions. We can then derive information about whether a server might
be vulnerable without needing to attempt to exploit the vulnerability itself,
which can sometimes be problematic to do at scale and non-destructively.

This data is collected by attempting to create a connection to the
host with each TLS version, only allowing one version at a time, then
observing the result. If we successfully connect, the version will be listed
as supported.

While listing supported ciphers would be useful, the scanner does not
currently collect this information. A major reason for this is that many
insecure cipher suites are not included in modern OpenSSL versions, and
must be enabled with a flag during compilation for them to be available.
This means that a scanner using a normal system installation of OpenSSL
would be unable to scan for these less secure cipher suites, severely
diminishing the utility and accuracy of the information.

3.3 Certificates

The scanner also collects data relating to the TLS certificate used by the
host, relating to the issuing of the certificate, certificate transparency, and
which authority issued it.

The scanner collects the certificate authority organisation name and
common name, certificate type, serial, and whether the certificate is valid.
To start with, the scanner opens a TLS connection using the most recent
available version, and then check it’s validity, save the certificate authority,
certificate type, and serial. Additionally, the raw certificate is saved to
enable future analysis.

It also stores whether an OCSP response is sent along with information
about certificate transparency timestamps sent by the server. It does this
by creating a TLS connection and observing the data logged about the
handshake. Specifically, it checks if an OCSP response is sent, as well as
the id and name of each certificate transparency timestamp. It also stores
the raw timestamps for future analysis.

Last but not least, the scanner checks for the presence of a certificate

12

authority authorization DNS entry on the domain name. If this entry is
present, the host is considered to be using certificate authority authoriza-
tion, regardless of how restrictive or lenient it is.

13

14

Chapter 4

The scanning process

The scanning process itself is relatively simple, primarily involving
opening and closing several TLS connection to the host with different
settings and observing the results. In this chapter I will detail the order and
relationship between how the different data are collected, such as when the
scanning of some data depends on the scanning of other data.

The first part of the scan is to send a HTTP request to the server, and
observe the response redirects and headers as specified in section 3.1. I also
store whether we are able to connect at all, as several later parts of the scan
will not produce any meaningful result if the scanner is unable to connect
in the first place.

If the scanner was able to connect to the host in the beginning, it
then starts making TLS connections to determine which TLS versions are
supported (see 3.2), ranging from version 1.0 to version 1.3.

After this, the scanner will also check for the presence of a certificate
authority authorization DNS record using a DNS query (see 3.3). This will
be done even if the scanner was unable to establish any connection to the
server.

If the scanner was able to connect, it then starts checking the certificate
and the security features used during the handshake (see 3.3), including
checking certificate validity, collecting certificate data, checking for an
OCSP response, and collecting certificate transparency log timestamps.

15

16

Chapter 5

The implementation

This implementation has two major parts: a scanner and an analysis API.
The scanner collects data and stores all the resulting data in a database for
later analysis (see 6.3). The API then provides a simpler interface to export
and query the data for further analysis (see 7.2).

The scanner part runs a scan against a list of hostnames. This list is
loaded from a CSV file and then separated into one smaller list for each
process used during the scan. Each process scans it’s own list, as specified
in chapter 4, and then saves the result for each hostname in the database
after finishing the scan for that hostname, in a key-value based database
schema.

The analysis API can then be used to query or export the data from the
database, making the data available using a HTTP REST APIL This can be
done using SQL, or by exporting a list of fields for use in scripts or other
software (see 7.2). This makes it fairly easy to access the data, as HTTP
clients and json libraries are available to most programming languages.

5.1 Technologies used

In this section I will describe the technology choices I have made when
creating the two parts of the project.

51.1 OpenSSL

OpenSSL is an library and command line tool to create, use, and manage
encrypted SSL and TLS connections for other software [37]. It’s distrib-
uted with several different Linux distributions, which means that other ap-
plications don’t need to implement or include TLS implementations them-
selves. Instead they can use the system distribution, which can be kept up
to date independently of the software itself. There are also other TLS lib-
raries with similar functionality, for example BoringSSL [6], GnuTLS [14],
and LibreSSL [31].

For this project, I have chosen to work with OpenSSL. This is because it
is included with several Linux distributions, making it easy to access and

17

use. It also makes it a natural default for many Linux based systems and
servers.

5.1.2 Python

Python is a scripting language, which I have chosen to use for this project
along with several libraries. I will mention some of the libraries in this
section. It's primary role during the scan is to call the right functions in
the Python SSL library and OpenSSL, interpreting the resulting data, then
saving the data in the database. To aid with analysis, I have also created a
REST api providing access to query and export raw data.

I use the Python standard library TLS library when it provides enough
documented flexibility. This then uses OpenSSL to handle the TLS
connections [52]. However, many TLS options offered by OpenSSL
are either not available here, or are not documented as available as
most implementers should probably not override the defaults. To avoid
potential future issues, I have chosen to only use the standard library when
the functionality and options I need are documented.

When I need more control than the standard library offers, I have used
pwntools [13] to call the OpenSSL command line interface [38]. The reason
I use the CLI rather than a different set of OpenSSL bindings for Python is
that many of the up to date bindings have the same issues as the standard
library. You're expected to use default options, and customizing some
options is either not documented or not made available.

For database access and queries, I use SQLAlchemy [5]. The query
builder makes it simple to create flexible queries for the export endpoint
filters, and it makes it easy to insert the results data during the scan.

5.1.3 PostgreSQL

PostgreSQL is an open source relational database management system,
which is used to store and query the data collected by the scanner
using SQL. Dating back to 1986 [41], it’s a stable and efficient database
management system which I also have prior experience with. This makes
it an easy choice for the backend storage of this project.

Database design

The main goals of the database design is to be easy to extend and easy to
query. To that end, I decided on a key-value based table schema with a
view which combines the data to make it simpler to query. The design also
allows some duplicate storage of values, which can help with performance
during the scan as it won’t need to look up any data in other tables in order
to reference it properly in other tables.

The database uses a key-value style schema in order to be more
extendable and to be queryable without needing knowledge of the JSON
functionality in PostgreSQL [1]. The schema means that anyone can add
any key to the database, without needing to modify the database itself. It

18

scans scan_websites

PK | id bigint 4—\O(PK id bigint A
started_attimestamp NOT NULL FK1 | scan_id bigint NOT NULL

finished_attimestamp MULL position int NOT NULL

hosttext NOT NULL

scan_values

PK | id bigint

FK1| website_id bigint NOT NULL po—
keytext NOT NULL
imdexint NOT NULL

value text NOT MULL

Figure 5.1: The database table schema. Data view is exluded.

also means that it’s easy to add indexes and optimizations to the tables, in
a normal SQL database fashion.

I have also created a query/data view, as an additional aide to users
of the database. By gathering all the information in a single, queryable
view, I have eliminated the need for most join operations and provided
one unified interface which is also accessible through the query api. The
view simplifies and removes some of the barriers by providing a powerful
interface to the data.

Here is the database schemas used by the scanner and analyser.

Table 5.1: Table: scans
This table keeps track of the scans themselves. Every time someone runs a
scan, it will be a new entry.

Column Data type = Purpose

id int64 Primary key

started_at timestamp When the scan was started.

finished_at timestamp When the scan was finished.

19

Table 5.2: Table: scan_websites
This is the list of websites processed in a scan. It stores the hostname, and
the position on the list.

Column Data type Purpose

id int32 Primary key

position int64 The ranking of the website from the list.

host string The host name of the website. For example, uio.no.
scan_id int64 References which scan this website entry was added by.

Table 5.3: Table: scan_values

This stores keys and values containing the scan results for each website.

Column Data type = Purpose

id int64 Primary key

website_id int64 References which website this key/value belongs to.

key string Identifies what is stored in this entry. This is what
identifies what part of the scan generated this value.
In cases where a key has multiple values, this identifies

index int32 which value this is for the purpose of processing related
values from different keys.

value string The value for the specific key and index. This is where
the result of a part of the scan is stored.

Table 5.4: View: data
This is a view which combines the data from each table, in order to simplify

querying.
Column Data type = Purpose
scan_id int64 The id of the scan this data entry is from.
scan_start timestamp When the scan was started.
scan_finish timestamp When the scan was finished.
position int32 The position of the website the entry belongs to.
host string The hostname of the website the entry belongs to.
key string The key which identifies the value the entry is storing.
. . The index which identifies which instance of a key this
index int32 -
value string The value for this key and index.

20

Chapter 6

Running a scanner instance

In this chapter I will describe how one can set up and run an instance of the
security scanner.

6.1 Installing the necessary software

First, set up a server or virtual machine running Ubuntu 20.04 LTS. Other
versions and distros might work, but the development and testing of the
scanner has been done using Ubuntu 20.04. The instructions will be written
for Ubuntu 20.04.

As the scanner is built on top of OpenSSL and tested with OpenSSL
1.1.1f, the server or virtual machine have this installed. This is pre-installed
with Ubuntu 20.04.

The scanner needs a PostgreSQL server, with two user accounts. The
PostgreSQL 12 server can simply be installed using apt. After installing
the server, create two user accounts and a database. One user should
have write access and be able to create tables and views, while the other
should only be given read-only access to the view named data, which will
be created the first time the software itself is started. Make note of the
database name, usernames, and passwords used. A PostgreSQL database
server should now be up and running.

Next, install Python 3.8, Poetry, and the libraries the scanner depends
on. Python 3.8 can be installed using APT (Advanced Package Tool), and
afterwards Poetry [40] can be installed using PIP3. With Poetry installed,
the Python dependenceis of the scanner can be installed by using the
poetry install command. After this, poetry shell can be used in the
project folder to start a shell with the correct Python environment loaded
at any time.

6.2 Configuration

This section will explain the configuration file, as well as how to set it up.
To start with, make a copy of config.example.py and call it config.py. After

21

this, the new config.py file can be opened and the information in it can be
edited.

DATABASE_URL is the url used to access the main read/write database
account. This account should have both read and write access to the
database, and be able to create the database schema.

DATABASE_READ_URL is the read-only account specified in the previous
section (6.1). This account only needs to have read access to the data view,
which is created by the application the first time it’s started.

THREAD_COUNT is the number of processes (not threads) used by the
scanner to perform the scan. This can usually be quite high, as a large
portion of the time each process spends scanning a website is simply it
waiting for a response, rather than it doing any heavy processing.

QUERY_TOKEN is the API token used by the /api/query endpoint, which
allows anyone with the token to execute parameterized SQL without
needing a PostgreSQL client library. This token has to be provided with
every request to this endpoint, as even a read-only database account can
do damage. The endpoint makes it easier to execute own queries in order
to further analyse the data.

6.3 Running the scan

Before starting, several of these steps require using the correct Python
virtual environment, created using Poetry. This can be done by using
poetry shell in the project directory, which will start a shell with the
correct environment.

First load the custom OpenSSL configuration. This can be done by
typing source openssl/set_conf.sh in the project root directory, which
will set an environment variable telling OpenSSL to load a configuration
file which accepts weaker settings than it would accept by default. This is
necessary for some of the scans to work correctly.

Second, the scanner needs a OpenSSL compatible list of trusted certific-
ate transparency log servers, and it should be saved as openssl/ct_logs.cnf in
the project directory. Fortunately, lists of trustworthy CT log servers used
by broswers are easy to find and a script is included to fetch and convert
Google Chrome’s list. Simply run python3 ct_generator.py in the pro-
ject directory, and it will generate and save the file in the correct location.

Third, list of hostnames to scan is needed. This list should be a CSV file
with a numerical ranking in column one and the domain name in column
two, without a header row. This is compatible with several lists of the top
websites, such as Tranco’s list of the top 1 000 000 websites (see 2.6). This
list can be saved anywhere, as long as it is readable by the scanner.

Finally, it’s time to run the scanner itself. Execute python3 scan_list.py [list path] <Resur
where list path is the path of the CSV file containing the host list. If a re-
sume scan id is included the scanner will check each hostname against the
database before scanning, in order to only scan previously missed or ig-
nored websites. The scan might take a while and will save it’s results in
the PostgreSQL database created earlier while it is working. If a connection

22

issue occurs between the scanner and the database, the scanner will back
off and try again several times before potentially discarding the data. Any
unexpected errors will be saved in a folder named errors/ in the working
directory.

6.4 Serving the data

As with the scanner itself, these steps require using the correct Python
virtual environment. This can be done by using poetry shell in the project
directory.

For local and personal use, the built in development WSGI server (Web
Server Gateway Interface server [12]) may be suitable. It can be started by
using the command python3 serve_dev.py. Note that this server is not
made to be exposed to the internet, and is only recommended for personal
and development use cases.

To make it available to others, using a more robust WSGI server is
recommended. One possible option for this is Gunicorn.

23

https://gunicorn.org/

24

Chapter 7

Expanding the scanner and
analysis

In this chapter I will explain how to expand on the scanner itself, as well as
how to do further analysis on the collected data.

7.1 Viewing scan report
The scanner provides reports for every completed scan in the database.
Simply navigate to http://hostname/ (where hostname is the host of the
scanner), and it will redirect the browser to the latest scan report. Previous
scan reports can be accessed using the arrows at the top.

Each scan report shows statistical overview of the following;:

¢ The support for each TLS version.

* The use of various certificate types (Domain validation, organisation
validation, and extended validation).

¢ The number of websites redirecting from HTTP to HTTPS.

¢ The number of insecure (HTTP) redirects before a website is served
over HTTPS.

e The use of HSTS, and the durations set.

* The use of HSTS preloading.

* The use of CAA.

¢ The number of certificate timestamps returned by the server.
¢ The use of OCSP stapling.

25

7.2 Accessing the REST API

The project offers a REST API to enable simpler querying and exports,
usable from any language with a HTTP client and a json library. This
makes analysing the data possible in most language, as most languages
have libraries providing a HTTP client and json support. For information
on how to run the API, see section 6.4.

The API is documented in accordance with the OpenAPI Specification
[34], and can be viewed using Swagger UL The simple way of doing this
when running the API is to access http://hostname/docs (where hostname
is the host of the scanner), which will redirect to Swagger Ul bundled
with the application. Swagger UI will display all available endpoints and
allows sending test requests to the API without leaving the page. The raw
specification file is also accessible at at http://hostname/api/spec, which can
then be used to generate an API client or import into other tools.

/api/keys gives access to a simple list of available keys, returned as a
string array. These are the keys which can be used when querying or
exporting data, based on the existing data in the database. This means
that prior to the first scan, this list will be empty. At the same time, if the
scanner is expanded to collect more data, this endpoint will include the key
automatically.

/api/scans returns a list of all scans in the database. This list includes the
start time, finish time, and the id of the scan. If the scan is incomplete, the
finish time will be null. This can be used to determine which scans are in
a relevant time frame for an analysis and then use the corresponding scan
ids to efficiently limit a query or an export to only these scans.

/api/export allows export a list of keys for a list of scans. The requested
data is returned as a list of datapoints, each containing the requested keys
for a specific website in a specific scan along with relevant metadata. This
metadata is stored as keys beginning with an underscore (_) and includes
values such as the scan id, the website hostname, it’s ranking in this scan,
and the scan start and finish time. The results for the requested keys
are returned as lists in the object, in order to handle cases where one
key has multiple values attached to it. When multiple keys are used to
store multiple values about the same element, for exampel for certificate
transparency timestamps, the values belonging to the same element will
always have the same index. For example, the CT log name with index 1
always belongs to the same timestamp as the CT log id with index 1.

/api/query allows the execution a raw SQL query against the data view
(see 5.1.3 for the view schema), returning a list of the resulting rows
from the database. As this endpoint allows some code execution, it is
protected by a shared secret token which is specified in the configuration
file. This shared token is required to run queries. The endpoint
supports parameterized queries, which can be utilized by simply adding
a parameter such as ":scanid" to the query along with a corresponding
parameter name and value to the json blob in the request. This endpoint
thus allows for more advanced querying without writing any code outside
of an SQL statement, and without needing to find and install a PostgreSQL

26

database driver.
More information about these endpoints can be found in the OpenAPI
specification and using Swagger UI, as mentioned previously.

7.3 Scanning for other data

Scanning for additional data is a simple two-step process, editing the
Python script slightly.

To start with, write the code to find and save the additional data. First,
open masterscanner/website.py and create a method in the Website class. This
method should collect the necessary information and store the result in
the results dictionary. Any value other than None in this dictionary will
be saved automatically, and made available to queries and exports. The
hostname being scanned can be accessed in any method on the Website class
by accessing the host variable on the class. The method should handle most
exceptions which might occur during a scan, any uncaught exceptions will
be logged to the errors folder in the project directory and cause the scanner
to ignore the data collected from the website, as it might be partially
incorrect due to the unhandled exception.

Afterwards, a method call to the new method needs to be added for it to
be executed. In order to include a new method when scanning a list, open
the scan_list.py file and add a call to the method in the do_scan method,
along with the other scan method calls. This will make the scanner call the
method during the list scan, which will in turn cause the scanner to save
any data you add to the result dictionary for further analysis.

Finally, while not required, adding some automated tests to ensure your
addition is correct is recommended. The test suite is managed by pytest,
and all tests are located in the tests folder. To add tests for an addition,
create a python file with a name ending with "_test.py" in this folder. In
this file, define methods with names starting with "test_" with test cases for
the addition. Call the added method, then use assert statements to check
that the data added by the method is correct. Run the pytest command in
the Poetry shell to execute the test suite (see 6.1).

27

28

Chapter 8

Evaluation

My evaluation of the implementation will be done in three main parts.
The first part will comment on the use of automated testing to verify the
correctness of the scan. The second part will compare my scanner’s results
to the results of other similar scanners and comment on this. The third part
will evaluate it’s performance and

The primary qualitative check of correctness for my scanner is through
automated testing. These tests execute portions of a scan against specific
websites with specific configurations in order to ensure that the scan of each
website gives the expected result. This is done for all the data collected
by the scanner, and it should provide a high degree of confidence in the
scanner itself assuming the tests are correct.

The second check of correctness is a comparison of this scanners results
with those of other scanners. While different sample sizes, lists and
implementations makes it difficult to compare the numbers exactly, major
unexplainable differences in the resulting data can indicate that parts of the
data is incorrect.

8.1 Automated testing

As mentioned, this scanner extensively uses automated testing, comparing
the results from using the scanner against various websites with those of
other tools. These tests are ran against websites with specific configura-
tions, for example various of the test-websites operated by badssl.com and
other websites with configurations I wish to test against. This also has a
downside, however, as those 3rd party websites may change their config-
uration and thus cause the test to fail despite the scanner implementation
being correct. To prevent this, the tests require regular maintenance and
updates.

These tests have played an important role in the development of the
tool. By analyzing a website using other tools, then automatically running
my own scanner and comparing the results I have been able to develop
and test the scanner in an efficient manner, as well as ensure that future
changes and improvements I have made have not impacted the results of
the existing parts of the scanner.

29

https://badssl.com

8.2 Comparing the results to other scanners

In this part of my evaluation I will compare the results of a scan with this
implementation with two other sources, Qualys SSL Labs SSL Pulse [44]
and Scott Helme’s Crawler.Ninja [17]. This scanner will be using the top 10
000 websites from the Tranco list [30], while Crawler.Ninja uses the full top
1 million from the Tranco list [20], and SSL Pulse uses a list of 150 000 large
websites based on the Alexa top 1 million websites list [44]. I will present
the data, then compare and comment on it.

While this method of evaluation might expose some obvious mistakes,
it also has a weakness caused by the scanners using different sample sizes
and lists. In some cases I can compare my scan with the top 10 000
website results from another scanner, but this is often not possible. As such,
differences must be

The Qualys SSL Labs SSL Pulse data is from a scan done on the 4th
of May 2021, the Crawler.Ninja data is from a scan done the 9th of May
2021, and this scanner was run on the 10th of May 2021 based on the
Tranco list from the 9th of May 2021. The percentages for this scanner and
Crawler.Ninja are based on the number of websites reached by the scanner,
rather than the total number of websites the scanner attempted to connect
to.

Table 8.1: Scan results, comparing to Qualys SSL Labs SSL Pulse (4th of
May 2021) [44]

Data point Count % Of. available SSL Pulse %
websites
Websites available 8731 - -
Uses HSTS 3669 42.0% 28.5%
Uses CAA 1225 14.0% 8.7%
Uses EV certificate 397 4.5% 6.1%
Uses OCSP stapling 3417 39.1% 40.8%
Supports TLSv1.0 4186 47.9% 46.4%
Supports TLSv1.1 4641 53.2% 51.6%
Supports TLSv1.2 8300 95.1% 99.5%
Supports TLSv1.3 4020 46.0% 45.3%

Table 8.2: Scan results, comparing to Crawler.Ninja (10th of May 2021) [17]

. % of available Crawler.NinjaCrawler.Ninja
Data point Count . o
websites count Jo

Websites available 8731 - 834017 -

Redirects to HTTPS 7829 89.7% 572491 68.6%

Uses HSTS 3669 42.0% 167731 20.1%

Uses CAA 1525 17.5% 26793 3.2%

Uses EV Certificate 397 4.5% 11337 1.4%

30

Table 8.3: Scan results, combined data

Data point Scanner % SSL Pulse % g/irawler.Nm] a
Websites available 8731 150000 834017
(count)

Redirects to HTTPS 89.7% - 68.6%
Uses HSTS 42.0% 28.5% 20.1%
Uses CAA 17.5% 8.7% 3.2%
Uses EV certificate 4.5% 6.1% 1.5%
Uses OCSP stapling 39.1% 40.8% -
Supports TLSv1.0 47.9% 46.4% -
Supports TLSv1.1 53.2% 51.6% -
Supports TLSv1.2 95.1% 99.5% -
Supports TLSv1.3 46.0% 45.3% -

When looking at the result of the entire scan, there is a notable
difference between this scanner and Crawler.Ninja on the percentage of
websites which redirect to HTTPS. However, if I did a bit more into the data
and limit the Crawler.Ninja data to only the top 10 000 ranked websites,
we get a very different picture. Out of the top 10 000 ranked websites
7326 websites redirect to HTTPS, or about 73% of the total list. If I assume
that Crawler.Ninja managed to reach the same number of websites as my
scanner, this increases to 84%. Some of the difference might be due to
transient issues such as application errors, but not all of it. The majority of
the difference is likely caused by differences in how redirects are followed,
for example by this scanner supporting a large variety of redirect codes
(including less used ones), including 301, 302, 303, 307, 308 [45]. Ultimately,
I consider this scanner to be a reliable indicator in this regard, as the
redirects are handled by an underlying library which supports a large
variety of the available HTTP redirect status codes beyond the most used
ones.

Looking at the HSTS usage figures, the scanners all report different
percentages. This likely comes down to the differences in sample size and
list scanned. However, if I once again check the Crawler.ninja data and only
include the top 10 000 rank websites I get that 3457 websites use the HSTS
header, compared to the 3669 websites reported by my scanner. Those
numbers are quite close which supports my suspicion that the differences
when including the entire dataset comes from the different lists. It’s hard
to come with any conclusions about the difference between the top 10 000
from my scanner and from Crawler.Ninja, but it’s likely that Crawler.Ninja
considers websites with a HSTS duration below a certain thresholds as
having HSTS disabled while my scanner still considers it enabled. This is
supported by a number of websites having unusually low HSTS duration
in my results as opposed to the common 6 months or higher, though it
is difficult to confirm due to it being closed source. Additionally, some
websites serve different security headers depending on the connecting

31

client. This means that my scanner, using a Mozilla Firefox user agent,
might get different results from a scanner which uses a Google Chrome
user agent.

Regarding the use of OCSP stapling and the support of various TLS
versions, the differences between my scanner and SSL Pulse are quite small
with the largest difference being 4.4 percentage points in the support for
TLSv1.2 figure. Once again, the most likely reason for this difference is the
different sample sizes and lists used by the scanners.

Overall, while there are some differences between the different scan-
ners, most seem to be easily explainable. Some can likely be attributed to
the different sample sizes and lists, while others can likely be attributed to
specific differences in how a scanner might interpret the data it collects. It’s
worth noting that it is difficult to prove this attributions, due to the closed
source nature and more limited analysis options of the other scanners.

8.3 Performance and storage use

In this part of my evaluation I will look at the performance of the scanner
along with how much storage it uses per scan. In this benchmark the
scanner was run on a cloud based virtual machine running Linux Ubuntu
20.04, with two shared virtual CPU cores and two gigabytes of memory
available to it. The process count was set to 50 processes. The PostgreSQL
database is hosted on the same virtual machine as the scanner.

Using this configuration the scan itself finished in about 45 minutes.
During this time the CPU and memory was not a bottleneck for the scanner,
instead most of the time was spent waiting for responses over the network
and for operating system PTY pseudoterminals to be available [43]. The
CPU usage peaked at 23.8% and the memory usage peaked at 76%. With
more memory, the number of processes could likely be doubled with only
a double core CPU.

When scanning the top 10 000 websites the scanner saved an average of
about 6.29 KB of information per website, not including database indexes,
adding up to 61.43 MB of data. As shown in figure 8.1 this adds up to about
614.26 MB for 100 000 websites, or 6142.58 MB for 1 000 000 websites. In
addition, there are the database indexes which add up to 12.55 MB for this
first scan.

The frequency of scans and sample size used for scans should keep this
size growth in mind. When running the scanner more often, it’s worth
considering using a smaller sample size or regularly deleting old data as
it stops being relevant. For a daily scan one might want to use a sample
size of less than 100 000, while for a monthly scan the increased size from
scanning the entire Tranco top 1 000 000 list might be acceptable. The right
frequency and sample size should consider the usefulness of more frequent
scans and the amount of storage space available.

32

Storage used (KB)

7000000

4000000

2000000

1000000

0 - —
10 100 1000 10000 100000 1000000

Number of websites scanned

Figure 8.1: Storage use in KB for number of websites scanned.

33

34

Chapter 9

Conclusion

9.1 Summary

In this thesis, I have presented an extendable internet security scanner
which enables both the collection of and further analysis of data regarding
the TLS and HTTP security configuration of websites. This scanner can
read and scan an entire list of websites, and will then save the results in a
database. It can easily be extended to collect more information by doing
small modifications to the code, to increase the utility of the scanner.

The project also has a web application, which serves scan reports and
several json based REST api endpoints which allow for export of and
querying data for further analysis. The exporting functionality allows the
user to specify exactly which data they want to export and for which scans.
The data can also be combined with other datasets from other sources, for
example to create a larger collection of data about a website.

When combined, this provides an extendable scanner with easy access
to data for further analysis. This can be valuable for monitoring the state
of TLS use, and be an enabler for further research into the real world use of
TLS.

9.2 Further development

A useful addition to the scanner would be to check for more common vul-
nerabilities. While we can draw some conclusions regarding vulnerabilities
and exploits based on supported TLS versions, this is not the most reliable
option. There are vulnerabilities which do not affect TLS as a protocol, but
might instead affect specific TLS implementations. In these cases, having
definite datapoints proving or disproving the presence of a vulnerability
can be a very useful addition.

Many large websites serve user uploads from a separate domain name
from their main website, sometimes using a content delivery network
(CDN). As an example of this, Facebook usually serves user uploads from
the domain fbcdn.net rather than directly from facebook.com [56]. In
these cases, the apex of CDN domain might not even resolve to a website,
meaning it won’t be included by this scanner. A system which is able to

35

detect and handle these CDN domains can provide useful data about these
domains.

The scanner does also not consider various HTTP based application
programming interfaces (APIs) which might be used by the website. For
example, single page applications will often heavily rely on background
API calls in order to function. In these cases, the security of the API is as
important as the security of the main website itself, and being able to detect
and scan the APIs used in these background calls would be a good addition
to the scanner.

36

Bibliography

[1] 9.15. JSON Functions and Operators. en. Feb. 2021. URL: https://www.
postgresql.org/docs/12/functions-json.html (visited on 12/05/2021).

[2] Eman Salem Alashwali and Kasper Rasmussen. “‘What’s in a Down-
grade? A Taxonomy of Downgrade Attacks in the TLS Protocol
and Application Protocols Using TLS’. In: arXiv:1809.05681 [cs] (Jan.
2019). arXiv: 1809.05681. URL: http://arxiv.org/abs/1809.05681 (vis-
ited on 26/05/2020).

[3] Alexa - Top sites. URL: https://www.alexa.com /topsites (visited on
26/05/2020).

[4] Elaine Barker. Recommendation for Key Management: Part 1 — General.
en. Tech. rep. NIST Special Publication (SP) 800-57 Part 1 Rev. 5.
National Institute of Standards and Technology, May 2020. DOI:
https:/ /doi.org/10.6028 /NIST .SP.800- 57ptlr5. URL: https://csrc.
nist.gov /publications /detail /sp /800-57-part-1/rev-5/final (visited on
27/05/2020).

[5] Micheael Bayer. ‘SQLAlchemy’. In: The Architecture of Open Source
Applications Volume II: Structure, Scale, and a Few More Fearless Hacks.
aosabook.org, 2012. URL: http://aosabook.org/en/sqlalchemy.html.

[6] boringssl - Git at Google. URL: https: / / boringssl . googlesource . com /
boringssl/ (visited on 23/04/2021).

[7] CA/Browser Forum Guidelines For The Issuance And Management Of
Extended Validation Certificates. URL: https:/ / cabforum.org/extended-
validation/ (visited on 22/05/2020).

[8] Franco Callegati, Walter Cerroni and Marco Ramilli. ‘Man-in-the-
Middle Attack to the HTTPS Protocol’. eng. In: IEEE Security &
Privacy 7.1 (2009). Publisher: IEEE, pp. 78-81. 1SSN: 1540-7993. DOI:
10.1109/MSP.2009.12.

[9] Certificate Authority Authorization (CAA) - Let’s Encrypt - Free SSL/TLS
Certificates. URL: https : / / letsencrypt . org / docs / caa/ (visited on
27/05/2020).

[10] Certificate Transparency. Library Catalog: www.certificate-transparency.org.
URL: http: / / www . certificate - transparency . org / home (visited on
27/05/2020).

37

https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
http://arxiv.org/abs/1809.05681
https://www.alexa.com/topsites
https://doi.org/https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
http://aosabook.org/en/sqlalchemy.html
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://cabforum.org/extended-validation/
https://cabforum.org/extended-validation/
https://doi.org/10.1109/MSP.2009.12
https://letsencrypt.org/docs/caa/
http://www.certificate-transparency.org/home

[11]

Dave Cooper. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. en. Library Catalog:
tools.ietf.org. URL: https:/ /tools.ietf.org / html / rfc5280 (visited on
21/05/2020).

Phillip J. Eby. PEP 333 — Python Web Server Gateway Interface v1.0.
en. URL: https://www.python.org/dev /peps/pep-0333/ (visited on
12/04/2021).

Getting Started — pwntools 4.3.1 documentation. URL: https://pwntools.
readthedocs.io/en/stable/intro.html (visited on 23/04/2021).

GnuTLS. en. URL: https://www.gnutls.org/ (visited on 23/04/2021).

Dan Goodin. Russian-controlled telecom hijacks financial services” Inter-
net traffic. URL: https://arstechnica.com /information-technology /2017 /
04 /russian- controlled-telecom- hijacks-financial-services-internet- traffic/
(visited on 14/05/2021).

Scott Helme. Are EV certificates worth the paper they’re written on? en.
Library Catalog: scotthelme.co.uk. Dec. 2017. URL: https://scotthelme.
co.uk/are-ev-certificates-worth-the-paper-theyre-written-on/ (visited on
22/05/2020).

Scott Helme. Crawler.Ninja. URL: https: / / crawler.ninja/ (visited on
13/03/2020).

Scott Helme. OCSP Must-Staple. en. Library Catalog: scotthelme.co.uk.
Feb. 2017. URL: https://scotthelme.co.uk/ocsp-must-staple/ (visited on
27/05/2020).

Scott Helme. Revocation is broken. en. Library Catalog: scot-
thelme.co.uk. July 2017. URL: https:/ /scotthelme.co. uk / revocation-
is-broken/ (visited on 27/05/2020).

Scott Helme. Top 1 Million Analysis - September 2019. en. Library
Catalog: scotthelme.co.uk. Oct. 2019. URL: https://scotthelme.co.uk/
top-1-million-analysis-september-2019/ (visited on 27/05/2020).

Jacob Hoffman-Andrews, Phillip Hallam-Baker and Rob Stradling.
DNS Certification Authority Authorization (CAA) Resource Record. en.
Library Catalog: tools.ietf.org. URL: https://tools.ietf.org/html/rfc8659
(visited on 27/05/2020).

HSTS Preload List Submission. URL: https:/ /hstspreload.org/ (visited on
27/05/2020).

HTTPS encryption on the web — Google Transparency Report. URL: https:
/ / transparencyreport . google . com / https / overview 7 hl =en (visited on
12/05/2020).

Troy Hunt. Troy Hunt on Twitter. URL: https: / /twitter.com /troyhunt /
status/691166196268417024 (visited on 14/05/2021).

Troy Hunt. Understanding HTTP Strict Transport Security (HSTS) and
preloading it into the browser. en. Library Catalog: www.troyhunt.com.

June 2015. URL: https://www.troyhunt.com /understanding- http-strict-
transport/ (visited on 27/05/2020).

38

https://tools.ietf.org/html/rfc5280
https://www.python.org/dev/peps/pep-0333/
https://pwntools.readthedocs.io/en/stable/intro.html
https://pwntools.readthedocs.io/en/stable/intro.html
https://www.gnutls.org/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://scotthelme.co.uk/are-ev-certificates-worth-the-paper-theyre-written-on/
https://scotthelme.co.uk/are-ev-certificates-worth-the-paper-theyre-written-on/
https://crawler.ninja/
https://scotthelme.co.uk/ocsp-must-staple/
https://scotthelme.co.uk/revocation-is-broken/
https://scotthelme.co.uk/revocation-is-broken/
https://scotthelme.co.uk/top-1-million-analysis-september-2019/
https://scotthelme.co.uk/top-1-million-analysis-september-2019/
https://tools.ietf.org/html/rfc8659
https://hstspreload.org/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://twitter.com/troyhunt/status/691166196268417024
https://twitter.com/troyhunt/status/691166196268417024
https://www.troyhunt.com/understanding-http-strict-transport/
https://www.troyhunt.com/understanding-http-strict-transport/

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

Issues - project-zero. URL: https: / /bugs.chromium.org/p/project-zero/
issues/list?q=&can=1 (visited on 19/05/2020).

Collin Jackson, Adam Barth and Jeff Hodges. HTTP Strict Transport
Security (HSTS). en. Library Catalog: tools.ietf.org. URL: https://tools.
ietf.org/html/rfc6797 (visited on 13/03/2020).

Ryan Kearney. ComcastInject.html. URL: https: / / gist . github . com /
ryankearney /4146814 (visited on 14/05/2021).

Adam Langley, Emilia Kasper and Ben Laurie. Certificate Transpar-
ency. en. Library Catalog: tools.ietf.org. URL: https://tools.ietf.org /
html/rfc6962 (visited on 27/05/2020).

Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation’. en. In: Proceedings 2019
Network and Distributed System Security Symposium. San Diego, CA:
Internet Society, 2019. ISBN: 978-1-891562-55-6. DOI: 10.14722 /ndss.
2019.23386. URL: https:/ /www . ndss- symposium . org / wp - content /
uploads/2019/02/ndss2019 01B-3 LePochat paper.pdf (visited on
13/05/2020).

LibreSSL. URL: https://www.libressl.org/ (visited on 23/04/2021).

Bill Marczak et al. China’s Great Cannon. URL: https:/ /citizenlab.ca/
2015/04/chinas-great-cannon/ (visited on 14/05/2021).

Eric Mill. Eric Mill on Twitter. URL: https: / / twitter.com / konklone /
status/598696478018666496 (visited on 14/05/2021).

Darrel Miller et al. OpenAPI Specification 2.0. URL: https: / / spec.
openapis.org/oas/v2.0 (visited on 08/05/2021).

Bodo Moeller and Adam Langley. TLS Fallback Signaling Cipher Suite
Value (SCSV) for Preventing Protocol Downgrade Attacks. en. Library
Catalog: tools.ietf.org. URL: https://tools.ietf.org/html/rfc7507 (visited
on 29/05/2020).

Patrick Howell O’Neill. It's easy to fake Extended Validation certificates,
research shows. en. Library Catalog: www.cyberscoop.com Section:
Technology. Dec. 2017. URL: https: / / www . cyberscoop . com / easy -

fake - extended - validation - certificates - research - shows/ (visited on
22/05/2020).

OpenSSL. URL: https://www.openssl.org/ (visited on 23/04/2021).

OpenSSL commands. URL: https:/ /www.openss|.org/docs/manl.1.1/
manl/ (visited on 23/04/2021).

Yngve Pettersen. The Transport Layer Security (TLS) Multiple Certificate
Status Request Extension. en. Library Catalog: tools.ietf.org. URL: https:
/[tools.ietf.org/html/rfc6961 (visited on 13/03/2020).

Poetry - Python dependency management and packaging made easy. URL:
https://python-poetry.org/ (visited on 26/03/2021).

PostgreSQL: About. URL: https://www.postgresql.org/about/ (visited
on 23/04/2021).

39

https://bugs.chromium.org/p/project-zero/issues/list?q=&can=1
https://bugs.chromium.org/p/project-zero/issues/list?q=&can=1
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://gist.github.com/ryankearney/4146814
https://gist.github.com/ryankearney/4146814
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-3_LePochat_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-3_LePochat_paper.pdf
https://www.libressl.org/
https://citizenlab.ca/2015/04/chinas-great-cannon/
https://citizenlab.ca/2015/04/chinas-great-cannon/
https://twitter.com/konklone/status/598696478018666496
https://twitter.com/konklone/status/598696478018666496
https://spec.openapis.org/oas/v2.0
https://spec.openapis.org/oas/v2.0
https://tools.ietf.org/html/rfc7507
https://www.cyberscoop.com/easy-fake-extended-validation-certificates-research-shows/
https://www.cyberscoop.com/easy-fake-extended-validation-certificates-research-shows/
https://www.openssl.org/
https://www.openssl.org/docs/man1.1.1/man1/
https://www.openssl.org/docs/man1.1.1/man1/
https://tools.ietf.org/html/rfc6961
https://tools.ietf.org/html/rfc6961
https://python-poetry.org/
https://www.postgresql.org/about/

Matthew Prince. The Hidden Costs of Heartbleed. en. Library Catalog;:
blog.cloudflare.com. Apr. 2014. URL: https://blog.cloudflare.com/the-
hard-costs-of-heartbleed/ (visited on 27/05/2020).

pty(7) - Linux manual page. URL: https://man7.org/linux/man- pages/
man7 /pty.7.html (visited on 12/05/2021).

Qualys SSL Labs - SSL Pulse. URL: https://www.ssllabs.com/ssl-pulse/
(visited on 13/03/2020).

Redirections in HITP - HTTP | MDN. URL: https://developer.mozilla.
org/en-US/docs/Web/HTTP /Redirections (visited on 30/04/2021).

Julian F. Reschke and Roy T. Fielding. Hypertext Transfer Pro-
tocol (HTTP/1.1): Message Syntax and Routing. en. Library Catalog;:
tools.ietf.org. URL: https:/ /tools.ietf.org /html / rfc7230 (visited on
19/05/2020).

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
en. Library Catalog: tools.ietf.org. URL: https://tools.ietf.org/html/
rfc5246 (visited on 11/03/2020).

Revocation checking and Chrome’s CRL. URL: https://www.imperialviolet.
org/2012/02/05/crlsets.html (visited on 27/05/2020).

S Santesson et al. X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP. en. Library Catalog: tools.ietf.org.
URL: https://tools.ietf.org/html/rfc6960 (visited on 27/05/2020).

Michael Satran et al. Cipher Suites in TLS/SSL (Schannel SSP) - Win32
apps. en-us. Library Catalog: docs.microsoft.com. URL: https://docs.
microsoft . com / en - us / windows / win32 / secauthn / cipher - suites - in -
schannel (visited on 27/05/2020).

Ryan Sleevi. Announcement: Requiring Certificate Transparency in 2017
- Google Groups. URL: https: / / groups . google . com / a / chromium .
org / forum / # ! searchin / ct- policy / Announcement $ 3A $ 20Requiring $
20Certificate$20Transparency$20in$202017 / ct- policy / 78N3SMcqUGw /
yklwHXugAQAJ (visited on 27/05/2020).

ssl — TLS/SSL wrapper for socket objects — Python 3.8.9 documentation.
URL: https: / / docs . python . org / 3.8/ library / ssl . html (visited on
23/04/2021).

Strict-Transport-Security. en. Library Catalog: developer.mozilla.org.
URL: https://developer.mozilla.org/en-US /docs/Web /HTTP /Headers/
Strict- Transport-Security (visited on 27/05/2020).

Nick Sullivan. High-reliability OCSP stapling and why it matters. en.
Library Catalog: blog.cloudflare.com. July 2017. URL: https://blog.
cloudflare.com/high-reliability-ocsp-stapling/ (visited on 27/05/2020).

Justin Watt. Hotel Wifi JavaScript Injection. URL: https://justinsomnia.
org/2012/04 /hotel-wifi-javascript-injection/ (visited on 14/05/2021).

Huapeng Zhou et al. The Evolution of Advanced Caching in the Facebook
CDN. URL: https://research.fb.com/blog/2016 /04 /the- evolution- of-
advanced-caching-in-the-facebook-cdn/ (visited on 14/05/2021).

40

https://blog.cloudflare.com/the-hard-costs-of-heartbleed/
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/
https://man7.org/linux/man-pages/man7/pty.7.html
https://man7.org/linux/man-pages/man7/pty.7.html
https://www.ssllabs.com/ssl-pulse/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://tools.ietf.org/html/rfc6960
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel
https://groups.google.com/a/chromium.org/forum/#!searchin/ct-policy/Announcement$3A$20Requiring$20Certificate$20Transparency$20in$202017/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://groups.google.com/a/chromium.org/forum/#!searchin/ct-policy/Announcement$3A$20Requiring$20Certificate$20Transparency$20in$202017/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://groups.google.com/a/chromium.org/forum/#!searchin/ct-policy/Announcement$3A$20Requiring$20Certificate$20Transparency$20in$202017/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://groups.google.com/a/chromium.org/forum/#!searchin/ct-policy/Announcement$3A$20Requiring$20Certificate$20Transparency$20in$202017/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://docs.python.org/3.8/library/ssl.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://blog.cloudflare.com/high-reliability-ocsp-stapling/
https://blog.cloudflare.com/high-reliability-ocsp-stapling/
https://justinsomnia.org/2012/04/hotel-wifi-javascript-injection/
https://justinsomnia.org/2012/04/hotel-wifi-javascript-injection/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/

Chapter 10

Appendixes

10.1 Appendix A: The source code

See the attached file named masterscanner-master.zip, or clone it from Github
as humanewolf/masterscanner.

41

https://github.com/HumaneWolf/masterscanner

	Introduction
	Motivation
	Contribution

	Background
	Certificates
	An overview of a TLS connection
	Related work
	Common attacks
	Checking TLS security
	Security mechanisms

	The Tranco list

	The data collection method
	HTTP responses
	TLS versions
	Certificates

	The scanning process
	The implementation
	Technologies used
	OpenSSL
	Python
	PostgreSQL

	Running a scanner instance
	Installing the necessary software
	Configuration
	Running the scan
	Serving the data

	Expanding the scanner and analysis
	Viewing scan report
	Accessing the REST API
	Scanning for other data

	Evaluation
	Automated testing
	Comparing the results to other scanners
	Performance and storage use

	Conclusion
	Summary
	Further development

	Appendixes
	Appendix A: The source code

