
AIP Advances ARTICLE scitation.org/journal/adv

Convection in conditionally unstable seawater

Cite as: AIP Advances 11, 075324 (2021); doi: 10.1063/5.0053629
Submitted: 9 April 2021 • Accepted: 9 July 2021 •
Published Online: 23 July 2021

Jan Erik H. Weber1,a) and Göran Broström2

AFFILIATIONS
1 Department of Geosciences, University of Oslo, Oslo, Norway
2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden

a)Author to whom correspondence should be addressed: j.e.weber@geo.uio.no

ABSTRACT
Buoyancy-driven convection in a conditionally unstable ocean is studied theoretically. Conditionally unstable conditions are related to
supercooled seawater. The freezing point is depressed due to increasing pressure, and upward motion (reduced pressure) leads to the
formation of ice crystals in the form of frazil ice and hence a reduced bulk density of the rising mass parcel. For downward motion
(increasing pressure), freezing does not occur. To model this one-way process, we take that rising parcels become lighter as they follow
the adiabatic density lapse rate due to freezing. Through the action of a unit step function, we can model the fact that frazil ice is added
only in the upward motion. Supercooled seawater is observed in the proximity of ice shelf fronts. We consider an idealized ice shelf
and take the front to be vertical. For this geometry, we present linear analytical solutions as well as numerical results for nonlinear two-
dimensional steady conditional convection in the presence of a stable environmental density gradient. With a parallel to moist convection
in the atmosphere, we find convection cells near the ice front with rising fluid in a narrow region and sinking fluid over a much broader
region.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053629

I. INTRODUCTION

Rayleigh1 convection between horizontal planes kept at differ-
ent constant temperatures (a cold plane on the top) has attracted
massive attention from researchers. For most problems studied, the
instability is absolute in the sense that once a critical value of a
certain dimensionless parameter (e.g., the Rayleigh number or the
Marangoni number in the case with surface tension) is exceeded, the
displacement of an individual particle in the gravity field is unstable
regardless of whether the displacement is upward or downward. In
cases when the basic density field is conditionally unstable, the sit-
uation is different. The particles that are displaced upward become
lighter than the environment and will continue to ascend, while a
particle that is displaced downward will tend to be restored and
move back to the equilibrium position. Hence, upward motion is
unstable, and downward motion is stable. Such situations may be
found when we have phase transitions in the fluid.

In the atmosphere, this is known as moist convection. Due to
the compressibility of the air, convective instability occurs only if
the numerical value of the environmental temperature gradient is
larger than the adiabatic lapse rate. However, lifting moist air parcels

will imply some degree of condensation of water vapor within the
parcel and hence a temperature increase due to the release of latent
heat. That means that the adiabatic temperature decrease with height
is somewhat smaller for a moist parcel than for a dry one. For
downward motion, there is no condensation within the moist par-
cel, and moist and dry parcels tend to follow the dry adiabatic lapse
rate. Hence, if the environmental temperature gradient lies between
the moist adiabatic lapse rate (typically 0.6 K/100 m) and the dry
adiabatic lapse rate (∼1 K/100 m), the stratification is condition-
ally unstable.2–6 For a comprehensive review of atmospheric moist
convection, see Ref. 7.

In the Antarctic Ocean, Foldvik and Kvinge8 discussed this
phenomenon in connection with seawater being cooled by the pres-
ence of the Filchner ice shelf. Since the freezing temperature of
seawater decreases with increasing pressure (i.e., depth), cold water
parcels displaced upward toward lower pressure will tend to form
small ice crystals. This, in turn, renders the bulk density of the par-
cel smaller and promotes further ascent. Parcels displaced down-
ward will not form any ice and tend to move back to their original
positions. The ice crystals considered by Foldvik and Kvinge8 were
observed in rising water, and not in situ within supercooled water.
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However, Dieckmann et al.9 have found ice platelets from hydro-
graphic observations at 250 m depth near the Filchner ice shelf,
showing that “underwater” ice is produced at these depths. More
recently, observation of ice platelets in Antarctic waters was reported
by Hunkeler et al.,10 while several papers have modeled the growth
of frazil ice in Antarctica.11,12 Supercooled water, which is a neces-
sary condition for frazil ice formation, has also been observed near a
glacier in Spitsbergen13,14 as well as in an Arctic polynia.15

Foldvik and Kvinge8 studied this process by considering the
adiabatic motion of an individual fluid parcel in the absence of vis-
cosity and diffusion. A more comprehensive study of conditional
frazil ice instability in seawater is found in the study by Jordan
et al.,16 where the stability analysis is formulated as a general per-
turbation problem. In this paper, the frazil ice formation related to
rising fluid parcels is calculated by assuming adiabatic processes.8 In
the perturbation equation for density, we introduce a Heaviside step
function to account for the differences in buoyancy-forcing when
the vertical velocity w is upward (w > 0) and when it is downward
(w < 0). A similar approach has been used in atmospheric appli-
cations to account for the release of latent heat in ascending moist
air.17–19

The application of a step function to model conditional insta-
bility is novel for the ocean. It makes it possible to mathematically
investigate not only the growth rates of unstable modes but also the
onset of linear convective motion through marginal stability (zero
growth rate), as well as the steady finite amplitude cellular motion in
a conditionally unstable fluid layer. These are new results that shed
light on an important dynamical process in supercooled seawater.

The rest of this paper is organized as follows: In Secs. II–IV, we
develop the governing equations for this problem. Particular empha-
sis is put on the density equation and the form of the Heaviside
function that is chosen to model the effect of conditional instability.
Section V describes the ice shelf model and the boundary condi-
tions. In Sec. VI, we discuss the linear problem, which is solved by
matching solutions in the unstable and stable regions. Section VII
presents numerical solutions for nonlinear conditional instability in
a thin layer, and Sec. VIII contains a discussion and some concluding
remarks.

II. GOVERNING EQUATIONS
We consider density-driven motion in a horizontal layer of

ocean water with depth H. The horizontal x, y axes are placed at the
lower boundary, and the vertical z axis is positive upward. The ocean
is stratified due to gradients of heat, salt, and ice crystals. In general,
the equation of state can be written as

ρ = ρ(p, T, S, C), (1)

where ρ is the density, p is the pressure, T is the temperature, and
S is the salinity. Furthermore, C is the dimensionless concentration
of ice crystals (volume of ice per unit volume of the ice–seawater
mixture). The velocity vector is v = (u, v, w), and the conservation
of mass is governed by

ρ∇ ⋅ v = −Dρ/Dt. (2)

Here, ∇ is the gradient operator, t denotes time, and D/Dt = ∂/∂t
+ v ⋅ ∇ is the material derivative.

Following the study by Spiegel and Veronis,20 any of the vari-
ables F in (1) is written as

F = Fm + F0(z) + F′(x, y, z, t). (3)

Here, the subscript m denotes constant mean reference values, and
subscript 0 is related to the deviations from the mean values in the
equilibrium state prior to motion. The primed quantities are space
and time dependent fluctuations related to the convective motion.
The analysis that follows is based on the assumption that

∣F′∣ ≤ ΔF0 ≪ Fm, (4)

whereΔF0 is the maximum difference in the equilibrium state across
the layer. The scale heights DF of this problem can be defined as

DF = Fm∣dF0/dz∣−1. (5)

Utilizing (4) and assuming that the layer thickness H is much
less than the smallest scale height (5) and that the velocity in the
fluid is much smaller than the speed of sound, the Boussinesq
approximation is verified for a compressible fluid.20 By defining the
dimensionless perturbation density σ′ as

σ′ = ρ′/ρm, (6)

the conservation of momentum and mass for a Boussinesq fluid
reduces to

Dv/Dt = −∇p′/ρm − gσ′k + ν∇2v, (7)

∇ ⋅ v = 0, (8)
where g is the acceleration due to gravity, ν is the (constant) eddy
viscosity, k is the vertical unit vector, and ∇2 is the Laplacian oper-
ator. Here, we have neglected the effect of the rotation of the Earth
since the fluid domain near the ice shelf front is relatively small.

For our purpose, the equation of state (1) for the two-
component mixture of seawater and ice crystals will be written as21

ρ = ρm(1 − C)[1 − αm(T − Tm) + βm(S − Sm)] + ρiC, (9)

where ρi is the density of ice. Here, the expansion coefficients αm and
βm are defined as

αm = −(ρ−1∂ρ/∂T)
m

, βm = (ρ−1∂ρ/∂S)
m

. (10)

From the study by Spiegel and Veronis,20 an equation for the
perturbation temperature is obtained from the internal energy equa-
tion in the fluid (see also the study by Løyning and Weber).22

Applying (3)–(5), one finds for the water phase that

DT′/Dt + [dT0/dz + Γ]w = κT∇2T′ + q′T . (11)

Here, q′T is a source term for energy. Furthermore, Γ = αmTm g/cp is
the adiabatic temperature lapse rate for seawater,22 where cp is the
specific heat capacity at constant pressure. In the upper ocean, the
adiabatic lapse rate due to thermal expansion is very small, and this
effect will be neglected in the forthcoming analysis. Accordingly, we
disregard Γ in (11). Similarly, the salinity equation for seawater can
be written as

DS′/Dt + [dS0/dz]w = κS∇2S′ + q′S, (12)
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where q′S is a source term for salt. Assuming vanishing mean ice con-
centration in the basic state, for the ice concentration perturbation,
we can write

DC′/Dt = κC∇2C′ + q′C, (13)

where q′C is a source term related to the formation of frazil ice. We
take that the turbulent diffusion coefficients for heat, salt, and ice
concentration in (11)–(13) are equal in this problem, i.e., κT = κS
= κC = κ. Then, we avoid any double-diffusive convective processes,
which are not a theme here.

In the equation of state (9), we take that C0(z) = 0 and ∣C′∣≪ 1.
Hence, for the basic environmental stratification in the fluid, we can
write

dρ0/dz = −ρmαmdT0/dz + ρmβmdS0/dz, (14)

while neglecting small products of primed quantities, the perturba-
tion density becomes

ρ′ = ρm(−αmT′ + βmS′) − (ρm − ρi)C′. (15)

In the last term, we have assumed that ρ0 ≈ ρm. Multiplying (11) by
−ρmαm, (12) by ρmβm and (13) by −(ρm − ρi), we find by adding
these equations and utilizing (14) and (15),

Dσ′/Dt + [ 1
ρm

dρ0/dz]w = κ∇2σ′ −Q′, (16)

where

Q′ = αmq′T − βmq′S + (ρm − ρi)q′C/ρm. (17)

III. THE INSTABILITY MECHANISM
The fundamental process in this problem is the generation

of perturbation density σ′ in (16) due to frazil ice formation in
supercooled seawater. We take that the basic environmental density
gradient in (16) can be written as

dρ0/dz = Δρ/H, (18)

where Δρ is a constant. The equation governing the density pertur-
bation then becomes

Dσ′/Dt + [Δρ/(ρmH)]w = κ∇2σ′ −Q′. (19)

Here, Q′, defined by (17), is the source of perturbation buoyancy
caused by the phase transition. In this process, the liberation of latent
heat and excess salinity is less effective than the ice crystal formation.

We assume that all upward motion causes freezing and that
individual fluid parcels, containing a mixture of seawater and ice
crystals, move as a bulk volume. Utilizing the hydrostatic equation
and assuming that the seawater is sufficiently supercooled, we find
from the calculations in the study by Foldvik and Kvinge8 [Eq. (10)]
that the frazil ice concentration in a fluid parcel moved adiabatically
upward increases with height according to

(dC′/dz)ad = 9.3 × 10−6m−1. (20)

The corresponding density decrease due to freezing becomes

(dσ′/dz)ad = −γ, (21)

where

γ = 9.3 × 10−7m−1, (22)

is the adiabatic density lapse rate. Hence, supercooled parcels moved
adiabatically upward experience a decrease in density according
to (21). For parcels moving downward, there is no freezing, and
(dσ′/dz)ad = 0 (it should be noted that the displacements cannot be
exactly adiabatic due to the inclusion of dissipative terms). To model
this one-way process, we may write Q′ as

Q′ = wγU(w), (23)

where U(w) is the unit step function (Heaviside’s unit function)
defined by

U(w) =
⎧⎪⎪⎨⎪⎪⎩

1, w > 0,

0, w < 0.
(24)

In this way, ice crystals are only added in upward motion. A similar
approach has been used for moist convection in the atmosphere.17–19

By inserting (23) into (19), we find

Dσ′/Dt + [Δρ/(ρmH) + γU(w)]w = κ∇2σ′. (25)

In order to reveal the instability mechanism in this problem,
we first simplify and disregard the diffusion term on the right-hand
side of (25) (diffusion always acts stabilized by smearing out spatial
density differences). Introducing the perturbation buoyancy force23

per unit density

b = −gσ′, (26)

we find from (25) that

Db/Dt − Bw = 0, (27)

where B = g[Δρ/(ρmH) + γU(w)]. Introducing a small vertical par-
cel displacement ζ such that w = Dζ/Dt, (27) can be integrated,
yielding

b = Bζ. (28)

Here, we have assumed that b = 0 when ζ = 0. We thus notice from
(28) that if B > 0, we have b > 0 when ζ > 0 or b < 0 when ζ < 0.
Then, the buoyancy force acts in the same direction as the parcel
displacement, which is a necessary condition for instability. On the
other hand, when B < 0, buoyancy forces and displacements have
opposite signs, characterizing a stable basic state.

In the absence of phase transitions (γ = 0), the environmental
density gradient in (25) must be positive in order to promote convec-
tive instability (B > 0). When convection in this case occurs between
horizontal parallel planes, we have the familiar Rayleigh–Benard
problem;1 see, for example, the review by Palm.24 When phase tran-
sitions (frazil ice formation) occur in connection with ascending
motion of fluid parcels, instability requires that in (25),

γ > −Δρ/(ρmH). (29)
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From the study by Foldvik and Kvinge,8 we assess the environmental
density gradient per unit density in the upper 400 m to be

(H−1Δρ/ρm)env
≈ −4 × 10−7m−1. (30)

Hence, the environmental density distribution acts stabilized, so the
only possible mechanism for convective cell motion is conditional
instability. From (22) and (30), we realize that the instability crite-
rion (29) is fulfilled for this particular case. Hence, conditional insta-
bility can occur near the ice shelves in Antarctica. In the following
sections, we analyze this problem quantitatively.

IV. NON-DIMENSIONAL GOVERNING EQUATIONS
We non-dimensionalize our problem by introducing

(x, y, z) = (x̂, ŷ, ẑ)H,

t = t̂H2/κ,
(u, v, w) = (û, v̂, ŵ)κ/H,

p′ = p̂ρmκν/H2,

σ′ = σ̂κν/(gH3),

(31)

where variables with a caret are non-dimensional. Skipping carets,
our governing equations in the non-dimensional form become

Pr−1Dv/Dt = −∇p − σk +∇2v, (32)

∇ ⋅ v = 0, (33)

Dσ/Dt + [−RN + RγU(w)]w = ∇2σ, (34)

where Pr = ν/κ is the Prandtl number. In (34), we have defined

RN = −gH3Δρ/(ρmκν) = gH4N2/(κν) > 0. (35)

Here, N2 is the squared buoyancy frequency for stable motion. The
destabilizing parameter Rγ is defined by

Rγ = gH4γ/(κν). (36)

In this problem, the effective Rayleigh number R for unstable motion
becomes

R ≡ Rγ − RN . (37)

Due to the Heaviside function, (34) is nonlinear, even for
infinitesimal disturbances. However, the linear stability problem can
be analyzed by considering solutions in regions where w > 0 (unsta-
ble regions) and where w < 0 (stable regions) and then by matching
the solutions where w = 0. Nonlinearly, the set of equations can be
solved numerically without the need to consider separate regions, as
shown in Sec. VII.

V. ICE SHELF MODEL
In this study, we consider convection in a very simple geom-

etry. The ice shelf front is vertical and extends down to the hori-
zontal continental shelf bottom; see Fig. 1. The horizontal extent is
semi-infinite.

FIG. 1. Model geometry.

The horizontal boundaries are assumed to be impermeable
planes, which for simplicity are taken to be perfectly “conducting.”
That means that any density perturbation will vanish at these bound-
aries. Mathematically, for the non-dimensional quantities,

w = σ = 0, z = 0, 1. (38)

To simplify the analytical analysis, we assume free-slip, i.e., ∂u/∂z
= 0, at the upper and lower boundary. Differentiating (33) with
respect to z, in terms of the vertical velocity, we obtain25

∂2w/∂z2 = 0, z = 0, 1. (39)

In the numerical analysis, we use the conventional no-slip con-
ditions, which only yield small quantitative differences from free-
slip.25 We also neglect the effect of viscous drag at the vertical ice
front, which means that

∂w/∂x = 0, x = 0. (40)

In this problem, we realize that the water mass must be super-
cooled by the ice in order to produce ice crystals. Therefore, we are
primarily interested in the region in the proximity of the vertical
shelf. Here, we assume that the water is sufficiently mixed, yield-
ing homogeneous conditions in the horizontal direction. Outside the
region of ice crystal formation, there is no mean circulation in the
vertical plane, and the variables tend to zero. Mathematically, this
means that

u, w, σ → 0, x →∞. (41)

However, in practice, our solutions tend to zero at a seaward dis-
tance, which is comparable to the shelf depth, as will be demon-
strated in Sec. VI.

For a more realistic model of an Antarctic ice shelf, the super-
cooled water may come from a meltwater plume emerging from an
ice-shelf cavity21 rather than cooling from the side of an ice shelf
front. A similar conclusion was reached by Morozov et al.13 and
Marchenko et al.14 for supercooled seawater near the glacier front in
a Spitsbergen fjord. However, the main focus of the present paper is
on the fundamental dynamics of conditional convection, so we stick
to the vertical front as the source of supercooling for computational
simplicity.

VI. MATCHED LINEAR SOLUTIONS
We consider infinitesimal perturbations from the basic state,

which allows us to linearize our equations, i.e., v ⋅ ∇v and v ⋅ ∇σ
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are small and can be neglected in (32) and (34). For an analytical
approach, it is convenient to divide our region into two parts: region
1 where w > 0 and region 2 in which w < 0. The analysis resem-
bles that for the atmosphere.3,5 We shall, therefore, only give a brief
account of the coupling between marginally stable convection and a
steady field of descending motion.

We perform the curl of (32) and use wz = −ux for two-
dimensional motion. Applying the Laplacian operator on this equa-
tion, we insert ∇2σ from (34). For steady (∂/∂t = 0) linear motion
in the unstable region, (32)–(34) then reduce to

∇6w1 − R∂2w1/∂x2 = 0, w1 > 0, (42)

where, as mentioned before, R = Rγ − RN is the effective Rayleigh
number for this problem. In the stable region, we find that

∇6w2 + RN∂
2w2/∂x2 = 0, w2 < 0. (43)

The first four boundary conditions for the vertical velocity are stated
in (38) and (39). They are

w1,2 = ∂2w1,2/∂z2 = 0, z = 0, 1. (44)

The last two boundary conditions are obtained from the linearized
vorticity equation under the assumption of free-slip and perfectly
conducting boundaries. Defining the vorticity η = ∂w/∂x − ∂u/∂z,
from the linearized version of (32), we obtain

Pr−1∂η/∂t = −∂σ/∂x + ∂2η/∂x2 + ∂2η/∂z2. (45)

From our previous conditions, only the last term here is non-zero at
the boundaries, yielding ∂3u/∂z3 = 0. By differentiating with respect
to x and substituting from the continuity equation (33), we finally
obtain the last two conditions,

∂4w1,2/∂z4 = 0, z = 0, 1. (46)

In the unstable region, we have that the lowest marginally stable
mode can be written in the normalized form,25

w1 = sin πz cos kx. (47)

The critical (minimum) Rayleigh number becomes

R = Rc = 27π4/4 (48)

for a critical wave number kc = π/21/2. We have assumed that the
vertical velocity is positive. That means that the half-cell of the
ascending fluid must be confined to the region 0 ≤ x ≤ π/(2k). For
the critical case, the non-dimensional width L of the half-cell then
becomes L = 21/2/2.

The region of descending fluid in this problem is found to be
x ≥ L = 21/2/2. From (43), we realize that the x-part of the motion
here cannot be represented by a Fourier component. For the first
mode in the vertical region, we can write that w2 = sin πzW(x),
where

(D2 − π2)3W + RN D2W = 0, x ≥ L. (49)

Here, D = d/dx. If we assume that W ∝ exp[r(x − L)], the values of
r are easily obtained from (49). Requiring real solutions, and that
W → 0 when x →∞, we find

W = A exp[−K1(x − L)] + B exp[−K2(x − L)] cos[K3(x − L)]
+ C exp[−K2(x − L)] sin[K3(x − L)]. (50)

The real constants K1, K2, and K3 are related to the three admissible
roots r1, r2, and r3 through

r1 = −K1, r2 = −K2 − iK3, r3 = −K2 + iK3. (51)

They are readily determined from (49). The real constants
A, B, and C are obtained from requiring continuity of vertical veloc-
ity and shear stress at x = L, plus the conservation of volume. For the
marginally stable vertical symmetric mode, this last condition can be
stated as

∫
L

0
w1dx + ∫

∞

L
w2dx = 0, z = 1/2. (52)

In Fig. 2, we have depicted the matched solution for the
non-dimensional vertical velocity when we have marginal insta-
bility in the ascending zone and three different values for the
non-dimensional stability in the descending zone.

From Fig. 2, we note that increasing stability makes the
descending part of the cell wider, as well as decreasing the numer-
ical value of the negative vertical velocity. From the definition R
= Rγ − RN , we have that RN = Rc (dashed line) corresponds to the
case when Rγ = 2RN (ρmγ is twice as large as the numerical value
of the environmental density gradient). In fact, when RN → 0, we
note from (49) that the only admissible solution r = −π is, in fact,
a triple root. This means that the solution (50) in this case must be

FIG. 2. Non-dimensional vertical velocity distribution near the ice wall (x ≥ 0,
z = 1/2), at the onset of convection, i.e., R = Rc = 27π4

/4 in the unstable region.
In the stable region (w < 0), the various graphs are for RN = 0.01Rc (solid line),
RN = Rc (dashed line), and RN = 10Rc (dotted line).
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FIG. 3. (a) Stream function for marginal instability when RN = 0. (b) The stream
function for marginal instability when RN = Rc . (c) The stream function for marginal
instability when RN = 10Rc .

replaced by

W = [A + B(x − L) + C(x − L)2] exp[−π(x − L)], (53)

where the coefficients are easily obtained from our former match-
ing conditions. It is readily shown that A = 0, B = −π/21/2, and
C = −21/2π2/4. In this case, when the area of descending motion is
neutrally stable, the width of the descending part of the cell is not
very much larger than the ascending part.

In Fig. 3, we have plotted the stream function ψ defined by
u = −∂ψ/∂z and w = ∂ψ/∂x. Figure 3(a) shows a convection cell for
RN = 0 (neutral descending area), Fig. 3(b) shows for the case when
RN = Rc, and Fig. 3(c) shows for the case when RN = 10Rc (strongly
stable descending area).

From the plots of the stream function in Figs. 3(a)–3(c), we
notice the same feature as seen in Fig. 2, i.e., the fluid always rises in
a narrow region and sinks in a much broader region. This is similar
to the findings for the atmosphere.3–5 Again, it is demonstrated that
the more stable the region is, the wider the descending area will be.
Although we have considered a semi-infinite domain x ∈ [0,∞ >, we
note that our cell solutions only occupy a limited fraction, typically
4–6 times the fluid depth.

In the study by Jordan et al.,16 the frazil ice formation is mod-
eled mathematically and coupled to the other dependent variables
of the problem (velocity, temperature, and salinity). For given back-
ground profiles of mean temperature, salinity, and frazil ice concen-
tration, they compute growth rates for unstable perturbations of this
basic system. There are several reasons why the instability analy-
sis16 does not produce steady convection patterns similar to those
shown in Fig. 3. First, for the part of the model study that can be
compared to ours (with no inflow and outflow in the bottom layer),
they consider a box model, which is 400 m deep (the depth of the
ice shelf) and only 200 m wide. With this geometry, it is impossi-
ble to capture the marginally unstable convection pattern similar to
those shown in Fig. 3, where the width of one cell typically occupies
4–6 times the depth. In addition, they initiate their numerical calcu-
lations with a thin layer (20 m) of constant frazil ice concentration
and relatively warm water (above the freezing point) at the bottom
of the box. This constitutes a low-density bottom layer, which very
soon becomes convectively unstable. The resulting flow pattern at
small times (their Fig. 5) has a lateral dimension of the order of the
thickness of the bottom layer. Obviously, this is a different problem
from the one studied in our paper.

VII. NONLINEAR MOTION IN A THIN LAYER
In order to investigate the nature of convection arising from

conditional instability, we solve the nonlinear governing equa-
tions (32)–(34) in a box geometry. For this purpose, we apply the
commercial partial differential equation (PDE) solver COMSOL
MultiphysicsTM. The program uses finite elements to solve the PDE
system. Here, we use the predefined packages for fluid motion and
heat/density transport. In this study, we integrate the model for
5 h, when a near-steady state solution is obtained. In this com-
putation, we can choose RN and Rγ in (35) and (36) at will as
long as R = Rγ − RN > Rc. Since the results for moderately super-
critical conditions become qualitatively the same, we choose to per-
form calculations for an adiabatic density lapse rate (22), which is
twice as large as the numerical value of the environmental density
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gradient (30), i.e., Rγ = 2RN . We utilize that

U(w) = 1
2
[1 + sgn(w)], (54)

where the signum function is defined as

sgn(w) =
⎧⎪⎪⎨⎪⎪⎩

1, w > 0,

−1, w < 0.
(55)

Then, (34) for the perturbation density can be written for two-
dimensional motion as

∂σ/∂t + u∂σ/∂x + w∂σ/∂z + R[sgn(w)]w
= ∂2σ/∂x2 + ∂2σ/∂z2. (56)

To simulate convection in a turbulent ocean, we take that Pr = 1.
The equations for the conservation of momentum and volume now
reduce to

∂u/∂t + u∂u/∂x + w∂u/∂z = −∂p/∂x + ∂2u/∂x2 + ∂2u/∂z2, (57)

∂w/∂t + u∂w/∂x + w∂w/∂z

= −∂p/∂z − σ + ∂2w/∂x2 + ∂2w/∂z2, (58)

∂u/∂x + ∂w/∂z = 0. (59)

We perform our calculations in a rectangular box, where the length
is much larger than the height. The dimensional length of the
model is l, and we have vertical end-walls at x = 0 and x = a, where
a = l/H ≫ 1 is the aspect ratio. At the horizontal boundaries, we use
no-slip and perfectly conducting conditions, that is,

u = w = σ = 0, z = 0, 1. (60)

We take that the end-walls are insulating, so here,

FIG. 4. Temperature and stream function (solid black lines) for the
Rayleigh–Benard problem. Upper panel: R = 1400 (pure conduction). Lower
panel: slightly supercritical convection (R = 2100). The color scale on the right-
hand side depicts temperature deviations in K. The calculations are made in a box
geometry with an aspect ratio a = 10.

u = w = ∂σ/∂x = 0, x = 0, a. (61)

In the model, we use water as the working fluid and use temper-
ature instead of density. The model is driven by applying the fixed
temperatures ΔT/2 and −ΔT/2 at the lower and upper boundaries,
respectively. The relevant Rayleigh number for this problem then
becomes R = gαmΔTH3/(κν). Test results obtained for ordinary
Rayleigh–Benard convection, i.e., by replacing the signum function
in (56) by 1, gave regularly spaced convection cells when a = 10,
and R ≥ Rc = 1708, which is the critical Rayleigh number for per-
fectly conducting, no-slip horizontal boundaries.25 In Fig. 4, we have
depicted this situation for R = 1400 (ΔT = 0.1 K) (upper panel, con-
duction only) and the steady stream lines for slightly supercritical
motion R = 2100 (ΔT = 0.15 K) (lower panel).

In the case of conditional instability, obtained by retaining the
signum function in (56), the spacing between the cells became much
larger, as expected. In Fig. 5, we have depicted the steady cell pattern
for R = 7000 (ΔT = 0.5 K) and R = 10 500(ΔT = 0.75 K).

By comparing Figs. 4 and 5, we note the striking difference
between the cell patterns in ordinary Rayleigh–Benard convection,
and when conditional instability occurs.

The relevance of these nonlinear numerical calculations to our
ice shelf problem is that the qualitative picture of narrow ascending
regions and much broader sinking regions prevails; see, e.g., Fig. 2.
In each of the cells in Fig. 5, the rising motion in the middle can rep-
resent the motion near the vertical shelf front. Even if the boundary
conditions are different (free-slip vs no-slip), we note by comparing
Figs. 2 and 5 that the ratio of the width of the sinking region to the
width of the ascending region for each half-cell is of the order 6–8 in
both cases.

Even with relatively high values for the turbulent eddy coeffi-
cients, the destabilizing Rayleigh number (37) often becomes much
larger than the critical value for the onset of convection. This applies

FIG. 5. Temperature and stream function (solid black lines) for nonlinear con-
vection in the case of conditional instability when R = 7000 (upper panel) and
R = 10 500 (lower panel). The color scale on the right-hand side depicts tempera-
ture deviations in K. The calculations are made in a box geometry with an aspect
ratio a = 30.
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to the atmosphere as well as the ocean and means that this prob-
lem, in reality, is very nonlinear. Therefore, the present calcula-
tions for moderately supercritical Rayleigh numbers can only yield a
qualitatively picture of this important convection process.

VIII. DISCUSSION AND CONCLUDING REMARKS
Convective motions in nature (e.g., cloud formation) tend to be

three-dimensional. However, the present idealized model of a verti-
cal ice shelf front, with a relatively small region of supercooled water
in the seaward direction, favors two-dimensional motion. The cel-
lular convective motion due to conditional instability will increase
the mixing in the region close to the ice shelf front, and the verti-
cal transport of nutrient water from deeper layers may enhance the
primary biological production in the surface layer.

In moist atmospheric convection, heavy water droplets fall out
of the air as precipitation during ascent or at the cloud base. In the
ocean, the salinity increase in a rising water parcel due to ice crystal
formation will lead to a density increase near the surface when the
crystals leave the parcel and form a surface ice cover or adhere to
the already present surface ice.8 This is also shown to happen in the
model studied by Jordan et al.16 We realize from our calculations
that the primary conditional convection process will induce a hori-
zontal transport of the secondary produced salt underneath the ice
over a distance, which is large compared with the depth of the layer.
This will lead to a salinity boundary layer beneath the ice, which
will grow thicker in time. In turn, haline convection may commence
when the Rayleigh number based on the boundary-layer thickness
exceeds a critical value, causing small-scale vertical mixing in the
upper layer.26 Finally, this process may transport salt water down
to the shelf bottom.8 However, the convective mixing may in turn
disturb the formation of supercooled water and hence the frazil ice
production.

Then, the primary process of conditional convection will halt
and so will the production of saline surface water. This negative
feedback indicates that the shelf-water formation by conditional
instability is indeed an intermittent process.
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