

The mycobiont community above the alpine forest line may act as a barrier to seedling establishment of *Betula pubescens*.

Eivind Kverme Ronold

MSc thesis Department of Biosciences University of Oslo

March 2021

Acknowledgements

I would like to thank my fantastic team of supervisors: Håvard Kauserud, Ella Thoen and Unni Vik. You have all been extremely helpful over the course of this project and in writing this thesis. Håvard, Thank you for letting me become a part of the Oslo Mycology Group when I came as a fresh bachelor student in search of a master's project in mycology. Ella, thank you for all the help in the lab and all the discussions. Unni, thank you for fun times during all the fieldwork and all the hours sifting soil!

I want to acknowledge the amazing environment at Oslo Mycology Group. Every person in the group, students, researchers and otherwise, has been available for discussions and provided help during my time here. It has been fun and I have learned much as a part of this group.

Table of contents

Abstract & Introduction
Materials and methods6
Sampling6
Processing of soil and seeds6
Experimental design6
Processing of plants7
Processing and chemical analysis of soil7
Molecular methods8
Bioinformatics
Statistical analysis9
Results10
Fungal community in soil10
Fungal community in roots10
Diversity11
Plant responses
Fungal and soil responses12
Discussion13
Effect of fungal community on seedlings13
Fungal community and ergosterol content in soil15
Soil carbon and nitrogen16
Conclusions16
References17
Supplementary. 20 Table S1: OTU Table. 20 Table S2: Summary of phyla and orders. 34 Table S3: Tukey HSD summary. 39 Table S4: ANOVA summary. 43
Supplementary figures

<u>Abstract</u>

Climate change is affecting ecosystems worldwide. The northern hemisphere has experienced significant warming over the last decades, particularly strong in arctic and alpine ecosystems. Forests are predicted to migrate into these ecosystems as temperatures increase, although the predicted migration falls short of what is actually observed. In this study, I test the hypothesis that the soil fungal community above the tree- and forest line may act as a barrier to seedling establishment of *Betula pubescens*. I predict that the soil fungal community may lack the symbionts necessary for the plants to thrive, even if the temperature is suitable. I tested this hypothesis by collecting soil from two alpine areas above the forest line and two areas of semi-natural grasslands with natural populations of *B. pubescens* and compare the growth of seedlings in a common garden experiment. The seedlings were exposed to two different temperatures. After eleven weeks of growth the fungal communities in both soil and roots were analyzed using a metabarcoding approach. I found that *B. pubescens* grown in alpine soils associated with typical alpine mycorrhizal fungi, normally found in the roots of Ericaceous plants. These plants showed impaired growth compared to the plants growing in lowland soil. I found support for the hypothesis that the alpine fungal community may act as a biotic barrier for establishment of *B. pubescens* seedlings above the forest line.

Introduction

The soil microbiome is of major importance to the aboveground biodiversity and ecosystem functions (Wagg et al. 2014). Nearly all plants associate with microorganisms, including fungi, through their roots. Most widespread of these important symbioses are mycorrhiza, а mutualistic plant-fungi association where the fungi provides nutrients to the plant in exchange for photosynthates (Smith and Read 2008). Most land plants depend on some form of mycorrhizal symbiosis. About 2% of all plants form ectomycorrhiza (ECM), being most widespread among trees (van der Heijden et al. 2015, Brundrett and Tedersoo 2018). Although associated with relatively few species, the ECM symbiosis is of high importance since ECM forming forest trees (e.g. in Pinaceae, Betulaceae, Fagaceae) cover a large part of the terrestrial surface (Smith and Read 2008, 2018). Brundrett and Tedersoo Rootassociated fungi, and in particular mycorrhizal fungi, has been shown to be important in longterm carbon (C) sequestration and soil C cycling (Clemmensen et al. 2013, Averill et al. 2014, Averill and Hawkes 2016).

The northern hemisphere has experienced significant warming over the last decades (IPCC 2014). This may lead to a shift in geographical and elevational range limits for certain species (including several ECM host plants) and a shift in species composition (Pickles et al. 2012, Bryn and Pothoff 2018,

Song et al. 2018). Modelling based on satellite data show an increase in tree-canopy cover in the northern latitudes and a decrease in short vegetation cover in these same areas (Song et al. 2018). The current observed upper limit of mountain forests in southern Norway is at 1300 meters above sea level (m.a.s.l.), but there are local variability due to current and historical land use (e.g. seasonal farming, Bryn & Pothoff 2018). The changes in the tree and forest line (TFL) can therefore be attributed to both a change in land use (e.g. less intensive seasonal farming) and climate change (e.g increased temperatures), and separating these effects are difficult (Bryn and Pothoff 2018, Song et al. 2018). Studies on TFL dynamics and vegetation change are often based on remote sensing (Bryn and Pothoff 2018, Song et al 2018, Rannow 2013) although there are some field studies available (e.g. Dalen and Hofgaard 2005). Using remote sensing, Rannow (2013) documents an increase in elevation for the TFL in 30 out of 43 plots, but notes that the increase falls short of modelled responses based on increased temperature as the only driver. In another study, Dalen and Hofgaard (2005) show an overall stable TLF in south-central Norway, but with regional variability, and note grazing and insect outbreaks as important factors limiting establishment of new trees.

Climatic factors and population dynamics alone are not able to explain the time-lag in TFL elevation as temperatures increase. Studies of the soil microbiota show that there is a substantial turnover in community composition of both soil biota and vegetation only a short distance above and below the TFL. The plant community above the TFL is dominated by shrubs and graminoids forming either ericoid (ERM) or arbuscular mycorrhiza (AM) (Tonjer et al. preprint). In Norway, the TFL is normally made up of Betula pubescens Ehrh. which is an ECM plant (Bryn and Pothoff 2018). B. pubescens is an early successional plant mostly established in low competition areas and dependent on its symbionts in order to thrive (Ruotsolainen et al. 2009). The presence of suitable symbionts might affect its ability to establish in areas above the TFL dominated by plants with different mycorrhizal associations. While there are many studies on soil biodiversity and its response to changing conditions (e.g. Singh et al. 2010, Wagg et al. 2014), the effect of a shift in soil microbial communities on the above-ground community. and vice versa, is less well studied (Hagedorn et al. 2019, Pickles et al. 2012). Interactions between vegetation and belowground biota has been proposed as important factors for predicting community response to a changing climate (Alexander et al. 2018, Hagedorn et al 2019). This makes it necessary to look at soil biotic factors that may affect the potential change in TFL, as the temperatures in the northern hemisphere has steadily been rising and increasing the potential range for trees (Pickles et al. 2012, Song et al. 2018). As the TFL expands, the microbial community will also shift along with their symbiotic hosts. These interactions are extremely complex and difficult to untangle (Dickie et al. 2017), but identifying key drivers will enable us to better predict and understand the process of forest expansion.

Interactions between vegetation and soil microorganisms are also important for nutrient cycling and C storage in soils (Clemmensen et al. 2021, Tonjer et al. preprint). The dominant type of mycorrhiza has been shown to be an important factor for long term C storage in soils (Averill et al. 2014, Clemmensen et al. 2015). Clemmensen et al (2021) show that ERM shrub dominated vegetation contain the greatest carbon stocks in a gradient from forest to tundra. Several other studies show similar effects of a high amount of recalcitrant carbon stock related to ERM vegetation types (e.g. Clemmensen et al. 2013, Clemmensen et al 2015, and Hagedorn et al 2019). An increase in temperature also increases the fungal biomass

and the amount of mycelia in alpine soil, and a potential change in mycorrhizal community might affect the turnover rates of mycelium (Smith and Read 2008, Hagenbo et al. 2017). Pickles et al. (2012) also highlight temperature change as a driver of a functional shift in ECM fungal communities. This will have an effect on both CO_2 sequestration and respiration, whether this may result in a net gain or loss of sequestered CO_2 is currently unknown (Pickles et al 2012).

To investigate the effect of fungal community and temperature on the establishment of *B. pubescens* seedlings, a common garden experiment was set up. In this study I used soils from semi-natural grasslands of ecosystems with or without *B. pubescens*. The main questions of this study is as follows:

- 1. Will the mycobiont community above the TFL act as a biotic barrier to the establishment of *B. pubescens*?
- 2. How will an increase in temperature affect the fungal community in terms of species composition and biomass?

Based on the research questions I formulated the following two hypothesis:

H1: The growth of Betula pubescens seedlings will be limited due to a lack of appropriate symbionts in the alpine soil regardless of temperature.

H2: Fungal biomass will increase in the warming treatment

Materials and methods

Sampling

Sampling was conducted in August 2019 in four semi-natural grasslands sites across southcentral Norway (Fig. 1), ranging from a dry continental climate in the eastern parts, to wet coastal climate in the western part (see Meineri et al. 2013; table 1). The eastern sites, Fauske (Lowland Dry) and Ulvehaugen (Alpine Dry), are located in semi-natural grasslands at 589 m.a.s.l., and in the low-alpine zone at 1208 m.a.s.l. respectively. The western sites, Ovstedal (Lowland Wet) and Skjellingahaugen (Alpine Wet), are located in a semi-natural grasslands at 476 m.a.s.l. and in the low-alpine zone at 1133 m.a.s.l. respectively. The mean annual precipitation at each site is 600 mm and 696 mm for the two dry sites, and 2923 mm and 2725 mm for the two wet sites. Permanent temperature and precipitation loggers are installed at the sites. At each site, established plots for vegetation monitoring (Meineri et al.

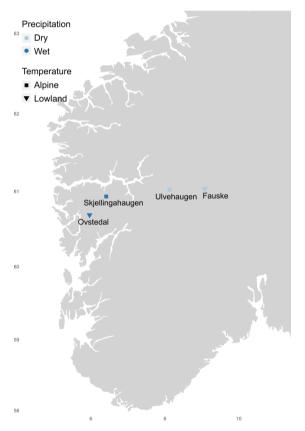


Figure 1: Location of sites where soil samples were taken in southern Norway. Two continental climate locations in light blue (Ulvehaugen and Fauske) and two coastal climate locations in dark blue (Ovstedal and Skjellingahaugen). 2013) were identified, and soil was sampled by removing the top layer of vegetation with a shovel and a small amount (~0.5 kg) of organic soil was collected from the root zone. In order to get a representative collection of the soil community, this was repeated at random spots in each of the sites for a total of about 5 kg soil from each site. The soil was then placed in ziplock bags and stored in a cooler at 4 °C for up to five days while field work was conducted. The samples were brought back to the laboratory at the University of Oslo, and stored for up to a further seven days at 4 °C while awaiting processing.

Processing of soil and seeds

Soil from each site was homogenized through a 5 mm sieve under a laminar flow hood, removing large root fragments and rocks. Homogenized soil was again stored in zip-lock bags for up to seven days while preparing seeds.

Betula pubescens seeds were obtained from a lowland population in central Norway (Balestrand), through the firm Sagaplant AS. The surface structures of the seeds (wings) were removed by rubbing and the seeds were then surface sterilized for 6 minutes in 5% chlorine and rinsed in distilled water. The cleaned seeds were then distributed on petricovered with wet carbon-paper dishes (Macherey & NagelCo., Düren, Germany) for germination. The dishes were checked and rewetted every day, removing any seeds that showed signs of fungal infections.

Pots of soil were prepared while the seeds germinated. Sixteen 100 ml plastic pots were filled with approximately 80 ml of homogenized soil from each site, totaling 64 pots. Another fourteen 100 ml pots of the same type were filled with mixed soil, where equal amounts from each of the four sites were mixed. Seedlings were placed in pots as they germinated and within a week all the seedlings were planted. One pot in each category (except the mixed soil pots) were left without a seedling as a negative control.

Experimental Design

A common garden design was chosen for the growth experiment. Fourteen seedlings were planted for each soil type leaving two pots without any seedlings as a control for how the fungal community would look devoid of plant influence. The pots were split between two (Termaks KB8400, incubators Bergen, Norway), one to represent temperature conditions in the lowland and one to represent alpine temperatures. Both incubators had a day/night cycle of 16 h/8 h with light on during the day and darkness during the night. Temperatures were chosen based on data from the loggers on the sites (Meineri et al. 2013), using average temperatures for the growth seasons in the alpine and lowland sites, 14 °C/6 °C for the alpine incubator and 18 °C/10 °C for the lowland incubator. All pots were watered with approximately 20ml distilled water three days a week (Monday, Wednesday and Friday). Weeds were regularly pulled out in order to reduce competition effects from other plants in relation to root colonization. Due to issues with the incubators not cooling properly, all the plants experienced three periods (1-2 days) of higher temperatures (up to 30 °C) over the 11 weeks. I argue that this is within the normal seedlinas fluctuations that the would experience in nature and thus not having a major negative impact on the execution of the growth experiment. The planned duration of the experiment was 12 weeks, but after 11 weeks some of the plants were showing signs of withering and the experiment was therefore ended one week early.

Processing of plants

The plants were harvested after 11 weeks of the planned 12 weeks of growth, to avoid the establishment of saprotrophic fungi and decomposition of dving roots. The plants, with the entire root system attached, were carefully extracted from the soil in a laminar flow hood. The roots were then further cleaned in water under a dissecting microscope to remove as much of the soil particles as possible. Once cleaned, the roots were weighed, photographed and stored in a CTAB buffer in 2 ml Eppendorf tubes at -20 °C to await further processing. The shoots were weighed and split into two 2 ml Eppendorf tubes. These were then freeze-dried using a Labconco FreeZone 2.5 freeze dryer (Labconco corporation, Kansas City, MO, USA) for at least 24 h and stored at -20 °C before C/N/P analysis (same as for soil, see below).

Processing and chemical analysis of soil

From each pot of soil, one 50 ml Falcon tube was filled and freeze dried for at least 36 h. With five ceramic beads added in each Falcon tube, the freeze-dried soil samples were homogenized and powdered using FastPrep-24 beadbeater (M.P. Biomedicals, CA, USA) at 4 M/S for 40 seconds (two times for each tube). From each sample, two grams of soil was transferred into a 15 ml Falcon tube with 10 ml CTAB buffer and mixed well. From this soil/CTAB sludge, 600 µl was transferred into a 2 ml Eppendorf tube for DNA extraction.

From each powdered soil sample, two grams was transferred into a 15 ml Falcon tube for later pH analysis, and a further two 2 ml Eppendorf tubes were filled with 0.5 grams of soil for C/N/P and ergosterol analysis. All samples were stored at -20 °C while awaiting further analysis.

For pH measurement, 0.5g of soil of freezedried soil was diluted with 5 ml of dH2O for at least one hour. pH was then measured using a LAQUA-TWIN-11 pH Meter (Horiba Scientific, Kyoto, Japan) following the manufacturers protocol.

Soil C and N concentration was determined by a flash elemental analyzer (Thermo Finnigan Flash EA 1112, ThermoFisher Scientific, Waltham, USA). Soil P concentration was determined by a segmented flow analyzer (SEAL AA3 HR AutoAnalyse, SEAL Analytical Ltd, Southampton, UK), all C/N/P analyses done at UiO.

Total soil ergosterol concentrations (mg g⁻¹ DW) was measured using a modified protocol of Davey et al. (2009). Approximately 200 mg of each soil sample was mixed with 7 ml 3M KOH in MeOH, vortexed and sonicated in a 70 °C ultrasonic water bath in darkness for 90 min. The samples were then centrifuged at approximately 16.400 g for 15 min and the supernatants mixed with 2 ml purified water in new tubes. Then 5 ml hexane was added and vortexed. The hexane phase was collected after the two phases divided. The hexane step was repeated twice. Both extracts were collected in one vial and evaporated to drvness. before being dissolved in 500 µl MeOH. The extracts were analysed for total ergosterol content using HPLC (Agilent Series 1200, Agilent Technologies, Waldbronn, Germany). Ergosterol was separated using a reversed

phase ODS ultrasphere column (250 mm × 4.6 mm; particle size 5 μ m), with MeOH as the mobile phase. Ergosterol absorbtion was detected at 280 nm and identified by cochromatography at a commercial standard (Sigma, St. Louis, USA). Ergosterol measurements were done at NMBU (Norges miljø- og biovitenskapelige Universitet).

Molecular methods

Two 3 mm tungsten carbide beads were added to each 2 ml Eppendorf tube containing roots in 600 µl CTAB, or 600 µl soil/CTAB sludge (both roots and soil were processed using the same protocol) and these were then grinded using TissueLyser II (Qiagen, Hilden, Germany) for one min at 25 Hz, two times for each tube. After grinding the roots, the samples were incubated for 30 minutes at 65 °C. Once cooled to room temperature, 600 µl chloroform was added to each tube and the solution was mixed with a vortex. The tubes were then centrifuged at 13 200 rpm in order for the layers to separate. 400 µl of the upper layer was transferred over to tubes containing 400 µl isopropanol (taken straight out of a -20 °C freezer). These tubes were inverted several times and the mixture was allowed to sit for 1 hour or more for the DNA to precipitate. These tubes were then centrifuged at 13 000 g for 10 minutes in order to make a compact DNA pellet. The supernatant was discarded and the DNA was eluted in 200 µl EZNA elution buffer. Cleanup of the DNA pellet was done with E.Z.N.A.® Soil DNA Kit, following the manufacturer's protocol (Omega Bio-tek, Norcross, USA). Each session of extraction consisted of 23 samples plus one extraction negative.

Technical replicates and mock communities were introduced in the PCR step for guality control. Due to limited space, the extraction negatives were amplified separately and checked for DNA using 1% agarose gel. The ITS1 region of rDNA was targeted using ITS-1F (forward) and ITS1 (reverse) primers (White et al. 1990, Gardes and Bruns 1993). All primers were tagged with molecular identifiers for retrieval in downstream bioinformatics. Each PCR reaction consisted of 1 µl DNA template and 24 µl master mix: 15.7 µl milli-Q H₂O, 2.5 µl GoldBuffer, 2.5 µl GoldMgCl, 0.2ul 25nmol dNTP, 1 µl 20 ng/ml BSA, 0.125 µl AmpliTaq Gold, 1 µl 10 µmol forward primer and 1 µl 10 umol reverse primer. Ten samples amplified

poorly after two tries and were them amplified using the same mastermix but with 3 µl DNA template instead of 1 µl. PCR reactions for ITS1 were run with initial denaturation at 95 °C for 5 min. followed by 32 cycles of denaturation at 95 °C for 30 sec, primer annealing at 55 °C for 30 sec and elongation at 72 °C for 1 min. An elongation step was included after the cycles at 72 °C for 7 min, before cooling down to 4 °C. Two PCR negatives, one mock community and three technical replicates were done on each plate of 96 samples. Each PCR product was controlled for positive amplification with gel electrophoresis using a 1 % agarose gel, before individual clean-up and purification of the amplicons with ZR-96 DNA Clean & Concentrator-5 kit (Zymo Research, California, USA). DNA concentrations were measured using QUBIT and pooled to equimolar concentrations into two pools of 30 µl with at least 500 ng total DNA in each. Each pool was cleaned and concentrated with DNA Clean & Concentrator-5 (Zymo Research, California, USA). The two pools were sequenced using Illumina MiSeq paired-end sequencing at Fasteris (Geneva, Switzerland).

Bioinformatics

All bioinformatics was performed on the SAGA computer cluster located at NTNU Trondheim. The paired-end forward and reverse sequences were demultiplexed with simultaneous primer removals using CUTADAPT (Martin, 2011), allowing no mismatch with primer tags and a minimum overlap between forward and reverse primer of 26bp. Minimum length of 100bp per sequence after matching was set and no indels permitted. Further processing was done using the DADA2 pipeline (Callahan et al. 2016) in the R statistical environment (R Core Team (2020)) for dereplication and error correction. To account for length variability in ITS1 BAND_SIZE was set to 32 and maxEE=c(2,2) allowing two errors in the overlapping sequences for each direction. The forward and sequences were then merged. reverse Minimum 50 nucleotide overlap was set in order to merge sequences. This was used to construct an amplicon sequence variant (ASV) table of the ITS1 sequences that was checked for chimeras which were removed. The ASVs were further clustered into operational taxonomic units (OUTs) at 97% similarity using VSEARCH (Rognes et al. 2016) due to high interspecific variability inn ITS1. Finally, LULU post clustering curation (Frøslev et al. 2017) with default setting was performed on the ASV table to correct for over-splitting of OTUs.

Taxonomic annotation was performed by blasting the ITS1 sequences against UNITE (Nilsson et al 2018). In order to make sure each OTU had a meaningful taxonomy the search was set to return the top five hits for each OTU and a threshold for query coverage was set to 80%. Of the 813 OTUs, 679 were returned with a taxonomic annotation and the remaining 134 OTUs without any hits were removed from the data. These hits were then further curated in R (R Core Team (2020)). For two of the OTU's all the top five hits from UNITE were unidentified and the taxonomic assignment was kept as "Fungi sp.". For the remaining 677 the best hit with a known taxonomic identity (i.e. the first hit that did not return "fungi_sp.") was chosen based on identity score unless there was ambiguity at a high taxonomic level. Nine OTUs had ambiguity at the Phylum level and these were curated manually.

Three samples were lost in the quality-filtering steps, two of these were PCR negatives and the third was a real sample (sample id: 6T3). A further seventeen samples were dropped during rarefying due to low number of reads (< 1000 total reads), where two of these were PCR negatives. Two samples containing mock communities were also removed before rarefying. The remaining samples were rarefied to the lowest sample read number (2807 reads) using the *rrarefy* function in the R package vegan (Oksanen et al. 2020). After this, a functional annotation was done by matching the taxonomic output against the FUNGuild database (Nguyen et al. 2016) using the python scripts provided on the FUNGuild github pages: https://github.com/UMNFuN/FUNGuild.

These functional annotations were further curated into categories follows: as "Ectomycorrhizal", "Root Associated Fungi", "Arbuscular Mycorrhizal", "Plant Pathogen", "Animal Pathogen", "Saprotroph", "Endophyte", "Lichen", "Chytrid", "Rozellomycota", "Yeast". OTUs where the taxonomic assignment was not of high enough certainty (e.g Helotiales sp) or the taxon has an uncertain ecology (e.g. Archaeorhizomvcetes) were placed in "Undefined. The final rarefied and curated OTU table consisted of 138 samples with 562 OTUs

with taxonomic and functional assignment (Supplementary Table 1).

Statistical analysis

All statistical analysis were done in the R 4.0.3 environment (R Core Team (2020)). I used the packages used are *vegan* (Oksanen et al. 2020) for rarefaction, ordination and diversity measures, and *phyloseq* (McHurdie and Holmes 2013) for handling of taxonomy tables. I used *tidyverse* (Wickham et al. 2019) for graphical presentation. All variables used for statistical analysis were zero-skewness transformed and standardised.

Species composition was analysed with global non-metric multidimentional scaling using the untransformed rarefied read numbers (GNMDS) with settings recommended in Liu et al. (2008). Further visualization of the species composition was done using the tax glom function in phyloseg to gather all the OTUs at the order and guild levels and then I used aggregate() to sum the number of reads for each order. These were ordered in a descending manner and the top 15 were kept while all the rest were collapsed into "Other" for easier visualization of bar graphs.

To analyse how the seedlings responded to the different soil-communities the content of limiting nutrients (N and P), partly supplied by rootsymbionts, in the shoot, as well as the weight of seedling at the end of the experiment were used as response variables. The final list of response variables are: mgN in shoot, mgP in shoot and total fresh-weight of the seedling. In addition, change of C and ergosterol content in the soil was chosen as soil responses. These responses were modelled using forward model selection with a decrease in BIC (k = log(n)) as a criterion for adding complexity to the model using the addterm() function from the package MASS (Venables and Ripley 2002). Models were then cross-validated with caret (Kuhn 2008) using the leave-one-out method to test for model accuracy. Tukey Honest Significant Difference (Tukey HSD) tests were used in addition to analysis of variance (ANOVA) to test for differences in response between soil types and temperature treatments.

Results

Fungal community in soil

The ordinations show clearly differentiated fungal communities between the soil types and no effect within groups of temperature treatments (Fig. 2A). The proportion of reads belonging to each order showed only small differences between the temperature treatments within the soil types (Fig. 3). Ascomycetes dominated the alpine soils, while the lowland soils were more heterogeneous (Fig. 3). The dominant group in the soil samples were Archaeorhizomycetales, 57% of the rarefied reads from the soil samples belonged to this group, represented with 41 OTUs (Table S2). In the alpine and mixed soils, Archaeorhizomycetales had a higher relative abundance than all the other groups combined. Moreover, in the alpine dry soils more than 90% of the reads belonged to this group (Fig. 3). Mortierellales was the second largest group, with 13% of the rarefied reads across all soil samples. This order in Mucoromycotina were present in a similar proportions in all pots except the lowland dry soil, where it was the second largest order. 7% of the rarefied reads belonged to an order of basidiomycete yeasts, Filobasidiales, represented with 3 OTUs. Neither of these groups had any notable presence in the roots. Only 3.5% and 2.8% of the rarefied reads belonged to Agaricales and Helotiales respectively, in contrast to these groups' dominance in the roots (Fig. 3). A full summary of all orders are presented in supplementary table S2.

Fungal community in roots

The ordinations show that the fungal community in the roots differ between soil types, but show no clear effect of temperature (Fig. 2B). Temperature had some effects on the relative proportion at the order level. In general, the basidiomycetes were most abundant in the warm treatments, although the lowland dry roots deviate from this. The most marked difference between temperature treatments was found in the roots from the mixed soil. Ascomycetes dominated in the mixed+cold roots while basidiomycetes, mainly Telephorales, dominated in the mixed+warm roots. The plants in the lowland soils and the mixed+warm treatment also had a higher abundance of ECM fungi than the plants from the alpine soils and mixed+cold (Fig. S1). The

plants in the alpine soils have fewer ECM fungi and a higher proportion of saprotrophs, endophytes and "Unidentified" (Fig. 3, Fig. S1). Root-associated-Helotiales (48% of the rarefied reads) were present in all the different soil types and were dominant in roots from alpine soils and in the mixed+cold treatment. The most abundant Helotiales OTUs in roots from the alpine soils were *Phialocephala sp.* (OTUs 200 and 436) and *Helotiales sp.,* represented with 13 OTUs, of which only 1 was shared between both alpine dry and wet soils (OTU444). Three

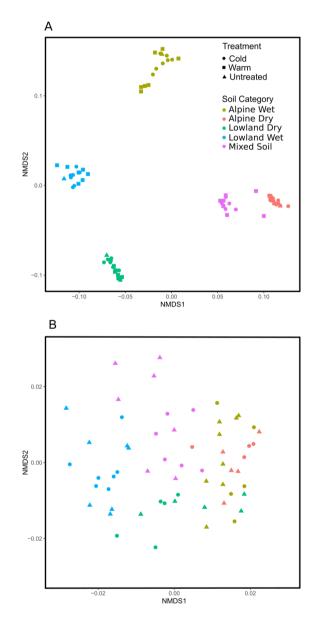


Figure 2: GNMDS ordination of the fungal community from soil in pots containing Betula pubescens (A) and seedling roots (B) after three months of temperature treatment. Soil categories are shown with seperate colors and treatments are shown with seperate symbols

OTUs with affinity towards Pezoloma ericae was represented in the alpine dry soil (OTUs 76, 67 and 19), and was absent from the roots in alpine wet soils. Acephala sp. was was present in both dry and wet alpine soils with one OTU (OTU404). Some saprotrophic Helotiales present in the roots were also (e.a. Hyaloschypha sp., OTUs 85, 79 and 27). Some important basidiomycete OTUs in the roots from alpine soils had affinity towards Telephora terrestris Ehrh. :Fr (OTU153, only in alpine wet), Hymenogaster sp. (OTU6), Russula sp. (OTU102, only in alpine dry), Serendipita sp. (OTU373) and Sebacinales sp. (OTU353). The two OTUs with affinity towards Sebacinales and Serendipita were most common in alpine wet soils. Pots with lowland soil contained more basidiomycetes in the roots (Fig 3). Agaricales was the largest basidiomycete order (26% of the rarefied reads) and 44% of the Agaricales reads belong to just one OTU (OTU29) with affinity to the ECM fungi Naucoria bohemica (synonym to Alnicola bohemica (Velen) Kühner). Other ECM fungi in the lowland roots include Laccaria (OTUs 182, 208), T. terrestris (OTU153), Hymenogaster sp. (OTUs 33, 141, 254, 380). Ascomycete genera in the lowland roots include Phialocephala sp. (OTU200),

Acephala sp. (OTU404), several Helotiales sp. and Cenococcum geophilum Fr. (OTU248).

Diversity

The observed fungal richness differed markedly between the soil and roots (Fig. 4). Highest richness was seen in the lowland wet and the mixed soils, with no marked difference between temperature treatments. The soil fungal richness was lowest in the alpine dry soils, and this was the only soil type to deviate significantly from every other soil type (Tukey HSD, p < 0.05, Table S1). Moreover, the lowland wet soils, being more intermediate in richness, differed significantly from the lowland dry and from the mixed soils (p < 0.05). All other pairwise comparisons were non-significant. For the root fungal richness, the only significant pairwise differences were between lowland wet and both alpine drv and alpine wet (TukevHSD. p < 0.05, Table S3). There were no significant differences between temperature treatments on the richness, neither in the soil, nor in the roots (Table S3). The beta diversity within each category was higher in the roots (Fig. 4). In some cases (mixed soil plants) the beta diversity index was close to 1, meaning that

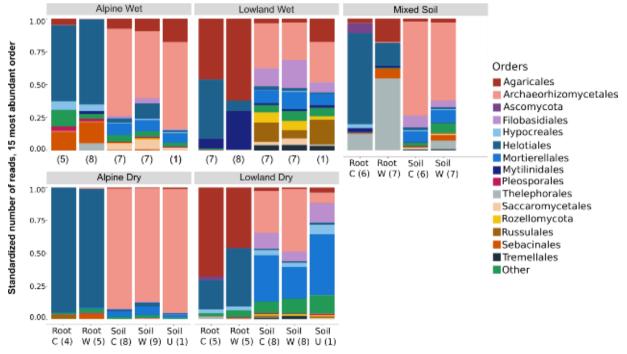


Figure 3: Bargraph of the relative abundance of the 15 most abundant fungal orders found in Betula pubescens roots and soil samples from their pots after three months of experimental temperature treatment. Roots and soil from the cold (C) and warm (W) treatment are placed next to each other within each soil category in addition to one untreated soil sample (U) taken from the homogenized soil from each location before the experiment started. Number of samples in parenthesis.

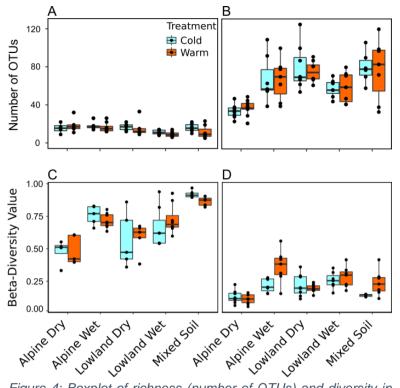


Figure 4: Boxplot of richness (number of OTUs) and diversity in an experimental set up using Betula pubescens seedlings under different temperature treatments. A) Observed richness in roots, B) Observed richness in soil, C) Beta-diversity values of roots, D) Beta-diversity values in soil. Different treatments are shown with different colors, blue for cold and orange for warm. Each individual sample is represented with a dot.

there are few OTUs common across the roots. The compositional heterogeneity in rootcommunities was also evident from the ordination where the roots have an extensive spread within soil types compared to the soil communities (Fig. 2).

Plant responses

Plant weight and content of growth limiting nutrients (N & P), partly supplied through the mycorrhizal network to the shoots was chosen to measure how the plants responded to the different soil communities. Temperature influenced plant growth, with plants from the warm treatment being several times larger than in the cold treatment (Fig. 5). There was also a clear effect of soil type. Both soil type, temperature treatment and an interaction effect between these two were significant for all three responses (ANOVA p<0.05, Table S4). The weight of the seedlings was negatively related to the proportion of Helotiales in the roots (b = -0.27, p < 0.001) and Mortierellales in soil (b = -0.39, p < 0.001), and positively correlated with Agaricales in the roots (b = 0.1, p = 0.051)

(Adjusted R2 = 0.82, Table 1). N and P content largely followed the weight of the plants, with some deviation in the N content of lowland wet+warm plants (Fig. 5). Linear regression models revealed some potential drivers for the difference in nutrient content. Both soil type and temperature significantly related to the N content, increasing in the lowland and mixed soil and in the warm temperature treatment. Higher proportion of Helotiales (b = -0.20. p = 0.004) in the roots, and Hypocreales (b = -0.25, p = 0.013) in the soil related negatively to N content, while increased proportion of Agaricales in the roots positively related to N content (b = 0.20, p = 0.014) (Adjusted R2 = 0.83. Table 1).

Soil type and temperature treatment was significantly related to seedling P content (ANOVA p<0.05, Table S4). The proportion of Helotiales in the roots had a negative relation to P content (b = -0.13, p = 0.08), and the proportion of Agaricales in the roots positively

correlated with seedling P content (b = 0.17, p = 0.09). None of these were significant (at p < 0.05), but they were included in the best model using the BIC criterion for adding variables compared to a model with just soil and temperature as explanatory variables (Adjusted R2 = 0.58, Table 1).

Fungal and soil responses

The fungal response was measured as a change in soil ergosterol content (Fig. 6), used as an approximation for fungal biomass. Change ergosterol content differed in significantly between soil types and temperature treatments (ANOVA, Table S4). Significant differences in treatment combinations were shown for most pairs, except for the different temperature treatments in Alpine Wet, between Alpine Dry+Warm, Lowland Wet+Warm and between Lowland Wet and Mixed Soil at both treatments (Tukev HSD. Table S3). The best linear regression model for change in ergosterol content showed a positive relation with the proportion of

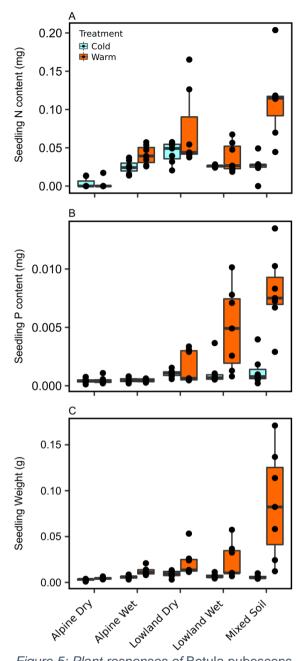


Figure 5: Plant responses of Betula pubescens seedlings after three months of experimental temperature treatment. A) Nitrogen content in seedlings measured in mg, B) Phosphorus content in seedlings measured in mg, C) Freshweight of seedlings measured in g. Different treatments are shown in different colors, blue for cold and orange for warm. Individual plants are represented by dots.

Archaeorhizomycetales (b = 0.52, p < 0.001) and Russulales (b = 0.29, p = 0.061), together with a non-significant increase in soil C content (b= 0.14, p = 0.086) (Adjusted R2 = 0.82, Table 2). On the contrary, the proportion of Helotiales related negatively to the change in ergosterol content (b = -0.42, p = 0.004). Fungal richness in the roots also negatively correlated with the soil ergosterol content (b = -0.22, p = 0.02).

Changes in soil C content was significantly different between both soil type and temperature treatment (Fig. 6, Table S3/S4). In the best model soil C change is positively correlated with N change (b = 0.64, p < 0.001), and the proportions of Helotiales in the roots (b = 0.14, p = 0.005) and Hypocreales in soil (b = 0.24, p = 0.002). Richness in soil (b = -0.23, p = 0.003) and pH (b = -0.30, p = 0.003) were negatively correlated with soil C change (Table S2). The best regression model also includes a non-significant negative effect of proportion of Telephorales in soil (b = -0.12, p = 0.0056) (Adjusted R2 = 0.90, Table 2).

Discussion

The aim of this study was to investigate if the soil fungal community in the low-alpine zone could be a barrier to the establishment of seedlings above the tree line. In order to do this, I planted seedlings of *B. pubescens* in soil from different alpine two environments and cultivated the seedlings under two different temperature treatments. Considering that B. pubescens is dependent on ECM fungi to survive (Ruotsolainen et al. 2009), the expectation was that the fungal community above the TFL would lack the appropriate symbionts for the seedlings to establish and thrive.

Effect of fungal community on seedlings

In the alpine soils, the seedlings were mostly colonized by ascomycetes of the order Helotiales. Helotiales is an ecologically diverse order commonly found in arctic and alpine environments, often forming ericoid mycorrhiza (*Pezoloma ericae* complex). They may also appear as root endophytes (*Phialocephala sp.*) or as ECM (*Acephala sp.*) (Smith and Read 2008, Tedersoo et al. 2009, Walker et al. 2011). Previous studies of alpine fungal diversity show that there are several other ECM genera normally occurring in alpine environments (Gardes and Dahlberg 1996, Thoen et al. 2019, Tonjer et al. preprint), but these were mostly absent from the roots in this study.

The seedlings in the alpine wet category grew better than seedlings in the alpine dry category. The main difference in fungal community between these two types of soil was the occurrence of Sebacinales in the roots of the

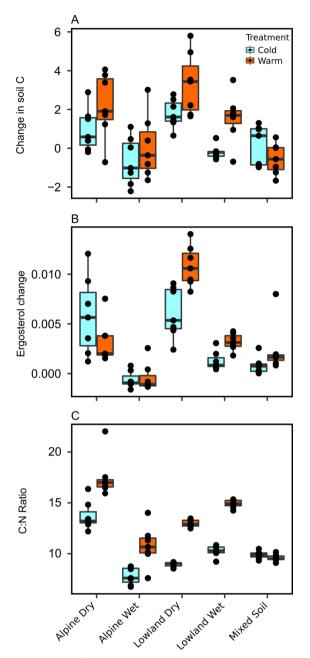


Figure 6: Soil responses after 3 months of experimental temperature treatment.. A) Change in soil carbon, measured as change in %C content in soil, B) Ergosterol change measured as mg/g soil, C) C:N ratio. Different treatments are shown in different colors, blue for cold and orange for warm. Individual samplesrepresented as dots.

alpine wet seedlings. Sebacinales has been reported as a ubiquitous root symbiont, with species forming either ECM or ERM on a wide range of hosts (Selosse et al 2007, Weiss et al. 2016). Thus, the Sebacinales might act as beneficial symbionts in the wet alpine soils, which could help explain the seedlings' better growth in these pots. The fungal communities found in the roots of B. pubescens from the alpine soils in this study closely resembles the fungal communities found in ericaceous roots from studies of alpine ericoid plants (Kjøller et al. 2009, Walker et al. 2011). The plants that were investigated by Kjøller et al (2010) and Walker et al (2011) include Empetrum nigrum L. and Vaccinium vitis-idea L., and these were abundant at the alpine sites used in this study (personal observation). The typical ericoid-associated Helotiales found in alpine and tundra heathlands show little to no host specificity (Walker et al. 2011, Kjøller et al. 2010). It is therefore likely that these are opportunistic colonizers of roots and as such may infect the roots of *B. pubescens*. Walker et al (2011) suggest that different fungal strains from Helotiales may form either ERM or ECM depending on host. ERM fungi are efficient in taking up organically bound N in the nutrient poor alpine environments (Smith and Read 2008), but they may be less efficient in transferring this to an unfamiliar host. This may explain the trend shown in the models where abundance of Helotiales in roots showed a negative correlation with content of N and P in seedlings, as well as a negative impact on seedling size.

The effect of temperature on the root fungal community was strongest in the mixed soils. Fungi from Thelephorales dominate the roots in the warm treatment. This is faster growing fungi with more extensive mycelium than what is common in Helotiales (Smith and Read 2008). All the largest plants had Thelephorales sp. as the root symbiont with highest proportion of reads. It is possible that the increased plant productivity due to the higher temperatures has given the symbionts from Thelephorales a competitive advantage over the slower growing Helotiales. This may have allowed the faster growing Thelephorales to take over the root system, leading to a positive feedback on both plant and fungal growth. This can explain the extreme differences in plant size from the mixed+warm soil type. This is in line with what Pickles et al (2012) discus, where they predict an increase in temperature could drive functional shifts in ECM community composition.

Variables	Coefficient: mgN	P-value: mgN	Coefficient: mgP	P-value: mgP	Coefficient: weight	P-value: weight
Intercept	0.154 (0.076)	0.050	0.543 (0.090)	0.000	0.850 (0.067)	0.000
SoilAlpine Wet	0.469 (0.068)	0.000	0.028 (0.063)	0.660	0.136 (0.037)	0.001
SoilLowland Dry	0.517 (0.110)	0.000	-0.013 (0.097)	0.891	0.206 (0.069)	0.005
SoilLowland Wet	0.201 (0.090)	0.031	0.050 (0.100)	0.617	0.028 (0.058)	0.633
SoilMixed Soil	0.543 (0.072)	0.000	0.244 (0.073)	0.002	0.191 (0.043)	0.000
TempWarm	0.142 (0.033)	0.000	0.083 (0.038)	0.032	0.141 (0.021)	0.000
Helotiales_root	-0.197 (0.064)	0.004	-0.134 (0.075)	0.080	-0.273 (0.043)	0.000
Agaricales_root	0.202 (0.078)	0.014	0.171 (0.092)	0.071	0.106 (0.052)	0.051
Hypocreales_soil	-0.252 (0.097)	0.013	NA	NA	NA	NA
Mortierellales_soil	NA	NA	NA	NA	-0.397 (0.103)	0.000

Table 1: Model coefficients and p-values for plant response regression models. . Standard errors in parenthesis next to coefficients.

Fungal community and ergosterol content in soil

The order Archaeorhizomycetales dominate the alpine and in the mixed soils, with a slight increase in proportion of reads in the cold treatment. This group of fungi belong to the subphylum Taphrinomycotina in Ascomycota and often found associated with roots in soil samples from a wide range of habitats (Rosling et al. 2011). Archaeorhizomycetales are not considered symbiotic, but rather a part of the rhizosphere where they coexist with symbiotic fungi in the soil and even inside root tips (Rosling et al. 2011), although very little is known about their ecology. Their dominance in the soil may be connected to their seasonality, considering all the sampling was done in late summer. Archaeorhizomycetales are reported to be dominant during the summer and nearly absent at other times of the year in a tundra ecosystem (Schadt et al. 2003).

There were no major changes in the soil fungal community between the temperature treatments. There were, however, an effect of temperature on soil ergosterol content. The increase in ergosterol content is largest in the dry soils regardless of temperature. The only edaphic variable related to an increase in ergosterol is the amount of C in the soil, which was positively correlated, although not significant. The increased amount of C in the soils may be related to plant productivity, as the warm temperature treatments has a positive effect as well.

The proportion of Archaeorhizomycetales was the best explanatory variable for an increase in ergosterol, with a relatively high positive correlation. The proportion of Helotiales in the soil however, has a negative correlation to eraosterol change. It seems that Archaeorhizomycetales thrived in the pots and displaced other groups of soil inhabiting fungi. Rosling (2011) et al. describe Archaeorhizomycetales as being affiliated with root inhabiting fungi and partly dependent on root-derived C compounds, but also exhibiting decomposing abilities. It may be that in a shortterm experimental set-up like this. Archaeorhizomycetales gains a competitive advantage over the root-associated fungi that may be more dependent on root-derived C. The alpine soils differ in the change in ergosterol content, with the alpine wet soils not changing and the alpine dry soils showing an increase in both cold and warm treatments. In the latter soil type, this change is unrelated to the plant growth, as the plants in this soil type barely increased in size throughout the experiment. The change was likely related to decomposition of organic material already present in the soil. Even in the lowland and mixed soils where the seedling grew better, there is only a slight change, if any, in the ergosterol content. However, there is not enough support in these results to discard the null hypothesis for H2, an increase in fungal biomass cannot be explained by increased temperatures alone.

Variables	Coefficient: ErgosterolChange	P-value: ErgosterolChange	Coefficient: CarbonChange	P-value: CarbonChange
Intercept	0.222(0.166)	0.188	0.133(0.074)	0.079
SoilAlpine Wet	-0.051(0.081)	0.532	-0.001(0.067)	0.986
SoilLowland Dry	0.399(0.089)	0.000	0.065(0.072)	0.373
SoilLowland Wet	0.065(0.096)	0.500	0.093(0.053)	0.084
SoilMixed Soil	-0.059(0.062)	0.345	-0.067(0.058)	0.254
TempWarm	0.138(0.037)	0.001	0.192(0.023)	0.000
percC_Soil	0.194(0.110)	0.086	NA	NA
Helotiales_soil	-0.425(0.138)	0.004	NA	NA
Archaeorhizomycetales_soil	0.521(0.129)	0.000	NA	NA
N_OTU_root	-0.219(0.090)	0.020	NA	NA
Russulales_soil	0.209(0.109)	0.061	NA	NA
N_Change	NA	NA	0.640(0.052)	0.000
Telephorales_soil	NA	NA	-0.116(0.059)	0.056
рН	NA	NA	-0.299(0.090)	0.002
Helotiales_root	NA	NA	0.143(0.048)	0.005
Hypocreales_soil	NA	NA	0.235(0.067)	0.002
N_OTU_Soil	NA	NA	-0.227(0.070)	0.003

Table 2: Model coefficients and p-values for the soil ergosterol and soil carbon change models. Standard errors in parenthesis next to coefficients.

Soil carbon and nitrogen

Temperature did have an effect on soil C. In all the soil types, excluding the mixed soils, there was an increase in C content and a higher C:N ratio in the warm treatment. The model for C change showed a positive relationship between root-associated Helotiales and C content. These fungi are often characterized as important for C storage in alpine systems (Clemmensen et al. 2021). The positive relation of temperature on C:N ratio supports the idea that root-associated Helotiales, through symbiotic interactions with the plants, extract N from the soil and deposits C. The opposite trend was seen for the mixed soils, where Thelephorales dominated the roots in the warm treatment and Helotiales in the cold treatment. Here the C:N ratio was much lower and there is less C deposited into the soil. Fungi in the order Thelephorales may have a higher respiration since they form a more extensive mycelia than species from Helotiales (Smith and Read 2008). This may explain the trend in the model where proportion of Telephorales negatively relates to soil C.

The main goal of this study was to investigate if the fungal community above the TFL could act as a biotic barrier to the establishment of trees and as such slow the advance of trees, even if the temperature in alpine zones increase. While the second hypothesis (H2) was not supported, I suggest that data from this experiment supports the first hypothesis (H1), at least for the establishment of *B. pubescens*. The fungal community in the roots of seedlings from the alpine soils were very similar to communities found in ericaceous roots collected from alpine habitats. Even though the fungi manage to infect the roots of this ECM plant, they do not seem to exchange nutrients as effectively as the symbionts found where *B. pubescens* naturally occur. While there are indications of nitrogen exchange, the growth rate and both N and P uptake were negatively correlated with proportions of alpine fungal symbionts. The fungal community in the TFL gradient shifts into a dominance of mainly ERM fungal groups only a short distance above the TFL (Clemmensen et al. 2021, Tonjer et al. pre-print). The fungal community above the TFL may thus act as a biotic barrier to the establishment of B. pubescens above the TFL, regardless of temperature.

Conclusions

References

Alexander JM, Chalmandrier L, Lenoir J, Burgess TI, Essl F, Haider S, Kueffer C, McDougall K, Milbau A, Nuñez MA, Rabitsch W, Rew LJ, Sanders NJ, Pelissier L. (2018). Lags in the response of mountain plant communities to climate change. *Global Change Biology*. **24**:563–579.

Averill C, Turner BL, Finzi AC. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. *Nature*. **505**:543-545

Averill C, Hawkes CV. (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters. 19:937-947

Brundrett MC, Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. *New Phytologist.* **220**:1108-1115

Bryn A, Potthoff K. (2018). Elevational treeline and forest line dynamics in Norwegian mountain areas- a review. Landscape Ecology. **33**:1225-1245

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. (2016) DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*. **13**:581-583.

Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. (2013). Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. *Science*. **339**:1615-1618

Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015). Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. *New Phytologist* **205**:1525-1536.

Clemmensen KE, Durling MB, Michelsen A, Hallin S, Finlay RD, Lindahl BD. (2021) A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. *Ecology Letters*. Epub ahead of print. PMID: 33754469.

Davey ML, Nybakken L, Kauserud H, Ohlson M. (2009). Fungal biomass associated with the phyllosphere of bryophytes and vascular plants. *Mycological Research*. **113**:1254–1260.

Dalen L, Hofgaard A (2005) Differential Regional Treeline Dynamics in the Scandes Mountains. Arctic, Antarctic, and Alpine Research. 37:284-296

Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau M-L, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L and Williams NM. (2017). The emerging science of linked plant–fungal invasions. *New Phytologist*, **215**:1314-1332.

Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, Hansen AJ. (2017) Algorithm for postclustering curation of DNA amplicon data yields reliable biodiversity estimates. *Nature Communication* **8**:1188

Gardes M, Bruns TD. (1993), ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. *Molecular Ecology*, **2**:113-118

Gardes M, Dahlberg A. (1996). Mycorrhizal diversity in arctic and alpine tundra: an open question. *New Phytologist.* **133**:147-157

Hagedorn F, Gavazov K, Alexander JM (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. *Science*. **365**:1119-1123

Hagenbo A, Clemmensen KE, Finlay RD, Kyaschenko J ,Lindahl BD, Fransson P, Ekblad A. (2017) Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a *Pinus sylvestris* chronosequence. *New Phytologist.* **214**:424-431

Harsch, MA, Hulme PE, McGlone MS, Duncan RP. (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. *Ecology Letters*, **12**:1040-1049.

Kjøller R, Olsrud M, Michelsen A. (2010). Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. *Fungal Ecology*. **3**:205-214

Kuhn M. (2008). Building Predictive Models in R Using the caret Package. *Journal of Statistical Software*, **28**:1-26.

Liu H, Økland T, Halvorsen R, Gao J, Liu Q, Eilertsen O, Bratli H. (2008). Gradients analyses of forests ground vegetation and its relationships to environmental variables in five subtropical forest areas, S and SW China. *Sommerfeltia*, **32**:3-196

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, **17**:10-12.

Mason PA, Last FT, Pelham J, Ingelby K. (1982). Ecology of some fungi associated with an ageing stand of birches (*Betula pendula & B. pubescens*). Forest Ecology and Management. **4**:19-39

McMurdie PJ, Holmes S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS ONE* **8**:e61217

Meineri E, Spindelböck J, Vandvik V. (2013). Seedling emergence responds to both seed source and recruitment site climates: a climate change experiment combining transplant and gradient approaches. *Plant Ecology.* **214**:607-619.

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Ecology* **20**:241–248.

Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. (2018). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. *Nucleic Acids Research* **47**:D259-D264

Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. (2020). vegan: Community Ecology Package. R package version 2.5-7. <u>https://CRAN.R-project.org/package=vegan</u>

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte, S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O'Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner GK, Pörtner HO, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert, P, van Vuuren D, van Ypserle JP. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / R. Pachauri and L. Meyer (editors) , Geneva, Switzerland, IPCC, 151 p., ISBN: 978-92-9169-143-2

Pickles B, Egger KN, Massicotte HB, Green S. (2012). Ectomycorrhizas and climate change. *Fungal Ecology*. **5**:73-84

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>

Rannow S. (2013). Do shifting forest limits in south-west Norway keep up with climate change? *Scandinavian Journal of Forest Research*. **28**:574-580

Rognes T, Flouri, T, Nichols B, Quince C, & Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. *PeerJ*, **4**:e2584

Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY. (2011). Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. *Science*. **333**:876-879

Ruotsolainen AL, Markkola AM, Kozlov MV. (2009). Mycorrhizal colonisation of mountain birch (*Betula pubescens* ssp. *czerepanovii*) along three environmental gradients: does life in harsh environments alter plant-fungal relationships? *Environmental Monitoring and Assessment.* **148**:215–232

Schadt CW, Martin AP, Lipson DA, Schmidt SK. (2003). Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils *Science*. **301**:1359-1361

Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M. (2007). Sebacinales are common mycorrhizal associates of Ericaceae. *New Phytologist.* **174**: 864-878

Singh BK, Bardgett RD, Smith P, Reay DS. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. *Nature Reviews Microbiology*. **8**:779-790

Smith SE, Read DJ. (2008). Mycorrhizal Symbiosis, 3rd edn. Academic Press Ltd, London, UK.

Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR. (2018) Global land change from 1982 to 2016. *Nature.* **560**:639-643

Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H. (2009), Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. *Environmental Microbiology*, **11**:3166-3178

Thoen E, Aas AB, Vik U, Brysting AK, Skrede I, Carlsen T, Kauserud H. (2019). A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community. *Mycorrhiza*. **29**:167-180.

Tonjer R, Thoen E, Morgado L, Botnen SS, Mundra S, Nybakken L, Bryn A, Kauserud H. (Pre-print). Expanding forests in alpine regions: space-for-time indicates a corresponding shift in belowground fungal communities.

van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytologist.* **205**:1406-1423

Venables WN, Ripley BD. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0

Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A. (2011), Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. *New Phytologist*, **191**:515-527

Wagg C, Bender SF, Widmer F, van der Heijden MGA. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. *Proceedings of the National Academy of Sciences* **111**:5266–5270

Weiss M, Waller F, Zuccaro A, Selosse MA. (2016). Sebacinales – one thousand and one interactions with land plants. *New Phytologist.* **211**:20-40

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, New York: 315-322

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Francois R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache, SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahasi K, Vaughan D, Wilke C, Woo K, Yutanii H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4: 1686

Zhang N, Wang Z. (2015). 3 Pezizomycotina: Sordariomycetes and Leotiomycetes. In: McLaughlin D., Spatafora J. (eds) Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 7B. Springer, Berlin, Heidelberg: 57-88

Supplementary

Supplementary table 1: OTU Table

	•					
OTU_id	Accession_nr	Phylum	Order	Species	Guild	Reads
OTU24	KF617964	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	56222
OTU200	MF948651	Ascomycota	Helotiales	Phialocephala_sp	Endophyte	31006
OTU29	UDB036669	Basidiomycota	Agaricales	Naucoria_bohemica	Ectomycorrhizal	22999
OTU444	KU516463	Ascomycota	Helotiales	Helotiales_sp	Undefined	18817
OTU322	KC455352	Ascomycota	Helotiales	Helotiaceae_sp	Undefined	13574
OTU58	MG820047	Basidiomycota	Filobasidiales	Solicoccozyma_terricola	Yeast	12359
OTU15	KF617332	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	12284
OTU152	KC686883	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	12225
OTU248	EF634067	Ascomycota	Mytilinidales	Cenococcum_geophilum	Ectomycorrhizal	10151
OTU333	FJ552837	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	8592
OTU537	MN385502	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	8440
OTU373	JX630403	Basidiomycota	Sebacinales	Serendipita_sp	Root Associated Fungi	8135
OTU48	KF617305	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	7795
OTU182	KU685720	Basidiomycota	Agaricales	Laccaria_ohiensis	Ectomycorrhizal	7436
OTU283	KU176263	Basidiomycota	Agaricales	Mallocybe_sp	Ectomycorrhizal	5752
OTU66	KF617655	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	4911
OTU464	DQ182455	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	4849
OTU118	MK331819	Ascomycota	Hypocreales	Ilyonectria_destructans	Plant Pathogen	4739
OTU183	EF434108	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	4160
OTU153	MH310782	Basidiomycota	Thelephorales	Thelephora_terrestris	Ectomycorrhizal	3580
OTU119	KU924614	Basidiomycota	Russulales	Russula_sp	Ectomycorrhizal	3552
OTU33	JQ666552	Basidiomycota	Agaricales	Hymenogaster_sp	Ectomycorrhizal	3495
OTU237	KY102953	Basidiomycota	Filobasidiales	Solicoccozyma_terrea	Yeast	3358
OTU404	KC480052	Ascomycota	Helotiales	Acephala_sp	Ectomycorrhizal	3354
OTU374	KP889951	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	3259
OTU295	MK513845	Mortierellomycota	Mortierellales	Mortierella_clonocystis	Saprotroph	3184
OTU27	HQ850137	Ascomycota	Helotiales	Hyaloscypha_sp	Saprotroph	3156
OTU545	JQ347010	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	3122
OTU473	HM030614	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	2883
OTU495	GU174280	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	2784
OTU270	MG670440	Basidiomycota	Tremellales	Trimorphomycetaceae_sp	Yeast	2745
OTU78	KM504408	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	2464
OTU5	DQ420865	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	2422
OTU185	KY104307	Ascomycota	Saccharomycetales	Nadsonia_commutata	Yeast	2399
OTU305	JF908060	Basidiomycota	Agaricales	Hygrocybe_conica	Root Associated Fungi	2392
OTU480	KF617820	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	2293
OTU500	GU174327	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	2074
OTU497	EU292600	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	2012
OTU578	KU516597	Ascomycota	Pleosporales	Pleotrichocladium_opacum	Undefined	1932

OTU498	GU174419	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	1917
OTU298	MH790415	Mortierellomycota	Mortierellales	Mortierella_alpina	Saprotroph	1895
OTU293	AF504876	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	1830
OTU579	KY031654	Ascomycota	Ascomycota	Pezizomycotina	Undefined	1774
OTU225	MK272957	Basidiomycota	Trichosporonales	Apiotrichum_porosum	Saprotroph	1750
OTU380	UDB0778583	Basidiomycota	Agaricales	Hymenogaster_sp	Ectomycorrhizal	1672
OTU46	MG938353	Ascomycota	Saccharomycetales	Nadsonia_starkeyi-henricii	Yeast	1639
OTU401	LC206544	Ascomycota	Helotiales	Varicosporium_elodeae	Saprotroph	1616
OTU79	KF000612	Ascomycota	Helotiales	Hyaloscypha_sp	Saprotroph	1478
OTU32	HQ211704	Ascomycota	Helotiales	Helotiales_sp	Undefined	1376
OTU89	UDB036836	Basidiomycota	Agaricales	Hygrocybe_subpapillata	Root Associated Fungi	1335
OTU124	KF617367	Basidiomycota	Russulales	Russula_sp	Ectomycorrhizal	1215
OTU385	FM999517	Ascomycota	Helotiales	Meliniomyces_sp	Root Associated Fungi	1186
OTU235	KP309847	Ascomycota	Pezizales	Byssonectria_fusispora	Saprotroph	1181
OTU141	UDB032933	Basidiomycota	Agaricales	Hymenogaster_sp	Ectomycorrhizal	1180
OTU136	MK793704	Ascomycota	Capnodiales	Cladosporium_sp	Saprotroph	1176
OTU85	KF617631	Ascomycota	Helotiales	Hyaloscypha_sp	Saprotroph	1173
OTU303	MK163719	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	1133
OTU355	MG670441	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	1124
OTU566	DQ093782	Ascomycota	Helotiales	Helotiales_sp	Undefined	1073
OTU368	KF617953	Ascomycota	Helotiales	Helotiales_sp	Undefined	1004
OTU246	MF228807	Ascomycota	Geoglossales	Trichoglossum_hirsutum	Undefined	998
OTU95	KY687535	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	958
OTU7	KF617626	Ascomycota	Helotiales	Helotiales_sp	Undefined	954
OTU523	AB520435	Basidiomycota	Platygloeales	Eocronartium_sp	Plant Pathogen	908
OTU381	HM136654	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	899
OTU465	GU174346	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	876
OTU437	GU366746	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	859
OTU431	FJ552837	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	838
OTU281	AF504874	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	835
OTU143	KF617964	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	823
OTU574	MG670434	Basidiomycota	Basidiomycota	Basidiomycota_sp	Undefined	817
OTU460	GU174419	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	749
OTU176	KC222850	Rozellomycota	GS11	GS11_sp	Rozellomycota	745
OTU254	KT220262	Basidiomycota	Agaricales	Hymenogaster_sp	Ectomycorrhizal	724
OTU63	KF617495	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	707
OTU359	KP257105	Basidiomycota	Agaricales	Camarophyllopsis_sp	Saprotroph	700
OTU302	HQ021781	Mortierellomycota	Mortierellales	Mortierellaceae_sp	Saprotroph	699
OTU3	HQ211824	Ascomycota	Helotiales	Neobulgaria_sp	Saprotroph	653
OTU6	KT220262	Basidiomycota	Agaricales	Hymenogaster_sp	Ectomycorrhizal	651
OTU474	GU174327	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	625
OTU130	MN385496	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	624

OTU145	FJ552837	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	598
OTU353	KJ482669	Basidiomycota	Sebacinales	Sebacinales_sp	Root Associated Fungi	597
OTU30	KT728231	Basidiomycota	Trechisporales	Trechisporales_sp	Saprotroph	593
OTU86	JQ666346	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	592
OTU26	JQ666484	Rozellomycota	GS11	GS11_sp	Rozellomycota	578
OTU484	GU174345	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	575
OTU134	KU176249	Ascomycota	Helotiales	Helotiales_sp	Undefined	523
OTU447	GU174326	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	523
OTU263	KF291225	Basidiomycota	Agaricales	Hygrocybe_ingrata	Root Associated Fungi	512
OTU102	KU176242	Basidiomycota	Russulales	Russula_sp	Ectomycorrhizal	506
OTU451	GQ160018	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	500
OTU41	MK614832	Ascomycota	Sordariales	Sordariales_sp	Undefined	487
OTU421	KX611562	Ascomycota	Helotiales	Leohumicola_sp	Undefined	440
OTU23	GU174302	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	436
OTU65	KP889615	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	410
OTU82	JF908054	Basidiomycota	Agaricales	Hygrocybe_ceracea	Root Associated Fungi	377
OTU585	JQ666442	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	368
OTU17	HQ211778	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	365
OTU198	KJ742400	Basidiomycota	Russulales	Lactarius_flexuosus	Ectomycorrhizal	350
OTU4	KP889411	Basidiomycota	Leucosporidiales	Leucosporidiales_sp	Undefined	347
OTU8	HM164562	Ascomycota	Helotiales	Hyaloscypha_finlandica	Saprotroph	339
OTU178	KF617342	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	333
OTU375	JQ666648	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	331
OTU343	KF617277	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	329
OTU208	MG076771	Basidiomycota	Agaricales	Laccaria_tortilis	Ectomycorrhizal	319
OTU67	KF660568	Ascomycota	Helotiales	Pezoloma_ericae	Root Associated Fungi	313
OTU229	KU176321	Ascomycota	Helotiales	Tetracladium_sp	Undefined	305
OTU299	MG076773	Ascomycota	Helotiales	Cadophora_sp	Endophyte	301
OTU461	KF800622	Basidiomycota	Polyporales	Polyporales_sp	Undefined	298
OTU547	FJ552797	Ascomycota	Helotiales	Helotiales_sp	Undefined	286
OTU76	KM504506	Ascomycota	Helotiales	Pezoloma_ericae	Root Associated Fungi	285
OTU22	KY687581	Rozellomycota	GS03	GS03_sp	Rozellomycota	278
OTU274	MF615035	Ascomycota	Hypocreales	Nectriaceae_sp	Undefined	257
OTU576	JF449733	Basidiomycota	Auriculariales	Auriculariales_sp	Saprotroph	253
OTU197	JF340267	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	253
OTU80	FN610999	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	253
OTU301	MH855304	Ascomycota	Hypocreales	Metarhizium_carneum	Animal pathogen	245
OTU513	KF617898	Ascomycota	Helotiales	Neobulgaria_sp	Saprotroph	242
OTU179	KY977601	Ascomycota	Thelebolales	Pseudogymnoascus_sp	Undefined	242

OTU103	JX270369	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	240
OTU470	MF614983	Ascomycota	Dothideomycetes	Dothideomycetes_sp	Undefined	235
OTU106	DQ102685	Basidiomycota	Agaricales	Cortinarius_sp	Ectomycorrhizal	232
OTU304	KF617753	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	226
OTU472	GU174280	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	223
OTU330	KY031669	Ascomycota	Helotiales	Halenospora_sp	Undefined	214
OTU2	HQ212080	Basidiomycota	Agaricales	Clavaria_sphagnicola	Undefined	208
OTU452	JQ346944	Ascomycota	Helotiales	Helotiales_sp	Undefined	206
OTU548	GU174280	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	193
OTU242	JQ666691	Ascomycota	Chaetothyriales	Exophiala_sp	Undefined	190
OTU331	AY515360	Ascomycota	Sordariales	Podospora_ellisiana	Saprotroph	189
OTU91	KF617495	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	187
OTU276	MG670412	Mortierellomycota	Mortierellales	Mortierellaceae_sp	Saprotroph	185
OTU407	KF617857	Ascomycota	Chaetothyriales	Chaetothyriales_sp	Undefined	182
OTU218	JF519259	Ascomycota	Helotiales	Alatospora_acuminata	Undefined	182
OTU582	KF296841	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	182
OTU550	HM037687	Basidiomycota	Trechisporales	Trechisporales_sp	Saprotroph	178
OTU430	JF691019	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	176
OTU586	HQ211860	Basidiomycota	Basidiomycota	Basidiomycota_sp	Undefined	171
OTU411	KC222855	Rozellomycota	GS11	GS11_sp	Rozellomycota	161
OTU253	KM359781	Entorrhizomycota	Entorrhizales	Entorrhiza_aschersoniana	Plant Pathogen	159
OTU448	MK285924	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	157
OTU195	MN082023	Basidiomycota	Agaricales	Entoloma_conferendum	Root Associated Fungi	152
OTU350	KP889973	Ascomycota	Chaetothyriales	Cladophialophora_sp	Undefined	152
OTU81	KC455351	Ascomycota	Helotiales	Helotiales_sp	Undefined	152
OTU213	HG936871	Ascomycota	Sordariales	Chaetomiaceae_sp	Undefined	151
OTU573	AB520435	Basidiomycota	Platygloeales	Eocronartium_sp	Plant Pathogen	139
OTU13	KP889862	Basidiomycota	Russulales	Russula_sp	Ectomycorrhizal	139
OTU424	KF617753	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	138
OTU205	UDB036830	Basidiomycota	Agaricales	Hygrocybe_salicis-herbaceae	Root Associated Fungi	138
OTU189	LC133885	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	130
OTU557	JX270340	Ascomycota	Thelebolales	Pseudeurotium_sp	Undefined	129
OTU268	FJ475766	Ascomycota	Chaetothyriales	Cladophialophora_sp	Undefined	127
OTU154	AM292198	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	124
OTU408	KX611550	Ascomycota	Helotiales	Helotiaceae_sp	Undefined	123
OTU38	KF617416	Basidiomycota	Trechisporales	Luellia_sp	Saprotroph	119
OTU204	KC222855	Rozellomycota	GS11	GS11_sp	Rozellomycota	116
OTU409	MK394102	Ascomycota	Saccharomycetales	Candida_sake	Yeast	115
OTU478	GU174419	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	114
OTU172	HF675488	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	114
OTU100	KP257112	Basidiomycota	Agaricales	Clavaria_falcata	Undefined	113
OTU233	KJ938775	Basidiomycota	Agaricales	Inocybe_xanthomelas	Ectomycorrhizal	113

OTU216	MN450634	Ascomycota	Hypocreales	Fusicolla_merismoides	Undefined	113
OTU53	KF212327	Ascomycota	Hypocreales	Metapochonia_suchlasporia	Undefined	111
OTU165	MK304328	Ascomycota	Hypocreales	Tolypocladium_album	Animal pathogen	110
OTU151	KY103483	Basidiomycota	Filobasidiales	Goffeauzyma_gastrica	Yeast	109
OTU514	KF359562	Ascomycota	Helotiales	Helotiaceae_sp	Undefined	107
OTU393	HQ212138	Ascomycota	Helotiales	Helotiales_sp	Undefined	106
OTU211	JF300382	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	105
OTU240	KY977594	Ascomycota	Helotiales	Pezicula_melanigena	Plant Pathogen	104
OTU180	FJ553081	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	103
OTU94	MK808781	Ascomycota	Hypocreales	Trichoderma_sp	Undefined	102
OTU496	FJ552802	Basidiomycota	Agaricales	Hygrophoraceae_sp	Root Associated Fungi	101
OTU511	AM113716	Ascomycota	Lecanoromycetes	Lecanoromycetes_sp	Lichen	101
OTU25	UDB037688	Basidiomycota	Agaricales	Camarophyllopsis_schulzeri	Saprotroph	99
OTU257	MK179256	Ascomycota	Eurotiales	Penicillium_canescens	Saprotroph	98
OTU471	GU174395	Basidiomycota	Agaricales	Clavaria_sp	Undefined	96
OTU575	KT728243	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	95
OTU68	FJ553835	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	93
OTU581	AM260828	Entorrhizomycota	Entorrhizomycota	Entorrhizomycota_sp	Plant Pathogen	93
OTU166	GU931771	Ascomycota	Saccharomycetales	Debaryomyces_sp	Yeast	90
OTU520	FJ552797	Ascomycota	Helotiales	Helotiales_sp	Undefined	85
OTU569	MF542269	Glomeromycota	Glomerales	Glomeraceae_sp	Arbuscular Mycorrhiza	84
OTU107	KF617605	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	84
OTU307	KT768315	Ascomycota	Sordariales	Chaetomiaceae_sp	Undefined	83
OTU125	KF617364	Ascomycota	Helotiales	Helotiales_sp	Undefined	81
OTU485	JX042929	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	79
OTU389	MK958563	Ascomycota	Hypocreales	Tolypocladium_cylindrosporum	Animal pathogen	78
OTU190	KC965937	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	76
OTU215	KF206525	Olpidiomycota	Olpidiales	Olpidiaceae_sp	Plant Pathogen	75
OTU61	KM504464	Ascomycota	Lecanoromycetes	Lecanoromycetes_sp	Lichen	72
OTU502	FM997952	Basidiomycota	Leucosporidiales	Leucosporidiales_sp	Undefined	71
OTU175	HQ445992	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	71
OTU568	KT728347	Ascomycota	Venturiales	Venturiaceae_sp	Undefined	71
OTU459	KF618031	Ascomycota	Annulatascales	Annulatascaceae_sp	Saprotroph	69
OTU509	FJ553093	Ascomycota	Helotiales	Helotiales_sp	Undefined	69
OTU117	HQ212010	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	68
OTU377	HQ211504	Basidiomycota	Agaricales	Clavulinopsis_sp	Undefined	68
OTU416	HM230873	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	68
OTU21	GQ149464	Ascomycota	Pezizales	Hydnotrya_bailii	Ectomycorrhizal	66
OTU450	UDB031919	Basidiomycota	Stereopsidales	Clavulicium_delectabile	Saprotroph	64
OTU392	FM999525	Ascomycota	Helotiales	Helotiales_sp	Undefined	63
OTU243	MK958538	Ascomycota	Capnodiales	Cladosporium_sp	Saprotroph	60
OTU220	KC966301	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	59

OTU534	KU550110	Ascomycota	Helotiales	Helotiales_sp	Undefined	59
OTU445	EF434059	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	59
OTU349	HQ211604	Ascomycota	Helotiales	Leptodontidium_sp	Endophyte	59
OTU546	KC966235	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	59
OTU318	FJ528732	Basidiomycota	Sporidiobolales	Sporidiobolales_sp	Yeast	59
OTU395	KF617859	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	57
OTU170	AY157489	Ascomycota	Eurotiales	Penicillium_citreonigrum	Saprotroph	57
OTU18	KF617536	Ascomycota	Lecanoromycetes	Lecanoromycetes_sp	Lichen	55
OTU370	GU187836	Ascomycota	Coniochaetales	Coniochaetales_sp	Undefined	54
OTU554	KP889516	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	53
OTU114	MN413151	Ascomycota	Eurotiales	Penicillium_brunneoconidiatum	Saprotroph	53
OTU149	JQ256430	Ascomycota	Geoglossales	Trichoglossum_walteri	Undefined	53
OTU126	FN610922	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	53
OTU518	KX464131	Ascomycota	Botryosphaeriales	Tiarosporella_sp	Endophyte	52
OTU223	MH374550	Ascomycota	Eurotiales	Penicillium_virgatum	Saprotroph	52
OTU112	KT268963	Ascomycota	Pleosporales	Paraphaeosphaeria_sp	Undefined	52
OTU55	MH930171	Basidiomycota	Agaricales	Entoloma_vernum	Root Associated Fungi	51
OTU441	JQ256426	Ascomycota	Geoglossales	Sabuloglossum_arenarium	Undefined	51
OTU436	JN995643	Ascomycota	Helotiales	Phialocephala_sp	Endophyte	51
OTU376	MK808050	Ascomycota	Helotiales	Lachnum_sp	Saprotroph	50
OTU148	UDB037022	Basidiomycota	Agaricales	Clavaria_sphagnicola	Undefined	49
OTU19	KF617598	Ascomycota	Helotiales	Pezoloma_ericae	Root Associated Fungi	49
OTU232	KP889780	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	48
OTU558	MK102701	Ascomycota	Helotiales	Cadophora_sp	Endophyte	47
OTU400	AY969887	Basidiomycota	Agaricales	Agaricales_sp	Undefined	46
OTU290	VE617727					
OTU515	KF617737	Basidiomycota	Cantharellales	Ceratobasidiaceae_sp	Undefined	46
	KY031654	Basidiomycota Ascomycota	Cantharellales Ascomycota	Ceratobasidiaceae_sp Pezizomycotina	Undefined Undefined	46 44
OTU10		·				
OTU10 OTU358	KY031654	Ascomycota	Ascomycota	Pezizomycotina	Undefined	44
	KY031654 MN265972	Ascomycota Ascomycota	Ascomycota Helotiales	Pezizomycotina Helotiales_sp	Undefined Undefined	44 43
OTU358	KY031654 MN265972 GU054164	Ascomycota Ascomycota Ascomycota	Ascomycota Helotiales Sordariomycetes	Pezizomycotina Helotiales_sp Sordariomycetes_sp	Undefined Undefined Undefined	44 43 42
OTU358 OTU191	KY031654 MN265972 GU054164 FJ553008	Ascomycota Ascomycota Ascomycota Ascomycota	Ascomycota Helotiales Sordariomycetes Geoglossales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp	Undefined Undefined Undefined Root Associated	44 43 42 41
OTU358 OTU191 OTU258	KY031654 MN265972 GU054164 FJ553008 AY634118	Ascomycota Ascomycota Ascomycota Ascomycota Basidiomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp	Undefined Undefined Undefined Root Associated Fungi	44 43 42 41 41
OTU358 OTU191 OTU258 OTU188	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344	Ascomycota Ascomycota Ascomycota Ascomycota Basidiomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp	Undefined Undefined Undefined Root Associated Fungi Undefined	44 43 42 41 41
OTU358 OTU191 OTU258 OTU188 OTU487	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344 GU174420	Ascomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales Archaeorhizomycetes	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp Archaeorhizomycetes_sp	Undefined Undefined Undefined Root Associated Fungi Undefined Undefined	44 43 42 41 41 40 38
OTU358 OTU191 OTU258 OTU188 OTU487 OTU31	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344 GU174420 KR935838	Ascomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota Ascomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales Archaeorhizomycetes Coniochaetales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp Archaeorhizomycetes_sp Coniochaeta_ligniaria	Undefined Undefined Undefined Root Associated Fungi Undefined Undefined Plant Pathogen	 44 43 42 41 41 40 38 38
OTU358 OTU191 OTU258 OTU188 OTU487 OTU31 OTU271	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344 GU174420 KR935838 JQ346833	Ascomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota Ascomycota Basidiomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales Archaeorhizomycetes Coniochaetales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp Archaeorhizomycetes_sp Coniochaeta_ligniaria Ceratobasidiaceae_sp	Undefined Undefined Undefined Undefined Associated Fungi Undefined Undefined Plant Pathogen Undefined	 44 43 42 41 41 40 38 38 35
OTU358 OTU191 OTU258 OTU188 OTU487 OTU31 OTU271 OTU239	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344 GU174420 KR935838 JQ346833 KY687808	Ascomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota Basidiomycota Basidiomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales Archaeorhizomycetes Coniochaetales Cantharellales GS35	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp Archaeorhizomycetes_sp Coniochaeta_ligniaria Ceratobasidiaceae_sp GS35_sp	Undefined Undefined Undefined Undefined Root Associated Fungi Undefined Undefined Undefined Undefined	 44 43 42 41 41 40 38 38 35 35
OTU358 OTU191 OTU258 OTU188 OTU487 OTU31 OTU271 OTU239 OTU342	KY031654 MN265972 GU054164 FJ553008 AY634118 DQ273344 GU174420 KR935838 JQ346833 KY687808 KT728257	Ascomycota Ascomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota Basidiomycota Ascomycota Ascomycota	Ascomycota Helotiales Sordariomycetes Geoglossales Sebacinales Myrmecridiales Archaeorhizomycetes Coniochaetales Cantharellales GS35 Helotiales	Pezizomycotina Helotiales_sp Sordariomycetes_sp Sabuloglossum_sp Serendipitaceae_sp Myrmecridiales_sp Archaeorhizomycetes_sp Coniochaeta_ligniaria Ceratobasidiaceae_sp GS35_sp Helotiales_sp	Undefined Undefined Undefined Undefined Associated Fungi Undefined Undefined Undefined Undefined Undefined	44 43 42 41 41 38 38 35 35 35

OTU291	GQ154488	Ascomycota	Helotiales	Hyaloscypha_bicolor	Saprotroph	32
OTU162	JX546606	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	32
OTU504	AB214657	Ascomycota	Glomerellales	Verticillium_leptobactrum	Undefined	31
OTU384	KF617422	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	30
OTU121	HM230883	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	30
OTU512	KC966301	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	29
OTU99	KP714632	Ascomycota	Helotiales	Helotiales_sp	Undefined	29
OTU561	AY336133	Ascomycota	Pleosporales	Drechslera_sp	Plant Pathogen	29
OTU64	KP257114	Basidiomycota	Agaricales	Clavaria_falcata	Undefined	28
OTU551	KF617587	Ascomycota	GS34	GS34_sp	Undefined	28
OTU138	KF493951	Olpidiomycota	Olpidiales	Olpidium_sp	Plant Pathogen	28
OTU217	MK671625	Ascomycota	Thelebolales	Pseudeurotium_hygrophilum	Undefined	28
OTU93	JQ346993	Basidiomycota	Atheliales	Athelopsis_lembospora	Saprotroph	27
OTU98	MK514443	Ascomycota	Orbiliales	Orbiliaceae_sp	Saprotroph	27
OTU35	HQ154277	Basidiomycota	Sebacinales	Serendipita_sp	Root Associated Fungi	26
OTU300	FJ553220	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	26
OTU214	DQ420720	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	26
OTU84	EU645626	Basidiomycota	Sebacinales	Sebacina_sp	Root Associated Fungi	26
OTU326	AM260794	Basidiomycota	GS29	GS29_sp	Undefined	25
OTU499	AM260798	Basidiomycota	GS29	GS29_sp	Undefined	25
OTU108	AY706329	Ascomycota	Helotiales	Leohumicola_minima	Undefined	25
OTU269	MH465656	Basidiomycota	Agaricales	Mycena_sp	Saprotroph	24
OTU412	KC222128	Ascomycota	Geoglossales	Glutinoglossum_glutinosum	Undefined	24
OTU50	UDB028535	Basidiomycota	Cantharellales	Ceratobasidiaceae_sp	Undefined	23
OTU364	KF617962	Ascomycota	Helotiales	Helotiales_sp	Undefined	23
OTU171	HM164556	Ascomycota	Helotiales	Hyaloscypha_finlandica	Saprotroph	23
OTU115	HQ446004	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	23
OTU323	KT728336	Basidiomycota	Trechisporales	Trechisporales_sp	Saprotroph	23
OTU542	HQ445987	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	22
OTU236	MH859123	Ascomycota	Eurotiales	Penicillium_sacculum	Saprotroph	22
OTU360	HG937106	Ascomycota	Helotiales	Helotiales_sp	Undefined	22
OTU540	KP889469	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	22
OTU285	JX545195	Ascomycota	Pezizales	Scutellinia_sp	Saprotroph	22
OTU426	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	22
OTU503	AY969881	Ascomycota	Helotiales	Helotiales_sp	Undefined	21
OTU101	KY322548	Ascomycota	Helotiales	Phialocephala_fortinii	Endophyte	21
OTU196	KC869724	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	21
OTU328	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	21
OTU163	KY105380	Ascomycota	Saccharomycetales	Schwanniomyces_capriottii	Yeast	21
OTU563	KP889332	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	20
OTU494	JQ666638	Ascomycota	Helotiales	Helotiales_sp	Undefined	20
OTU438	KP714556	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	20

OTU468	JQ666741	Ascomycota	Orbiliales	Orbiliales_sp	Undefined	20
OTU56	DQ485681	Chytridiomycota	Rhizophydiales	Terramyces_sp	Chytrid	20
OTU532	KU534738	Basidiomycota	Basidiomycota	Basidiomycota_sp	Undefined	19
OTU339	HM136675	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	19
OTU410	GU256966	Basidiomycota	Trechisporales	Hydnodontaceae_sp	Saprotroph	19
OTU439	AB925920	Ascomycota	Hypocreales	Polycephalomyces_formosus	Undefined	18
OTU44	FJ553081	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	18
OTU206	MH979277	Basidiomycota	Agaricales	Laccaria_proxima	Ectomycorrhizal	16
OTU564	KT160726	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	16
OTU282	MK614851	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	16
OTU142	MH862665	Ascomycota	Helotiales	Spirosphaera_carici-graminis	Saprotroph	16
OTU357	MH859820	Ascomycota	Sordariales	Apodus_deciduus	Saprotroph	16
OTU280	JQ666627	Ascomycota	Thelebolales	Gymnostellatospora_sp	Saprotroph	16
OTU486	JQ347162	Basidiomycota	Tremellales	Cryptococcus_sp	Yeast	16
OTU156	UDB031325	Basidiomycota	Agaricales	Mycena_flavoalba	Saprotroph	15
OTU354	KP889430	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	15
OTU20	EF016385	Ascomycota	Chaetothyriales	Cladophialophora_minutissima	Undefined	15
OTU77	JX318034	Fungi	Fungi	Fungi_sp	Undefined	15
OTU311	KF296819	Ascomycota	Helotiales	Helotiales_sp	Undefined	15
OTU418	UDB026013	Ascomycota	Helotiales	Lachnellula_sp	Saprotroph	15
OTU227	JQ666464	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	15
OTU297	HM240145	Basidiomycota	Agaricales	Clavaria_sp	Undefined	14
OTU463	HM030614	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	14
OTU488	KX765316	Ascomycota	Helotiales	Helotiales_sp	Undefined	14
OTU51	HQ211612	Ascomycota	Helotiales	Hyaloscypha_sp	Saprotroph	14
OTU109	GU934571	Kickxellomycota	Kickxellales	Ramicandelaber_sp	Undefined	14
OTU549	MN385505	Mortierellomycota	Mortierellomycota	Mortierellomycotina	Saprotroph	14
OTU562	GU174378	Ascomycota	Sordariales	Cephalotheca_sp	Saprotroph	14
OTU228	UDB023735	Basidiomycota	Agaricales	Entoloma_glaucobasis	Root Associated Fungi	13
OTU467	FJ553837	Basidiomycota	Agaricomycetes	Agaricomycetes_sp	Undefined	13
OTU45	JF300546	Ascomycota	Chaetothyriales	Chaetothyriales_sp	Undefined	13
OTU477	KP889807	Ascomycota	Helotiales	Helotiales_sp	Undefined	13
OTU210	MH864072	Ascomycota	Hypocreales	Trichoderma_hamatum	Undefined	13
OTU347	KT991667	Ascomycota	Myrmecridiales	Atractospora_decumbens	Undefined	13
OTU34	AB986396	Ascomycota	Pleosporales	Pleosporales_sp	Undefined	13
OTU334	JX042929	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	13
OTU417	KF617859	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	12
OTU168	UDB036532	Basidiomycota	Agaricales	Hygrocybe_phaeococcinea	Root Associated Fungi	12
OTU335	KP889516	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	12
OTU541	KP889925	Rozellomycota	GS05	GS05_sp	Rozellomycota	12
OTU517	FJ553681	Ascomycota	Helotiales	Alatospora_sp	Undefined	12
OTU337	KP889824	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	12

OTU479	MN275853	Basidiomycota	Tremellomycetes	Tremellomycetes_sp	Undefined	12
OTU420	KT728224	Glomeromycota	Diversisporales	Acaulosporaceae_sp	Arbuscular Mycorrhiza	11
OTU572	EU747843	Glomeromycota	Glomeromycota	Glomeromycota_sp	Arbuscular Mycorrhiza	11
OTU42	HG936815	Ascomycota	Pleosporales	Preussia_sp	Saprotroph	11
OTU429	KC965205	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	11
OTU458	KP889733	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	11
OTU267	MH858965	Ascomycota	Sordariales	Triangularia_verruculosa	Undefined	11
OTU489	KT160912	Basidiomycota	Tremellales	Tremellales_sp	Undefined	11
OTU481	KP889944	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	10
OTU519	HM239685	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	10
OTU140	GU054314	Basidiomycota	Cystofilobasidiales	Itersonilia_pannonica	Yeast	10
OTU12	JQ666443	Fungi	Fungi	Fungi_sp	Undefined	10
OTU588	JX317978	Glomeromycota	Glomeromycetes	Glomeromycetes_sp	Arbuscular Mycorrhiza	10
OTU365	HG937124	Ascomycota	Hypocreales	Hypocreales_sp	Undefined	10
OTU209	JN572910	Basidiomycota	Polyporales	Hyphoderma_obtusiforme	Undefined	10
OTU567	HM240125	Chytridiomycota	Rhizophydiales	Rhizophydiales_sp	Chytrid	10
OTU288	JX898594	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	10
OTU135	MK290701	Basidiomycota	Thelephorales	Pseudotomentella_sp	Ectomycorrhizal	10
OTU272	MH862538	Ascomycota	Venturiales	Scolecobasidium_excentricum	Undefined	10
OTU394	KY548838	Basidiomycota	Classiculales	Classiculaceae_sp	Undefined	9
OTU1	KT957783	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	9
OTU415	KF617533	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	9
OTU184	KP889497	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	9
OTU71	FN555282	Glomeromycota	Paraglomerales	Paraglomerales_sp	Arbuscular Mycorrhiza	9
OTU199	KU534730	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	9
OTU49	LT548267	Basidiomycota	Tremellales	Filobasidiella_sp	Yeast	9
OTU157	KP889479	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	8
OTU321	KF617859	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	8
OTU16	KC965833	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	8
OTU164	HM141044	Basidiomycota	Cantharellales	Ceratobasidiaceae_sp	Undefined	8
OTU402	EU669387	Ascomycota	Pezizales	Pseudaleuria_quinaultiana	Saprotroph	8
OTU571	KP889727	Chytridiomycota	Rhizophydiales	Terramycetaceae_sp	Undefined	8
OTU363	AM260915	Ascomycota	Sordariales	Sordariales_sp	Undefined	8
OTU428	MN128860	Basidiomycota	Tremellales	Vishniacozyma_victoriae	Yeast	8
OTU341	KP133511	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	7
OTU310	HQ871874	Ascomycota	Chaetothyriales	Cladophialophora_chaetospira	Undefined	7
OTU14	UDB036614	Basidiomycota	Agaricales	Clavaria_flavipes	Undefined	7
OTU433	FN397402	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	7
OTU158	JQ272382	Basidiomycota	Agaricales	Galerina_sp	Saprotroph	7
OTU507	KU975066	Ascomycota	Annulatascales	Ascitendus_austriacus	Undefined	7
OTU526	FJ827743	Chytridiomycota	Chytridiales	Phlyctochytrium_californicum	Plant Pathogen	7
OTU74	AM260932	Fungi	Fungi	Fungi_sp	Undefined	7

OTU92	KT334710	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	7
OTU403	KF617245	Ascomycota	Helotiales	Meliniomyces_sp	Root Associated Fungi	7
OTU150	MK163720	Ascomycota	Helotiales	Oidiodendron_sp	Root Associated Fungi	7
OTU219	KU556539	Ascomycota	Hypocreales	Tolypocladium_sp	Animal pathogen	7
OTU386	HQ446066	Basidiomycota	Leucosporidiales	Mastigobasidium_sp	Undefined	7
OTU37	DQ400287	Glomeromycota	Paraglomerales	Paraglomerales_sp	Arbuscular Mycorrhiza	7
OTU351	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	7
OTU396	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	7
OTU308	HQ446091	Basidiomycota	Agaricales	Clavulinopsis_sp	Undefined	6
OTU57	AB669645	Basidiomycota	Agaricales	Laccaria_sp	Ectomycorrhizal	6
OTU505	JX042812	Ascomycota	Archaeorhizomycetales	Archaeorhizomyces_sp	Undefined	6
OTU155	MH858348	Basidiobolomycota	Basidiobolales	Basidiobolus_ranarum	Saprotroph	6
OTU278	GU366669	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	6
OTU378	KJ735003	Ascomycota	Coniochaetales	Coniochaeta_sp	Plant Pathogen	6
OTU414	KY687581	Rozellomycota	GS03	GS03_sp	Rozellomycota	6
OTU544	UDB035038	Ascomycota	Helotiales	Chalara_vaccinii	Undefined	6
OTU493	FJ554184	Ascomycota	Helotiales	Helotiales_sp	Undefined	6
OTU127	MK801344	Basidiomycota	Hymenochaetales	Trichaptum_abietinum	Saprotroph	6
OTU422	MG813208	Ascomycota	Microascales	Microascaceae_sp	Saprotroph	6
OTU230	HQ211696	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	6
OTU181	DQ421233	Chytridiomycota	Rhizophlyctidales	Sonoraphlyctis_sp	Chytrid	6
OTU336	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	6
OTU131	JX630611	Basidiomycota	Sebacinales	Sebacina_sp	Root Associated Fungi	6
OTU469	HG937127	Basidiomycota	Tremellomycetes	Tremellomycetes_sp	Undefined	6
OTU120	KP636858	Basidiomycota	Agaricales	Inocybe_sp	Ectomycorrhizal	5
OTU320	KP889364	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	5
OTU521	EU517014	Chytridiomycota	Chytridiales	Chytridiales_sp	Chytrid	5
OTU371	KC965268	Ascomycota	Coniochaetales	Coniochaetales_sp	Undefined	5
OTU75	KF206526	Glomeromycota	Glomerales	Glomeraceae_sp	Arbuscular Mycorrhiza	5
OTU132	GU256953	Ascomycota	Helotiales	Helotiales_sp	Undefined	5
OTU193	JX371601	Ascomycota	Helotiales	Helotiales_sp	Undefined	5
OTU529	KF617730	Ascomycota	Helotiales	Helotiales_sp	Undefined	5
OTU482	KC965117	Basidiomycota	Microbotryomycetes	Microbotryomycetes_sp	Undefined	5
OTU212	FN565322	Basidiomycota	Russulales	Russula_sp	Ectomycorrhizal	5
OTU455	MF782833	Ascomycota	Sordariales	Phialemonium_sp	Saprotroph	5
OTU39	KF617459	Basidiomycota	Thelephorales	Tomentellopsis_sp	Ectomycorrhizal	5
OTU287	KF206543	Glomeromycota	Archaeosporales	Ambisporaceae_sp	Undefined	4
OTU113	HM239740	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	4
OTU344	KC965268	Ascomycota	Coniochaetales	Coniochaetales_sp	Undefined	4
OTU59	LS398095	Glomeromycota	Glomerales	Glomeraceae_sp	Arbuscular Mycorrhiza	4

OTU449	KF296993	Rozellomycota	GS08	GS08_sp	Rozellomycota	4
OTU530	KY687753	Mucoromycota	GS21	GS21_sp	Undefined	4
OTU234	EF434137	Ascomycota	Helotiales	Helotiales_sp	Undefined	4
OTU413	KC965186	Ascomycota	Helotiales	Helotiales_sp	Undefined	4
OTU535	KF617730	Ascomycota	Helotiales	Helotiales_sp	Undefined	4
OTU332	GU174331	Ascomycota	Helotiales	Lachnum_sp	Saprotroph	4
OTU565	MH492941	Ascomycota	Helotiales	Ombrophila_sp	Saprotroph	4
OTU177	KF359557	Ascomycota	Hypocreales	Tolypocladium_album	Animal pathogen	4
OTU249	KP889676	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	4
OTU457	DQ182459	Ascomycota	Pleosporales	Petrakia_sp	Plant Pathogen	4
OTU338	KC480046	Ascomycota	Rhytismatales	Coccomyces_sp	Plant Pathogen	4
OTU348	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	4
OTU261	AF504837	Ascomycota	Sordariales	Podospora_sp	Saprotroph	4
OTU264	MK050409	Basidiomycota	Sporidiobolales	Sporobolomyces_sp	Yeast	4
OTU244	DQ421216	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	3
OTU289	KP889488	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	3
OTU266	HQ445570	Basidiomycota	Agaricales	Ramariopsis_sp	Undefined	3
OTU434	MF767285	Basidiomycota	Agaricales	Ripartites_sp	Undefined	3
OTU528	KJ735012	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	3
OTU97	KT965071	Basidiobolomycota	Basidiobolales	Basidiobolus_sp	Saprotroph	3
OTU286	HQ871875	Ascomycota	Chaetothyriales	Cladophialophora_chaetospira	Undefined	3
OTU137	GU187836	Ascomycota	Coniochaetales	Coniochaetales_sp	Undefined	3
OTU587	KJ180739	Basidiomycota	Cystofilobasidiales	Tausonia_sp	Yeast	3
OTU577	KY687649	Kickxellomycota	GS19	GS19_sp	Undefined	3
OTU36	HQ211636	Ascomycota	Helotiales	Helotiales_sp	Undefined	3
OTU552	KF617618	Ascomycota	Helotiales	Helotiales_sp	Undefined	3
OTU560	FJ554184	Ascomycota	Helotiales	Helotiales_sp	Undefined	3
OTU104	MG250388	Ascomycota	Hypocreales	Acremonium_furcatum	Saprotroph	3
OTU524	KT728304	Ascomycota	Lecanoromycetes	Lecanoromycetes_sp	Lichen	3
OTU432	KP889469	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	3
OTU262	FM997952	Basidiomycota	Leucosporidiales	Leucosporidiales_sp	Undefined	3
OTU345	GU559079	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	3
OTU174	GQ219900	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	3
OTU167	JX319678	Mucoromycota	Mucoromycota	Mucoromycota_sp	Undefined	3
OTU423	MH107892	Ascomycota	Pleosporales	Fusiconidium_lycopodiellae	Plant Pathogen	3
OTU398	KP698722	Ascomycota	Pleosporales	Phragmocephala_garethjonesii	Undefined	3
OTU203	DQ485617	Chytridiomycota	Rhizophydiales	Operculomyces_laminatus	Undefined	3
OTU159	KF617532	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	3
OTU476	HM069375	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	3
OTU466	FJ552766	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	3
OTU443	KM504471	Ascomycota	Venturiales	Venturiales_sp	Undefined	3
OTU543	HQ022223	Ascomycota	Acarosporales	Acarosporales_sp	Lichen	2
OTU556	DQ421142	Basidiomycota	Agaricales	Clavaria_sp	Undefined	2
OTU277	HM488464	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	2

OTU306	UDB023694	Basidiomycota	Agaricales	Entoloma_korhonenii	Root Associated Fungi	2
OTU128	HQ604368	Basidiomycota	Agaricales	Inocybe_sindonia	Ectomycorrhizal	2
OTU245	AF193351	Basidiomycota	Agaricales	Typhula_ishikariensis	Plant Pathogen	2
OTU525	KT728219	Ascomycota	Ascomycota	Ascomycota_sp	Undefined	2
OTU372	JX984762	Ascomycota	Capnodiales	Arthrocatena_sp	Undefined	2
OTU273	GU187823	Ascomycota	Chaetosphaeriales	Chloridium_sp	Undefined	2
OTU52	HM230883	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	2
OTU435	MK614851	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	2
OTU110	FJ552932	Ascomycota	Coniochaetales	Coniochaeta_sp	Plant Pathogen	2
OTU406	KC965141	Ascomycota	Coniochaetales	Coniochaetales_sp	Undefined	2
OTU90	JX042781	Glomeromycota	Glomerales	Glomeraceae_sp	Arbuscular Mycorrhiza	2
OTU501	MH864644	Ascomycota	Glomerellales	Verticillium_sp	Undefined	2
OTU252	HM190114	Ascomycota	Helotiales	Helotiaceae_sp	Undefined	2
OTU391	MN518405	Ascomycota	Helotiales	Helotiaceae_sp	Undefined	2
OTU440	KP889812	Ascomycota	Helotiales	Hyaloscyphaceae_sp	Saprotroph	2
OTU390	KU516576	Ascomycota	Helotiales	Pycnopeziza_sympodialis	Plant Pathogen	2
OTU570	KP889825	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	2
OTU555	JQ666439	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	2
OTU192	MH860124	Mortierellomycota	Mortierellales	Mortierella_echinula	Saprotroph	2
OTU9	KF617678	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	2
OTU73	KF296907	Olpidiomycota	Olpidiales	Olpidium_brassicae	Plant Pathogen	2
OTU313	MK720105	Ascomycota	Pezizales	Pseudaleuria_fibrillosa	Saprotroph	2
OTU388	KF617768	Ascomycota	Phacidiales	Phacidiales_sp	Undefined	2
OTU539	KY687565	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	2
OTU133	JQ666464	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	2
OTU366	KF617532	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	2
OTU399	KF297116	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	2
OTU315	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	2
OTU327	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	2
OTU531	FJ440938	Ascomycota	Sordariales	Chaetomiaceae_sp	Undefined	2
OTU292	MH859325	Ascomycota	Sordariales	Schizothecium_vesticola	Saprotroph	2
OTU40	KF617297	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	2
OTU475	JF300531	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	2
OTU69	FJ876182	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	2
OTU454	KP714547	Basidiomycota	Tremellales	Cryptococcus_sp	Yeast	2
OTU492	HG937127	Basidiomycota	Tremellomycetes	Tremellomycetes_sp	Undefined	2
OTU483	KX776448	Basidiomycota	Trichosporonales	Tetragoniomyces_uliginosus	Undefined	2
OTU580	MH861900	Ascomycota	Xylariales	Basifimbria_sp	Saprotroph	2
OTU186	KP889479	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	1
OTU275	GU328580	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	1
OTU284	FJ553613	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	1
OTU317	FN397402	Basidiomycota	Agaricales	Clavariaceae_sp	Undefined	1

OTU256	UDB034225	Basidiomycota	Agaricales	Cuphophyllus_virgineus	Root Associated Fungi	1
OTU161	JQ801386	Basidiomycota	Agaricales	Inocybe_calamistrata	Ectomycorrhizal	1
OTU122	UDB027250	Basidiomycota	Agaricales	Inocybe_sp	Ectomycorrhizal	1
OTU146	AF476965	Basidiomycota	Agaricales	Mycena_sp	Saprotroph	1
OTU224	LC198700	Basidiomycota	Agaricales	Pholiota_alnicola	Saprotroph	1
OTU194	MK045710	Basidiomycota	Agaricales	Psathyrella_tenuicula	Undefined	1
OTU506	GU174346	Ascomycota	Archaeorhizomycetes	Archaeorhizomycetes_sp	Undefined	1
OTU324	AM902016	Basidiomycota	Atheliales	Athelia_sp	Saprotroph	1
OTU231	UDB037249	Basidiomycota	Cantharellales	Clavulina_cinerea	Undefined	1
OTU241	KP889506	Basidiomycota	Cantharellales	Sistotrema_sp	Saprotroph	1
OTU144	GU174433	Ascomycota	Chaetosphaeriales	Chloridium_sp	Undefined	1
OTU279	MH858340	Ascomycota	Chaetothyriales	Cladophialophora_chaetospira	Undefined	1
OTU296	EU754973	Ascomycota	Chaetothyriales	Herpotrichiellaceae_sp	Undefined	1
OTU533	KF297079	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	1
OTU340	JX338184	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	1
OTU397	KP889332	Chytridiomycota	Chytridiomycota	Chytridiomycota_sp	Chytrid	1
OTU238	HG936855	Ascomycota	Coniochaetales	Lecythophora_sp	Endophyte	1
OTU116	HM240100	Mucoromycota	Endogonales	Endogonales_sp	Undefined	1
OTU123	HM240100	Mucoromycota	Endogonales	Endogonales_sp	Undefined	1
OTU329	HM240100	Mucoromycota	Endogonales	Endogonales_sp	Undefined	1
OTU346	HM240100	Mucoromycota	Endogonales	Endogonales_sp	Undefined	1
OTU584	KY687656	Fungi	Fungi	Fungi_sp	Undefined	1
OTU247	GU174427	Ascomycota	Geoglossales	Hemileucoglossum_sp	Saprotroph	1
OTU28	HE795123	Glomeromycota	Glomerales	Glomeraceae_sp	Arbuscular Mycorrhiza	1
OTU516	KY687557	Rozellomycota	GS04	GS04_sp	Rozellomycota	1
OTU419	AM260926	Mucoromycota	GS22	GS22_sp	Undefined	1
OTU442	AM260794	Basidiomycota	GS29	GS29_sp	Undefined	1
OTU427	KT160991	Ascomycota	Helotiales	Helotiales_sp	Undefined	1
OTU490	AY781244	Ascomycota	Helotiales	Helotiales_sp	Undefined	1
OTU362	KC965121	Ascomycota	Helotiales	Mycosymbioces_sp	Undefined	1
OTU379	AB481286	Ascomycota	Helotiales	Trichopeziza_mollissima	Saprotroph	1
OTU536	MH864097	Ascomycota	Hypocreales	Acremonium_felinum	Saprotroph	1
OTU60	HQ021888	Ascomycota	Lecanorales	Lecanorales_sp	Lichen	1
OTU312	KP889469	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	1
OTU508	KF617580	Ascomycota	Leotiomycetes	Leotiomycetes_sp	Undefined	1
OTU387	EF621933	Basidiomycota	Microbotryales	Microbotryum_bistortarum	Plant Pathogen	1
OTU453	HG937071	Basidiomycota	Microbotryomycetes_ord_Incertae_sedis	Chrysozymaceae_sp	Yeast	1
OTU222	KY105427	Basidiomycota	Microbotryomycetes_ord_Incertae_sedis	Slooffia_cresolica	Yeast	1
OTU129	JF926967	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	1
OTU226	KM504451	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	1
OTU251	GU366727	Mortierellomycota	Mortierellales	Mortierella_sp	Saprotroph	1
OTU383	KU668954	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	1

OTU553	KF296953	Mortierellomycota	Mortierellales	Mortierellales_sp	Saprotroph	1
OTU72	KC965895	Ascomycota	Orbiliales	Orbiliales_sp	Undefined	1
OTU316	EU669387	Ascomycota	Pezizales	Pseudaleuria_quinaultiana	Saprotroph	1
OTU207	KU924647	Ascomycota	Pezizales	Tarzetta_sp	Ectomycorrhizal	1
OTU352	MH861760	Ascomycota	Pleosporales	Phaeosphaeria_lutea	Plant Pathogen	1
OTU405	KC965316	Ascomycota	Pleosporales	Pleosporales_sp	Undefined	1
OTU369	JQ666536	Chytridiomycota	Rhizophydiales	Rhizophydiales_sp	Chytrid	1
OTU139	KU534693	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	1
OTU314	KF297116	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	1
OTU527	KF617532	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	1
OTU583	KF617666	Rozellomycota	Rozellomycota	Rozellomycota_sp	Rozellomycota	1
OTU538	JQ796369	Rozellomycota	Rozellomycotina_ord_Incertae_sedis	Paramicrosporidium_saccamoebae	Rozellomycota	1
OTU367	UDB014586	Ascomycota	Saccharomycetales	Saccharomycetales_sp	Yeast	1
OTU325	HQ211732	Basidiomycota	Sebacinales	Sebacinaceae_sp	Root	1
		,			Associated Fungi	
OTU83	EF433989	Basidiomycota	Sebacinales	Serendipita_sp	Root Associated Fungi	1
OTU88	KJ188548	Basidiomycota	Sebacinales	Serendipitaceae_sp	Root Associated Fungi	1
OTU491	HQ212042	Ascomycota	Sordariomycetes	Sordariomycetes_sp	Undefined	1
OTU173	JQ724070	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	1
OTU265	JQ791170	Basidiomycota	Thelephorales	Thelephoraceae_sp	Ectomycorrhizal	1
OTU187	KF617230	Basidiomycota	Trechisporales	Trechisporales_sp	Saprotroph	1
OTU105	DQ421269	Basidiomycota	Tremellodendropsidales	Tremellodendropsidales_sp	Undefined	1
OTU96	MN077485	Ascomycota	Xylariales	Microdochium_phragmitis	Plant Pathogen	1
OTU11	KT601327	Zoopagomycota	Zoopagales	Syncephalis_sp	Animal pathogen	1
OTU62	KU534817	Zoopagomycota	Zoopagales	Syncephalis_sp	Animal pathogen	1

Supplementary Table 2: Summary of number of reads in Phyla and Orders

Phylum summary, roots		
<u>Phylum</u>	Total reads	OTUs
Ascomycota	100362	124
Basidiomycota	67734	53
Mortierellomycota	215	11
Chytridiomycota	39	8
Olpidiomycota	28	1
Rozellomycota	20	4
Glomeromycota	17	2
Entorrhizomycota	4	1
Mucoromycota	1	1

Order summary, roots

Order	Total reads	OTUs
Helotiales	80810	55
Agaricales	43696	17
Thelephorales	14441	6
Mytilinidales	9442	1
Sebacinales	7774	6
Hypocreales	3341	4
Ascomycota	1891	4
Pleosporales	1234	4
Capnodiales	1225	2
Trechisporales	765	5
Sordariales	683	5
Russulales	603	4
Leotiomycetes	529	10
Archaeorhizomycetales	281	8
Auriculariales	252	1
Dothideomycetes	235	1
Chaetothyriales	227	9
Mortierellales	215	11
Saccharomycetales	121	3
Cantharellales	108	4
Sordariomycetes	89	2
Lecanoromycetes	75	3
Pezizales	68	3
Botryosphaeriales	52	1

Platygloeales	36	1	
Olpidiales	28	1	
Chytridiomycota	26	6	
Tremellales	18	2	
GS11	15	1	
GS34	14	1	
Myrmecridiales	14	2	
Atheliales	12	1	
Venturiales	11	2	
Glomeromycetes	10	1	
Classiculales	9	1	
Annulatascales	8	1	
Rhizophydiales	8	1	
Archaeorhizomycetes	7	1	
Glomerales	7	1	
Filobasidiales	6	1	
Chytridiales	5	1	
Rozellomycota	5	3	
Entorrhizales	4	1	
Hymenochaetales	4	1	
Rhytismatales	4	1	
Sporidiobolales	4	1	
Cystofilobasidiales	3	1	
Polyporales	3	1	
Geoglossales	1	1	
GS22	1	1	
Phylum summary, soil			
Phylum	Total reads	OTUs	
Ascomycota	144300	260	
Basidiomycota	39177	128	
Mortierellomycota	29088	36	
Rozellomycota	5781	34	
Entorrhizomycota	248	2	
Glomeromycota	131	10	
Olpidiomycota	77	2	
	72	10	
Chytridiomycota			
Chytridiomycota Fungi	33	4	

Mucoromycota	11	6	
Basidiobolomycota	9	2	
Zoopagomycota	2	2	
Order summary, soil			
Order	Total reads	OTUs	
Archaeorhizomycetales	124632	41	
Mortierellales	29074	35	
Filobasidiales	15820	3	
Agaricales	7749	57	
Helotiales	6347	74	
Russulales	5164	6	
Saccharomycetales	4229	15	
Rozellomycota	3894	24	
Tremellales	2773	5	
Hypocreales	2470	15	
Trichosporonales	1752	2	
Thelephorales	1654	9	
GS11	1585	4	
Pezizales	1213	6	
Geoglossales	1167	6	
Sebacinales	1060	6	
Platygloeales	1011	2	
Basidiomycota	1007	3	
Chaetothyriales	900	18	
Pleosporales	815	8	
Mytilinidales	709	1	
Leucosporidiales	463	5	
Thelebolales	415	4	
Sordariales	322	11	
Polyporales	305	2	
GS03	284	2	
Eurotiales	282	5	
Trechisporales	168	6	
Lecanoromycetes	156	3	
Entorrhizales	155	1	
Coniochaetales	115	9	
Entorrhizomycota	93	1	
Glomerales	89	5	

Ascomycota	79	7		
Olpidiales	77	2		
Venturiales	73	2		
Annulatascales	68	2		
Stereopsidales	64	1		
Sporidiobolales	59	1		
Leotiomycetes	56	7		
Sordariomycetes	53	7		
GS29	51	3		
Orbiliales	48	3		
Myrmecridiales	39	2		
GS35	35	1		
Rhizophydiales	34	4		
Fungi	33	4		
Glomerellales	33	2		
Chytridiomycota	25	4		
Tremellomycetes	20	3		
Atheliales	16	2		
Paraglomerales	16	2		
GS34	14	1		
Kickxellales	14	1		
Mortierellomycota	14	1		
Agaricomycetes	13	1		
Capnodiales	13	2		
GS05	12	1		
Diversisporales	11	1		
Glomeromycota	11	1		
Cystofilobasidiales	10	1		
Basidiobolales	9	2		
Chytridiales	7	1		
Cantharellales	6	3		
Microascales	6	1		
Rhizophlyctidales	6	1		
Microbotryomycetes	5	1		
Archaeosporales	4	1		
Endogonales	4	4		
GS08	4	1		
GS21	4	1		
Chaetosphaeriales	3	2		

GS19	3	1
Mucoromycota	3	1
Xylariales	3	2
Acarosporales	2	1
Hymenochaetales	2	1
Microbotryomycetes	2	2
Phacidiales	2	1
Zoopagales	2	2
Auriculariales	1	1
GS04	1	1
Lecanorales	1	1
Microbotryales	1	1
Rozellomycotina	1	1
Tremellodendropsidales	1	1

Tukey HSD - Observed richness in soil Tukey HSD - Observed richness in roots Category and Treatment p-value Category and Treatment p-value Alpine Wet-Alpine Dry 0.0000069 Lowland Wet-Alpine Dry 0.0110611 Lowland Dry-Alpine Dry 0.0000000 Lowland Wet-Alpine Wet 0.0026934 0.0006291 0.0266741 Lowland Wet-Alpine Dry Lowland Wet-Lowland Dry Mixed Soil-Alpine Dry 0.0000000 Lowland Wet:Warm-Alpine Wet:Cold 0.0338286 Alpine Wet:Cold-Alpine Dry:Cold 0.0044613 Lowland Wet:Warm-Alpine Dry:Warm 0.0367607 Lowland Dry:Cold-Alpine Dry:Cold 0.0000281 Mixed Soil:Cold-Alpine Dry:Cold 0.0000732 Alpine Wet:Warm-Alpine Dry:Cold 0.0042925 Lowland Dry:Warm-Alpine Dry:Cold 0.0000666 Mixed Soil:Warm-Alpine Dry:Cold 0.0002700 Alpine Dry:Warm-Alpine Wet:Cold 0.0154946 Alpine Dry:Warm-Lowland Dry:Cold 0.0001126 Alpine Dry:Warm-Mixed Soil:Cold 0.0002734 Alpine Wet:Warm-Alpine Dry:Warm 0.0149395 Lowland Dry:Warm-Alpine Dry:Warm 0.0002662 Mixed Soil:Warm-Alpine Dry:Warm 0.0010304 Tukey HSD - Carbon change in soil Tukey HSD - Seedling total weight Category and Treatment Category and Treatment p-value p-value Alpine Wet-Alpine Dry 0.0029470 Alpine Wet-Alpine Dry 0.0007062 Mixed Soil-Alpine Dry 0.0013363 Lowland Dry-Alpine Dry 0.0000025 Lowland Dry-Alpine Wet 0.0002193 Lowland Wet-Alpine Dry 0.0000477 Lowland Wet-Lowland Dry 0.0255047 Mixed Soil-Alpine Dry 0.0000000 Mixed Soil-Alpine Wet Mixed Soil-Lowland Dry 0.0000797 0.0053583 Warm-Cold 0.0099380 Mixed Soil-Lowland Wet 0.0230093 Alpine Dry:Warm-Alpine Wet:Cold 0.0076051 Warm-Cold 0.0000000 Lowland Dry:Warm-Alpine Wet:Cold Lowland Dry:Cold-Alpine Dry:Cold 0.0112789 0.0015247 Alpine Dry:Warm-Lowland Wet:Cold 0.0130834 Alpine Wet:Warm-Alpine Dry:Cold 0.0031230 Lowland Dry:Warm-Lowland Wet:Cold 0.0022909 Lowland Dry:Warm-Alpine Dry:Cold 0.0000927 Lowland Wet:Warm-Alpine Dry:Cold Lowland Dry:Warm-Mixed Soil:Cold 0.0157770 0.0000579 Alpine Wet:Warm-Alpine Dry:Warm Mixed Soil:Warm-Alpine Dry:Cold 0.0285899 0.0000000 Mixed Soil:Warm-Alpine Dry:Warm 0.0013660 Mixed Soil:Warm-Alpine Wet:Cold 0.000035 Lowland Dry:Warm-Alpine Wet:Warm 0.0054143 Mixed Soil:Warm-Lowland Dry:Cold 0.0001867 Mixed Soil:Warm-Lowland Dry:Warm 0.0001945 Lowland Wet:Warm-Lowland Wet:Cold 0.0408854

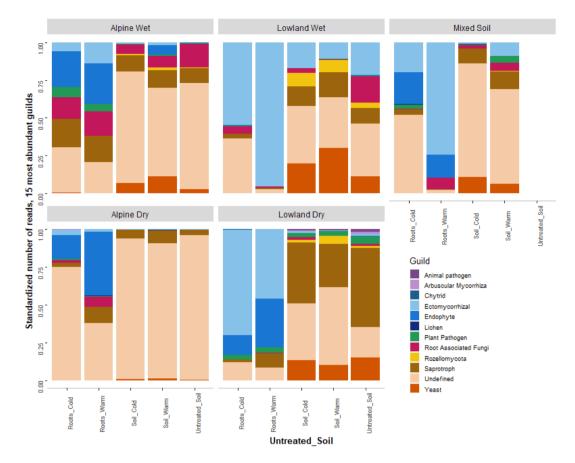
Supplementary table 3: Tukey Honest Significant Difference Tests – Only significant differences are shown

Mixed Soil:Warm-Lowland Wet:Cold	0.0000002
Lowland Dry:Warm-Mixed Soil:Cold	0.0335682
Lowland Wet:Warm-Mixed Soil:Cold	0.0271402
Mixed Soil:Warm-Mixed Soil:Cold	0.0000003
Alpine Wet:Warm-Alpine Dry:Warm	0.0220956
Lowland Dry:Warm-Alpine Dry:Warm	0.0006337
Lowland Wet:Warm-Alpine Dry:Warm	0.0004046
Mixed Soil:Warm-Alpine Dry:Warm	0.0000000
Mixed Soil:Warm-Alpine Wet:Warm	0.0002258
Mixed Soil:Warm-Lowland Dry:Warm	0.0372262
Mixed Soil:Warm-Lowland Wet:Warm	0.0186108

Tukey HSD - Ergosterol Chan	ge	Tukey HSD - C:N ratio	
Category and Treatment	<u>p-value</u>	Category and Treatment	p-value
Alpine Wet-Alpine Dry	0.0000001	Alpine Wet-Alpine Dry	0.0000000
Lowland Dry-Alpine Dry	0.0072683	Lowland Dry-Alpine Dry	0.0000000
Mixed Soil-Alpine Dry	0.0498418	Lowland Wet-Alpine Dry	0.0000258
Lowland Dry-Alpine Wet	0.0000000	Mixed Soil-Alpine Dry	0.0000000
Lowland Wet-Alpine Wet	0.0000478	Lowland Dry-Alpine Wet	0.0089497
Mixed Soil-Alpine Wet	0.0002562	Lowland Wet-Alpine Wet	0.0000002
Lowland Wet-Lowland Dry	0.0000015	Lowland Wet-Lowland Dry	0.0187900
Mixed Soil-Lowland Dry	0.0000003	Mixed Soil-Lowland Wet	0.0000047
Warm-Cold	0.0128274	Warm - Cold	0.0000000
Alpine Wet:Cold-Alpine Dry:Cold	0.0001159	Alpine Wet:Cold-Alpine Dry:Cold	0.0000000
Alpine Wet:Warm-Alpine Dry:Cold	0.0000543	Lowland Dry:Cold-Alpine Dry:Cold	0.0000005
Lowland Dry:Cold-Alpine Wet:Cold	0.0000067	Lowland Wet:Cold-Alpine Dry:Cold	0.0007857
Alpine Dry:Warm-Alpine Wet:Cold	0.0018029	Mixed Soil:Cold-Alpine Dry:Cold	0.0002325
Lowland Dry:Warm-Alpine Wet:Cold	0.0000000	Alpine Wet:Warm-Alpine Dry:Cold	0.0017527
Lowland Wet:Warm-Alpine Wet:Cold	0.0011383	Mixed Soil:Warm-Alpine Dry:Cold	0.0000042
Mixed Soil:Warm-Alpine Wet:Cold	0.0094633	Lowland Wet:Cold-Alpine Wet:Cold	0.0002363
Lowland Wet:Cold-Lowland Dry:Cold	0.0052200	Mixed Soil:Cold-Alpine Wet:Cold	0.0025404
Mixed Soil:Cold-Lowland Dry:Cold	0.0066785	Alpine Dry:Warm-Alpine Wet:Cold	0.0000000
Alpine Wet:Warm-Lowland Dry:Cold	0.0000019	Alpine Wet:Warm-Alpine Wet:Cold	0.0001024
Lowland Dry:Warm-Lowland Wet:Cold	0.000008	Lowland Dry:Warm-Alpine Wet:Cold	0.0000000
Lowland Dry:Warm-Mixed Soil:Cold	0.0000015	Lowland Wet:Warm-Alpine Wet:Cold	0.0000000
Alpine Wet:Warm-Alpine Dry:Warm	0.0010113	Mixed Soil:Warm-Alpine Wet:Cold	0.0126390
Lowland Dry:Warm-Alpine Dry:Warm	0.0021198	Alpine Dry:Warm-Lowland Dry:Cold	0.0000000

Lowland Dry:Warm-Alpine Wet:Warm	0.0000000	Lowland Dry:Warm-Lowland Dry:Cold	0.0000080
Lowland Wet:Warm-Alpine Wet:Warm	0.0005428	Lowland Wet:Warm-Lowland Dry:Cold	0.0000000
Mixed Soil:Warm-Alpine Wet:Warm	0.0057166	Alpine Dry:Warm-Lowland Wet:Cold	0.0000000
Lowland Wet:Warm-Lowland Dry:Warm	0.0010491	Lowland Dry:Warm-Lowland Wet:Cold	0.0150023
Mixed Soil:Warm-Lowland Dry:Warm	0.0000338	Lowland Wet:Warm-Lowland Wet:Cold	0.0000169
		Alpine Dry:Warm-Mixed Soil:Cold	0.0000000
		Lowland Dry:Warm-Mixed Soil:Cold	0.0042858
		Lowland Wet:Warm-Mixed Soil:Cold	0.0000054
		Alpine Wet:Warm-Alpine Dry:Warm	0.0000000
		Lowland Dry:Warm-Alpine Dry:Warm	0.0054673
		Mixed Soil:Warm-Alpine Dry:Warm	0.0000000
		Lowland Dry:Warm-Alpine Wet:Warm	0.0314998
		Lowland Wet:Warm-Alpine Wet:Warm	0.0000439
		Mixed Soil:Warm-Lowland Dry:Warm	0.0000825
		Mixed Soil:Warm-Lowland Wet:Warm	0.0000000

Tukey HSD - Seedling phosph	norus content	Tukey HSD - Seedling nitroge	en content
Category and Treatment	p-value	Category and Treatment	p-value
Lowland Dry-Alpine Dry	0.0103937	Alpine Wet-Alpine Dry	0.0000000
Lowland Wet-Alpine Dry	0.0000910	Lowland Dry-Alpine Dry	0.0000000
Mixed Soil-Alpine Dry	0.0000002	Lowland Wet-Alpine Dry	0.0000000
Lowland Wet-Alpine Wet	0.0069034	Mixed Soil-Alpine Dry	0.0000000
Mixed Soil-Alpine Wet	0.0000193	Mixed Soil-Alpine Wet	0.0207702
Mixed Soil-Lowland Dry	0.0141477	Lowland Wet-Lowland Dry	0.0094223
Warm-Cold	0.0039177	Mixed Soil-Lowland Wet	0.0007040
Lowland Wet:Warm-Alpine Dry:Cold	0.0002500	Warm-Cold	0.0000370
Mixed Soil:Warm-Alpine Dry:Cold	0.0000029	Alpine Wet:Cold-Alpine Dry:Cold	0.0003320
Lowland Wet:Warm-Alpine Wet:Cold	0.0326030	Lowland Dry:Cold-Alpine Dry:Cold	0.0000009
Mixed Soil:Warm-Alpine Wet:Cold	0.0007144	Lowland Wet:Cold-Alpine Dry:Cold	0.0003289
Mixed Soil:Warm-Lowland Dry:Cold	0.0165015	Mixed Soil:Cold-Alpine Dry:Cold	0.0001143
Mixed Soil:Warm-Lowland Wet:Cold	0.0021383	Alpine Wet:Warm-Alpine Dry:Cold	0.0000014
Lowland Wet:Warm-Alpine Dry:Warm	0.0008691	Lowland Dry:Warm-Alpine Dry:Cold	0.0000000
Mixed Soil:Warm-Alpine Dry:Warm	0.0000077	Lowland Wet:Warm-Alpine Dry:Cold	0.000089
Lowland Wet:Warm-Alpine Wet:Warm	0.0031439	Mixed Soil:Warm-Alpine Dry:Cold	0.0000000
Mixed Soil:Warm-Alpine Wet:Warm	0.0000246	Alpine Dry:Warm-Alpine Wet:Cold	0.0014576
Mixed Soil:Warm-Lowland Dry:Warm	0.0110606	Mixed Soil:Warm-Alpine Wet:Cold	0.0004447
		Alpine Dry:Warm-Lowland Dry:Cold	0.0000032


Mixed Soil:Warm-Lowland Dry:Cold	0.0269334
Alpine Dry:Warm-Lowland Wet:Cold	0.0015354
Lowland Dry:Warm-Lowland Wet:Cold	0.0104101
Mixed Soil:Warm-Lowland Wet:Cold	0.0000093
Alpine Dry:Warm-Mixed Soil:Cold	0.0005050
Mixed Soil:Warm-Mixed Soil:Cold	0.0001790
Alpine Wet:Warm-Alpine Dry:Warm	0.0000048
Lowland Dry:Warm-Alpine Dry:Warm	0.0000000
Lowland Wet:Warm-Alpine Dry:Warm	0.0000355
Mixed Soil:Warm-Alpine Dry:Warm	0.000000
Mixed Soil:Warm-Alpine Wet:Warm	0.0045332
Mixed Soil:Warm-Lowland Wet:Warm	0.0006011

Supplementary Table 4: ANOVA tests

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Soil	4	2.4879	0.6220	40.209	5.30e-14	
Temp	1	0.3298	0.3298	21.320	3.51e-05	
Soil:Temp	4	0.1927	0.0482	3.114	0.0246	
Residuals	43	0.6652	0.0155			
AOV - Shoo	t phospl	norus con	tent			
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Soil	4	0.9939	0.24847	15.087	8.79e-08	
Temp	1	0.1542	0.15421	9.364	0.0038	
Soil:Temp	4	0.1844	0.04611	2.800	0.0375	
Residuals	43	0.7081	0.01647			
AOV - Shoo	t total w	eight				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Soil	4	0.5911	0.1478	17.693	1.18e-08	
Temp	1	0.3986	0.3986	47.728	1.75e-08	
Soil:Temp	4	0.1905	0.0476	5.703	0.000897	
Residuals	43	0.3591	0.0084			
AOV - Carbo	on chang	ge				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Soil	4	1.0437	0.26093	10.237	6.51e-06	
Temp	1	0.1868	0.18679	7.329	0.0097	
Soil:Temp	4	0.2250	0.05624	2.207	0.0842	
Residuals	43	1.0960	0.02549			
AOV - C:N R	latio					 -
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Soil	4	1.1913	0.2978	44.640	9.01e-15	
Temp	1	0.4924	0.4924	73.813	7.00e-11	
Soil:Temp	4	0.2524	0.0631	9.456	1.42e-05	
Residuals	43	0.2869	0.0067			
rtooraaalo						

AOV - Ergos	sterol ch	ange			
	Df	Sum Sq	Mean So	q F value	Pr(>F)
Soil	4	2.0350	0.5087	32.377	1.83e-12
Temp	1	0.1067	0.1067	6.792	0.0125
Soil:Temp	4	0.1430	0.0357	2.275	0.0767
Residuals	43	0.6757	0.0157		
AOV - Richn	ness, soi	l (number	of OTU	Js)	
	Df	Sum Sq	Mean So	q F value	Pr(>F)
Soil	4	2.5791	0.6448	17.951	6.28e-10
Temp	1	0.0001	0.0001	0.003	0.954
Soil:Temp	4	0.0225	0.0056	0.156	0.959
Residuals	64	2.2987	0.0359		

AOV - Richr	ness, roo	ts (numb	er of OTUs)	
	Df	Sum Sq	Mean Sq F value	Pr(>F)
Soil	4	0.7647	0.19119 5.296	0.00123
Temp	1	0.1240	0.12405 3.436	0.06970
Soil:Temp	4	0.1477	0.03691 1.022	0.40485
Residuals	50	1.8052	0.03610	
AOV - Beta	diversity,	, roots		
	Df	Sum Sq	Mean Sq F value	Pr(>F)
Soil	4	1.0613	0.26533 21.753	1.92e-10
Temp	1	0.0000	0.00000 0.000	0.996
Soil:Temp	4	0.0330	0.00826 0.677	0.611
Residuals	50	0.6099	0.01220	
AOV - Beta	diversity,	, soil		
	Df	Sum Sq	Mean Sq F value	Pr(>F)
Soil	4	0.2837	0.07093 13.974	3e-08
Temp	1	0.0304	0.03037 5.984	0.01720
Soil:Temp	4	0.0815	0.02037 4.012	0.00576
Residuals	64	0.3249	0.00508	

Figure S1: Relative abundance of functional guilds across root and soil samples. Roots and soil from cold and warm treatment are compared next to each other within soil categories in addition to one untreated soil sample taken from the homogenized soil from each location before the start of the experiment.

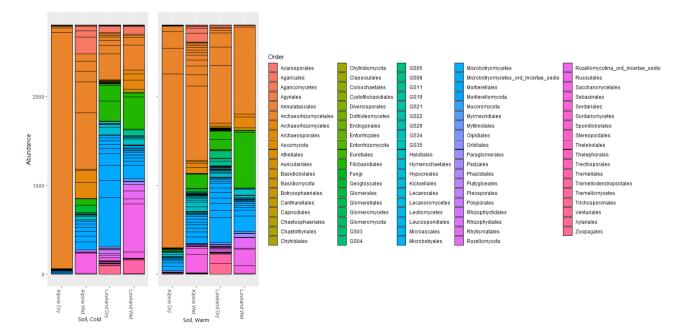


Figure S2: Relative abundance of fungal orders in control pots.