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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the University of Oslo and, under the supervision of Ingunn K. Wehus
and Hans Kristian K. Eriksen. This work was supported by the Norwegian Research
Council through grant 251328.

Most of my work has been on the COMAP data analysis pipeline, including
calibration, low level data processing, systematics, simulation, signal validation, data
selection and power spectrum methods. Much of this work is presented in Paper[[] (Foss
etal., which describes the data analysis pipeline all the way from raw data to
final maps.

For the last year or so I have also worked on developing power spectrum methods
that have a high sensitivity, yet are robust to instrumental systematics. This work is
presented in Paper [[I] (Thle et al., [in prep).

Papers|[lland[[T] are both meant to be part of a set of papers to be published together
making up the first release of COMAP results. As they are both in a fairly complete
state we present them here as drafts, but we note that both may receive significant
modifications before final submission.

I have also worked more abstractly on inference from line intensity maps: How
do you get as much information possible out of an observed map? Paper [[II] (Ihle
et al., demonstrates how, for a COMAP-like experiment, using a combination
of the power spectrum and the voxel intensity distribution gives significantly stronger
constraints on the CO luminosity function than using either observable separately. Lately
my focus has been more on how to bridge the gap between forecasts like this, with a
bunch of simplifying assumptions, and real world data. As I discuss in the thesis, this
gap needs to be closed for the work we do on inference methods to be useful.

For the last two years or so I have also spent some of my time working on the
BevonpPLanck project (Paper [[V] BeyondPlanck Collaboration, 2020). My main focus
starting out was on implementing the methods for sampling the correlated noise and the
corresponding noise parameters. As the work evolved we encountered some interesting
systematics which seem to involve both the noise estimation and calibration, which
makes sense since they are so closely related. This work involved using housekeeping
data from the Planck satellite to interpret and understand the results. Our main findings
and more discussion can be found in Papers [V]and [VI] (Thle et al.,2020} Gjerlgw et al.,

2020).
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Chapter 1
Cosmology

Cosmology is the study of the universe as a whole. What are the physical properties of
the universe? What is the history and future of the universe? What does the universe
consist of?

Although we have had a fairly good qualitative understanding of some parts of these
questions for about a century, it is really first in the last few decades that we have been
able answer any part of these questions with any kind of certainty or precision.

This development has mostly been led by experimental advances in the study of the
cosmic microwave background (CMB) and the large scale structure of the universe.

1.1 Standard Cosmology

Here we will discuss some of the main theoretical components underlying modern
cosmology, including general relativity (GR), dark matter (DM), dark energy (DE) and
inflation, culminating in the ACDM model.

1.1.1 General Relativity

GR is an incredibly successful theory of gravity describing everything from gravitational
phenomena measured in laboratories here on earth to the expansion and evolution of the
universe as a whole. The fundamental equation of GR is the Einstein equation

Gy = 87GT,,, (1.1)

where G, is the Einstein tensor and Ty, is the energy-momentum tensor. The Einstein
equation relates the curvature of the universe, represented by G, to the matter and
energy content of the universe, represented by 7,,. This means that any distribution
of matter and energy will create curvature in the spacetime around it, much like any
distribution of electric charge will create an electromagnetic field.

The ACDM model assumes that the spatial part of the universe is homogeneous,
isotropic and flat, and that the energy content of the universe is given by radiation,
baryonic matter, cold dark matter (CDM) and DE. In this case the Einstein equation can
be reduced to

Q QO +Q ) 12

H*() = H; St

where a(t) is the scale factor, which keeps track of the size of the universe at any given
time, H(t) = % is the Hubble parameter denoting the expansion rate of the universe,
a(t) denotes the time derivative of a(t), Hy is the current value of the Hubble rate, often
called the Hubble constant and Q.. o denotes the fractional energy density today in
radiation, baryonic matter, CDM and DE respectively.
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1.1.2 Dark Matter

Dark matter (DM) refers to a matter component additional to the visible matter we can
see and interact with. The term was first used by Fritz Zwicky (Zwicky, in 1933
when he found larger velocity dispersion in the Coma cluster than could be explained
by the visible matter, indicating another "dark" matter component.

Today DM is a cornerstone of cosmology with multiple independent lines of evidence
in its favor, including rotation curves of spinning galaxies (Borriello and Salucci, [2001),
velocity dispersion in galaxy clusters (Saro et al.,[2013)), weak (van Uitert et al.,[2012)
and strong (Moustakas and Metcalf,[2003) gravitational lensing, the CMB and non-linear
structure formation (Planck Collaboration VI, [2020).

These lines of evidence, as well as null results in direct- and indirect detection
experiments, put strong constraints on the properties of dark matter:

o It must be dark (i.e. non-luminous): In practice this means no coupling (or
extremely weak) to the photon. In general DM can not have any large coupling to
any light standard model particle.

e It must be non-interacting: The self-interaction of dark matter is severely
constrained, especially on large scales.

e [t must be cold: DM has to be non-relativistic during structure formation.

e [t must be stable: It must have a lifetime significantly longer than the age of the
universe.

It is remarkable that simply positing a new heavy non-SM particle with small or
no interactions with the visible sector can explain such a breadth of independent
observations.

It is interesting to note, however, that in all the stated cases, DM is inferred from its
gravitational effects. This has led some to suggest a modification to gravity to explain
these phenomena (see e.g. Milgrom, @D It has, however, not been possible to devise
a modification of gravity that can explain more than a few of the above lines of evidence
for DM at a time.

1.1.3 Dark Energy

In 1998 supernova measurements suggested, for the first time, that the expansion of
the universe was accelerating (Riess et al.,[1998). This acceleration cannot be achieved
by ordinary matter, but requires a cosmological component with positive energy and
negative pressure. This new component is what is called Dark Energy. Since then
multiple other lines of evidence have confirmed this accelerated expansion (Huterer
and Shafer, and we now know that DE is actually the largest contribution to the
energy budget of the universe at around 70%.

We do not know the nature of DE, but the simplest explanation is that empty
space has a certain energy associated with it, a vacuum energy. This constant energy
density has exactly the properties we need to explain the accelerated expansion we
observe. However, the big open question is: Why does the vacuum energy take this

2



Standard Cosmology

specific value, and not another? Or, more specifically: Why is the energy density of the
vacuum of comparable magnitude as the energy density of matter? This is called the
Coincidence Problem, and we do not have any satisfactory answers to it. Perhaps even
more disconcertingly, if we try to estimate the contributions to the vacuum energy from
quantum field theory we naively expect contributions of the order of the Planck scale,
which is about 120 orders of magnitude off from the value we measure in cosmology.
Clearly there is a significant piece missing in our understanding of DE, and it remains
one of the major challenges for the future.

1.1.4 Inflation

Inflation is the theory that the universe went through a period of accelerated expansion
in the very early universe. During inflation, the universe expanded by at least a factor
of 10%6. This accelerated expansion solves two problems (and other related problems)
with the traditional big bang model, the flatness problem and the horizon problem (Guth,
[1981).

If the universe is dominated by matter or radiation, which it was during most of its
history, any initial spatial curvature would tend to increase as the universe expands. This
means that since we observe the universe to be very close to flat today, it must have been
extremely close to flat in the very early universe, which would require a large degree of
fine-tuning, unless we have some mechanism for making space flat to begin with. This
is called the flatness problem, and inflation solves it since during inflation, the universe
becomes more and more flat as the expansion goes on.

The horizon problem can be understood by observing that the CMB photons reaching
us from opposite points of the sky have the same temperature, even though these points
in space have never, in the traditional big bang model, been in causal contact and so
have no reason to be at the same temperature. This is called the horizon problem, and
inflation solves this by ensuring that regions that were in causal contact before inflation
got spread out to super-horizon scales. The effect of this is that even regions which
(if we did not know about inflation) we would think never had been in causal contact,
actually could have had time to reach thermal equilibrium.

The simplest model of inflation posits a single scalar field, ¢(x, 7), rolling slowly
down towards the minimum of its potential. In such a slow-roll scenario, the energy of
the scalar field is dominated by the potential term that acts almost like a vacuum energy
and leads to exponential expansion.

Another crucial effect of the accelerated expansion is that small scale quantum
fluctuations in the scalar field get blown up to large scales and then frozen in as these
scales move outside the cosmological horizon. After inflation, when these modes
eventually move into the horizon again, these initial perturbations act as seeds for the
subsequent growth of structure in the universe.

Single field slow-roll inflation makes three predictions for the generated perturba-
tions, they will be:

e Gaussian: Since the quantum state of the perturbation field is basically in the
vacuum state of an harmonic oscillator.
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e (Nearly) Scale invariant: Since the conditions under which the fluctuations were
generated changes only very slowly, the properties of the generated perturbations
will only depend very weakly on scale.

o Adiabatic: Since the perturbation in all the different cosmological components
are generated from the same scalar perturbations, they will be in phase with each
other.

Observations of the CMB confirms all these predictions, which is why inflation is
generally accepted, even though we do not have very direct evidence for it. On the other
hand, one can argue that in each of these three cases, if you had asked the question
"What is the simplest thing you would expect?" the answer would be adiabatic Gaussian
fields with a scale invariant spectrum. In this sense we can say that these are very generic
predictions, and thus less impressive. Nevertheless inflation is still the simplest theory
on the market to explain these observations (as well as solving the horizon problem
etc.).

Another important prediction of inflation is the presence of tensor perturbations in
addition to the scalar perturbations we have been discussing. Tensor perturbations are
primordial gravitational waves induced by the inflation field. Tensor modes are harder
to detect than scalar modes, but they can be observed because they induce so-called
B-modes in the polarization spectrum of the CMB.

The scalar and tensor power spectra are conventionally defined as follows (Baumann,

2018)

Bk
Prlk) = —A[—] 1.3
r(K) o (k*) (1.3)
K’ k\™
Pu(k) = —A [ — 1.4
Wk = 5 (k) : (1.4)

where R is the scalar curvature perturbation, % is the tensor perturbation, A and A,
are the scalar and tensor perturbation amplitudes, respectively. ng and 7, are the scalar
and tensor spectral indices, respectively. The amplitudes are conventionally defined at
k. = 0.05 Mpc~" (Planck Collaboration VI,[2020).

We then define the tensor-to-scalar ratio, r, as
A
14_8 .
Inflation does not predict the overall level of the tensor perturbations, but it predicts the
following relation n, = —r/8. We have not observed any cosmological tensor modes, and
the current observational constraints on the tensor-to-scalar ratio is given by r < 0.044
(95 % CL) (Tristram, M. et al., . Therefore, since we already know that r is fairly
small, this means that in practice, since it will be very hard to measure, inflation predicts
n =~ 0.

Measuring the tensor-to-scalar ratio, r, is one of the main goals of future CMB
experiments. This would not only be more evidence for inflation (especially if we could
confirm that the tensor spectral index is consistent with inflation), but it would also tell
us (at least in the simplest inflation models) about the energy scale of inflation, and
about the shape of the inflationary potential.

r (1.5)
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1.1.5 The ACDM Model

The ACDM model combines the theories of GR and inﬂatiorﬂ with DE and (Cold) Dark
Matter (CDM), as well as known particle physics and thermodynamics, into a single 6
parameter model for explaining the expansion and evolution of the universe, in addition
to the origin and growth of structures in the universe.

The model assumes that the universe is spatially flat, that the energy density of
dark energy is constant over time and that there are no primordial tensor perturbations.
Table[IT|shows the constraints on the six parameter model from the latest Planck release.
We see that all these parameters, except for the optical depth to reionization, 7, are
constrained to more than one percent accuracy, which is quite remarkable.

Table 1.1: Constraints on the 6 ACDM parameters based on Planck data, in addition
to lensing and baryon acoustic oscillation data (Planck Collaboration VI,[2020). Here
h = Hy /100 km s™! Mpc™', 6, is the angular acoustic scale and 7 is the optical depth
to reionization.

Parameter 68% limits
Q.12 0.02242 + 0.00014
Q.h? 0.11933 + 0.00091
1000, 1.04119 + 0.00029
T 0.0561 = 0.0071
In(101°4) | 3.047£0.014
T 0.9665 + 0.0038

1.2 Observational Cosmology

Observational cosmology is a wide ranging field with many different sources of data,
including galaxy surveys, observations of supernovae, gravitational lensing, Lyman-«
forest, CMB, line intensity mapping (LIM) and gravitational waves. Here we will focus
on CMB and LIM, as those are the topics of this thesis.

1.2.1 CMB observations

The cosmic microwave background (CMB) is the radiation left over from the hot big
bang. It essentially captures a snapshot of the distribution of structure in the very early
universe, only about 400 thousand years after the big bang. This radiation has been
a treasure trove of information about our universe and has brought us into the era of
precision cosmology.

Planck was the fourth satellite mission to study the CMB, following the RELIKT
(Klypin et al.,[1987), COBE (Mather et al.,[1994) and WMAP (Bennett et al., [2013)
satellites. Planck produced the ultimate map of the temperature anisotropies of the CMB,

The ACDM does not explicitly include inflation, but assumes that the initial power spectrum is of the
form given in Eq. [[3]and that r = 0.
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limited only by cosmic variance and fundamental physical processes. This has made
Planck one of the most important datasets for constraining cosmological parameters,
further cementing the ACDM model as the standard model for cosmology. With the
temperature map all but settled by Planck, the future of CMB lies in the polarization
signal.

The success of the CMB field comes from the combination of precise observations
and precise theoretical predictions. The early universe was incredibly homogeneous,
allowing the use of linear perturbation theory to study the growth of perturbations, which
means that the coupled Einstein-Boltzmann equations can be solved very precisely (see
Dodelson, 2003| for more details). Figure [I.1] shows the close agreement between
theoretical predictions and CMB observations.

1.2.2 Line intensity mapping

Line intensity mapping (Madau, Meiksin, and Rees, (LIM) aims to map out the
3D structure of the early universe in large volumes using various different spectral lines,
like 21 cm, Lya, Cu, or CO. Compared to galaxy surveys, these surveys do not rely on
resolving and detecting individual sources of radiation, but instead collect the aggregate
emission from the full population of sources from each cross-sectional area of the sky
(see Fig.[I.2). By extracting the information present in the 3D maps LIM aims to help
us understand both galaxy evolution, reionization and fundamental cosmology.

Intensity mapping is now a growing field with multiple efforts both experimental
and theoretical. For a nice review of the motivation for LIM see (E. D. Kovetz et al.,
2017; E. Kovetz et al.,[2019). The number of running and planned LIM experiments is
growing, including SKA (Koopmans et al., Square Kilometre Array Cosmology
Science Working Group et al.,[2020), GBT (Masui et al.,2013), BINGO (Battye et al.,
2013), HIRAX (Newburgh et al.,[2016), LOFAR (van Haarlem et al.,[2013), CHIME
(Bandura et al.,2014), HERA (DeBoer et al.,[2017), GMRT (Pen et al.,[2009), MWA
(Tingay et al.,[2013), PAPER (Parsons et al.,[2014) and MeerKAT (Santos et al.,
targeting 21 cm, COMAP (Cleary et al.,[2016)), COPSS (Keating, Bower, et al.,
Keating, Marrone, Bower, Leitch, et al., , mmIME (Keating, Marrone, Bower,
and Keenan, and AIM-CO (Bower et al., targeting CO, CCART-prime
(Stacey et al.,[2018), TIME (Cerites et al.,[2014) and CONCERTO (Lagache, Cousin,
and Chatzikos, 2018) targeting Ci and CDIM Cooray et al., 2016, SPHEREx (Doré
et al.,[2014), Origins (The OST mission concept study team,2018) and HETDEX (Hill
et al., targeting other lines.

A simple analytic model for the signal power spectrum, P(k), of a line intensity map
is given by

P(k) = (Tiine)* Dpe Pu(k) + P, (1.6)

line

where (Thine) is the mean brightness temperature of the line, by, is the luminosity
weighted bias of the line, P, (k) is the matter power spectrum and Py is the scale
invariant shot noise power spectrum. Together the three factors of the first term are
referred to as the clustering power spectrum as it follows the underlying clustering of
the matter distribution. The clustering term dominates at large scales, while the shot
noise term dominates at small scales (see Fig. [[3).
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Figure 1.1: Comparison of CMB power spectrum measurements and theoretical
predictions from the ACDM model. Top panel: Temperature (TT), E-mode (EE) and
B-mode (BB) polarization auto spectra measured by several different CMB experiments.
Middle panel: Cross-spectrum between temperature and E-mode polarization maps.
Bottom panel: Lensing deflection power spectrum. Note that the B-mode spectrum
measured here is consistent with that induced by lensing, and shows no sign of
cosmological tensor modes. For more details see Planck Collaboration et al.,[2020} from
where this figure was taken.
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Figure 1.2: Simulated 3D cube of CO line emission brightness temperature. This
corresponds roughly to the survey volume of one of the COMAP fields.
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Unresolved Questions and Future Prospects

By tracing spectral lines originating in star forming regions, the interstellar medium
and the intergalactic medium, LIM can map out galaxy formation and evolution over
cosmic time, and, crucially, follow the process of reionization by tracing both the sources
of ionizing radiation, and the neutral hydrogen gas being gradually ionized. These data
will, among other things, help constrain the optical depth to reionization, 7, which is the
least constrained parameter in the ACDM model.

In addition to these unique insights into astrophysics, LIM also provides a great
opportunity to test fundamental cosmology. As we can see from Eq. [T.6] LIM traces
the underlying matter distribution, and as such, it gives us access to new cosmological
volumes largely inaccessible to other probes. Where CMB observations are limited to
the number of 2D angular modes from the surface of last scattering, LIM can give us
access to the full 3D modes up to high redshifts.

This could allow us, as an example, to follow the baryon acoustic oscillation
(BAO) scale through cosmic time, which would give us a robust, model independent,
measurement of the cosmic expansion history (Bernal, P. C. Breysse, and E. D. Kovetz,
[2019). This would be a powerful tool to test things like modified gravity and dark
energy properties. We could also get much tighter constraints on primordial non-
Gaussianity (e.g. Furlanetto et al., 2019), which could help us distinguish different
models of inflation. Even dark matter decay or annihilation could be detected using
LIM (Creque-Sarbinowski and Kamionkowski, 2018). These are just some of the use
cases of LIM in cosmology currently being discussed. As the field develops, many more
will surely emerge.

1.3 Unresolved Questions and Future Prospects

The standard model of particle physics has been incredibly successful, explaining all
particle interactions that we have observed, with the detection of the Higgs boson at the
large hadron collider (LHC) in 2012 putting the last puzzle piece into place (Chatrchyan
et al.,[2012} Aad et al.,2012).

Motivated by the WIMP miracle and the hierarchy problem (Jungman,
Kamionkowski, and Griest, Susskind, [1979), there was a significant expec-
tation that the LHC would detect supersymmetry (SUSY), or other new beyond standard
model (BSM) physics, at the weak scale. No such signs have yet been seen. While
low energy SUSY is still not ruled out, the fact that we have not seen any signs of it at
least lets us consider the possibility that we will not make much progress towards BSM
physics using particle colliders in the near future.

From cosmology, however, we know that 95 % of the energy content of the universe
(DE and DM) comes from sources that are not part of the standard model of particle
physics. Inflation is also an important process in cosmology that cannot be explained
within the standard model.

This suggests that at this point cosmology might be the most likely way to move
fundamental physics forwards. What is the nature and properties of DM and DE? Are
either of these explained by modifications of gravity? Did inflation happen? If so,
what is the source of inflation? If not, then what explains the flatness and horizon

9
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problem? And what gives us the spectrum of initial perturbations? How does any of this
fit together in a coherent picture with the standard model?

With new probes like line intensity mapping coming online, in addition to well
established ones like CMB analysis and galaxy surveys, observational cosmology and
astrophysics is now in a position to shed light on these questions. Detecting primordial
gravitational waves, non-Gaussianities or large scale anisotropies would shed light
on inflation or any other source of primordial perturbations. Mapping out the whole
expansion history of the universe, and the growth rate of structure, could help us nail
down the properties of DE, possibly modified gravity, or even new early universe
physics. Detecting the small scale structure of galaxies can tell us about the properties
and interactions of DM. All this makes observational cosmology an exciting area to
work in.

10



Chapter 2
COMAP

2.1 COMAP Experiment

The CO molecule is the second most abundant molecule in the interstellar medium,
after H,, and is a great tracer of cold molecular clouds, and thus star formation. CO
has a ladder of equally spaced rotational transitions at integer multiples 115.27 GHz,
which opens the possibility of studying different transitions of the same CO sources by
observing at different frequencies.

The CO Mapping Array Pathfinder (COMAP, Cleary et al., is a line intensity
mapping experiment targeting the rotational transitions of the CO molecule. It is
an international collaboration between California Institute of Technology, Canadian
Institute of Theoretical Astrophysics, Jet Propulsion Laboratory (NASA), University of
Manchester, Maryland University, Miami University, Stanford University, University
of California Berkeley, Princeton University and University of Oslo. The Oslo team
is responsible for the end-to-end data analysis of the main science observations from
COMAP.

Phase One of COMAP consists of a single telescope observing in the K,-band at
26-34 GHz, which for CO 1 — 0, emitted at 115 GHz, corresponds roughly to the
redshift range 2.4 — 3.4, the Epoch of Galaxy Assembly. The K,-band will also pick up
a, presumably weaker, signal from the CO 2 — 1 transition, emitted at 230 GHz, or the
redshift range 6 — 8, during the Epoch of Reionization. See Fig.[2.1]for a group photo of
the COMAP collaboration in front of the COMAP telescope.

COMAP Phase One is a pathfinder experiment meant to demonstrate the feasibility
of large scale line intensity mapping using CO. Future planned phases of COMAP
will involve more telescopes observing at K,,, as well as the addition of one or several
telescopes observing the K,-band. The K,-band, at 12-20 GHz, would pick up the
1 — 0 emission from the same redshifts as the 2 — 1 emission from the K,-band. This
will allow us to separate out the 2 — 1 from the 1 — 0 signal in the K, data. The
long term goal is to do CO line intensity mapping from space (Bowman et al.,
M. B. Silva et al.,[2019).

We started the main science observations for Phase One in June of 2019, and are
currently analyzing the data taken during the first year of observations.

2.2 COMAP Instrument

For COMAP Phase One we utilize a 10.4 m telescope located at the Owens Valley
Radio Observatory (OVRO) in California. The telescope was part of an array of dishes
previously used for the Combined Array for Research in Millimeter-wave Astronomy
(CARMA) experiment, but has now been moved back to OVRO to be used for other
experiments. The angular resolution obtained is roughly 4.5 arcmin FWHM at 30 GHz.
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Figure 2.1: The COMAP collaboration standing in front of the COMAP Phase One
telescope in August 2018.

The receiver consists of 19 independent detectors, each with a separate signal
path from the 19 individual feed horns, through polarizers and low noise amplifiers to
downconversion and eventually frequency separation and digitization which happens
in two CASPER "Roach2" FPGA-based spectrometers for each signal chain (Cleary,
2015). We usually use the term "feed" to refer to each of these 19 signal chains. For
more details on the COMAP instrument see J. Lamb et al. (in prep).

The observed signal in the frequency range 26-34 GHz gets, during the downconver-
sion, split into two different bands, band A coming from 26-30 GHz and band B from
30-34 GHz. One Roach2 module processes the signal from one band, meaning that a
total of 38 Roach2 modules are used to collect the full science data from the 19 feeds.
In the Roach2 modules the data gets further split into a lower and an upper sideband,
each with a bandwidth of 2 GHz.

For the raw science data, the Roach2 modules separate the 2 GHz bandwidth of
each sideband into 1024 separate frequency channels, leading to a native frequency
resolution of about 2 MHz. The data is also integrated over a period of about 0.02 s,
leading to a sample rate of roughly 50 Hz in time.

12
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2.3 Observations

During observations we employ two different scanning strategies, Constant Elevation
Scans (CES) and Lissajous scans.

For the CES observations we keep the telescope at a constant elevation while slewing
it back and forth in azimuth. During a Lissajous scan the telescope performs independent
sinusoidal motion in both elevation and azimuth at the same time as follows

Azimuth(r) = A sin(at + ¢) 2.1
Elevation(¢) = B sin(bt). 2.2)

A Lissajous scan can thus create many different scanning patterns depending on which
values used for A, B, a, b and ¢. We typically use values of B ~ 0.6 degrees, while A
is scaled with elevation to correspond to roughly the same on-sky distance. The other
parameters are randomized in order to not repeat the same scanning pattern each time.
Typical values for a and b are in the range 0.3-0.5 Hz, leading to typical periods of
12-25 seconds.

Circular scans, which are sometimes used, are just a special case of the Lissajous
scan. In fact, even for the CES observations, we use a sinusoidal motion in the azimutal
direction in order to minimize the strain on the telescope, so the CES can also be thought
of as a special case of the Lissajous scan (with a = 0).

Lissajous scans typically give a more even coverage of the observed field, with
better cross-linking, but they have the disadvantage of getting a large signal from the
different amount of atmosphere at the different elevations, which needs to be removed.
Ground signal is also harder to remove from Lissajous scans, since the scanning pattern
is not repeating, in the same way as it is for a CES. A Lissajous scan typically covers a
larger area than a CES, so it can recover more of the large scale cosmological signal, at
the cost of a higher noise level on small scales.

For the first year of observations, we split the observation time roughly evenly
between Lissajous and CES. However, due to the problems we have found in the
Lissajous data (see Paper [[I} Thle et al., [in prep), the observations taken afterwards
have been exclusively CES, and unless we can figure out and solve the issues with the
Lissajous data, we will continue to rely exclusively on CES observations for the future.

The general observation strategy is to start by pointing the telescope a bit ahead
of the on-sky field that you want to observe (i.e. point to where the centre of the field
will be in a few minutes), and then performing CES or Lissajous scans centered on
this azimuth and elevation position while the field drifts through. Once the field has
drifted past the azimuth and elevation you are observing at, you repeat the sequence by
moving slightly ahead of the field again etc. Each such period where you stay centered
at at a given azimuth and elevation performing CES or Lissajous motion while the field
drifts through is called a "scan". When you move the telescope ahead of the field again
and repeat the sequence you start a new scan. Figure[2.2]shows the telescope pointing
for 27 subsequent scans. This illustrates the general observation strategy, and how the
telescope follows the field across the sky. We can also see the randomization of the
Lissajous parameters clearly.

A scan typically lasts for 3-10 minutes, and multiple scans of the same field are
combined together into an observation. An observation usually contains around an hour
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Figure 2.2: Telescope pointing during 27 subsequent Lissajous scans of the same field.
Figure courtesy of Jonas Lunde.
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I ]

0 1200

HKcm
Figure 2.3: The three main CO fields, overplotted on the Planck LFI 30 GHz map.
Map downloaded from the PLA, https://pla.esac.esa.int (Planck Collaboration I,/2020).
Figure courtesy of Nils O. Stutzer.

Field Name | RA (J2000) Dec (J2000)
CcO2 01:41:44.4  +00:00:00.0
CO6 15:04:00.0  +55:00:00.0
CO7 11:20:00.0  +52:30:00.0

Table 2.1: COMAP main science fields

of data, and is labeled by a, monotonically increasing, integer number called the "obsid"
(we refer to the observations as e.g. obsid 7456 etc.). The raw data is collected together
into what we call "level 1" files, which contain all the data, from all 19 feeds, for a
single obsid, together with pointing information and a large set of housekeeping data.

We observe three main science fields, labeled "co2", "co6" and "co7". These are
chosen to be in low foreground regions, and to overlap with other surveys. The position
of these fields can be seen in Fig.[2.3]and in Table[2.1] The sizes of the fields are roughly
2 x 2 deg?.

2.4 Data and Systematics
The basic properties of the raw data are discussed in Paper[[] (Foss et al., in prep). Here

we give a short summary and focus on some of the main systematics present in the data
and what we know about them.
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2.4.1 Data model
The power picked up by any of the detectors is given by

Powe = kBGAVTsys’ (2.3)

where G is the instrumental gain, kg is the Boltzmann constant, Av is the frequency
bandwidth, and Ty is the total system temperature of the instrument.

The system temperature is basically a measure of the overall noise level, and it has
many different sources,

Tsys = Treceiver + Tatmosphere + Tground
+ TCMB + Tforegrounds + TCO’ (24)

where Treceiver 15 the effective noise temperature of the receiver, Tamosphere 18 the
temperature contribution from the atmosphere, T'ground is the ground pickup from far
sidelobes, Tcwp is the signal from the CMB, Troregrounds are all continuum foregrounds
(mostly from the galaxy), and T¢o is the line emission signal from extragalactic CO,
which is what we are ultimately trying to measure.

Making some simple assumptions we can make the following model for the system
temperature as a function of feed, frequency and time,

tel

T (0) = (Th ) [+ PLy(Ascom + Asfo) + PloASground + Meorr + 11| 2.5)
Here () denotes average in time, Piel and Piel are the pointing matrices in celestial and
telescope coordinate systems, respectively; Ascon denotes the mean subtracted celestial
continuum sources, like the CMB or galactic foregrounds; Aslg is the mean subtracted
CO line emission; Asgoung 1S the mean subtracted ground signal picked up by the far
sidelobes; and n.q,, is the (zero mean) correlated noise component, consisting mostly of
atmosphere fluctuations and standing waves. The superscript i is a feed index. Terms
with no feed index are assumed to be similar (or at least strongly correlated) between
different feeds, while terms with a v label indicate parts of the model that are assumed
to have non-smooth frequency dependence.

Likewise we can make the following simple model for the gain

Gin) = (G [1+ 65 (2.6)

where 62(0 is a correlated noise term coming from gain fluctuations in the low noise
amplifiers. These gain fluctuations are assumed to be the same for all frequencies of a
single feed, but are independent between different feeds.
We can then combine these into a single model for the power measured by the
detectors
di(n) ~ (d)[1 + P!

o (AScont + Ast) + Pl ASground + 05 + Meorr + 10| (2.7)

tel

where di(t) is the raw time ordered data and we have assumed that the deviations from
the mean are small, so that we can neglect second order terms.
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Figure 2.4: Normalized power measured during sky-dip observations compared to a
fitted 1/ sin(el) model. Figure courtesy of Jonas Lunde.

2.4.2 Atmosphere

The atmosphere is one of the major contributors to the system temperature as well as
to the correlated noise. The brightness temperature of the atmosphere can be roughly
modeled as that of an optically thin medium at a certain temperature. The observed

brightness temperature from the atmosphere, T}l’tm, is then given by

b
Tatm

=Taum(1 =€) = TymT, 2.8)

where T,y is the physical temperature of the atmosphere and 7 is the optical thickness
of the atmosphere.
The optical thickness of the atmosphere depends on the elevation at which we are
observing. We can take this elevation dependence into account using a simple model
70

Teh = sin(el)’ (2.9)
where "el" denotes the elevation of the telescope pointing, and 7 is the optical thickness
at zenith (el = 90 degrees). Figure 2.4 shows data from sky-dip observations (where
the telescope quickly sweeps down in elevation and up again) taken with the COMAP
telescope and a fitted optical depth model. This is a good illustration that the model
works well.

Typical measured values of Ty, 7o are around ~ 12 — 15 K. Since we typically
observe at elevations between 35 and 65 degrees, the atmosphere typically contributes
around 15 — 25 K to the system temperature.

The atmosphere also has a significant contribution to the correlated noise. To a large
extent, the atmospheric column observed by the different feeds should be the same, so
the correlated noise from the atmosphere should be highly correlated in the different
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Figure 2.5: Correlation matrix of sideband averaged data from a single CES scan.

feeds, it should also be very smooth in frequency. If this is true, and there are no other
major continuum contributions to the correlated noise that are also correlated between
the different feeds, then the amount of correlation between the data of different feeds
can be used to estimate the the rough magnitude of the atmospheric contribution to the
correlated noise.

Figure [2.5] shows the correlation between the raw data averaged over all the
frequencies of each sideband. We see that the four sidebands of the same feed
are essentially completely correlated, this is because both the gain fluctuations and
the atmosphere fluctuations are common to all four sidebands. For the different
feeds, however, the gain fluctuations are independent, so the main contribution to
the correlation here is from the atmosphere. This suggests that the correlations due to
the atmospheric contribution are typically around 10 — 40 %.

2.4.3 Ground Contamination

Figure[2.6]shows a far sidelobe beam model for a single feed of the COMAP instrument.
As we can see, we have significant beam sidelobes all the way out to around 70 degrees.
This means that, as long as the telescope is pointing at an elevation lower than about
70 degrees, some of our main sidelobes will be hitting the ground. As long as the
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Figure 2.6: Simulated far sidelobe beam model for a single feed of the COMAP
instrument. Beam model courtesy of James Lamb.

contribution from the sidelobes is fairly stable in time, this small ground pickup only
has the effect of increasing our system temperature by up to a few Kelvin. However, if
one of the more sharply defined sidelobes is right at the edge of the horizon, then the
contribution from the ground can change quite abruptly, and we get a very strong signal
in our time streams.

One thing that makes ground contamination more worrisome than other systematics
is that the ground signal is correlated with where the telescope is pointing. This means
that it will not necessarily integrate down properly when we add in more data. In
general if some systematic is present in the data, this may not be ideal, but as long
as the systematic is random and independent between each time we take data, then
the contribution of the systematic will generally integrate down roughly as ~ 1/ VNgps,
where Ngps is the number of independent observations.

The ground contribution, however, will be roughly the same each time we are
observing at the same point in the sky, which means that it is not so simple. Of course,
the ground is roughly constant in AZ/EL coordinates, while the cosmological signal
is mapped in RA/DEC, so the signals are not completely degenerate, however, we do
observe the same cosmological fields along the same path in AZ/EL every day, so the
ground contamination will tend to affect the same modes in RA/DEC again and again.

While the ground itself is fairly close to a blackbody spectrum, which is something
we would not be much worried about, the important thing for the ground contamination
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is the frequency dependence of the sidelobes themselves. This is because if the sidelobes
are very different at different frequencies, the ground contamination seen at different
frequencies will also be very different, even though the ground is almost a blackbody.
Fortunately, the positions of the sidelobe peaks is something that is not expected to
change with frequency, but the sidelobe structure will in general be more sharp at high
frequencies, and more diffuse at lower frequencies. The resulting ground contamination
is expected to be fairly smooth in frequency, and thus something that can be removed
quite effectively by filtering. Note that since the beam model (Fig.[2.6) is fairly expensive
to run, we do not have one at another frequency, which means that these are mostly
qualitative educated guesses about the beam properties.

While the smooth frequency structure should make it possible to remove the ground
contamination quite effectively, we should note that the ground signal is still perhaps
five orders of magnitude stronger than the cosmological signal we are trying to measure,
so we need to remove it very precisely for it not to affect our measurements. This is
what makes ground contamination one of the major challenges for COMAP.

The current version of the COMAP data analysis pipeline uses simple pointing
template fitting in time domain in order to remove as much as possible of the ground
signal. We use the simple atmosphere model from Sect. [2.4.2]together with using the
azimuth position itself as a template

8 8
Aaier = dbefor - - + s 2.10
afte before — = aaz < sin(el) a az> ( )

here g and a, as well as an overall constant, has been fit to the data. The elevation
template is mostly there to remove the effect of the atmosphere, but it will also pick
up some ground signal. The azimuth template is basically removing the linear term
in the Taylor expansion of the ground signal about the centre of the field. These
templates are subtracted from each frequency channel independently. Figure 2.7 shows
the average values for these fitted template amplitudes along the paths followed by our
three cosmological fields. We see large amplitudes both at high and low elevations. At
low elevations (around el ~ 30) the main sidelobe is hitting the edge of the horizon,
while at around el ~ 70 the lower of the four far sidelobe peaks (see Fig.[2.6) is just at
the edge of the horizon.

The most extreme azimutal amplitudes observed are found in the region
az, el ~ 315,30 degrees. Here we believe what is happening is that one of the
60-70 degree sidelobes are just at the edge of Black Mountain (see bottom of Fig.[2.7]at
az ~ 60). Figure [2.8]shows the feed and frequency averaged raw time stream from a
co6 observation of this area, together with the azimuth template. We here see a very
strong effect. Even though we can remove most of this effect by fitting and subtracting
templates, there is still contamination left, and this will be hard to remove completely
at a later stage. This is why we currently do not use any data from below 35 degrees
elevation.

In the next iteration of the analysis pipeline, the plan is to model the ground explicitly.
This work is led by master student Jonas Lunde, under my supervision. We are using
all the raw data to make continuum maps of the ground using the destriping mapmaker
(Delabrouille, 1998}, Keihinen et al.,[2010). These ground maps can then be used to
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Figure 2.9: Continuum map of ground contamination. Made using a destriper and all

the available Lissajous data taken in this region. Figure courtesy of Jonas Lunde.

make more precise templates to remove from the time streams during the regular data
analysis. Figure [2.9] shows the previously discussed region with very strong ground
contamination. In the lower right corner we see a strong gradient in both azimuth and
elevation. By using maps like these, we can produce more precise templates that can
remove the ground better than the simple templates we are currently using.

In addition to subtracting the ground contamination from the time streams, we
can also design power spectrum methods that are as robust as possible to ground
contamination, see Paper[[I| (Thle et al., for more details.

2.4.4 Standing Waves

Standing waves are another one of the major systematics in the raw COMAP data. They
can form at various stages of the signal chain, from the sky to the digital backend, in the
various potential electromagnetic cavities.

A given cavity length D will resonate with frequencies separated by

AVSW = (2 1 1)

¢
2D’
where Avgw is the distance, in frequency between peak resonances and c is the speed
of light. A simple model for the standing wave structure in frequency is then given by

(D. Chung, [2020)

4

+ ¢), 2.12)

TSW = Tsysrsw sin | 2m
AVSW

where T'syw is the contribution to the system temperature coming from the standing wave,
rsw 1s the (assumed to be frequency independent) standing wave amplitude and ¢ is
some overall phase.
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As we will see, a constant standing wave is not an issue for us since it will be
removed in the bandpass normalization. It is only if a standing wave changes over time
that it will show up in our data. These changes will arise whenever the cavity length
changes, due to temperature fluctuations, vibrations etc. In the data the standing waves
will then contribute to the correlated noise.

Standing waves can be distinguished from the other sources of correlated noise by
their particular structure in frequency. Gain or atmospheric fluctuations are both (in
slightly different senses) continuum sources in frequency, while standing waves will
contribute with different sign to different frequencies as it goes in and out of resonance,
as can bee seen from Eq.[2.12]

If the standing wave cavity is common to all the feeds, like the one between the
receiver and the secondary, then the standing wave will change as a single function
in time, common to all feeds, that contributes with different amplitudes to different
frequencies. As we will see in Sect. [2.6.7] this is a perfect signal to pick up using
Principal Component Analysis (PCA). Standing waves that only show up in individual
feeds are much harder to measure and remove, but they will also affect a smaller part of
the data, so they will integrate down significantly as we combine the different feeds.

Figure 2.10]shows the leading PCA mode from a CES scan of co6. We see that as a
function of time, the mode looks like some sort of correlated noise. The amplitudes as
a function of frequency show signs of the sinusoidal behavior expected from Eq.[2.12}
Largest PCA amplitudes are found in feeds 3 and 5, this is because these feeds have a
single stage polarizer, which makes them more susceptible to the standing waves than
the other feeds which have two stage polarizers. If we try to estimate the frequency
gap between the resonances, we see that we get a bit different results depending on
which feeds we use, but the results are in the range Avsw ~ 0.3 GHz, which corresponds
to a cavity length of about 0.5 m. This fits fairly well with the cavity between the
polypropylene weather shield that covers the receiver and the receiver itself (J. W. Lamb,
2020).

This reciever-weather shield standing wave is the one we see most clearly in our time
ordered data, and the one we have studied the most. We find it in all the data, but the
stability of the standing wave changes significantly, including a clear correlation with
the windspeed. In June 2020, we augmented the the weather shield with a polystyrene
backing support in order to make the weather shield more stable. This change was
successful at suppressing this standing wave, although it is still there at a lower level.
The other standing waves we have observed are typically more unstable and sporadic.
For an example of another standing wave, with a frequency gap of Avsw ~ 0.07GHz,
suggestive of the ~ 2 m distance between the receiver and the secondary, see Fig. 2.T1]
We are still in the early phase of understanding and classifying these standing waves,
but we are making progress in this area, especially in understanding which standing
waves affect our measured cosmological power spectrum.

2.4.5 Correlated noise

There are three main sources of correlated noise. Atmospheric fluctuations contributes to
the correlated noise at timescales longer than one or a few seconds, and these fluctuations
are common to all frequencies and feeds. Gain fluctuations are typically the main source
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Figure 2.10: Leading PCA mode as a function of time (top panel). The rest of the panels
show the corresponding PCA amplitudes as a function of frequency for each of the 19
feeds (left) and power spectral density, in frequency, of these amplitudes (right). Data is
from a CES scan of co6.

of correlated noise, but they are also common to all the frequencies within a single feed.
Some standing waves contribute significantly to the correlated noise, however, the same
frequency structure is typically preserved over time, so these can be removed using a
PCA filter.

Since all these sources of correlated noise are also highly correlated between
frequencies, they can usually be removed very precisely in the filtering steps of the data
analysis pipeline, as can be seen in Fig. For this reason, correlated noise is not a
systematic that we are very worried about at this stage in COMAP.
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Figure 2.11: Third PCA mode as a function of time (top panel). The rest of the panels
show the corresponding PCA amplitudes as a function of frequency for each of the 19
feeds (left) and power spectral density, in frequency, of these amplitudes (right). Data is
from a CES scan of co6.

2.4.6 Continuum Foregrounds

Our cosmological fields are selected to be in regions with low galactic foregrounds, for
this reason we have not been too worried about these up until now, as they will be fairly
effectively removed in the frequency filter. However, the foregrounds are still up to
two orders of magnitude stronger than our CO signal, so we do need to suppress them
significantly, if we want to measure our signal.

This will be a more and more significant issue the more sensitivity we get, so it is
something that we will probably have to focus more on in the future.
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Figure 2.12: Power spectral density of the COMAP time ordered data at various different
stages of the analysis pipeline. Figure courtesy of Jonas Lunde.
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Figure 2.13: Example of time ordered data taken with the sun in the far sidelobe. Here
we see data from the four sidebands of feed 15.
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Figure 2.14: Example of data taken during bad weather.

2.4.7 Sun/moon in sidelobes

Another systematic that we did not anticipate the significance of in advance were the
times when the sun, or even the moon, is exactly at one of the four peaks in the far
sidelobes (see Fig. [2.6]at about 65 degrees). If this happens, we get a very large signal
in the time streams, as can be seen in Fig. [2.13] after about 30 minutes. When this effect
was first observed, we did not know what was the cause, but after looking at the data
in the right way we could see the effect very clearly (see Fig. 2.23). We now track
the relative position of the sun carefully and this allows us to remove the affected data
during data selection (see Sect[2.7.1).

2.4.8 Weather

If there is significant cloud coverage, or other bad weather, then the data taken is
typically not usable. Figure 2.T4]shows an extreme example of data taken during bad
weather. As we will discuss in Sect. [2.7.1]bad weather actually affects a significant part
of the data, and is dealt with during data selection.

249 Spikes

We occasionally see spikes in the raw data, especially during the summer. We do not
know for sure what the cause of the spikes are. Some of them seem to come from
insects flying in front of the receiver, but we do not know if all of them are caused by
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Figure 2.15: Example of an observation with a very large number of spikes.

this. Sometimes the spikes show up sporadically, one or two in an entire obsid, and
sometimes the data is flooded by spikes (see Fig.[2.13).

The spikes are continuous in frequency, so we expect most of the signal to be
removed in the frequency filters. We have not seen any clear signs that the spikes make
a significant impact on the final maps or power spectra, but we are tracking the spikes to
look for any such affect.

2.5 Calibration

Calibration is one of the major challenges we need to solve in order to make use of the
data. We need to translate the raw power readings of the detectors (given in arbitrary
digital units) into brightness temperatures. COMAP uses a main calibration strategy
based on a calibration vane at ambient temperature that is periodically moved in front of
the receiver. This acts as a hot load reading that is compared to the cold load of the sky
measurement.

We can verify the calibration by looking at a source with a known temperature,
like Jupiter. Although this will not give a very precise calibration, it is still a useful
test to perform, if nothing else than as a sanity check that we are not doing something
completely wrong. It will also show if the calibration is consistent over time.
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2.5.1 Ambient load calibration

The main method of calibration used for COMAP involves comparing an observation

of the cold sky with observations of a calibration vane at ambient temperature. This

ambient load is automatically moved in front of the receiver and back during calibration.
The power measured by the telescope at any given time is given by

P = GT,, (2.13)

where P is the total power, G is the gairﬂ and Ty is the system temperature combining
the contribution from the receiver with the external signal coming into the feed horns.

The idea of the calibration method is simple. We observe two different signals at
known temperatures, and use these two measurements to determine 7y assuming the
gain is constant.

The complication with this is that we want to calibrate to the cosmological signal,
and some of this signal gets absorbed by the atmosphere, meaning that only part of
the signal makes it down to our receiver. So for a given signal contribution the system
temperature changes by

ATsys = e_TATsignala (2.14)

where ATy is the contribution to the physical system temperature of the signal, 7 is
the optical depth of the atmosphere and AT igny is the temperature of the cosmological
signal. To account for this effect we define an effective system temperature (Penzias and
Burrus, [1973))

T, = e Tys, (2.15)

sys
where T is the effective system temperature and Ty, as before, is the physical system
temperature measured by the instrument. This new definition ensures that

AT, = ATsignal, (216)

sys

making the interpretation of our measurements much easier. Another way to think about
this is to note that losing some of the cosmological signal in the atmosphere is equivalent
to just having a higher noise level in the first place, and the effective temperature, 7',
is just this higher noise level. In the same way we define the effective gain

G =eG, (2.17)

where G’ is the effective gain and G is the physical gain. We can now rewrite Eq.
using our new definitions
P =GTy =G'T, (2.18)

sys*

When the instrument is looking at the cold sky, the power is given by
P =G (Trev + Tl + € Tens) = Gy, (2.19)

where P. is measured power when looking at the cold sky (the cold load), Ty is

the receiver temperature contribution to the physical system temperature, 75 =

INote that, for convenience, we have absorbed the conventional constant factors kgAv into G for this
derivation.
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(1 — e )Ty is the brightness temperature of the atmosphere, Ty, is the physical
temperature of the atmosphere, which we assume to be in thermal equilibrium at a
constant temperature, and Tcyp is the CMB monopole, which we assume dominates
any other cosmological signal. Rewriting this in the effective coordinates we get
P.=G'(T}

rcv

+ Tl + Tows) = G'T]

sys?

(2.20)

where we have defined the effective receiver temperature 77,
brightness temperature 722 = e'T? .
If the instrument is looking at the calibration vane (the /ot load) the measured power

is given by

= ¢" Ty, and atmosphere

Py =G Ty + Th), (2.21)

where T}, is the physical temperature of the calibration vane. If we assume that the
physical temperature of the calibration vane is the same as the physical temperature of
the atmosphere, we can rewrite T}, in the following convenient way

Th=eTyh+(1—e)Tw=e Ty +Th,. (2.22)
If we now write Eq.[2.2T]in the effective units we get
Py=G (T}, + To+ Tjp) = G' (To + Ty — Tows) - (2.23)

Using the measurements of the cold and the hot load, assuming the gain is constant and
that we know the temperature of the calibration vane, we can solve for the effective
system temperature
r_Th—Tews
WS Py P~ 1

During this derivation we have neglected the effect of ground spillover. However,
a very similar argument can be made to take this into account as well, and if we also
assume that the ground has the same physical temperature as the calibration vane and
the atmosphere, the result is exactly the same as in Eq.[2.24] with the effective system
temperature, T, now taking into account both the effect of the atmosphere and the
ground spill. Note that whenever the temperature of the system, atmosphere etc. is
mentioned elsewhere in this thesis, we are referring to the effective temperatures, not

the physical ones.

(2.24)

2.5.2 Jupiter calibration

We do periodic Jupiter observations for calibration and pointing correction. By fitting a
Gaussian beam to these observations we can measure the antenna temperature of Jupiter.
These measurements can be compared to model expectations depending on the current
distance to Jupiter. This work is led by Stuart Harper in the Manchester group.
Figure[2.16] shows antenna temperature measurements of Jupiter from October 2019
to August 2020, for a single feed, compared to the model. We see that apart from an
overall constant factor offset, the measurements fit the model very well. The overall
offset factor, which we can see is given roughly by 0.7-0.8, is the effect of the aperture
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Figure 2.16: Antenna temperatures measured by feed 1, based on calibration

observations of Jupiter, compared to model expectations. Figure courtesy of Stuart
Harper.

ef’ﬁciencyﬂ which is expected. These results show that the calibration is consistent over
time, and at a reasonable value.

2.6 Data Analysis Pipeline

The COMAP analysis pipeline takes the raw data, from what we call level I files, does
calibration, filtering, performing data selection, making maps and calculating power
spectra.

Figure 2.T7] shows an overview of the various steps and modules that are part of
the COMAP analysis pipeline. The first modules are scan_detect, which identifies,
classifies and divides our data, and 12gen, which performs the low-level calibration,
filtering and frequency masking of the data and producing level 2 files. Level 2
files contain calibrated and filtered time ordered data, as well as a set of diagnostic
data. Before the level 2 files are combined into maps, there is a second level of data
selection, performed by the module accept_mod, which produces an accept_list
denoting which observations to accept or reject when making the maps. The mapmaker,
tod2comap, converts the time ordered data from the level 2 files into 3D maps of
brightness temperature. The preceding steps are described in Paper [[| (Foss et al.,

| ’It is slightly different from the aperture efficiency since Jupiter is not a point source. |
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Figure 2.17: Overview of the COMAP CO analysis pipeline. Figure courtesy of Jowita
Borowska.

iprep). Here we will give a summary overview, while going into more details in some
areas.

The last part of the current data analysis pipeline is comap2ps. This module takes
in the 3D maps in brightness temperatures and calculates various power spectra. These
procedures are described in Paper[[l] (Ihle et al., [in prep). We will not repeat much of the
methods presented there, but will, in later sections, discuss more abstractly the problem
of inference from line intensity maps. We will also go into some details on using the
voxel intensity distribution (VID) that have not been published.

2.6.1 Scan Detect

The main goal of scan detect is to go through all the raw data files to classify and divide
the data into individual scans. This information is then provided in terms of a runlist,
which is used when running 12gen or tod2comap.

A runlist is a list of obsids that is divided according to the field or source observed
during each obsid. For each obsid, we list all the scans within that obsid. For each scan
the modified Julian date (MJD) of the start and end of the scan is provided as well as the
scanning strategy (e.g. Lissajous or constant elevation) and some pointing information.

2.6.2 Level 2 File Generator: 12gen

The main goal of 12gen is to take the raw data files, called level 1 files, and turn them
into masked and filtered data files, called level 2 files, that are ready for mapmaking.
An additional function of 12gen is to keep track of various diagnostics for tracking data
quality and for data selection.

The main steps in 12gen are (in chronological order):

e Bandpass normalization
e Removal of pointing templates
e Masking

e Polynomial filter in frequency
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Figure 2.18: Time ordered data plotted along the various steps of the data analysis
pipeline. Each row shows the data before (left column) and after (right column) applying
the indicated filter. From top to bottom, the filters shown are 1) normalization; 2)
pointing template subtraction; 3) polynomial filter in frequency; and 4) PCA filter. Data
used is from scan 1445603, feed 5, in a 31.25 MHz band around 27.673 GHz. Figure
courtesy of Jonas Lunde.

e PCA-filter
e (Calibration

e Decimation

2.6.3 Bandpass normalization
Our model for the total power seen in the detectors is given by

Poy = kBGAVTsys, (2.25)
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where kg is Boltzmanns constant, G is the gain and Ay is the bandwidth of the frequency
channel.

The first of the actions that is performed on the data is bandpass normalization.
The normalization is performed on each frequency channel separately and is done by
dividing the time ordered data (TOD), d, by its running mean, d, and subtracting one.
As we see from Eq. 2.23] this normalization will cancel out both the average gain G
and the average system temperature 7'y leaving us with a time stream with small-scale
fluctuations with a variance of 1/Avr as dictated by the radiometer equation, where 7 is
the duration in time of each sample.

The running mean is calculated by passing the TOD through a lowpass filter. See
Fig. 2.18] (top row) for an example of this normalization step. The lowpass filter is
implemented in Fourier space by multiplying with the following weight function:

aq-1
1+(fkf )] , (2.26)

where f is the temporal frequency, finee = 0.02 Hz (corresponding roughly to a 50 s
timescale) and @ = 4. So we have

d = F Y F{awy, (2.27)

W =

where ¥ denotes the Fourier transform. The normalized data then becomes

doorm = dJjd — 1. (2.28)

2.6.4 Removal of Pointing Templates

As the telescope changes elevation we are looking through different amounts of
atmosphere, leading to changes in the power received by the detectors. As we have
discussed, this effect can be modeled by a simple expression for the optical depth of the
atmosphere, T

7(el) = 1o/ sin(el), (2.29)

where 7 is the optical depth of the atmosphere at zenith, and el is the elevation.

We also know that sometimes there is significant ground contamination, and we
therefore want to subtract an azimuth template, as well as the elevation template.
Specifically we assume that

d = g/ sin(el(?)) + aaz(t) + ¢ + n, (2.30)

where g, a and ¢ are constants and n is some Gaussian noise with constant variance. We
then find the best fit values (i.e. least squares) of g, a and c, and use the values of g and
a to remove the pointing templates from the time stream:

dafter = dpefore — &/ sin(el(r)) — a az(r) — (g/ sin(el(r)) + a az(r)), 2.31)

where ( ) denotes the mean value. See Fig.[2.18] second row.

We fit these templates independently for each frequency in order to try to remove
any frequency structure of the ground and atmosphere. For longer scans we divide the
data into different segments of roughly 4 minutes each, and perform this template fit
and removal separately on each of the segments of data.
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2.6.5 Masking

We want to mask out frequency channels that are bad in the sense that they are not
performing as expected. We do this mostly by using the correlation matrix between
different frequency channels.

In order for the data to be as clean as possible before identifying bad channels, we
make a copy of the original (level 2) dataset and perform the poly- and PCA filters,
described below, on this copied data, before calculating the correlation matrices within
each band. We use two main approaches to identifying individual or groups of channels
to be masked. The first approach uses the fact that the expected correlation between two
independent Gaussian variables (for large ngmp) is given by 1/ y/fisamp, Where ngy, is
the number of samples the correlation is calculated on.

This means that, after subtracting the expected correlation induced by the polynomial
frequency filter, we know the statistics describing good data, and can identify bad data
as deviations from these statistics. We look at entries within squares of different sizes
as well as sets of columns within the correlation matrix and see if the average of the
absolute value of the correlations within this region deviates from the values expected,
and mask out the corresponding channels if the deviations are outside the acceptable
limits.

The second approach is to calculate a set of diagnostics for individual frequency
channels (like the average correlation of the channel to all the others in that band or the
average of the absolute value of the same). We can then compare the values of these
diagnostics for the different channels and look for large outliers. The disadvantage of
the first approach is that it is much harder to detect these deviations in a short scan than
itis in a long scan, so it is hard to choose the parameters for the acceptable deviations in
a way that will mask out enough of a short scan without masking too much of a long
scan. The disadvantage of the second approach is that if the overall data quality is bad,
then a bad channel will not necessarily be an outlier, and will not be masked out.

In addition to these approaches we look specifically for edge correlations, that
is, correlations between individual frequencies at the edge of each sideband with the
corresponding frequencies at the edge of another sideband. This is to look for and mask
out frequencies affected by a known aliasing effect. We also have some overall hard cuts
on large individual correlations and on large individual variances (compared to what is
expected from the radiometer equation). After this mask has been found we perform all
the analysis on the original dataset, but now only using the frequency channels that are
not masked.

2.6.6 Polynomial filter in frequency

The goal of the polynomial filter in frequency is to remove the 1/ f-noise specific to
each feed, as well as to remove any continuous foregrounds from the data. This filter
greatly reduces the correlated noise, and often leaves the TOD close to white noise.
The poly filter is performed separately on each time step, by fitting and removing a
polynomial (usually linear) in frequency across each sideband. Specifically, we assume

d,=a+bv+ oV’ +n, (2.32)
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Figure 2.19: Example of time ordered data before and after PCA filter. This is a very
extreme case with a very strong standing wave. Figure courtesy of Jonas Lunde.

where d, is the data across one sideband at a specific time step, a,b and c etc. are
constants and 7z is some Gaussian noise with constant variance. We then find the best fit
values (i.e. least squares) for the constants and subtract the polynomial (see Fig.[2.18]
third row)

difter = gbefore _ (a +bv + cvz...) . (2.33)

Our current version of the pipeline uses a linear polynomial for the polyfilter, which
appears to be sufficient for our purposes.

One possible issue with the current version of the polyfilter is that, depending on
what the origin of the effects we want to remove with this filter, we may want to divide
the polynomial in Eq. @by the Ty corresponding to the frequency channel, since
a channel with high Ty is expected to have a relatively lower effect of any signal
compared to the noise. This is certainly what we would expect from a continuous
foreground.

We are working on improved ways to do this frequency filtering in a way to remove
both the gain fluctuations as well as continuum foregrounds in a consistent manner.

2.6.7 PCA-filter

Let us consider all the data corresponding to a single scan as a data matrix, D;;, with the
TOD (time stream) corresponding to a single frequency as a row of the matrix. This
will be a matrix with dimensions nfeq X Rgamp, Where ngeq = 19 - 4 - 1024, i.e. the total
number of frequencies added up over all the sidebands and feeds, and where g,y is the
number of samples in time (typically of the order of ~ 20000 for a single scan).

Dy 1tgamp
p=| : -~ | (234)
D D

Nfreq 1 NfreqMsamp

If we treat the columns (all the different time steps) of the data matrix D as
representing a set of ngmp random variables, then each frequency of each feed is a
new sample of each of these random variables. The covariance matrix for these random
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variables is then given by

Cii ... Cliuy
C™™ o« D'D=| : : (2.35)
C C

Nsamp | samp/lsamp

The PCA components are the eigenvectors of this matrix with the highest eigenvalues.
These eigenvectors are basically just functions of time (one value for each time step).
Specifically, the leading PCA-components are the functions of time that explain most of
the variance between the different frequencies.

After finding the properly normalized eigenvectors, vk, corresponding to the four
largest eigenvalues of C**™P we calculate the PCA amplitude corresponding to each of
these eigenvectors for each frequency channel, and subtract it from the data:

Ngamp
ay=d-vi = Zd;vz

i=1

dater = dvefore — Z AV,
k=1
where d is the time stream of a single frequency channel, a; is the PCA amplitude of
that same channel corresponding to the eigenvector vy.

The PCA filter is perfect for removing standing waves that are common to all (or at
least many) feeds. This is because, as we discussed in Sect. 2.4.4]the standing waves
typically change as a single function of time, but affect different frequencies differently
depending on if they are in or out of resonance. The resonance structure of the standing
waves will then show up in the PCA amplitudes of the different frequencies, as we see
in Figs.[2.10] and 2-T1]

The PCA filter also picks up other systematics that do not have the features one
would expect from standing waves. These effects are mostly of unknown origin at this
point, but the PCA filter can still usually remove them quite effectively.

2.6.8 Calibration

For each frequency we interpolate the measured power and temperature of the hot load
(calibration vane), Ppo and T} to the time, f.,,, of our current scan, i.e.:

Pllmt(IZ - tscan) + Pﬁot(tscan - tl)

Prot(tscan) = . :
2~k

_ Tﬁot(tZ - tscan) + T}%m(tscan - tl)

Thol(tscan) = P P ’
2—h

where 1 and 2 denote the hot load measurement at the start and the end of the current
obsid, respectively. We can then calculate 7'y for our current frequency

_ Thot(fsean) — Tems (2.36)

W Phot(tscan)/<Pcold> - 1,
where (P.o1q) 1s the mean power of the scan in this frequency channel.
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2.6.9 Decimation

All the analysis up until now have been performed on the full frequency grid (1024
channels per sideband). For mapmaking purposes, however, we typically don’t need
this kind of resolution, so we want to co-add several frequency channels together to a
single low resolution channel.

1 indec : S
Ao = e DL ™, (2.37)

m=(i—1)ngec+1

where d;owm is the time stream of frequency channel i in the low resolution frequency

grid, d"&" is the time stream of frequency channel m in the high resolution frequency
grid, ngec is the number (usually 16) of high resolution frequencies to be combined in
each low resolution frequency channel and w,, = 1/07, is the inverse variance of the
time stream in frequency channel m of the high resolution data (w,, is zero for masked
frequencies).

2.6.10 Mapmaker, tod2comap

The mapmaker takes a set of level 2 files with calibrated and filtered time ordered data,
and makes 3D maps of brightness temperature.

The mapmaker we use is very simple. It basically assumes that the input data is
dominated by white noise, so that every sample is independent. The value in each pixel
of the map is then just the noise weighted sum of all the samples that hit this pixel

-2
m, = Zaep 71 i _f’, (2.38)
Zdep 0-,'

where d; is sample number i of the time ordered data, o; is the white noise level of
sample 7 and where m,, is the value of the map in pixel p. This is typically referred
to as a binned mapmaker. Figure 220 shows single frequency maps based on all the
(accepted) data for each of the three main science fields. The maps look white noise
dominated and smooth.

A large advantage with using this simple mapmaker is that we do not need to load
in all the time-ordered data into memory at once, but can add more data incrementally.
The disadvantage is that we lose a lot of the information that is in the TOD. This results
in lower sensitivity to the signal on large scales (see Paper|l} Foss et al., for more
details).

We are working on an improved mapmaker, using a destriper, and this has shown
some promising results. This work is lead by master student Nils-Ole Stutzer, under my
supervision. Figurecompares the pipeline transfer functiorﬂ for the binned map
and a map created by the destriper. We see that the destriper recovers a lot more of the
large scale structure in the angular direction, it is however, much more costly process to
run. Note that this destriper still treats each frequency channel independently, so it is
still far from an optimal mapmaker.

3See PaperEI(Foss et al., for details on how the transfer function is defined and estimated.
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Figure 2.20: Feed averaged maps from of the co2 (top), co6 (bottom left) and co7
(bottom right) fields. These are single frequency maps at 32 GHz with a bandwidth of
31.25 MHz, including all the accepted data. Figure courtesy of Nils O. Stutzer.
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2.7 Data selection

There are two main stages of data selection in the COMAP pipeline. First, as discussed
in the previous section, we mask out badly performing or outlier frequencies as part
of the 12gen process. The second stage happens after we have created level 2 files, but
before we run them through the mapmaker. This selection step is performed in the
accept_mod module, and is based on gathering a large number of statistics for each
chunk of data, and then deciding based on these statistics if we should accept or reject
that data.

2.7.1 Statistics database

The first and most extensive part of the accept_mod module is the generation of
the statistics database. This is a database where a number of statistics, or diagnostic
variables, are calculated or gathered for each sideband of each feed for each scan. So the
entire scan database is an array of dimensions (#scans, Mfeeds» Msidebands» Mstats)s WHETe Ngeats
is the number of different diagnostic variables gathered for each chunk of data. Each
statistic is represented by a floating point number.

Some of the statistics are calculated from the data itself, like various )(z-values or
the average kurtosis of the data, while others, like air temperature or windspeed are
collected from the housekeeping data. In Tab. we list all the different statistics
currently used for the database, together with a short description of each one.

As the statistics database is a fairly small dataset (in total about 1 GB), it is very
useful to look for patterns in this dataset, in order to understand the raw data, and the
effect of the data analysis pipeline, better. Perhaps the most basic analysis we can do on
a dataset like this is to do a basic correlation analysis. Fig.[2.22] shows the correlation
between the different statistics from all the co2 data. Note that we do an automatic
removal of extreme outliers, to avoid spurious correlations. Here we see a number of
interesting correlations. While the mere correlation between two variables is often not
in itself actionable information, the full correlation plot is still very useful to see which
variables are related and which distributions to look closer at.

A particularly useful set of statistics are the ps_chi2-type statistics. These are
measures of the excess power spectrum of the data as compared to what is expected
from white noise. These are calculated by making one 3D map for each of the chunks
of data, taking the power spectrum of this map, and comparing that to power spectra of
simulated white noise maps with the same noise levels, using a normalized y? statistic.
The different types of ps_chi?2 statistics corresponds to using chunks of data of different
dimensions for this analysis.

The ps_chi?2 statistics measure something that is fairly close to what we are actually
interested in measuring, so it serves as a great diagnostic for identifying bad data. If
another statistics is correlated with ps_chiz2, this can help us identify what is the source
of the excess power.

An excellent example of this is shown in Fig. 2.23] Here we see the far sidelobe
model for the instrumental beam compared to the ps_chi2 values projected onto a map
of the sun position relative to the pointing when that data was taken. We see that if
the sun is in one of the 4 main far sidelobe peaks there is a large excess in the average
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Table 2.2: List of statistics in the statistics database and a short description of each.

Statistic label Description Statistic label Description

mjd mean MJD of scan night distance in h from 2 AM (UTC - 7)
sidereal sidereal time in degrees (up to a phase) az mean azimuth of scan

el mean elevation of scan chi2 Xz statistic for all timestreams of whole sb
acceptrate acceptance rate of sideband az_chi2 % of azimuth binned timestreams
max_az_chi2 max /\/2 of az binned single freq TODs med_az_chi2 median ,\/2 of az binned single freq TODs
fbit feature-bit of scan (indicates scanning mode) az_amp average amplitude of fitted az-template
el_amp average amplitude of fitted el-template n_spikes number of spikes

n_jumps number of jumps n_anomalies number of anomalies

n_nan number of nan-samples tsys average Tsys value of scan

pcal average variance of removed PCA mode 1 pca2 average variance of removed PCA mode 2
pca3 average variance of removed PCA mode 3 pcad average variance of removed PCA mode 4
weather estimated probability of bad weather kurtosis kurtosis of timestreams
skewness skewness of timestreams scan_length length of scan in minutes
saddlebag saddlebag number (1-4) sigma_poly® o of mean in poly filter
fknee_poly® Jknee of mean in poly filter alpha_poly® « of mean in poly filter
sigma_polyl o of slope in poly filter fknee_polyl finee Of slope in poly filter
alpha_polyl « of slope in poly filter power_mean mean power of sideband mean
sigma_mean o of sideband mean fknee_mean Jinee of sideband mean
alpha_mean «@ of sideband mean airtemp hk: air temp, C

dewtemp hk: dewpoint temp, C humidity hk: relative humidity, (0-1)
pressure hk: pressure, millibars rain hk: rain today, mm

winddir hk: az from where wind is blowing, deg windspeed hk: windspeed m/s
moon_dist distance to moon in deg moon_angle az of moon relative to pointing
moon_cent_sl moon close to central sidelobe moon_outer_sl moon close to outer (feedleg) sidelobes
sun_dist distance to sun in deg sun_angle az of sun relative to pointing
sun_cent_sl sun close to central sidelobe sun_outer_sl sun close to outer (feedleg) sidelobes
sun_el elevation of sun ps_chi2 X2 excess in power spectrum (old)
ps_s_sb_chi2 ps_chi2 for single sb single scan ps_s_feed_chi2 ps_chi2 for single feed single scan
ps_s_chi2 ps_chiz2 for all feeds for single scan ps_o_sb_chi2 ps_chi2 for single sb full obsid
ps_o_feed_chi2 ps_chi2 for single feed full obsid ps_o_chi2 ps_chi2 for all feeds for full obsid
ps_z_s_sb_chi2 ps_chi2 for avg of z-direction 1D ps ps_xy_s_sb_chi2 ps_chi2 for avg of xy-direction 2D ps
sw_01 standing wave magnitude k ~ 0.012 Mpc’l sw_02 standing wave magnitude k = 0.017 Mpc’l
sw_03 standing wave magnitude k ~ 0.025 Mpc’l sw_04 standing wave magnitude k ~ 0.036 Mpc’]
sw_05 standing wave magnitude k ~ 0.051 Mpc’l sw_06 standing wave magnitude k ~ 0.073 Mpc’1
sw_07 standing wave magnitude k ~ 0.10 Mpc" sw_08 standing wave magnitude k ~ 0.15 Mpc']
sw_09 standing wave magnitude k ~ 0.21 Mpc’1 sw_10 standing wave magnitude k ~ 0.30 Mpc’]
sw_11 standing wave magnitude k ~ 0.44 Mpc’1 sw_12 standing wave magnitude k ~ 0.62 Mpc’1
sw_13 standing wave magnitude k ~ 0.89 Mpc'I sw_14 standing wave magnitude k ~ 1.3 Mpc™!

ps_chi2, indicating clear excess power during these observations. Although we had
not anticipated the severity of this effect in advance, the statistics database lets us see
this effect very clearly, and it also makes it much easier to reject the relevant part of
the data once it has been noticed. The bottom part of the figure shows the sun-sidelobe
mask used to reject data that is close to these far sidelobes, as well as the azimutally
symmetric main sidelobes.

Another important effect that we have worked a lot on dealing with is weather.
As we discussed in Sect. [2:4.8] weather can affect the data significantly. We have
therefore implemented a weather classifier using a deep neural network, to detect
weather contamination. This work was lead by master student Maren Rasmussen, under
my supervision. Her results classified about 38% of the data as affected by bad weather,
and this data is thus rejected. For more details and results regarding the weather classifier
see Rasmussen, 2020

2.7.2 Acceptance rates

With the help of the statistics database we set various thresholds for the different
statistics, and decide what data to accept or reject based on the values of these statistics.
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Figure 2.22: Correlation between the different diagnostic variables in the statistic
database.

Figure 224 shows the fraction of data left over after each cut is applied for the co7 field.
For the first year, we lost all the data from feeds 4, 6 and 7, due to very strong systematics,
so we lose 3 out of 19 parts of the data right out of the box. After the frequency cuts in
12gen we are down to a bit more than 60 % of the data. After observing for close to a
year, we understood that data taken at higher than 65 degrees or lower than 35 degrees
in elevation was contaminated by ground signal, so we lost a significant fraction of our
data from the co6 and co7 fields. After the elevation cut, we see that we are down to a
bit more than 40 % of the original data volume. After this, a bunch of smaller cuts due
to e.g. weather, large Ty, values or the Sun in the sidelobe, we are down to a bit more
than 20 %. Now we do the cuts on the ps_chi2 which gets us down to the roughly
14 % of data. This is the fraction of data that goes into the maps. The corresponding
acceptance rates for co2 and cob6 is given by about 22 % and 14 %, respectively.

As we see, with the current cuts, only a fraction of the original data volume is
retained. We have been deliberately conservative in these cuts, in order to make sure
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Orthographic view

Orthographic view

-100 Beam intensity (dB) 50 -1 logio ps_chi2 2.5

Orthographic view

0 Mask level 2

Figure 2.23: Simulated beam model for a single feed (top left), the derived statistic
ps_chi2 binned according to the position of the sun relative to the pointing when the
data was taken (top right) and far sidelobe sun mask used for data selection (bottom).
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Figure 2.24: Acceptance rate of the data after each individual cut is applied for all the
co7 data.

that only the best data makes it through. Once we understand the data better, and have
experimented more with different cuts, we will hopefully be able to use more of the data.
We now only observe between 35 and 65 degrees in elevation, so we will not lose more
data to the elevation cuts in the future, and the lost feeds from the first year have been
fixed, so we will be in a significantly better situation for our second year of data. With
new improvements in the pipeline, we also hope to clean the data better during 12gen,
allowing us to use more of the data still. With all this in mind we hope that we can at
least increase the fraction of the data used by a factor of 2 or 3 from our current level.

2.7.3 Accept list

All the different data cuts result, in the end, in the accept list, which tells the mapmaker
which parts of the data to include or not include when making the maps. The accept list
is a boolean array of dimension (7scan, Ffeed, sideband)s Which stores the value "True" if
the data from a given sideband on a given feed of a given scan is to be included in the
map. This allows us to play around with more or less strict data cuts when we make the
maps, without having to run the very expensive low level time ordered data filtering.

accept_mod can also split the data in any way you specify. This essentially runs
the mapmaker independently for the two (or more) different sets of data and produces
two (or more) different maps. This is very useful for the cross-spectrum methods we
are using (see Paper [[I] (Ihle et al., for details), and when doing null-tests,
jack-knifes etc.
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2.8 Inference from line intensity maps

The ultimate goal of observational astronomy and cosmology is to learn about the
universe, so the final question we need to ask is how can we infer anything about
astrophysics and cosmology from a line intensity map.

This problem is in general very hard. The physics involved in producing the CO
signal we are looking for involves many different processes spanning so many different
length scales, from large-scale clustering of dark matter, to the physics, chemistry and
radiative transfer of cold molecular clouds. On the other hand, this means that there is
potentially a lot of information, about all these different processes, in the map, if we can
only figure out how to extract it.

2.8.1 Modeling CO line emission

Cosmological simulations of dark matter (DM) only are vastly cheaper to run than
simulations including baryonic physics as well. This is because dark matter is only
affected by gravity, while baryons have much more complicated interactions. Baryons
form structure all the way down to stellar scales, and things like stellar feedback means
that what happens at small scales affects what happens at every other scale, especially
during reionization. This coupling between scales means that cosmological scale
simulations including baryons cannot be run at the resolution required to include all
relevant physics.

To include baryonic effects in a cosmological simulations you therefore typically
need to employ a model to take into account the physics that happens at smaller scales
than you can resolve. Such sub-grid models can then be calibrated using smaller scale
simulations and observations, so that it captures as much as possible of the features of
the small scale physics that are relevant for the large scale physics.

2.8.1.1 Dark matter halo based models

A simple approach to sub-grid modeling for CO line intensity, is to model the connection
between each dark matter halo and the CO line luminosity of the galaxy (or multiple
galaxies) within that halo. This way you can run DM only simulations and then replace
each DM halo in the simulation with a point source of a given luminosity, which can
then be turned into a 3D intensity map, by slicing the DM simulation along a lightcone.

Perhaps the simplest possible such DM halo-Lco model would be to assume a linear
relation between the DM halo mass, My, and the CO luminosity, Lco. This would
be a one-parameter model with the amplitude of the linear relation being the only free
parameter.

A generalization of this model would be a general parameterized relation between
M1 and Lco

Lco(Mhalos 6), (2.39)

where 6; is a set of free variables parametrizing the relation between My, and Lco. A
more advanced model could also take into account other properties of the DM halos,
like the virial velocity, the formation time or the merger history of the halo. It could
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also predict not only the CO luminosity, but also for example the line width of the CO
emission from each halo.

2.8.1.2 The Li et al.,[2016/ model

One of the most used models for CO line emission at intermediate redshifts (z ~ 2—3) the
last years is the model developed in Li et al. (2016). This is a parametric model relating
DM halo masses, Mo, star formation rates (SFR), infrared (IR) luminosities, Ligr,
and CO luminosities, Lco, using five free parameters. The model utilizes the relations
between average SFR from DM halo masses derived in Behroozi, Wechsler, and Conroy
(20134) and Behroozi, Wechsler, and Conroy (2013b), and adds an additional log-normal
scatter to the resulting SFR, determined by the parameter, osgg.
Given a SFR, the IR luminosity is then found using the linear relation

SER = §yr X 10710Lg. (2.40)
Further, CO-luminosities are approximated by the following relation
log Lir = aLqg + f3, (2.41)

before a final step of log-normal scatter is added determined by the parameter, o;,,.
We then get a total of five parameters 6 = {log Omr, @, 3, OsEr, O}, determining the
function Leo(Mhpao). See Li et al. (2016) for a detailed discussion of the physical and
observational motivation for this model.

2.8.1.3 Simulations

Another approach to modeling CO line intensity is to use smaller hydrodynamical
simulations (Hopkins et al., 2014} Schaye et al.,[2014; Vogelsberger et al.,[2014). These
resolve more of the physics related to molecular clouds, star-formation, feedback etc,
but they typically cover a much smaller volume than what is observed with COMAP. In
order to do forecasts, or use these simulations to interpret the results from a CO intensity
map, we would need to somehow extrapolate these results to the full volume, which is
hard to do in a statistically rigorous way. For some work along these lines, see Lakhlani

(2019) or M. Silva et al. (in prep).

2.8.2 Observables

When doing inference from a line intensity map, the general approach is to have some
kind of astrophysical and cosmological model which predicts how we would expect the
cosmological signal to look like, and then compare this to the observed map. Of course,
we don’t expect the model to predict the specific spatial distribution of the CO signal,
since that depends on the random initial conditions. Rather, we expect the model to
predict the statistical properties of the ensemble that any observed CO intensity map is
a specific realization of. This means that instead of directly comparing the map itself to
some model prediction, we typically calculate some summary statistics, or observables,
from the map, which hopefully captures the statistical information in the map. We can
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then try to derive predictions for these different observables from the model, and then
compare these predictions to the values derived from the observed map.

In CMB analysis, and (to some degree) analysis of large scale structure, where
the signal is extremely close to a Gaussian field, the power spectrum contains all the
statistical information in the map. A line intensity map, however, is often significantly
non-Gaussian, which means that new statistics need to be developed to extract all the
information present in the map.

2.8.2.1 Power spectrum

The power spectrum, P(k), sets the variance of the Fourier components of a map

P(R) = 22|, ), 2.42)
NVOX
where k is the wave vector of a given Fourier component, V.. is the volume of each
voxel of the map and N, is the total number of voxels in the map. A voxel is the 3D
equivalent of a pixel, it is the small volume element defined by the resolution used for
the 3D map.

If the Fourier components have a Gaussian distribution, then the map is called a
Gaussian map, in which case the power spectrum fully describes the statistical ensemble
that a given map is a single realization from. In the more general case, where the map is
not Gaussian, the power spectrum still carries a lot of important information about the
map, even if it does not describe all the information.

The cross spectrum, C(k), sets the covariance between the Fourier components of
two different maps, m; and m,

[ VOX
Ck) =

VOoxX

(Rel/frfoe) (2.43)

where f; and f, are the Fourier components of the two maps and where Re{} denotes
the real part of a complex number or function.

For more details on different power spectrum methods and how to robustly estimate
the signal power spectrum from an observed line intensity map see Paper [[I] (Ihle et al.,
in prep). For other recent examples of the use power spectrum analysis on intensity
mapping data see e.g. (Keating, Marrone, Bower, and Keenan, Mertens et al.,

20205 Uzgil et al.,[2019).

2.8.2.2 Voxel Intensity Distribution (VID)

A useful statistic that is complementary to the power spectrum is the Voxel Intensity

distribution (VID) (P. Breysse et al.,2017). The VID, $(T), is the probability distribution

of voxel brightness temperatures. This observable does not use any of the spatial

information in the map, but is more sensitive to the bright end of the underlying CO
luminosity function and small-scale clustering.

A natural observable related to the VID is the histogram of voxel temperatures, B;.

The expectation value of these are given by the VID

Tis1

(B;) = Nyox P(T)dT, (2.44)

i
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where B; is the number of voxels with a brightness temperature between 7; and 7, and
Nyox 18 the total number of voxels.

2.8.2.3 Pseudo-VID

In the same way as for the auto-spectrum, when a line intensity map has an uneven
distribution of noise, then the VID statistic will be dominated by the highest noise parts
of the map, so unless you have a large signal to noise, this will affect the usefulness
of the statistic significantly. We therefore want to think of a statistic that preserves the
nice properties of the VID, but that is less susceptible to uneven noise distribution in the
map.

In order to investigate this let us use the following simplified data model

d=n+s, (2.45)

where d is a vector of the measured temperature in each voxel, n is a vector of the noise
in each voxel and s is the signal in each voxel. For simplicity we assume that the noise
level, oyox, in each voxel is known and that the signal is independent between different
voxels.

Let us then define the pseudo-VID as the VID of the following data

d

104
O-VOX

d=—o, (2.46)
where «a is some positive power that we will try to find an optimal value for.

If the signal was just an overall constant number, then @ = 2 is gives us the maximum
likelihood estimate of s, so this is perhaps not a bad initial guess for what value of a to
choose. However, this is not a very realistic model of the signal. Another simple model
for the signal, which is more realistic as a toy model, is to assume that the signal is an
independent Gaussian with a constant standard deviatiorﬂ Osignal- We can then try to
find what is a good value for @ to get the best signal to noise estimate of the signal in
this model.

We can make a mock observation by generating noise and signal for 10° voxels and
dividing the data by o, and then binning it to obtain the pseudo bin counts, B;(d).
The pseudo bin counts follow (under our assumptions) a binomial distribution, and we
can thus map out the likelihood of the data, P(d~|0'signa1), by using many simulations
to determine the expectation, (Bi(d)), for each value of Osignal- We can then examine
the width of this likelihood as a function of o gigna and use this as an estimate of the
sensitivity of the pseudo-VID statistic for a given value of a.

Figure [2.25]shows the sensitivity of the pseudo-VID statistics for different values
of the exponent, @. These results are obtained in the noise dominated limit (with the
signal component of the mock data set to zero), and we show results for different noise
level distributions to investigate the effect of the distribution of the noise levels has on
the optimal value for @. We find that values in the range @ = 1 — 2 give consistent
good results. Figure [2:26]shows the results from the same analysis using noise level

4My work on this toy model is building on some previous work by Patrick Breysse on these issues.
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Figure 2.25: Sensitivity of the pseudo-VID statistic for different exponents, «, (left) and
the three different noise level distributions used (right).
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Figure 2.26: Sensitivity of the pseudo-VID statistic for different exponents, a, (left) and
the three different noise level distributions used (right).

distributions with significantly more variance, as can be seen in the right panel. The
optimal values for @ found here are fairly consistent in all cases, suggesting that values
between @ = 1 — 2 are good values for the pseudo-VID in a large range of different
noise level distributions.

2.8.3 Likelihood

We can combine all observables into a data vector, d;. For the case of using the PS and
the VID we get

di = (Py,, By). (2.47)

If all the components of d; were independent, they would (under some simplifying
assumptions) have the following variance, which we will denote as the independent
variance

Varing(Py,) = (Pt,)*/Nimodes» (2.48)
Varing(Bi) = (B;). (2.49)
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2.8.3.1 Gaussian likelihood

Because of spatial clustering, there typically are correlations between the different
elements of the data vector. We can take this into account using a full covariance matrix

f,‘j = COV(d,‘,dj). (250)
We can then build a Gaussian likelihood of the form (up to a constant)

N
Ny +1

— 2InP(d|f) = Z[di —(dD1E L) = (dp)] + Inél, 2.51)
ij

where (d)(0) and £(0) are the mean values and covariance matrix of the observables d;
for specific parameters 6. N; is the number of simulations used to estimate (d), and the
factor Ny/N; + 1 takes into account the effect of the uncertainty in the estimate of (d).

2.8.3.2 Binomial VID likelihood

In the previous section, we implicitly assumed that all the bin counts, B;, are Gaussian
random variables, with some covariance matrix. However, as we already know, even
if the samples are completely independent, the bin counts will follow a binomial
distribution. When the expected bin counts are high (B; > 5), the binomial distribution
can be very well modeled by a Gaussian. When we only expect a few voxels in each
bin, however, the Gaussian approximation breaks down.

If we know that the samples are independent, there is no problem, since the likelihood
is just given by the joint distribution of ny;,s independent binomial variables

Tbins Ns’ ‘
P(BIG) = ]_[( “;%’l“)p?a = piy o8 (252)

i=1

where p; = pi(0)) = (Bi)(6;)/Nsamples 15 the probability of a voxel being placed in bin i.
As we have argued, however, when we are not completely noise dominated, the samples
will not be independent, and we have no general way to calculate the likelihood. On the
other hand, we expect the clustering effect to be dominated by the shot noise when we
get to bins with very few samples.

This suggests a possible approximation we can make. We can try to separate the bins
according to the expected number of samples. For bins where we expect many samples,
B; > 5, we can assume that they are approximately Gaussian, and use simulations to
estimate the covariance matrix between these bins. For the bins with few expected
samples B; < 5 we can assume that they follow independent binomial distributions,
because the variance will presumably be dominated by shot noise, and clustering effects
are (hopefully) negligible. The full likelihood, in this approximation, is then given by

P(B|91) = PBinomial(B|01)PGaussian(B|91)a (253)
where
™5 Nsamples B, N, —B;
Pginomial(Bl0)) = 1_[ ( B )P,“(l = pi)eT, (2.54)
(ilBi<5) !
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and
1 1
PGaussian(Bl6)) = w1 SXP (__XiS) , (2.55)
Qm) 72" Jss|2 2
and where
X5 = Z [B; — (B)@DIE )i [B; — (B)(6))] (2.56)
{i,j1Bi,Bj>5}
and
&>s5 = &(ijiB.B>5)- (2.57)

One issue associated with bins with very few expected samples is that if you are
estimating p; from some limited number of simulations, you will sometimes have no
samples in the bin from either simulation. In that case it is not clear how to evaluate the
likelihood. This problem can occur quite frequently when there is not that much signal
to noise in the data, and you are exploring a large region in parameter space. We can
deal with this problem by imposing some prior on the expectation value of the binomial
distribution, and then update this prior with the values from the simulation. The details
for how to do this are discussed in App.[A.T}

2.8.4 Exploring the posterior distribution

Using the methods we have sketched in the previous sections we can now try to put
them all together. To summarize what we need to do this, here is a list:

e A set of observables, d;, that can be estimated from a line intensity map.

e A model with parameters 6, which can generate simulated intensity maps, or
at least in some way calculate the mean observables, (d;)(6), covariance matrix,
&ij(0) (or any other quantity needed in the likelihood) for any given values of 6.
Any prior on 6 is also assumed to be part of the model.

e A likelihood P(d;|6), that can be evaluated using the model output.

e Some observed (or simulated) line intensity mapping data, summarized in the
observables data, d*srved.,

We can then use a sampling procedure, like a Markov-Chain Monte Carlo (MCMC)
method, or other methods to explore the posterior distribution P(Hldl‘.’b“rve‘i).

At this abstract level this looks fairly simple, however, the details matter a lot here,
and can make things much more complicated. There are several important questions
about the model and the parameter space 8. How degenerate are the parameters 6?
And how easy are the parameters to interpret? A given set of observed data dlf’bserv"’d is
often good at constraining one combination of parameters, but is completely insensitive
to other combinations of parameters, so if you make bad choices of parameters, or
simply just use too many parameters, you will not be able to use the data to constrain
much. If you make a model that is fairly closely related to the physics, and where
each parameter has a simple interpretation, then you typically get a complicated model,
with lots of parameters, and also lots of degeneracy between the parameters. A simple
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model, however, can avoid any unnecessary degeneracies, but it will in turn often be
much harder to connect these parameters back to cosmology and astrophysics. A good
model will be one that finds a good compromise between these considerations, for the
particular dataset you are considering. For a detailed discussion of these issues and
more see D. Chung et al.,

Another set of issues relate to the observables, d;, and the likelihood. In Ihle et
al. we show that using a combination of the power spectrum and the voxel
intensity distribution is better at constraining the CO luminosity function than using
either observable individually, for a COMAP-like experiment. While this was a very
useful finding, there are many simplifying assumptions made in these (and similar types
of) forecasts. If we want to do a similar analysis on actual data from an experiment,
we will have to address many issues first. How do you model or estimate the noise
in the data? How do you deal with an uneven noise distribution in the map? How
do you build a good likelihood function? How do you take into account systematic
effects and propagate systematic uncertainties into the likelihood? Some of these issues
are discussed in detail for the power spectrum in Paper [[I] (Ihle et al., [in prep), and
we have made some preliminary investigation into some issues with the VID here, in
Sects.[2.8.2.3|and [2.8.3.2] However, we still have quite a way yet to go in order to use
the VID on real data.

2.8.5 Future Prospects

CO intensity mapping is in a somewhat special position in that there is a fairly low level
of foregrounds, and no significant interloper lines (D. Chung et al.,[2017). This makes
the analysis and inference from these maps much simpler.

Cr intensity mapping, for example, has several interloper CO-lines from lower
redshifts. This makes the inference much more complicated (Cheng, Chang, and Bock,
2020), but significantly increases the amount of information in the maps.

As the field matures, more areas of the sky, and more ranges in redshift, will be
covered by different experiments, meaning that we will have access to the same galaxy
population and large scale structure from multiple tracers. This will allow us to get
more robust results, break degeneracies and give unique insights into the astrophysics
of galaxies and their chemistry and gas dynamics.

Cross-correlation (D. T. Chung et al.,[2019) as well as new tools being developed
(Bernal, P. C. Breysse, Gil-Marin, et al., P. C. Breysse, Anderson, and Berger,
Cheng, Chang, and Bock, D. T. Chung, Gong, Chen, and Cooray,
Yang et al.,[2020), will be needed to deal with these combined datasets. As we get
more different datasets that we want to analyze together the more important it becomes
to use a consistent statistical framework for inference, like we use in Paper [[TI] (Thle
et al.,[2019) and like we have discussed here.

The prospects for doing fundamental cosmology with LIM is very interesting.
Getting access to the largely unmeasured large scale modes from the early universe will
fill in many gaps in our knowledge of the expansion and evolution of the universe (Bull
etal., Creque-Sarbinowski and Kamionkowski, Dinda, Sen, and Choudhury,
2018} Bernal, P. C. Breysse, and E. D. Kovetz, 2019} Furlanetto et al., 2019} Liu and
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P. C. Breysse, 2020). The ultimate dream, of course, is going to space (M. B. Silva et al.,

2019).
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Chapter 3
BeyondPlanck

BeyondPlanck (BeyondPlanck Collaboration,2020) is an ambitious project to develop an
end-to-end Bayesian data analysis pipeline for CMB experiments, combining everything
from low-level instrumental parameters like gains and bandpasses to foreground
components and CMB power spectra into one consistent statistical model. As a
demonstration, we apply this framework to the Planck Low Frequency Instrument
(LFT) time ordered data. Here I will give a short summary of the general BEyoNDPLANCK
approach, and of the two papers that I have been most involved in, on noise modeling
(Paper[V] Ihle et al., and calibration (Paper [VI] Gjerlgw et al.,[2020).

3.1 The BeyondPlanck approach

The first part of the BEvoNnpPLANCK approach is to define an explicit statistical model of
the data, including all the components and effect that we want to take into account. In
BevonpPLaNck, for each of the three LFI bands, at frequencies of 30, 44, and 70 GHz,
we model the raw time-domain data, d, as follows,

o gsymm asymm (" _orb fsl corr w
djs = 8Py |BI ZMU(/;,,, AL, + BRI (90 4 B |+ nST 4+ nY,. (3.1)

The subscript 7 is the index in time domain; j is the radiometer index; p is the pixel
index; c is the signal component index; g is the gain; P is the pointing matrix; B%Y™™ and
B#YMM s the symmetric beam matrix and the asymmetric beam matrix, respectively; a
are the astrophysical signal amplitudes; B are the corresponding spectral parameters; Ay,
are the bandpass corrections; M,; is the bandpass-dependent component mixing matrix;
5° is the orbital dipole; s are the far sidelobe corrections; n°° is the correlated noise;
and nYV is the white noise. For more details and discussion of each of these parameters,
and how they are modeled, see BeyondPlanck Collaboration (2020) and companion
papers.

Given this model, the goal of the Bayesian approach is to explore the full posterior
distribution of all the free parameters in the model, given the observed data, d,

P(g» ncorra é:na Abp7 a’ﬂ» Cf | d) (32)

This is a really complicated distribution, with a very large number of parameters that
depend on each other in complicated ways. The way we deal with this distribution is
to use Gibbs sampling. The idea of Gibbs sampling is simple. Instead of sampling
directly from the full distribution, we sample iteratively from each of the conditional
distributions. In this way we can divide the complex problem of sampling from the
whole distribution into a set of smaller manageable steps. We can summarize this
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process as follows,

g < P(g |ld, &, Dvp, a, B, C) (3.3)
Reorr < P(neor | d, g, &ns Avp, a,B,Ce) (3.4)
& — P& 1d g neon,  Avp,a,B,Cr) (3.5)
App — P(App |1 d, g Reorrs &ns @, B,Cr) (3.6)
B« PB |d, g neon,En, Avp, Co) (3.7)
a — Pa |d, g neom, & Dop, B, Co) (3.8)
Co < P(C; |d, g neors Ens Avps @, B ). (3.9)

Here, < indicates sampling from the distribution on the right-hand side. The challenge
then is to implement methods to sample from each of the conditional distributions, and
to put everything together into a computational framework.

Perhaps the simplest way to illustrate the appeal of the full end-to-end Bayesian
approach of BEyoNbpPLANCK is shown in Fig.[3.1] Here we see constraints on the optical
depth to reionization, 7, derived in four different cases. The blue curve, labeled "WN",
corresponds to fixing all the other parameters in the model, and only taking into account
the uncertainty coming from the white noise. The red curve, labeled "TOD + WN",
corresponds to fixing the foreground model, but marginalizing over all the instrumental
parameters and the correlated noise in addition to the white noise. The green curve,
labeled "FG + WN", marginalizes over the foreground parameters and the white noise,
but fixes the instrumental parameters and the correlated noise, while the black curve
marginalizes over all the parameters, in addition to the white noise. This figure illustrates
how important it is to propagate the uncertainties from all the instrumental parameters
and the foregrounds simultaneously, and in a statistically rigorous way, which is exactly
what the BEyoNDPLANCK pipeline was designed for.

3.2 Noise Modelling and Characterization

Here we will discuss two of the sampling steps, [3.4]and [3.3] from the full BEyoNDPLANCK
Gibbs chain in more detail.
The starting point for both conditional distributions is the following parametric data
model,
d =d-gs* = n" +n"". (3.10)

where we have defined the signal subtracted data, d’, and where d is the raw time
ordered data (TOD); g is the gain; s*' describes the total sky signal, comprising both
CMB and foregrounds, projected into time-domain; 7°°" represents the correlated noise
in time domain; and »"" is white noise.

We assume that both the two noise terms are distributed as a Gaussian, with the
following covariance matrices N¢or = (ncmnch) and Ny, = (nwnn{vn), respectively.

The complete noise power spectral density (PSD) is then given by

P(f) = Nyn + Neorr = 07 + (ré(fki) , 3.11)
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Figure 3.1: Posterior distribution derived for the optical depth to reionization, 7,
marginalizing over different combinations of variables. Figure taken from (Paradiso et

al.,[2020).

where f denotes temporal frequency; o is the white noise level of the time-ordered
data; « is the slope (typically negative) of the correlated noise PSD; and the knee
frequency, finee, denotes the (temporal) frequency at which the variance of the correlated
noise is equal to the white noise variance. The three PSD parameters are collectively
denoted &, = {070, fknee, @}. This noise model is usually referred to as 1/ f-noise (Planck
Collaboration II, Planck Collaboration II, Tauber et al.,[2019).

We can sample the correlated noise, n°°", by solving the following equation,

(Noore + Nh ) 2™ = Nohd” + NG, + N2, (3.12)

where 17, and 1, are two independent vectors of random variates drawn from a standard
Gaussian distribution, n, , ~ N(u =0, o? = 1). Since we typically use a time-domain
mask, this equation cannot be solved by simply going to Fourier space, but needs to be
solved by a more general method. For a nice method to solve the problem in this case,
see Keihinen et al. (2020). Figure [3.2)shows some examples of how the correlated noise
solutions look like. We see that the 1/f model seems to be working quite well.

Once we have found the correlated noise, the noise PSD parameters, finee and a, are
sampled from their exact conditional distributions

JSomax |n;9rr 2

NCUl’l'(f)

= 1n P(finee, @ | 00, n™") =

+1InNeorr ()| = In P(finee, @), (3.13)
J=fain

where Neo () = a'g (%)a and P(fxnee, @) 1s an optional prior.
The LFI data are divided into roughly 45000 pointing periods, denoted PIDs
(pointing ID), each with a duration of 30—60 minutes. The official Planck LFI Data
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Figure 3.2: Example correlated noise samples in time domain (left) and as PSD (right).

Processing Center (DPC) (DPC, Planck Collaboration I, assumed that the noise
parameters were constant throughout the entire mission. In our analysis, we sample the
correlated noise, and the noise parameters independently for each PID, but we use the
DPC results as priors for fipee and @. In this way we use some information from the
entire mission, but we also allow enough freedom to account for actual changes in noise
properties over time.

The results we have found are very interesting. In addition to giving us a whole new
insight into the noise properties of the LFI instrument, this detailed work on the noise
modeling also highlights some important systematic effects. We demonstrate, for the first
time, that the noise properties of most radiometers do indeed change significantly over
time, mostly due to changes in the thermal environment of the instrument. Figure [3.3]
shows very clearly the intimate relationship between the noise properties of the 70 GHz
radiometers and the temperatures measured at the 20K cooling stage.

Although the noise properties of the 70 GHz radiometers change significantly over
time, we are still able to fit the noise well using the 1/f model. At 30 and 44 GHz,
however, some radiometers show signs of a significant power excess at intermediate
timescales (0.1-10 Hz), which do not fit well with the 1/f model, as is seen in Fig@
This is quite worrisome, since these timescales correspond roughly to 1-60 degrees on
the sky, which is in the prime science range, where we don’t want an unfitted systematic
sloshing around in the model. This is something that will need more work, perhaps with
a modified model for the noise PSD.

3.3 Calibration

The calibration step, Eq.[3-3] is a crucial step in any pipeline. We will now describe the
approach we use for calibration in BEyoNpPLANCK. We start with the data model,

Ccorr

d = gs" + n" + n™". (3.14)

The goal is to convert the raw time ordered data, d, from voltages to Kelvin, effectively
determining g. If we had a signal of known magnitude, then we could estimate g directly.
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Figure 3.3: Average correlated noise properties of the 70 GHz radiometers (bottom two
panels) compared with 4 K (top two panels) and 20 K (middle two panels) temperature

sensor read-outs for the full mission.

Thankfully we have a very strong dipole signal which each detector measures, typically
with a large signal-to-noise ratio, every minute, as the Planck scanning strategy orbits a
great circle on the sky every sixty seconds. The problem, however, is that the overall
magnitude of the dipole is not something we know, but one of the things we are trying
to measure. On the other hand, there is one signal that we do know very precisely, and
that is the component of the overall dipole coming from the movement of the Planck
satellite relative to the sun, called the orbital dipole. The, much stronger, but unknown,
dipole signal from the movement of the sun relative to the CMB rest frame, we denote
as the solar dipole (see Fig.[3.5).
The idea then is to use the orbital dipole for the overall calibration of the entire
system, but to use the solar dipole to measure the relative calibration of the different
detectors and the change over time of single detectors. We therefore decompose the

gain, g, into the following parts,

8ri = 8o + Agi + 681, (3.15)

where 7 is a time index and i is an index labeling the different detectors of a given
frequency band. gy is then the absolute calibration, Ag;, is the detector specific offset
and 6g;; tracks the time evolution of the gain for each specific detector. The two last
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Figure 3.4: PSD of signal-subtracted data from radiometer 28M, averaged over 18 PIDs
(black). Compared to the BEyonpPranck (dashed blue) and LFI DPC (dashed gray)
noise models.
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Figure 3.5: Different contributions to the 30 GHz time-ordered data. The orbital and
the solar dipole are shown in blue and black, respectively, while the red line shows the
modeled small-scale CMB fluctuations and Galactic foregrounds. The residual, given
by the instrumental noise, is shown in gray. Figure courtesy of Eirik Gjerlgw.
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terms are subject to the constraints )}, Ag; = 0 and }, 6g;; = 0. We can then use all the
data, from all of the detectors, to determine g, using the known orbital dipole, and use
the full signal (dominated by the solar dipole) to determine Ag; and dg,; subject to the
constraints. See Paper [V]](Gjerlpw et al.,[2020) for the detailed sampling steps, which
we will not repeat here.

There are several challenges we need to deal with during calibration. First of
all, there is typically not enough signal to noise in a single PID to measure the time
dependent gain, dg,;, precisely enough. To solve this we apply a smoothing window,
essentially using data from a few hundred consecutive PIDs to measure the time
dependent gain. Another complication comes from the fact that for some periods
the Planck scanning is almost completely orthogonal to the dipole, meaning that it is
very hard to use the dipole for calibration. To deal with this we need to periodically
employ very wide smoothing windows, making us less sensitive to changes in the gain
for these periods. There are also abrupt jumps in the gain, causing the smoothing window
approach to break down. If we know when these jumps happen, we can explicitly include
them in the model, and fit the gain independently on each side of the jump. Although
we know the origin of some of the gain jumps, we do not know the origin of all of them.
This leaves us vulnerable to the presence of gain-jumps that we have not included in our
model. Any such missing gain-jumps could lead to significant gain errors effecting the
entire model (Eq. [31).

Figure [3.6] shows the correlated noise in map domain for the Stokes Q 44 GHz
channel. We see some very clear stripes along an orbit from the middle of the map
and up to the right. While we do not know the origin of these stripes, we suspect they
are related to the gain, and quite possibly unmodeled gain-jumps in particular. This
is an area we are still working to understand better using the large library of Planck
housekeeping data. The stripes we see in the southern hemisphere of the 44 GHz band
may be related to the problems we have had using the CMB polarization data from
the southern hemisphere (Colombo et al., Paradiso et al.,[2020), which means
that this is one of the most important things we are working to figure out (see Paper [V]]
(Gjerlgw et al.,[2020) for more discussion).

3.4 Future prospects

The future of the CMB is in polarization, particularly in B-mode polarization from
primordial gravitational waves. These signals are very weak, which means that we will
need to dig deep into both foregrounds and instrumental systematic effects in order
to detect it. This is the challenge that BEvonpPLANCK has set out to tackle, to build a
consistent statistical framework to deal with the complex interactions and degeneracies
between instrumental effects, foregrounds and the cosmological signal.

The BevonpPLANck results presented here, analysing the Planck LFI data, is a
proof of concept, demonstrating that end-to-end analysis from time ordered data
to cosmological parameters is actually possible, and that this approach has several
advantages over the more traditional, modular, approach. In the future, under the
umbrella of Cosmoglobeﬂ we want to combine as many datasets as possible into the

Uhttp://cosmoglobe.uio.no
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Figure 3.6: Stokes Q-map of the correlated noise, n¢or, 44 GHz band, smoothed at an
angular resolution of 5 degrees FWHM. Figure courtesy of Eirik Gjerlgw.

analysis, to get the most complete and robust sky model, and to be in the best position
as possible to analyze data from future experiments like LiteBIRD, PICO and CMB-S4

(Abazajian et al.,[2019; Hanany et al.,[2019} Sugai et al.,[2020; Suzuki et al., 2018)).
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Summary and Outlook

In this thesis I have given an introduction to the COMAP experiment and summarized
some of mine and others work on the data analysis for COMAP. Papers [[jand [[T|expand
on this and go into more details on the various steps in the data analysis pipeline, and the
power spectrum methods used. I also give a short summary of the BEvonpPLANCK project
and the work I have done on noise estimation, systematics and calibration. In addition
to discussing the experiments, the data analysis and the results, I have tried to connect
the individual experiments with their significance to astrophysics and cosmology more
generally.

The COMAP experiment is in a very exciting period right now, where we are working
to finalize our analysis of the first year of data and publishing our first results, including
an upper limit on the CO clustering power spectrum at around z ~ 3. On a longer time
horizon we are already working on the next iterations of improvements in the COMAP
pipeline, which involves better modeling and mitigation of ground contamination,
better characterization of standing waves and their effects and an improvement in the
mapmaking techniques, some of which have already been mentioned. The future plans
for the COMAP experiments involve an expansion to multiple new telescopes, including
instruments observing at lower frequencies, which would give us a whole new window
into the epoch of reinonization (z ~ 6-8).

A bright future for intensity mapping in general lies in combining the data from
multiple different experiments studying different spectral lines of the same galaxies
giving us a more complete picture all the way from small scale chemistry and
astrophysics to the large scale structure and expansion history of the universe as a
whole. Combining together multiple complicated datasets increased the need for robust
and statistically rigorous data analysis methods.

Our results in BEvonpPLANCK is a good demonstration of the unique advantages of the
end-to-end approach. By including all the parts of the data analysis into a single model,
not only does it help us deal with degeneracies and error propagation consistently, it also
highlights problems in the data and where the model does not fit. With BEyoNpPLANCK
and Cosmoglobe we are laying the groundwork for the CMB community to face its
greatest challenge, detecting B-modes from primordial gravitational waves. We believe
that the best way to do this is to build an international community focused on global
joint end-to-end analysis of cosmological datasets using open source, community built,
software. By combining many datasets in this way we can not only get the most accurate
sky model possible, but we can also break the degeneracies present in any one dataset,
making us less susceptible to the systematic effects in either dataset.
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Appendix A
Appendix

A.1 Binomial likelihood and mean estimation

Say you have some model for a statistic with a binomial distribution. The binomial
mean, u(6) = Np, is then a function of the model parameters 6. Say you don’t know the
function u(6), but you can simulate samples from the distribution at fixed 6. After one
sample x;, the posterior distribution of u(6) is given by

P(x1[0) Po(u)
Pi(u) = P(ulxy) = ) (A1)
= WPy o
where
Po(u) = fe P(ul6)P(6)d6, (A2)

where P(0) is the prior on the model parameters. In general, after n, samples we get

P(xn |,u)Pn—1 (Ju)
S PQaltYPur ()

Pu(p) = P(ulxn, -+, x1) = (A.3)

The estimated likelihood of some data d given by the model at parameters 6 is then
given by

P(6)

P(6ld) = 200 f,, " P(d|u(0)) Pr(1(0))dp. (A4

In practice Py(u) could perhaps be set to some weak prior, although the details will
matter. Choosing an exponential prior we get

_K _K
Py = Pw) _ew (i) as)

fow du’ exp (—Z—O) Ho

where p is the scale parameter of the prior, if needed, this parameter could be tuned to
approximate Eq.[AZ2] or simply chosen at a value we think is reasonable. We can now
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perform the integral in equation [AT]

1 ’
I =— f P(xi|u’) exp (—'u—)dﬂ’, (A.6)

Ho Ho

_ L (Y 1—‘iN_X1ex AP (A7)

“wdJ WIN N P\ ) ’

W (Y (i

~f N (N) et exp( Iuo)dy, (A.8)

_ N(x Ho nH o

b)) e "
N x| Lo x1+1

where we have assumed N > u, d, and used the substitution u = u’ %)
Inserting this we can now find the analytic expression for Eq.

m () (&) e e (-5)

Py = (A.11)
xp+1
() () T+ D)
e M exp &
= ( llf)) ) (Alz)
Lo x1+1
((/to+l)) I+ 1)
In general, we get
'ux1+X2+~~+xne—n,J exp _ﬂ_’
Py = (-5) | s
Lo X1+ X+ 1
((ﬂ,uo+1)) Iy +x+- - +x+1)
The posterior distribution then becomes
P(6)
PO = iy J Pt A.14
(@) = 5 | PP A
PO)(d\ 1 1 ,
= PEd; (N)W — fﬂx+de_(n+l):u exXp (—u_) , (AlS)
((n;itii-l)) F(x + 1) Mo
_ PO o\ (_mesl \Taeden o
 P@\NJ\Nm+ Do+ 1) \(n+ Do + 1 r'x+1 ° :

where we have defined x = x; + xo + - -+ + x,,.
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Abstract

We develop a framework for joint constraints on the CO luminosity function based on power spectra (PS) and
voxel intensity distributions (VID) and apply this to simulations of CO Mapping Array Pathfinder (COMAP), a
CO intensity mapping experiment. This Bayesian framework is based on a Markov chain Monte Carlo
(MCMC) sampler coupled to a Gaussian likelihood with a joint PS 4 VID covariance matrix computed from a
large number of fiducial simulations and re-calibrated with a small number of simulations per MCMC step. The
simulations are based on dark matter halos from fast peak patch simulations combined with the Lco(Mhaio)
model of Li et al. We find that the relative power to constrain the CO luminosity function depends on the
luminosity range of interest. In particular, the VID is more sensitive at large luminosities, while the PS and
the VID are both competitive at small and intermediate luminosities. The joint analysis is superior to using
either observable separately. When averaging over CO luminosities ranging between Lco = 104107 Ly, and
over 10 cosmological realizations of COMAP Phase 2, the uncertainties (in dex) are larger by 58% and 30% for
the PS and VID, respectively, when compared to the joint analysis (PS + VID). This method is generally
applicable to any other random field, with a complicated likelihood, as long a fast simulation procedure is
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1. Introduction

Intensity mapping (Madau et al. 1997; Battye et al. 2004;
Peterson et al. 2006; Loeb & Wyithe 2008) appears promising
for mapping large 3D volumes cheaply in a relatively short
period of time, using specific bright emission lines as matter
tracers. This is an interesting avenue for advancing precision
cosmology, with a multitude of ongoing efforts (Kovetz et al.
2017), following on the successes of the CMB field in the last
few decades. One such line intensity mapping experiment
currently under construction is called the CO Mapping Array
Pathfinder (COMAP; Cleary et al. 2016; Li et al. 2016), which
aims to observe frequencies between 26 and 34 GHz,
corresponding to redshifted CO line emission from the epoch
of galaxy assembly (redshifts between z = 2.4 and 3.4) for the
CO J=1—0 line at 115GHz rest frequency, and CO
emission from the epoch of reionization (z = 5.8-6.7) for the
CO J =2 — 1 line at 230 GHz rest frequency.

One important scientific target for studying and under-
standing the epoch of galaxy assembly, the main goal of the
first COMAP phase, is the so-called CO luminosity function,
which measures the number density of CO emitters as a
function of luminosity. Several methods for extracting this
function from real data have already been suggested in the
literature, the most prominent being the power spectrum (PS)
approach, for instance as implemented by Li et al. (2016). A

second complementary method is the one-point function, or
voxel intensity distribution (VID), P(T), as suggested by
Breysse et al. (2016, 2017).

In this paper, we consider the prospect of combining the VID
and PS approaches when constraining the CO luminosity
function, and we study this approach within the context of the
COMAP experiment. To do so, we first define a joint likelihood
that includes both the VID and the PS and construct a joint
covariance matrix for both observables. This covariance matrix
is constructed from a large set of dark matter (DM) light-cone
halo catalogs from so-called “peak patch” cosmological
simulations (Bond & Myers 1996, Stein et al. 2019), coupled
to an empirical Lco(Mpa,) model (Li et al. 2016) that infers CO
luminosities, Lco, from DM halo masses, M., We then
investigate the posterior distribution of the resulting model
parameters for each of the first two anticipated phases of the
COMAP experiment (see Table 1). Finally, we compare the
constraints on the CO luminosity function derived from joint
PS and VID measurements to those obtained from the PS or
VID separately.

2. Idealized Simulations of the COMAP Experiment

We start our discussion by reviewing some central properties
of the COMAP experiment, focusing in particular on those
required for generating representative yet computationally
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Table 1

Experiment Setup for the Two COMAP Phases
Parameter COMAPI1 COMAP2
System temperature, Tyys [K] 40 40
Number of feeds 19 95
Beam FWHM (arcmin) 4 4
Frequency band [GHz] 26-34 26-34
Channel width, 6v (MHz) 15.6 15.6
Observing time [hr] 6000 9000
Noise per voxel [1K] 11.0 8.0
Field size [degz] 2.25 2.25
Number of fields 1 4

affordable simulations. For convenience, these properties are
summarized in Table 1.

In Phase 1, COMAP will employ a single telescope equipped
with 19 single-polarization detectors, each with 512 frequency
channels with width 6v ~ 15.6 MHz'® covering frequencies
between 26 and 34 GHz. The system temperature is expected to
be around 7y, ~ 40 K and the angular resolution corresponds
to a Gaussian beam with 4/ full width at half maximum
(FWHM). We anticipate two years of observation time
targeting a single field of 125 x 195 close to the north celestial
pole, and we assume a conservative observing efficiency of
35% for a total of 6000 hr of total integration time on the field.

In Phase 2, the experiment will be expanded to five
telescopes with the same setup as in Phase 1 and will observe
for three additional years. In this phase, we assume that the
observation time will be split between four fields of the same
size as in Phase 1. The two COMAP phases will be referred to
as COMAP1 and COMAP2 in the following.

2.1. Noise

The simulations used in this work consist of two components
only, namely the target CO signal and random white noise with
properties corresponding to the parameters described above.
Explicitly, the noise per voxel is given by

op = T;ys _ T;ys Npixe]s (1)

B
NT v  Trot eobsteeds ov

where Ty, is the system temperature, 7 is the observation time
per pixel, 7 is the total observation time, egns is the
observation efficiency, Nyeeqs is the number of feeds, Npixels is
the number of pixels, and év is the frequency resolution. This
gives us or~ 11K and 8 uK for the COMAPI and
COMAP2 phases, respectively. For simplicity we assume that
the noise is evenly distributed over all voxels.

A voxel is the 3D equivalent of a pixel. Two of the
dimensions correspond to a regular pixel on the sky, while the
third dimension corresponds to a small range of redshifts from
where line emission would redshift into a given frequency bin
of our instrument.

Both instrumental systematics and astrophysical foreground
contamination are neglected in the following. However, since
our estimator is inherently simulation based, these effects can
be added at a later stage when a sufficiently realistic instrument

10 Higher spectral resolutions are available, but these are most likely useful
only for systematics mitigation rather than science due to limited signal-to-
noise per voxel.
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model is available. For discussion of foreground contamination
in similar line intensity surveys see, e.g., da Cunha et al.
(2013), Breysse et al. (2015, 2017), and Chung et al. (2017).

2.2. DM Simulations

The signal component is based on the peak patch DM halo
approach described by Bond & Myers (1996) and Stein et al.
(2019), coupled to the Leo(Mpao) model presented by Li et al.
(2016). Additionally, we adopt the same cosmological para-
meters as the Li et al. (2016) analysis for the DM simulations:
Q,, = 0.286, Q\ = 0.714, Q, = 0.047, h = 0.7, o5 = 0.82,
and ny = 0.96.

The DM simulations in this paper were created using the
peak patch method of Bond & Myers (1996) and Stein et al.
(2019). To cover the full redshift range of the COMAP
experiment we simulated a volume of (1140 Mpc)® using a
particle-mesh resolution of N5 = 4096°. Projecting this onto
the sky results in a 9%6 x 9°6 field of view covering the
redshift range 2.4 < z < 3.4, with a minimum DM halo mass
of 2.5 x 10 M.,

The resulting halo catalog contains roughly 54 million halos,
each with a position, velocity, and mass. The peak patch
method can simulate continuous light cones on-the-fly, so
stitching snapshots together was not required to create the light
cone. Although peak patch simulations result in quite accurate
halo masses, the DM halo catalogs were additionally mass
corrected by abundance matching along the light cone to
Tinker et al. (2008) to ensure statistically the same mass
function as the simulations used in the Li et al. (2016) analysis.
For a detailed study of the clustering properties of peak patch
simulations and other approximate methods, see Lippich et al.
(2019), Blot et al. (2018), and Colavincenzo et al. (2019).

A single run required 900 s of computation time on 2048
Intel Xeon EE540 2.53 GHz CPU cores of the Scinet-GPC
cluster, with a memory footprint of ~2.4 TB. This efficiency of
the peak patch method allowed for 161 independent realiza-
tions of the full 1140 Mpc, Neeys = 40963 volume, taking a
total computation time of only ~82,000 CPU hours, over three
orders of magnitude faster when compared to an N-body
method of equivalent size.

2.3. Converting to CO Brightness Temperature

There are many approaches in the literature for estimating
the expected CO signal based on DM halos (e.g., Righi et al.
2008; Obreschkow et al. 2009; Visbal & Loeb 2010; Carilli
2011; Gong et al. 2011; Lidz et al. 2011; Fu et al. 2012; Carilli
& Walter 2013; Pullen et al. 2013; Breysse et al. 2014; Greve
et al. 2014; Mashian et al. 2015; Li et al. 2016; Padmanabhan
2018), with resulting estimates of the CO luminosities spanning
roughly an order of magnitude.

Here we adopt the model described by Li et al. (2016) to
convert from simulated light cones populated with DM halos to
observed CO brightness temperature. This model is defined by
a set of parametric relations between DM halo masses, star
formation rates (SFR), infrared (IR) luminosities, Lz, and CO
luminosities, Lco.

The model uses the results from Behroozi et al. (2013a,
2013b) to obtain average SFR from DM halo masses and adds
an additional log-normal scatter on top of the average,
determined by ospg. IR luminosities are then obtained through
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Figure 1. Plot of CO luminosity, Lco, as a function of dark matter halo mass,
My, in the Li et al. (2016) model. Here, (ospr, logdmr, o, 3, 01c0) =
(0.3, 0.0, 1.17, 0.21, 0.3) (our fiducial model), and we have evaluated the
function at redshift 2.9. The solid line corresponds to the mean relation with no
scatter added, while the shaded region corresponds to the 95% confidence
intervals after adding log-normal scatter at the two appropriate steps.

the relation

SFR = éyp x 10710 Lg. 2)
Further, to obtain CO luminosities, the relation

logLig = alogL{o + 8 3)

is used before a second round of log-normal scatter is added,
determined by the parameter oy .

This gives us a Lco(Mhpa,) model with five free parameters,
0 = {ospr, log dmr, @, B3, 01,}. The relation between Lco and
M0 for our fiducial model parameters is shown in Figure 1.
For more discussion of the physical and observational
motivation for this model, see the original paper, Li et al.
(2016).

This model is applied to each DM halo separately and we
create high-resolution maps from the resulting CO luminosities
by converting the total luminosity in a given voxel into
brightness temperature. These maps were created using the
publicly available 1imlam_mocker code.!! Next, we con-
volve these maps with the (Gaussian) instrumental beam
profile, degrade to the low-resolution voxel size used in the
analysis, and, finally, we add Gaussian uncorrelated noise with
standard deviation o7, as specified above.

3. Algorithms

The ultimate goal of this work is to constrain cosmological
and astrophysical parameters from CO line intensity observa-
tions. The computational engine for this work is a standard
Metropolis Markov chain Monte Carlo (MCMC) sampler (see,
e.g., Gilks et al. 1995), coupled to a posterior distribution with
a corresponding likelihood and prior. For this task to be
computationally tractable, though, the full CO line intensity
data set must first be compressed to a smaller set of observables

1 https: //github.com/georgestein/limlam_mocker
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that may be modeled in terms of the desired astrophysical
parameters, fully analogous to how CMB sky maps are
compressed to a CMB power spectrum from which cosmolo-
gical parameters are derived (e.g., Bond et al. 2000). As
described above, we adopt the power spectrum and the VID as
representative observables, each of which may be approxi-
mated in terms of multivariate Gaussian random variables.
However, in order to perform a joint analysis of these two
observables, we need to construct their joint covariance matrix,
and that is the primary goal of this section. Before doing
that, however, we review for completeness each observable
individually, and our posterior sampler of choice, referring to
relevant literature for full details.

3.1. The Power Spectrum

The estimated power spectrum, P(k;), is calculated simply by
taking the 3D Fourier transform of the temperature cube,
binning the absolute squared values of the Fourier coefficients
according to the magnitude of corresponding wave number &,
and averaging over all the contributions within each bin. For a
Gaussian map, the Fourier components within each bin follow
a perfect normal distribution with mean zero and variance
given by the value of the power spectrum. For a non-Gaussian
field, the distribution of the Fourier components is more
complicated, and thus the power spectrum does not contain all
the statistical information in the map. We expect the CO signal
to form a highly non-Gaussian map, therefore, in this paper we
simply consider the power spectrum as a useful observable that
carries some, but far from all, of the statistical information in
the map.

As an observable, the power spectrum needs to be
accompanied by a covariance matrix 55 = Cov(P(k;), P(k)))
in the analysis, since there are correlations between the power
spectrum at different k values.

3.2. The Voxel Intensity Distribution

We consider the VID as another observable, complementary
to the PS and more closely related to the luminosity function.

Unlike in many other works on P(D) analysis (e.g., Lee et al.
2009; Glenn et al. 2010; Vernstrom et al. 2014; Breysse et al.
2017; Leicht et al. 2019), we do not try to estimate the VID
analytically, rather we estimate it based on simulations. This
allows us to fully take into account the effects of the beam,
clustering, and covariance between temperature bins in a very
straightforward manner.

We consider two contributions to the VID, namely the CO
signal itself and the instrumental noise. Together they result in
the the full probability distribution of voxel temperatures,
P(T), where T is the observed brightness temperature from a
voxel. Since we assume the noise to be uniformly distributed
over all voxels in the observed field and assume that the CO
signal itself is statistically homogeneous and isotropic, the total
probability distribution, P(T), is the same across all voxels.

The basic observable related to the VID are the temperature
bin counts (i.e., the histogram of voxel temperatures), B;. The
expectation value of these are given by the VID itself,

Ty
(B)) = Nyox fT P(T)dT, “)

where N, is the number of voxels observed and B; is the
number of voxels with a temperature between T; and 7T} ;.
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If the temperatures of all the voxels that we sample were
completely independent, then each of the voxel bins would be
approximately independent and would follow a binomial
distribution with variance Varua(B;) = (Bi)(1 — (B:)/Nyox).
However, even in this ideal case they would not be perfectly
independent. We only have a finite number of voxels, and,
therefore, if one bin contains a number of voxels above
average, then the other bins must have a number lower than
average.

In general, the samples will not be independent for many
reasons, including correlated sky or noise structures and
processing effects, and we therefore need the full covariance
matrix between bins, gf. = Cov(B;, By). This covariance matrix
will depend on the DM density field, the CO bias, and the
luminosity function, and we will estimate it using simulations.

3.3. The Joint PS+VID Covariance Matrix

The main missing component in the above method is
definition of a joint power spectrum and VID covariance
matrix. By having access to the computationally cheap yet
realistic Monte Carlo simulations described above, we can
approximate this matrix with simulations. In addition to giving
us covariance matrices to do our analysis, this also allows us to
check under what conditions the full covariance matrix is
necessary and when we can get away with assuming that
individual samples are independent.

In this paper, we start with 161 independent simulated light-
cone cubes of DM halos, each covering about 976 x 976 on
the sky and a frequency range between 26 and 34 GHz,
corresponding to redshifts between 2.4 and 3.4. The frequency
dimension is divided equally into 512 frequency bins, each
spanning év =~ 15.6 MHz, corresponding to a redshift resolu-
tion of 6z~ 0.002. Since the COMAP field only spans
125 x 125 on the sky, we sub-divide each of the 926 x 9%6
light-cone cubes, after beam convolution, into 36 square fields,
each covering 1°5 x 1°5 , resulting in a total of 5796 semi-
independent sky realizations. The final pixelization of these
maps is a 22 x 22 grid of square pixels, resulting in a pixel size
of 60 ~ 4/1. To these maps, we add uniformly distributed
white noise at the appropriate levels for the COMAP1 and
COMAP2 experiment setups described above.

When choosing the pixel size to use for the analysis, we
follow Vernstrom et al. (2014). They show that, for P(D)
analysis, choosing a pixel size to be equal to the FWHM of the
beam is a good tradeoff between picking a small pixel size to
include the maximal information, and choosing a larger pixel
size to reduce the pixel to pixel correlations induced by
the beam.

We combine our two observables into a joint one-
dimensional vector of the form

d; = (Py, By, (5)
where Py, is the binned power spectrum and B; are the
temperature bin counts. Let us first consider the ideal case in
which all elements in this vector are independent and the
Fourier components are approximately Gaussian. In that case

we can compute the expected variance, which we will simply
call the independent variance, analytically,

Varind(Pk,) = (Pk,>2/Nm0des(ki)a (6)
Varind(Bi) = <Bl>(1 - <Bl> /Nvox) ~ <Bf>7 (7)
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where Npoqes(k;) is the number of modes in the ith k£ bin and
where we have introduced the notation Vary,y(d;) for this
conditionally independent variance.

With this notation in hand, we define a “pseudo-correlation
matrix” as

! Vatu(d) Vaa(d) |

where, as in Section 3.4, §; is the full covariance matrix. Note
that c;; is the exact correlation matrix in the limit that Varjnq(d;)
is the true full variance. An important advantage of the pseudo-
correlation matrix, however, is the fact that Var;,q(d;) may be
estimated directly from the average data itself, and this is
required for our MCMC procedure to be sufficiently fast.

The full covariance matrix ¢ is estimated for the model
described by Li et al. (2016), adopting the fiducial parameters
0o, using the set of 5796 simulations described above.
However, for the MCMC sampler described in Section 3.4,
we actually need the full covariance matrix, corresponding to
different model parameters 6, at each step in the Markov chain.
Generating the full covariance matrix with the above procedure
at each MC step is clearly not computationally feasible and we
therefore need to approximate this somehow.

With regard to this last point, we introduce the following
proposal: we assume that the full covariance matrix scales,
under a change of model parameters from 6, to 6, the same way
as the independent variance, Var;,q(d;),

v Varh,(d;) Varh,y(d))
Jvarl (dyVarlh ()

where Va.r?gd(di) is the independent variance for the fiducial

()

£;(0) ~ &;(00) ©

model and Var? ;(d;) is the independent variance for arbitrary
parameters 6. Since this latter function only depends on the
average quantities (d;), it is computationally straightforward to

compute 217(9) at any position in an MCMC sampler. Note also

that éij (6) is, by construction, positive definite, as required for a
proper covariance matrix.

For a noise-dominated experiment, where all samples
are approximately independent, the independent variance,
Var;,q(d;), is the correct variance and Equation (9) is the
correct scaling of the covariance matrix. However, we use this
scaling as a first approximation even in cases where there is
some covariance in the data.

Intuitively, Equation (9) is equivalent to postulating that the
pseudo-correlation matrix, c;, is approximately constant (i.e.,
independent of the specific parameters in question). For real-
world applications, we recommend testing this assumption
explicitly by computing the covariance matrix by brute force
simulation for a few extreme parameter combinations drawn
from the Markov chains produced during the analysis.

The above prescription applies straightforwardly to single-
field observations as, for instance, planned for COMAPI. In
contrast, COMAP2 will, under our assumptions, span N = 4
independent but statistically identical fields. Since the mean
vector of observables evaluated across those four fields equals
the average of the four corresponding independent observable
vectors, the full covariance matrix is simply given by the
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single-field covariance matrix divided by the number of fields:

Vi _ S
G = (10)
Note that c;; then, assuming the fields are of the same size, only
depends on the noise level per field, so for a given noise level
per field, ¢;; is independent of the number of fields.

Finally, we note that the total number of degrees of freedom
in our joint PS+VID statistic is in this paper equal to 45,
corresponding to 20 power spectrum bins and 25 VID bins. For
this number of degrees of freedom, a set of 5796 (semi-
independent) simulations provides a very good estimate of all
numerically dominant components of the covariance matrix,
including both the diagonal and the leading off-diagonal
modes, and §;; is well conditioned.

3.4. Posterior Mapping by MCMC

As previously mentioned, we use an MCMC algorithm to
sample from the posterior distribution of the Lco(Mha,) model
parameters, 6 = {osgr, log Omr, @, B, 0r,}. This posterior dis-
tribution is, as usual, given by Bayes’ theorem,

P(0ld) o< P(di|6)P(0), an

where d represents our compressed data set, P(d|f) is the
likelihood defined below, and P() is some set of priors. We
use the emcee package (Foreman-Mackey et al. 2013) and its
implementation of an affine-invariant ensemble MCMC
algorithm, with 142 walkers.

We use a burn-in period of 1000 steps, and use the next 1000
steps for the posterior estimation.

We assume a Gaussian likelihood for our observables d; of
the form (up to an additive constant)

—2InP(d|0) = > _[d: — (d)1(§ Dyld; — (d))] + Inl¢]. (12)
i

where the means (d;) depend on the model parameters 6, and
the covariance matrix §; is approximated by the expression
given in Equation (9). (Note that we do not need to assume that
the low-level data are Gaussian, but only that the compressed
observables may be well approximated by a multivariate
Gaussian distribution. Due to the central limit theorem, this is
in practice very often an excellent approximation.)

For both the power spectrum and the low and intermediate
temperature VID bins, for which there is a large number of
voxel counts per bin, this Gaussian approximation holds to a
high degree. However, for the highest VID temperature bins,
where there are only a few voxel counts per bin, the discrete
nature of the bin count may become relevant and the full
binomial distribution should, in principle, be taken into
account. However, this effect can also be easily remedied by
increasing the bin width, albeit at the cost of a slight loss of
information, as is suggested in Vernstrom et al. (2014), and we
therefore neglect it in the following, since our primary focus is
the dominant Gaussian component of the likelihood. A more
thorough analysis may take this issue into account either
analytically or by simulations.

An advantage of using a Gaussian likelihood for the VID is
that it gives us a straightforward way to take into account the
correlations between temperature bins apparent in the
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covariance matrix, ; (e.g., in Figure 2). For another approach
to building up a P(D) likelihood, see Glenn et al. (2010).

To estimate (d;), we compute 10 maps of the survey volume
at each step in the MCMC chain using the current model
parameters 6 with different DM halo realizations (randomly
drawn from 252 independent catalogs corresponding to the
survey volume). The specific number of realizations, 10 in our
case, represents a compromise between minimizing the sample
variance in the estimate of (d;) and maintaining a reasonable
computational cost per MC step. Finally, we bin all of the halos
in the 10 realizations according to their luminosity and use this
histogram to estimate the luminosity function at the current
values of 6. This way the MCMC procedure gives us the
luminosity function at different points in parameter space,
sampled according to the posterior of the model parameters,
which we can use to derive constraints on the luminosity
function itself.

We adopt the same physically motivated priors as discussed
by Li et al. (2016). Specifically, these read

P(osrr) = M0.3, 0.1) (13)
P(log mp) = M0.0, 0.3) (14)
P(a) = N(1.17, 0.37) (15)
P(B) = N(0.21, 3.74) (16)
P(010) = N0.3, 0.1), an

where A(u, o) corresponds to a Gaussian distribution with
mean p and standard deviation o. Additionally, we require
the two logarithmic scatter parameters, ospg and oy, to be
positive. We choose the mean of all these distributions as the
fiducial model, 6,.

To quantify the importance of joint PS+VID analysis, we
perform the above analysis both with each observable
separately and with the joint analysis. The main result in this
paper may then be formulated in terms of the relative
improvement on the CO luminosity function uncertainty
derived from the joint analysis to those found in the
independent analyses.

When calculating our observables (PS and VID), we assume
that our survey volume can be treated as a rectangular grid of
voxels with constant co-moving volume. We also neglect the
evolution of our observables over redshifts between z = 2.4
and 3.4. That is, we assume that samples from different
redshifts are drawn from the same distribution, whether they
are power spectrum modes or voxel temperatures. We also
assume that the instrument beam is achromatic and is equal to
the value at the central frequency. This is of course just an
approximation that we make in order for the analysis to be
simple. If we were doing experiments with higher signal to
noise, we might divide our data into two different redshift
regions and do an independent analysis of each region. This
could allow us to study the redshift evolution of the
observables. For COMAP (1 and 2), however, we are probably
best off combining all the data, like we do here, in order to
increase the overall signal to noise.

Finally, since COMAP will not measure absolute zero levels,
we subtract the mean from all maps. For the power spectrum,
this has a negligible impact, as it simply removes one out of
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Figure 2. Estimated pseudo-correlation matrix of observables d;, ¢;; = Cov(d;, dj)/(\/Varmd(d,)Var,“d(d,) ), based on simulated maps with and without noise. The
first block in each matrix corresponds to the power spectrum and the second block to the VID. Top: signal plus white noise corresponding to the COMAP]1 experiment
(Ovoxel = 11 K). Middle: signal plus white noise corresponding to the COMAP2 experiment (0yoxel &~ 8 1tK). Bottom: signal alone. Note that here we have changed
the color scale. Left: covariance matrices without beam smoothing. Right: covariance matrices with Opwym = 4’ beam smoothing.

Nyox modes. However, it has a significantly higher impact for shown by Breysse et al. (2017), removing the monopole makes
the VID. Specifically, it makes it much harder to distinguish a it much harder to detect a possible low luminosity cutoff in the
potential background of weak sources from noise. Indeed, as CO luminosity function using the VID.

6
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4. Results

We are now ready to present the main numerical results from
our analysis, starting with an inspection of the joint PS+VID
covariance matrix itself.

4.1. Visual Inspection of the PS+VID Covariance Matrix

Figure 2 shows the pseudo-correlation matrices, c;;, for our
two experimental setups, as well as for pure signal alone, for
reference. In order to illustrate the effect of the beam, we show
covariance matrices from maps both without and with beam
smoothing in the left and right columns, respectively.

The first thing to notice is that instrumental noise
significantly reduces the numerical values of the normalized
covariance matrices, bringing it closer to the independent white
noise case for which c¢; = ¢;;. This agrees with intuition, since
the noise itself is white and uncorrelated.

Beam smoothing also leads to weaker correlations. This is
mainly due to the beam diluting the signal at small scales,
where the correlation is otherwise strongest.

Next, we notice that the cross-correlations between the
power spectrum and VID are of the same order of magnitude as
the correlations internal to each observable itself. Thus, it is
essential to account for all these correlations in any joint PS and
VID analysis, as is done in the present paper.

Finally, we note that when designing an experiment like
COMAP, one of the important trade-offs involves observation
time per field. To obtain a fast signal detection it is in general
advantageous to observe deep on the smallest possible field.
However, this only holds true while the signal-to-noise per
voxel is significantly less than unity. When the noise starts to
become comparable to the signal, the signal-induced voxel—
voxel correlations starts to become important, and the effective
uncertainties no longer scale as O(1/+/7), where 7 is the
observation time per pixel. Generally, in such a tradeoff, any
significant correlations between different power spectrum
modes or voxel temperatures will tend to favor larger survey
area or multiple fields, both effectively leading to more
independent samples, and thereby higher overall integration
efficiency.

4.2. Luminosity Function Constraints

We are now ready to present both individual and joint PS
+VID constraints on the CO luminosity function, which are
summarized in Figure 3 for COMAPI1 (left column) and
COMAP?2 (right column). The top row shows the constraints
obtained from the power spectrum alone; the middle row shows
the constrains obtained from the VID alone; and the third row
shows the constraints from the joint analysis. In each panel, the
shaded colored region shows the 95% credibility region from
the MCMC samples and the solid line with the same color
shows the posterior median. The purple solid line shows the
average luminosity function obtained from the mean of all
available halo catalogs, and thus represents the ensemble
average of our input model. Note that the colored regions
correspond to one single realization and the uncertainties
therefore contain contributions from instrumental noise, cosmic
variance, and sample variance. The agreement between the
estimated confidence regions and the ensemble mean is quite
satisfactory in all cases, with uncertainties that appear neither
too large nor too small.

Thle et al.

Considering first the individual PS and VID estimates,
shown in the top two rows, we see that the two observables are
indeed complementary. In particular, the VID primarily
constrains the high luminosity end of the luminosity function,
while the power spectrum imposes relatively stronger con-
straints on the low luminosity end. This makes sense
intuitively, since the VID is essentially optimized to look for
strong outliers above the noise, whereas the power spectrum
represents a weighted mean across the full field for each
physical scale. It is interesting to note, however, that the VID
provides, on average, stronger constraints on the luminosity
function than the power spectrum does.

Due to this complementarity, the joint estimator provides the
strongest constraints of all. To make this point more explicit,
the fourth row compares the uncertainties of the independent
power spectrum and VID analyses to the joint constraints. Of
course, there is a significant amount of cosmic variance in each
of these functions and the precise numerical value of the
uncertainty ratio therefore varies significantly with luminosity;
but the mean trend is clear: The individual analyses typically
result in 20%—70% larger uncertainties than the joint analysis
when averaged over luminosities between Leo = 10*-107 L.
Over 10 cosmological realizations, the PS and VID resulted in,
on average, 58% and 30% larger uncertainties (in dex)
individually, than the joint analysis. This is the main novel
result presented in this paper.

4.3. Posterior Distribution of Model Parameters

Lastly we present the constraints of the model parameters
themselves. When doing the MCMC posterior mapping we
explore the parameter space of the Li et al. (2016) Loo(Mualo)
model. Figure 4 shows the posterior distribution for these
parameters derived from one realization of the COMAP2
experiment (the same realization as the COMAP2 results in
Figure 3).

Results for PS, VID, and joint PS+VID analysis are shown
in blue, red, and black, respectively. Prior distributions are
shown in green. The two curves of each color correspond 68%
and 95% credibility regions.

We see that the two parameters that are mainly constrained
are « and (3, the two parameters from the average Lco—Lir
relation. These two parameters are fairly degenerate, and the
direction in which they are degenerate is given roughly by the
line a = —0.13 + 1.19 (Li et al. 2016). In Figure 5, we show
the luminosity function for different points on this line. For the
figure, the values of ospr, 01, and log éyr are fixed at 0.3,
0.3, and 0.0, respectively. Although the overall signal strength,
at least in terms of detectability, is fairly constant along this
line, the shape of the luminosity function changes significantly.
Lower values of alpha imply a more steep power-law relation
between Lo and Lig leading to more sources with very high or
very low luminosities. We see this as a flattening of the
luminosity function. In such a case, a larger fraction of the
overall signal will be given by high-luminosity sources.

The other parameter that is also slightly constrained is the
log-normal scatter parameter from the Lco—Lir relation, oz,
This parameter is only slightly more constrained compared to
the prior, with the highest values of o7, being disfavored. The
posterior of the other scatter parameter, osgg, is basically given
by the corresponding prior (i.e., this parameter is not very well
constrained by the experiment), although, as expected from the
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Figure 3. Constraints on the luminosity function from simulated experiments COMAP1 (left) and COMAP2 (right). The shaded area corresponds to 95% credibility
intervals, solid lines correspond to the median, while the purple curve corresponds to the average luminosity function derived from all the available halo catalogs (i.e.,
the ensemble mean). Top row: constraints derived using only the power spectrum P (k;) as the observable. Middle row: constraints derived using only the temperature
bin counts B; as the observable. Bottom row: constraints derived by a joint analysis using both the power spectrum P (k;) and the temperature bin counts B; as
observables. Bottom: comparison of the uncertainty of the luminosity function constraints in dex, i.e., A® = log,( ®o7.54 — log P25
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Figure 4. Posterior distributions for the Li et al. (2016) model parameters for a single realization of the COMAP2 experiment (the same realization as the COMAP2
results in Figure 3). Results for PS, VID, and joint PS+VID analysis are shown in blue, red, and (slightly bolder) black, respectively. Prior distributions are shown in
green. The two curves of each color correspond to 68% and 95% credibility regions. The numbers on top of each column correspond to the 68% credibility interval for
each parameter from the PS+VID analysis. We see that while the posterior of the two scatter parameters, ospr and o, is mostly set by the prior, the posterior on
log dmr, from the SFR-Lig relation, is actually slightly wider than the prior, suggesting a significant intrinsic scatter in estimates of this parameter. These results are
consistent with the corresponding results in Figure 7 in Li et al. (2016). The two parameters that are actually strongly constrained by the simulated experiment are «
and (3, the two parameters from the Lco—Lir relation, and this figure shows that, at least for this realization, the constraints on these two get significantly improved in
the combined analysis (PS+VID) as compared to analysis using the individual observables. This figure was created using the publicly available code (https://github.
com/dfm/corner.py) corner (Foreman-Mackey 2016).

fact that the scatter parameters have basically the same effect, constraining log émp until § is constrained to a comparable
we see signs of the degeneracy between them in the posterior. level.

Interestingly, the normalization parameter in the SFR—Ljg
relation, log dvr, actually has a posterior that is wider than the
prior. This may be because the best fit of this parameter from
each of the different patches have an intrinsic scatter larger than
the scatter in the prior. We note that we see the same effect in
Li et al. (2016; their Figure 7).

5. Discussion

We have developed a joint power spectrum and VID analysis
for the CO luminosity function in the context of the COMAP
CO intensity mapping experiment. We have implemented an
efficient approach to estimating the joint covariance matrix for

From the mean relations in the Li et al. (2016) model, we
have logLco ~ —f3 — log dmp. Intuitively, we would then
expect log v to be completely degenerate with 3. However,
since the SFR—-Ljr is much better constrained by observations
than the Lco—Lig relation, the prior on log dyr is much tighter
than the one on (. The degeneracy thus prevents us from

these two observables and have shown that accounting for both
one- and two-point correlations leads to 20%-70% smaller
uncertainties on the CO luminosity function for both COMAP1
and COMAP2.

The critical computational engine in our approach is the
construction of fast yet semi-realistic simulations of the signal

129



THE ASTROPHYSICAL JOURNAL, 871:75 (11pp), 2019 January 20

101 ; ; 1.60
1.52
102 1.44
_ 1.36
= 103} 1.28
g
= 1.20 &
S 104} 1.12
5
1.04
105} 0.96
0.88
10 0.80

106 107

10°

104
LL,]

Figure 5. Plot of the CO luminosity function in the Li et al. (2016) model for
different values of v and 3. The colors of the lines indicate the values of «, the
values of ospr, 07co and logdyr are fixed at 0.3, 0.3, and 0.0, respectively,
while the value of /3 is determined from the relation « = —0.13 + 1.19. This
line corresponds roughly to the direction along which a and (3 are degenerate.
Although the overall detectability of the signal remains roughly constant along
this line, we see that the shape of the luminosity function changes significantly.
We see that lower values of « correspond to less steep high-luminosity tails in
the luminosity function, meaning that a larger proportion of the overall signal
comes from high-luminosity sources.

in question. These simulations are based on the computation-
ally cheap peak patch DM halo simulations produced by Bond
& Myers (1996) and Stein et al. (2019), coupled to the semi-
analytic CO luminosity model of Li et al. (2016). Of course, the
results we derive are correspondingly limited by how well the
model reproduces the true cosmological signal. If the true
signal is significantly more complex than the model predicts,
the constraints in Figure 3 will not be reliable.

The strength of the constraints on the CO luminosity
function will depend on the overall level of the CO signal,
which is highly uncertain. However, given the same rough
level of signal, we expect the constraints on the luminosity
function at the high luminosities to be less model dependent
than the constraints on the Lco—Mpa, relation or the luminosity
function at lower luminosities. This is because the high-
luminosity sources leave a fairly unique imprint on the maps
that does not depend on the specific model used.

Additionally, we expect that the relative merits of using the
PS or the VID as observables will change depending on the
properties of the signal. In particular, anything that increases
the shot noise of the signal, like a a strong galactic duty cycle, a
large intrinsic scatter in luminosities or just a more top-heavy
luminosity function, will make the resulting map more non-
Gaussian, tending to favor observables like the VID more as
compared to the PS. We can see this effect directly in Figure 4.
The VID is better, compared to the PS, at ruling out low values
of a and high values of oy ,, both of which correspond to cases
where we would have a more top-heavy luminosity function
and thus more shot noise.

We also expect the map to be more non-Gaussian on small
scales than on large, so a wide survey with low resolution will
tend to favor the PS, relative to the VID, more than a narrower
high-resolution survey.
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While the issues of model dependence are less relevant for
low signal-to-noise measurements, where we are just trying to
establish the rough level of the signal, they will become more
important as the measurements improve.

Another potential issue with the simulations used in this
paper is the minimum DM halo mass of 2.5 x 10'° M_,. While
the model used here predicts that only a small fraction of the
CO signal would come from halos lighter than this (see Li et al.
2016 and Chung et al. 2017), other models could disagree. If
fact, searching for a low luminosity cutoff in the CO luminosity
function is an interesting target for CO intensity mapping, and
simulated halo catalogs with a smaller minimum DM halo mass
would be useful both for forecasts and inference in such a
scenario.

In general, it will be important to continuously improve the
simulation pipeline as the experiment proceeds in order to
account for more and more cosmological, astrophysical, and
instrumental effects. However, the most important point in our
approach is the fact that all such effects may be seamlessly
accounted for, as long as the simulation procedure is
sufficiently fast in order to be integrated into the MCMC
procedure.

It should also be noted that our approach may be generalized
in many different directions. For instance, the CO luminosity
function does not play any unique role in our analysis, but is
rather simply one specific worked example of a particularly
interesting astrophysical function to be constrained. Many other
functions may be constrained in a fully analogous manner,
including, for instance, non-parametric Lco(Mpao) models, or
any of the parameters that are involved in converting the DM
halo distributions to CO luminosities. The method is also not
specific to CO intensity mapping, but should be equally well
suited for other lines, or a combination of lines (Chung et al.
2018). Indeed, it should work for any type of random fields for
which the covariance matrix must be estimated by simulations.
Finally, we also note that there is nothing special about the
power spectrum or VID as observables, but any other efficient
data compression can be equally well included in the analysis,
as long as the required compression step is sufficiently
computationally efficient.
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