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Be approximately right rather than exactly wrong.
- John Tukey





Preface
This dissertation is submitted in partial fulfilment of the requirements for
the degree of Philosophiae Doctor at the University of Oslo. The research
presented here is conducted under the supervision of professor Arnoldo Frigessi
and researcher Alvaro Köhn-Luque.

The dissertation is a collection of three papers, presented in chronological
order. The common theme to them is personalised simulation of cancer therapy.
The papers are preceded by an introductory chapter that relates them together
and provides background information and motivation for the work.
Paper I is a joint effort of many researchers from Univeristy of Oslo (UiO) and
Oslo University Hospital (OUS) in Oslo, Norway over the course of three and a
half years. The ongoing work associated with Paper II has been produced by my
co-authors and I from UiO and Aalto University in Helsinki, Finland. Paper III
is the fruitful production of brilliant collaborators at UiO and Simula Research
Laboratory in Lysaker, Norway.

This dissertation should be of interest to statisticians and mathematicians, in
the field of Cancer Biology specifically, but also other individuals with a general
background in modelling. It should also be of interest to cancer biologists and
clinicians. This research was supported, in part, by Big Insight, Oslo, a centre
for research-based innovation (sfi), funded by the Research Council of Norway
and other fifteen partners.
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Chapter 1

Introduction
Despite many advances in the treatment of breast cancer, treatment failure
incidence is still high, entailing a heavy burden upon the affected individuals
and healthcare systems in general [1, 2]. Although each cancer patient receive
the recommended treatment, this may not represent the optimal one. This in-
cludes patients who do not respond to standard treatment, develop resistance to
drugs or relapse, and patients who do not qualify for standard-of-care treatment,
because of age or health condition. It could be that a treatment that would
benefit such a patient actually exists, as a non-standard combination of currently
available drugs and compounds, in a novel dose and administration regimen.
Personalised treatment requires searching for this optimal treatment, taking
into account the individual genomic makeup, transcriptional profile, proteome,
microenvironment, clinical condition and life expectancy. Medical science has
already made important steps in this direction [3]. Modern development in
cancer treatment is moving away from the ‘one drug fits all’ ideology to a more
personalised approach motivated by advancement in biomarker technologies.
However, this level of ‘personalisation’ is far from ideal: it assigns patients to
one of a few classes, in which intra-patients’ intra-heterogeneity can be observed
[4].

Mathematical modeling and simulation tools are becoming an attractive and
time- and cost-effective approach to determine optimal solution among numerous
possibilities [5, 6]. Current models are capable of addressing pharmacokinetics
and pharmacodynamics of anticancer medicine at various spatial and temporal
scales. Simulations can then be performed to explore many treatment regimens
at once to identify optimal plans with minimal toxicity. However the flexibility
of the model comes at a cost; parameters for each individual patient requires sep-
arate tuning and validation, and the runtime of simulations remains unmatched
with the state-of-the-art decision-aiding tool in routine clinical practice.

In this project, I investigate whether

• a mathematical model designed for a specific type of cancer, integrating
routinely-collected data from a clinical trial is feasible,

• the model is robust enough to simulate and predict various responses using
individual data, and

• the collected data are sufficient for the purpose of validation and personal-
isation of the model

We use data from a recently published neoadjuvant clinical phase II trial in
patients with large breast tumours [7], where histological, magnetic resonance
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1. Introduction

imaging (MRI) and molecular data were collected before, during and at the end
of neoadjuvant treatment. The enrolled patients were randomised to receive
FEC with or without bevazicumab, an anti-angeogenic drug. Clinical observa-
tions show large heterogeneity between patients, however no predictive tools are
currently available. I joined a team composed of oncologists, pathologists, molec-
ular biologists, medical imaging physicists, statisticians and mathematicians.
Together we examined whether a computational modelling approach can be used
as a tool to predict individual outcomes of patients in the trial. In the first part
of the project, presented in Paper I, we formalised procedures for clinical data
preprocessing, model initialisation, personalisation and validation. we demon-
strate that patient-specific (incorporating data unique to the individual) and
multi-scale (combining processes and data of different length- and time-scales)
modelling allows us to reproduce treatment outcome. In addition we investigate
what alternative treatment protocols would have produced different outcomes.
This is a first step towards virtual treatment comparison.

Based on the success of the first paper, we use modern statistical computa-
tion techniques known as approximate Bayesian computation (ABC) to infer
uncertainty in the patient-specific parameters from the Paper I given available
data. Additionally, we discussed whether additional data collection would lead
to improvement in the accuracy of outcome prediction.

Finally in Paper III, we strive to improve the relevancy of the scale of the
original model by developing novel efficient numerical methods, built upon
modern cluster computing architecture with parallel capabilities to address
heterogeneities of tumour microenvironment. This crucial step enables simulation
of personalised therapy that are up to 500 times larger than our previous
achievement.

Overall, our study demonstrates the effectiveness and the potential of
simulation-based personal treatment optimisation. It lays the basis for future
programme in delivering robust clinic companion diagnostic tool.

The remainder of this thesis is structured in the following manner: in Chap-
ter 2, a general overview on breast cancer and development of clinical treatment
are discussed. Chapter 3 introduces the role of mathematical modelling in cancer
medicine and its application. In Chapter 4, the need and usage of numerical ap-
proximation of differential equations in the context of FEniCS are discussed. And
finally Chapter 5 explains the rationale of bayesian inference and in particular,
some aspects of likelihood-free inference on simulation-based models.
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Chapter 2

Breast Cancer

2.1 Epidemiology

Breast cancer is the most common type of cancer for women and number two
commonly occurring type of cancer. In Norway, there are approximately 3600
cases of newly diagnosed breast cancer patients, accounting for ever 25% of
diagnosed cancer cases among women. Over the past 50 years, the incidence rate
of breast cancer has increase by over 50% [8]. There are several factors considered
to be associated with increasing risk of breast cancer and fall into two categories:
hereditary and environmental factors. Hereditary factors including age, familial
history and ethnicity account for approximately 27 percent of breast cancer cases.
Notably, two hereditary breast cancer genes associated with high risk, BRCA1
and BRCA2 account for 5-10 percent of all cases. However environmental factors
account for substantial proportion of breast cancer. Lifestyle and dietary choices
have been associated with increased risk of getting the disease. Given that age
is a risk factor for breast cancer, the increasing incidence rate can be partially
explained by the overall increase in life expectancy. Additionally the increase in
the screening programme also increased the probability to detect the disease.

2.2 Diagnostic and Prognostic Modality

2.2.1 Imaging

Early suspicion of breast cancer often arises from palpation, a form of physical
examination, either by a medical examiner or by self-examination. Another form
of effective detection is by mammography. It is a type of X-ray image of breast
that enables earlier diagnoses [9]. This is usually carried out as part of a national
screening programme [10]. Norway, amongst other nordic countries, UK and the
US, have a well-established breast cancer screening programme. Women between
the age of 50 and 69 are screened regularly every two years. Furthermore, women
with familial history are offered screening earlier on due to higher breast cancer
risk [11]. For more accurate diagnosis and better localisation, other imaging
tools are used such as magnetic resonance imaging (MRI) and positron emission
tumography (PET).

2.2.2 Histopathological biopsy

Once a patient is found to be positive to the test, a histological examination of
fine needle aspiration biopsy (FNAB) or core needle biopsy usually follows to
confirm the finding. The biopsy can also be preserved in formalin and paraffin,
and take out later for further assessment by a trained histologist.

3



2. Breast Cancer

2.2.3 Molecular data; gene-expression

New technology, microarray gene expression profiling, has now started to be
routinely collected. It gives additional insights of the complexity as well as the
heterogeneity of the disease at molecular level. Treatment can be further selected
and optimised for each patient. Multi-gene signatures are collected and identified
to capture key molecular features of the tumor. Such signatures like OncoTypeDX
(21-gene signature) [12, 13], and MammaPrint (70-gene signatures)[14, 15],
provides invaluable prognostic tool in addition to clinical prognostic factors for
both overall survival and recurrence of the disease and can be used to predict
response to different treatment.

2.3 Taxonomy

Breast cancer is recognised as a heterogeneous disease with different charac-
teristics, which leads to various response to one treatment. In this section
breast tumour is separated by classification criteria, including histopathological,
immunopathological and molecular separates breast into several groups.

2.3.1 Histopathological classification

Depending on the morphology of the tumour, breast cancer can be divided into
several categories. Lobular and ductal breast carcinomas accounts for more than
95% of all breast cancers. The majority of the ductal breast carcinomas are
invasive ductal carcinomas (IDCs) that grow in ducts or tubules and infiltrate
the surrounding tissue. Approximately 75% of IDCs are not classified further and
they are referred to as ‘not otherwise specified’ (NOS). Invasive lobular carcinoma
(ILC) is the second most commonly diagnosed type of breast carcinoma (10-15%).
The number of diagnosed cases are found to be increasing possibly due to an
increase in prescription of hormonal replacement therapy for postmenopausal
women [16]. Other types of breast carcinoma such as Inflammatory breast cancer
(IBC) are named after the structure of the growth [17].

2.3.2 Predictive biomarkers

There are several biomarkers proposed for breast cancer. They are used to adjust
or omit treatment according to the aggressiveness of the disease. In addition,
they can also be used to estimate how likely the treatment would be successful
for high-risk patients.

Histological grade A crucial and important guidance for diagnosis and pre-
diction of IDC is histological grade. It is determined by a trained pathologist
who studies the degrees of epithelial differentiation of tumour cells in a sample
obtained by biopsy or surgery. Three features are evaluated for the estimation
of histological grade: number of dividing cells, irregularity in shape and size and
formation of tubules. Each feature is assigned a numeric value ranging from 1
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to 3 by independent assessment. Grade 1 corresponds to a well-differentiated
tumour, while grade 3 tumour is poorly differentiated. It has been shown that
high grade tumours are often associated with poor prognosis [18, 19].

Stage - TNM classification In contrast to histological grade, staging is a
systematic grading taking into account the biopsy of a tumour. This standard
is globally recognised as a standard tool. The evaluation takes into account
three aspects of a primary tumour: tumour size (T), lymph nodes status (N)
and the presence of distant metastasis (M). Both T and N are indicative of
the aggressiveness of the primary tumour, while M could indicate the disease is
incurable at the time of diagnosis [20, 21].

Cellular receptor Estrogen receptor (ER), progesterone receptor (PR) and
growth factor receptor (HER2) are the three important prognostic and predictive
markers for breast cancer. [22, 23]. These three expressions forms part of
the routine inspection of the immunohistochemical (IHC) staining of formalin-
fixed,paraffin-embedded breast cancer tissues. ER and PR are receptors activated
by estrogen and progesterone ligands binding. Such mechanism is responsible
of the regulation of cellular functions such as proliferation, differentiation and
angiogenesis. Positively expressed ER and PR status usually have a good
response to endocrine therapy, while low/absent PR expression accompanying
positive ER status indicates high proliferation and poor response to endocrine
therapy. HER2 is a growth factor receptor tyrosine kinase than is involved in
cell growth regulation. It is found to be overexpressed in approximately 20%
of all breast tumours and is a marker for poor prognosis [24]. Three clinically
relevant subtypes of breast cancer are defined from the levels of expression of
ER, PR and HER2: hormone receptor positive, HER2 positive (regardless of
ER and PR status) and triple negative (TN) breast cancer, meaning absence of
all three receptors. 70-80% of the breast cancer population are classified as ER
positive, while 12-17% are TN.

Ki-67 Ki-67 is another biomarker for proliferation. It is a nuclear protein
expressed only in active cells. Its activity can be measured by IHC, called
Ki-67 index, and it is particularly useful in determining proliferation status [25].
Despite recommendations from the Breast Cancer Working Group, the main
difficulty in integrating Ki-67 proliferation score as part of the clinical practice
is its high inter-observer variability. A systematic assessment in its reliabilities
as a useful biomarker is needed [26].

2.3.3 Molecular classification; gene-expression signatures as
classifiers

Recent advancement in microarray gene expression profiling made it possible
to gather high-dimensional data and to classify breast cancer samples based on
multiple genes or even the whole genome. The most prominent study proposed
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2. Breast Cancer

five biologically distinctive subtypes: luminal A, luminal B, HER2-enriched,
basal-like and normal-like. Initial study [27, 28] concluded the subtypes using
approximated 500 genes because they varied the least within the same tumours,
but differed the most between different tumours comparing expressions before
and after doxorubicin treatment. Results were validated and refined further,
shrinking the set of genes to a total number of 50, naming the collection PAM50
[29]. In addition to its usage in subtyping, it was also developed to assess
prognostic risk of relapse, proliferation based on subtypes of gene related to
cell cycle, and to aid in composite scores including tumour size with molecular
phenotypes [30]. In light of seeking minimising misclassification and identifying
patients with poor chemotherapy treatment outcome, prospective cohort studies
have been set up to study the potential of PAM50 as predictive marker for risk
of recurrence in Norway [31].

There are also several other multi-gene signatures that have been defined
to capture features of tumours associated with treatment response, namely
OncoTypeDX and MammaPrint. However their value for long-term outcome
prediction have been questioned despite their prognostic value [32].

2.4 Treatment

After the patient has been detected of breast cancer by palpation or mammogra-
phy, biopsy, and imaging of type ultrasound, MRI or PET are taken for accurate
diagnosis and localisation. Treatment is then planned by considering aforemen-
tioned prognostic and predictive biomarkers for each patient. Treatment types
can be roughly classified into two categories. Local therapy, meaning treatment
without affecting other parts of the body, includes surgery and radiotherapy.
On the other hand, systematic treatment uses drugs that targets cancer cells
throughout the whole body. Depending on the types of drugs, the treatment,
including chemotherapy, hormonal therapy, targeted therapy and immunother-
apy, can be administered orally or intravenously. The increasing involvement
of a multi-disciplinary team in the proposed treatment plan, which usually
contains a combination of local and systematic treatment, has seen a significant
improvement in breast cancer survival in the intervention. However advances
in microarray-based gene profiling enables intrinsic intra- and inter- tumour
heterogeneity. This explains many of the varying responses to standard treat-
ment. Currently we are in a transition era from the traditional population-based
oncology to the primarily molecular-marker based individualised assessment and
programme adapted to personal care.

2.4.1 Local therapy

Surgery Operations used to treat breast cancer include lumpectomy, a breast-
conserving surgery, and mastectomy, the removal of the entire breast. Lymph
nodes dissection may proceed either of the procedure to determine if the cancer
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has metastasised in the axilla. A less invasive technique called sentinel lymph
node (SLN) procedure is used initially. If cancer cells are found in the lymph
node of the primary site, extensive axillary lymph node dissection is performed.
Surgery is thought to be the primary intervention of primary breast cancer of
stage I-III before the tumour metastasises.

Radiotherapy Radiation therapy utilises highly energetic ionising radiation
such as X-rays and protons to damage the DNA of the cells including normal
and cancer cells. Since cancer cells are on average more proliferative than normal
cells, less differentiated and with limited DNA-repair mechanism, it is more
damaging to cancer cells compared to normal cells. Irradiation after breast-
conserving surgery substantially reduces not only the risk of local recurrence
but also improves the survival[33]. The procedure also prevents the need of
mastectomy and improves the cosmesis among the breast cancer patients.

2.4.2 Systematic treatment

Systematic therapy can be given in addition to surgery (adjuvant) to prevent
recurrence of tumour and or metastasis. It can, however, be given prior to
surgery, called neoadjuvant therapy. The aim of this approach is to help shrink
the tumor and make it easier to remove surgically. In both of these situations,
the main aim is to kill or control undetected microscopic metastases before they
grow. This reduces the risk of distant spread of breast cancer in the years after
surgery.

Chemotherapy An oncologist will recommend a chemotherapy regimen en-
tailing plans for chemotherapy. This usually includes the name of the receiving
drugs, the order in which they will be administered, the amount of each drug (the
dose) as well as how often and how long the treatment lasts. Most women with
early-stage breast cancer will typically receive a regimen that last approximately
three to six months. It was shown that combination of cytotoxic drugs targeting
different cell cycle phases is more effective [34]. The most commonly prescribed
chemotherapy regimen in Norway includes three drugs: 5-flurouracil, epirubicin
and cyclophosphamide, collectively called FEC. For tumours expressing high
level of Ki67, FEC are given in addition to taxanes.

Hormone therapy Hormone therapy targets the presence of ER signalling and
block the binding of oestrogen to the ER or synthesis of oestrogen, inhibiting
tumour cell proliferation. For patients who haven’t gone through menopause,
an estrogen receptor blocker such as tamoxifen is usually recommended [35]. In
post-menopausal women, oestrogen is produced via aromatisation of ovarian and
adrenal androgens in the liver, muscle and fatter tissue. Aromatase inhibitor
is therefore commonly prescribed. It blocks estrogen production and thereby
starves cancer cells of the hormones they need for growth.
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2. Breast Cancer

Anti-angiogenic therapy A current focus of breast cancer research is to seek
out medicine that targets specific molecules concerning breast cancer develop-
ment.
It was observed that a tumour cannot grow beyond a size with diameter of
2mm without formation of functional vessels (angiogenesis). As it grows beyond
2mm in diameter, its need for oxygen and other nutrients outstrip its supply.
Tumour enters hypoxic states, producing growth factors such as VEGF, TGF-β
and PDGF signalling for new vessels. The vasculature of tumour is highly
irregular, caused by the abnormally high levels of VEGF. The open gaps between
endothelial cells on the surface of tumour vessels make delivery of nutrients and,
in particular render systematic therapy ineffective. Bevacizumab is a humanised
monoclonal antibody to Vascular Endothelial Growth Factor A(VEGF-A), a
protein produced by cells that stimulates the formation of blood vessels (an-
giogenesis) and increases vessel permeability. It works by directly inhibiting
VEGF and affect normalisation of existing vessels, removal of abnormal and
non-functional vessels and inhibition of new vessel growth. It has shown clinically
that, bevacizumab in combination with chemotherapy versus chemotherapy can
lengthen progression-free survival and increases the response rate in first-line
therapy for locally recurrent or metastatic breast cancer [36, 37]. However the
benefits are transitory, and research shows that the effects and the possible
resistence mechanisms are much more complex than initially thought [38].
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Chapter 3

Mathematical Modelling of Cancer

3.1 Mathematics in medicine

Mathematics has been used to model biological phenomena for centuries. Mathe-
matical model allows precise formulation of biological hypothesis on a mechanism
and provide predictions that can be tested experimentally. Such mathematical
model has to be simple yet complex enough to be able to approximate biological
processes at work with high accuracy given each parameter in the model under-
lying biological processes.
Recently, medicine is becoming increasingly dependent on mathematics [39–41].
With the aid of computers, the involvement and usage of mathematics has led
to the understanding and discovery of recent medical advances. For example:
predicting sudden cardiac death [42, 43], in-silico simulation of human brain [44],
developing cost-effective strategy for cancer screening and modelling potential
drug targets for specific disease [45].

3.2 Mathematical oncology

Cancer modelling has been one of the fast-growing and challenging research
topics gathering applied mathematicians and other scientist. Its popularity
is not only raised by its scientific challenge, but also because of the growing
number of death cases caused by cancer, superseded by cardiovascular diseases.
Cancer biology involves complex intracellular and/or intercellular behaviours,
such as DNA replication, cell growth, division and migration, with very specific
interactions in different tissues parts. Although current mathematical tools can
provide a solid foundation for the study of the biological processes, there are still
lacking integrated models which can be used to investigate fully the interactions
between different components. An integrated, multi-scale model addressing
each characteristics of cancer, including processes such as proliferation, invasion,
resistance and angiogenesis, can provide a mechanistic explanations for the
observed behaviour, and could potentially contribute towards the advancement
in the understanding of cancer and better treatment outcome.

3.3 Population-based model

Tumors are constantly evolving in time. Cancer cells can proliferate, be quies-
cent, or die, and other common variables controlling the cancer system, such
as substrate concentration in cell’s microenvironment and expression levels of
functional molecules triggered by certain event varies. Population-based model,
also known as continuous model uses differential equations to formulate changes
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3. Mathematical Modelling of Cancer

in quantities such as as cell number and substrate concentration at a global scale.
Depending on its consideration for spatial dependence, two types of differen-
tial equations, ordinary differential equations (ODEs) and partial differential
equations (PDEs) emerge as powerful tools in simulating tumour growth and
treatment response.

3.3.1 Ordinary differential equation models

ODEs can not only be used to define changes in cell numbers and substrate
quantities under normal conditions, but also to incorporate cells’ response to
various treatment.

Fundamentals of growth models The simplest tumour growth model is
called exponential growth model. It can be formulated as: Given λ, a constant
describing the net population growth rate, the cell population at time t, ct can
be formulated as

ct = c0 exp(λt) (3.1)

where c0 is the initial number of cells at t = 0. if λ = 0, the number of cells
stays constant over time; while λ < 0, or λ > 0 corresponds to decreasing and
increasing population at a constant pace over time respectively. The value of
λ can be estimated from experiments by fitting observed cell count data to
Equation (3.1).

While the exponential growth model is an simple model with closed-form
solution, the assumption of constant net growth of cancer cells is biologically
and physically unrealistic. A modification on the exponential growth model [46]
proposes the growth model has an initial exponential phase followed by a linear
phase, called exponential-linear model, and it was used to described tumour
growth in nontreated animals. This model was extended further to include two
more stages, namely stasis and second growth. It was used in the context of
three-dimensional tumour growth and angiogensis under chemotherapy treatment
[47].

While the exponential/exponential-linear model is a simple model with
closed-form solution, the assumption of constant net growth of cancer cells is
biologically and physically unrealistic. It ignores physical constraints such as
the maximum capacity of the growing environment, the carrying capacity, and
limits on resources. It is therefore natural to reformulate the changes in tumour
growth as a function of the tumour size:

1
dt
c = f(c) · c (3.2)

One of the classic tumour growth model is the logistic model, anticipating a
slower growth as the population reaches its carrying capacity K:

1
dt
c = λc(1− c

K
). (3.3)
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Population-based model

Figure 3.1: Representative examples of classic cancer growth models fit to lung
data set. Figure by [54] (CC0)

This means that, when c << K, cell grows at approximately rate of λ, equating
to exponential growth (c.f. Equation (3.1); when c → K, cells are reaching
carrying capacity, the growth is stalling and approaching rate of 0.
Other dynamic growth rate functions exist and have been discussed in the context
of tumour growth [48, 49]. Another popular growth model has been shown to
reproduce biological relevant growth pattern is the Gompertz growth [50]. It
assumes that the rate of growth decreases as the population grows[51]. The
restriction on constant carrying capacity can also be alleviated by adding a
second differential equation, forming a system ODE mimicking a vascular cancer
system under the stress of growing cells. (c.f. Von Bertalanffy [52] and power
law models [53, 46]). See Figure 3.1 for an example of various models fitted to a
lung dataset. I refer reader to [54] for a comprehensive treatment of comparison
in different classical mathematical model for tumour growth.

It is relatively straight-forward to incorporate tumour treatment and it follows
two schemes: the decrease in tumour size caused by treatment can be imposed
by adding an extra cell death term, or by reducing the carrying capacity. The
first scheme is suitable for demonstrating a continuous tumour cell kill such as
chemotherapy or immunotherapy, while the effect of angiogenesis is best suited
for the second scheme for its ability in regularising vascular network.

Usage in Pharmacokinetic(PK) model Pharmacokinetic model describes the
rate of distribution of a drug to different tissues and the rate of elimination
of the drug. The mathematical framework is developed using compartments,
consisting of tissues with its own distribution characteristics. PK parameters
such as clearance (CL) and volume of distribution (V) of each compartment and
their variability are estimated from drug concentration-time data. Individual
patient PK parameters are used to explain intra-patient variability while typically
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3. Mathematical Modelling of Cancer

average dynamics are used due to difficulties in obtaining individual data. They
can be implemented into the model through individual patient characteristics
such as weight and height.
A simple multi-compartment model contains three levels of information: the
elimination process can be either linear or Michaelis-Menten-like; second is to
consider the number of compartments, which typical ranges from one to three;
And finally the route of administration, e.g. intravenous bolus, infusion, or oral,
is approximated up to first order. The advantage of the compartment model is
that the concentration of drugs can be obtained at any given time. However
pharmacokineticist make certain assumptions on the body compartments which
can be difficult to validate. Hence non-compartmental methods, which are
model-independent and consistent, is favoured in establishing the initial exposure
characteristics of a drug prior to entry into the clinic [55].

3.3.2 Partial differential equation (PDE) models

Despite ODE models have shown to be remarkably useful in simulating temporal
evolution of cancer cells, they are unable to describe the internal spatial structure
of the tumour population and uncover characteristics of distinct spatial patterns
because of tumour heterogeneity. Invasion, angiogenesis and metastatic spread
are three of the main hallmarks of cancer. These two properties are inherently
spatial, and they can be captured by a PDE model. In this model, quantities
such as cell density or fraction of tumour volume for a given population are
captured at a location in either 2D or 3D. These quantities not only depend on
time, but also space.

Reaction-Diffusion equation In their simplest form, a reaction diffusion equa-
tions describe the change of the concentration of a substrate in space and time.
Reaction causes the transformation of substances, while diffusion causes the
substances to spread out in space. The reaction-diffusion equation for diffusion
of a substance can be derived from the mass conservation equation, dictating
that the net in-flow and the net generation equal to the rate of change in the
substance, relating the velocity of the substance (flux) to the concentration. In
2D, this gives:

∂c

∂t
= D( ∂

2c

∂2x
+ ∂2c

∂2y
) + f(x, y, t), (3.4)

which is often written in a more compact form:

∂c

∂t
= D∇2c+ f, (3.5)

where the operator ∇2 is defined as ∇2c = ∂2c
∂2x + ∂2c

∂2y , called the Laplace
operator. f(·, t) is the reaction term describing the generation and depletion of
the substance in time. D is the diffusivity of the substance, with unit space-
squared over time [56].
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Reaction-diffusion describing tumour growth Here we present a few exam-
ples in the application of reaction-diffusion PDEs in describing tumour growth.
Inspired by previous work, Gatenby and Gawlinski [57] developed the first spa-
tial model of cancer invasion. The model takes into account the diffusion and
proliferation of cancer cells in degrading local tissue casued by excces H+ ions.
The resulting system of PDEs in terms of cancer cell density, c, amount of H+

ions, m, and extracellular matrix, v, can be written as:

∂c

∂t
= ∇ · (Dc(1− v)∇c) + ρc(1− c)

∂m

∂t
= ∇2m+ δ(c−m)

∂v

∂t
= v(1− v)− γmv, (3.6)

where Dc is the diffusion coefficient, ρ is the cancer cell proliferation, δ is the
H+ ion production rate and γ is the extracellular matrix degradation rate. Note
that the cancer cells undergo a random cell migration through the diffusion term.
This model has then been improved and used in similar context. Instead of
cell migrating randomly, the so-called reaction-diffusion-taxis model, includes
a key mechanism of cell migration, haptotaxis. The cells migrate in response
to the gradients of extracellular matrix density. One of the notable work of
utilising this type model was done by Anderson et al., where the influence of the
extracellular matrix was explicitly modelled in a 2D setting. Other work using
the continuous model include [58–61], focusing on cell-cell adhesion. See [62] for
a recent review on mathematical modelling of tumour growth.

Reaction-diffusion describing tumour microenvironment Oxygen and nu-
trients supplied by the vasculature are crucial for cell function and survival [63].
The initial growth of the tumour is limited as it is dependent on diffusion as a
way to receiving nutrients and discarding wastes. Reaction-diffusion equations
can not only be used to model spatial spread of tumours, it is particularly
useful in modelling the supply/consumption of substrates. In [64], Anderson and
coworkers proposed a hybrid model detailing the interactions of tumour cells,
matrix-degradative enzymes (MDE) and macromolecules (MM). In particular,
cell migration and diffusion of oxygen, MDE, and MM form a system of reaction-
diffusion-chemotaxis equations. The production, degradation, and diffusion of
these substrates in the microenvironment were considered at the level of a single
cell.

3.4 Cell-based model

Cell-based models, also known as discrete models, simulate individual cell be-
haviours within tissue environments. These models have several advantages.
Cells can act independent of each other, and each can be parametrised indi-
vidually to reflect heterogeneity in cancer. In addition, the model is flexible
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enough to implement rules dictating cell behaviour and interactions. This allows
swift testing of biologic hypotheses by generating simulations with different
mathematical rules and compare the outcomes against existing observation.

Cell-based models, as illustrated in Figure 3.2 can be classified by restriction
on the placement of cells: Lattice-based model contains cells moving along a
rigid grid, while cells can move freely in off-lattice models.

3.4.1 Lattice-based model

Lattice-based models can be applied on regular meshes in 2D or 3D and irregular
ones. On regular meshes, it is easy to visualise and to implement, however the
dynamics of the cells are highly dependent on the grid. While irregular meshes
eliminate the bias, they add complexity to the system.

Cellular automaton (CA) model CA is a type of regular mesh-based model
that is discrete in time, space and state. Its earliest appearance can be traced
back to modelling pattern formation in biological systems [65]. In its basic form,
each lattice grid can hold at most one cell. At each time step, a discrete rule is
executed to determine the fate of the cell at each lattice point: it can remain,
move to a neighbouring point or divide and put a daughter cell in the neighbour.
The formation of the grouping of the cells relies on the sequence of the updates.
One way to reduce the effect of update is to carry out asynchronous update,
meaning the cells are updated in a random order at each time step.

Lattice gas CA (LGCA) model Similar to CA model, it can model the inter-
play of cells with themselves and their heterogeneous environment. LGCA models
were introduced to model gas and fluid flows through implementing simplistic
local collisions [65]. In tradition synchronous-update CA model, implementation
movement rules for cells in CA is difficult due to limitation of typically one cell
per site. As a result, cells usually clash into each other when two want to move to
the same empty site. Rather than tracking the movement of each cell, in LGCA,
the number of cells travelling between different sites are tracked. Rest status
can also be added for cells that do not move. It therefore allows simulation of
very large numbers of cells for longer time frame. The main difficulty is to find
rules that describe precisely the collective behaviour of the cells. Simulation of
LGCA models allows characterising tumour growth and invasion [66–68].

Cellular Potts models (CPMs) As a type of unstructured lattice-based model,
CPM uses multiple lattice grids to resemble the morphologies of individual cells.
The model accepts or reject the update, consisting random swapping of two
neighbouring sites, based on whether the move would reduce the global energy
of the system. It is computationally intensive, however it is favoured for its
usefulness in modelling cell morphology.
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Figure 3.2: A schematic classification of cell-based modelling approaches. In
each panel, the initial state of the model is shown on the left, and the dynamic
of the update is shown on its immediate right.

3.4.2 Off-lattice model

Off-lattice models draw attention to the modelling of cell movements in space
and how the cells evolve according to mechanical and chemical interactions.
These models differentiate themselves by their ability of capturing cell shape
and thus can be divided roughly into two types, one that focuses on cell volumes,
and the other focuses on cell boundaries.

Centre-based models In its simplest form, cells are treated as spheres and
the interaction in terms of mechanical forces are tracked. When a change in
force exchanged between cell centres are detected, cells’ positions are updated
accordingly. The basic model can be further simplified by grouping cells into
clusters or functional units. The movement of these new units are then simulated
with assigned interactions. This reduces the computational overhead and allows
incorporating heterogenous conditions into different clusters of cells. On the
other hand, greater details can be achieved by modelling interactions between
subcellular elements of individual cells. This model is superior in terms of the
realism of cell biomechanics, albeit at a high computational cost.
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3. Mathematical Modelling of Cancer

Figure 3.3: Overview of a multi-scale hybrid model of tumor microenvironment
to investigate the effect of glucose uptake rate of cancer cells on tumour growth
by [69]. Rearranged in layout under CC BY 2.0

Boundary-based models In contrast to centre-based models, boundary-based
models track and compute forces that act on points located on the boundary of
adjacent cells. Depending on the requirement of spatial resolution, the cell can
be modelled as either polygons or bounded fluid. They are the most realistic
model and most computationally intensive cell-based methods, however they are
proved to be effective tools in linking cell mechanics to fluid and solid tissue
mechanics.

3.5 Mathematical model of cancer growth under treatment

3.5.1 Hybrid multi-scale agent-based models

Hybrid models compose a large group of agent-based models that naturally link
with tumour biology. They represent cells as individual discrete agents and often
use continuous concentration to model extracellular and intracellular environ-
ments. It therefore allows for multi-scale integrative approach in modelling of
the interaction of many variables both intrinsically and extrinsically. Typically,
an on- or off-lattice agent-based model (c.f. Section 3.4), depending on the
modelling requirement of cell number and geometry, serves as the basis. Various
processes linking cells and their environment can be added in the models in a
realistic way by coupling, for example ODEs and PDEs to describe signalling,
metabolic pathways of chemical processes (c.f. Section 3.3). See Figure 3.3 for
an illustration of this approach.

First appearance of hybrid model, addressing avascular tumour growth
appeared in [67]. This model allows tracking of the fate of the cell (LGCA
model), as well as explicit modelling of chemical diffusion (nutrient and necrotic
signal). This type of square-lattice hybrid model has been used on simulating
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avascular [70–73] and vascular tumour growth [74, 75], as well as tumour–
microenvironmental interactions [76–79]. Examples on other types of on-lattice
model, including hexagonal-lattice CA, Potts models, and off-lattice models can
be found in this excellent review in [80].
In the following section, several previously proposed models that inspired this
project are highlighted and discussed.

3.5.2 Previously proposed models

Among various complex models in tumour angiogenesis, Byrne and Chaplain
[81] accounted for interactions between endothelial cells, angiogenic factors and
other cell types and successfully simulated many features of angiogenesis that are
observed in-vivo. However, many earlier works were unable to distinguish different
vascular morphologies. Additionally, vascular remodelling and the impact of
blood flow were often neglected. Anderson and Chaplain [82] developed a cellular
automaton based model with a system of PDEs to describe the spatio-temporal
interactions between tumour cells, endothelial cells, extracellular matrix (ECM)
and chemical such as tumour angiogenic factor (TAF). In this continuum-discrete
model, flow of blood in the vessel were included, and the movement of vessel
tips was modelled via a biased random walk. However the effect of specific
pro-angiogenic and anti-angiogenic factors such as VEGFA were not considered
in the study due to lack of understanding of the underlying biochemistry.
Alarcón and coworkers [83] have developed a computation framework on a
hexagonal lattice that couples functional processes at subcelluar, cellular, and
tissue scales. This complex model was used to investigate the importance of
interaction between different processes such as blood flood and tumour growth
under heterogenous conditions. It was able to simulate irregular growth of tumour
and supported the idea of vessel normalisation with anti-angiogenic treatment.
Although tissue-vasculature coupling were included, new vessel formation was
not explicitly modelled. (the model was later extended in [75] to account for
changes in morphology of vessel network induced by regression and angiogenesis.)
Additionally neither cell migration or immune response was considered. In [84],
a mathematical model coupling tumour growth with immune systems was made
for early stage of tumour development. The model includes spatial interactions
between tumour and immune cells using chemotaxis terms in the governing PDEs.
However the model was limited to the simulation results on radially symmetric
spatial growth and evolution of temporal cell species. More recent work by
Owen and coworkers [85] seeked to explain combinatory effects of treatment
strategies involving standard chemotherapy and novel drug. Specifically the
treatment relies on genetically-engineered macrophages to deliver cytotoxic drugs
to hypoxic region. To date, hindered by limited availability of data directly
linked to the input parameters, only limited number of studies [86] included
personalised models that are capable of describing tumour dynamics and predict
treatment outcome at an individual level.
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Chapter 4

Numerical simulations of chemical
concentration

4.1 Numerical approximation of differential equations

Despite of the usefulness of analytic techniques for solving differential equa-
tions, they are inherently limited to provide solutions to the simplest models.
The rise of modern computing and development of reliable numerical methods
facilitate general solving of differential equations. To convert the equations
into a computable form understood by machines, a discretisation method is
needed to transform the problem into its finite dimensional representation. In
particular, several methods are currently in use in solving PDEs, for example the
finite difference method (FDM), finite element method (FEM) and the spectral
method. There are inevitable loss of information during the transformation
due to the reduction of dimension. Different discretisation schemes attempt to
address differently the task of replacing the partial differential equation system
with algebraic ones while being stable, consistent, accurate yet efficient.

Finite difference method approximates the differential operators using neigh-
bouring points. It can be further divided into explicit and implicit scheme
depending on whether the current state of the system was involved during the
calculation. In general, explicit method is less stable however easier to implement;
while the opposite is true for the implicit ones. A most notable implicit-type
scheme is the Crank-Nicolson scheme, it is known to be unconditionally stable
at a cost of solving system of equation at each time step. In general, FDM
gives optimal solution when it is limited to structured grids; While both FEM
and spectral methods are well-suited for problems with complex geometries, for
which unstructured grids are needed. These methods approximate the functions
in terms of linear combination of basis functions. In addition to its ability
to handle complicated geometries, FEM is usually preferred for its stability
and convergence in situations where solution lacks smoothness. FEM can be
considered as a generalisation of FDM: first order FEM is identical to FDM for
Poisson’s equation given the discretisation is carried out on a regular rectangular
mesh with each rectangle divided into two triangles.

For time-dependent, initial-boundary problems defined in space and time,
setups of FDM and FEM are different. While numerical treatment of space and
time can be done similarly in FDM with different accuracies, obtaining numerical
approximation using FEM requires four stages: pde problem (strong probem),
variation formulation (weak form), finite element formulation and the algorithmic
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implementation. Temporal approximation can be treated separately using FEM
or FDM depending on the requirement of accuracy and stability. FDM and
FEM listed above are far from being the only discretising scheme. Spectral
method uses globally defined functions rather than piecewise polynomials as
approximating functions.

The use of a finite element software library suite such as FEniCS enables
the implementation of the problem in near identical notation to their mathe-
matical formulation. It allows efficient computation of finite element matrices
while still retaining geometric generality [87]. Its features include but are not
limited to: automated solution of variational problems, automated error control
and adaptivity, extensive library of finite elements, high performance linear
algebra through existing libraries such as PETSc and Trilinos and existence of
both python and cpp interfaces. The code written under FEniCS framework
stays compact and assembles mathematical formulation when mathematical and
computational complexity increases. In the following section, we will formulate
solving of general problems discussed in this work in stages using FEniCS library.
We refer reader to [88] for complete reading on solving various PDE problem
using FEniCS.

4.2 Numerical approximation of PDEs in 2D

4.2.1 Poisson equation

PDE problem The poisson problem is the simplest and the most famous elliptic
PDE. It can be described as:

−∇2u(x) = f(x), x in Ω (4.1)
u(x) = uD(x), x on ∂Ω (4.2)

u = u(x) is the unknown function, f = f(x) is the source/sink function. ∇2

is the Laplace operator, Ω is the spatial domain and ∂Ω is the boundary of Ω.
Equations (4.1) and (4.2), the PDE and the boundary condition together are
called boundary-value problem.

Variation Formulation Formulating the PDE problem into its variational form
is the first step towards solving the problem. The variational form is obtained by
multiplying the PDE by a test function v such that v = 0on∂Ω and integrating
the resulting equation over Ω. In this case, we multiply Equation (4.1) by the
test function v and perform integration by parts over Ω, obtaining:

−
(∫

Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds

)
=
∫

Ω
fv dx (4.3)

where ∂u
∂n = ∇u · n is the derivative of u in the outward normal direction n on

the boundary. For a no-flux boundary, meaning there is no flow of substrate in
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the the outward direction normal to the boundary, ∂u
∂n = 0. It therefore follows

that ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx (4.4)

Given an appropriate choice of test and trial space V̂ and V , the variational
form can be states as: find u ∈ V such that

a(v, u) = L(v) (4.5)

for all v ∈ V̂ , where

a(v, u) =
∫

Ω
∇u · ∇v dx (4.6)

L(v) =
∫

Ω
fv dx (4.7)

Having defined the variational problem, the finite element method for the Poisson
equation seeks an approximate solution in a discrete (finite dimensional) subspace
Vh ⊂ V and V̂h ⊂ V̂ . Hence the discrete variational problem becomes: find
uh ∈ Vh ⊂ V such that

a(v, uh) = L(v) ∀v ∈ V̂h ⊂ V̂ (4.8)

This discrete variational problem, together with suitable function space Vh and V̂h,
uniquely defines approximate numerical solution of Poisson equation.

FEniCS implementation To solve this linear PDE in FEniCS, one needs to
perform two steps: Choose a finite element space V and V̂ , specifying the domain
Ω including the mesh, and the type of function space in terms of polynomial
degree and type. Then express the PDE as a diescrete variational problem as
Equation (4.8).

4.2.2 Heat equation

PDE problem Heat equation can be seen as a natural extension to the Poisson
equation, describing the stationary distribution of heat in a body to a time-
dependent problem. The problem can be written as:

∂u

∂t
= ∇2u+ f in Ω× (0, T ] (4.9)

u = uD on ∂Ω× (0, T ] (4.10)
u = u0 at t = 0. (4.11)

u is an unknown function varies in space and time. The source/sink function f
also vary in space and time. The initial condition u0 is a function in space only.
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Variation Formulation For a function that varies in both space and time, we
need to consider which discretisation scheme is the best for this particular problem.
The simplest approach is to first discretise the time derivative by a finite difference
approximation, converting the problem into its corresponding stationary case,
then transform the stationary problem into a variational formulation. We deploy
θ-method for discretising time derivative: let un denotes u at time level n. For
0 ≤ θ ≤ 1 and un known from previous time-step, compute un+1 by solving:

un+1 − un

∆t = θ
(
∇2un+1 + fn+1)+ (1− θ)

(
∇2un + fn

)
(4.12)

This is the time-discrete version of the heat equation Equation (4.11). With
θ = 1, we recover the implicit Euler discretisation, θ = 0 gives the explicit Euler
scheme, while θ = 0.5 gives the Crank-Nicolson discretisation. For this example,
we will derive the weak form with θ = 1

2 . Rearranging the resulting equation by
organising the unknown un+1 and other terms on one side of the equation sign,
assuming un is knwon from the previous time step:

u0 = u0, (4.13)

un+1 − 1
2∆t∇2un+1 − un + 1

2∆t∇2un − 1
2∆t(fn+1 + fn) = 0 (4.14)

We then multiply the equation by a test function v ∈ V̂ and integrate second-
derivatives by parts to turn the equations into weak forms. The resulting weak
form from Equation (4.14) can be written in an abstract formulation, letting
u = un+1:

Fn+1(u; v) = 0 (4.15)

where

Fn+1(u; v) =
∫

Ω

(
uv + 1

2∆t∇u · ∇v − unv − 1
2∆t∇un∇v − 1

2∆t(fn+1 + fn)v
)

dx.

(4.16)

The initial condition also needs to be turned into a variational problem:

F0(u; v) = 0 (4.17)

where

F0(u; v) =
∫

Ω
(u− u0)v dx. (4.18)

This initial condition can be computed either by projection or interpolation.
Both operations are trivial to carry out in FEniCS with a single statement.
Having found u0 ∈ V such that F0(u0, v) = 0 holds for all v ∈ V̂ , we then find
un+1 ∈ V such that Fn+1(un+1, v) = 0 for all v ∈ V̂ for n = 0, 1, 2, . . .
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Algorithm 1 Time-stepping algorithm for heat equation
1: Define the boundary condition
2: Compute u0 as the projection/interpolation of the given initial value
3: Define the form of F
4: set stopping time T
5: t← ∆t
6: while tn ≤ T do
7: apply essential boundary conditions
8: solve F = 0 for u and store in u
9: t← t+ ∆t

10: u1 ← u
11: end while

FEniCS implementation Here we detail the time-stepping algorithm for the
heat equation, see Algorithm 1.

4.2.3 System of reaction-diffusion equations

PDE problem The following system of PDEs models the chemical reaction
between two species A and B, A+B → C in some domain Ω:

∂u1

∂t
= ∇ · (ε1∇u1)−Ku1u2 + f1 (4.19)

∂u2

∂t
= ∇ · (ε2∇u2)−Ku1u2 + f2 (4.20)

∂u1

∂t
= ∇ · (ε3∇u3) +Ku1u2 −Ku3 + f3 (4.21)

We assume the reaction is first-order, such that the reaction rate, K, is
proportion to the product of concentration of A and B. We also assume that the
newly-formed compound C decays with a rate proportional to the concentration
of C. u1, u2, u3 in the PDE above denotes the concentration of A,B and C
respectively. A,B and C are also assumed to diffuse with diffusivity ε1, ε2, ε3
respectively. Finally, we define the Neumann boundary condition on the field
where the chemical reaction takes place, i.e. ∂ui

∂n = 0, i = 1, 2, 3 The initial values
of u1, u2, u3 are set to 0 at t = 0, and f1, f2, f3 are the respective source/sink
terms.

Variation Formulation When forming the variational formulation of system,
each of the equation is multiplied by a test function. All equations are then
integrated and summed up. As we did in the numerical treatment of heat
equation, I first introduce the discretisation in time (using backward Euler in
this demonstration.) and approximate the time derivative by (un+1

i − un
i )/∆t.

Let t1, t2, and t3 be the component of a test function. The variational form can
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be written as:

F (u1, u2, u3; v) = 0 (4.22)

where

F (u1, u2, u3; v) =
∫

Ω
(∆t−1(un+1

1 − un
1 )v1 + ε1∇un+1

1 · ∇v1)dx (4.23)

+
∫

Ω
(∆t−1(un+1

2 − un
2 )v2 + ε2∇un+1

2 · ∇v2)dx (4.24)

+
∫

Ω
(∆t−1)(un+1

3 − un
3 )v3 + ε3∇un+1

3 · ∇v3)dx (4.25)

−
∫

Ω
(f1v1 + f2v2 + f3v3)dx (4.26)

−
∫

Ω
(−Kun+1

1 un+1
2 v1 −Kun+1

1 un+1
2 v2 +Kun+1

1 un+1
2 v3 −Kun+1

3 v3)dx

(4.27)

The time-stepping algorithm follows the same setup as heat equation, detailed in
Algorithm 1. This simultaneous solving demonstrates the ease of implementing
a coupled PDE system fully implicitly using FEniCS.

4.3 Parallelisation of numerical simulations

The multi-core structure of modern computing architecture is designed to pro-
vide a practical way of boost computing power. While it promises to bring
improvements, it also imposes many programming challenges. Before multi-core
processor became the norm, improvement in program performance was dependent
on the increase in processor frequency, thus required little effort. Nowadays,
scientific computing is usually carried out on a computing node in a cluster,
containing many multi-core processors with simpler modules and lower clock
speeds. It is therefore vital to master new programming techniques to fully
exploit its potential.
Developing parallel programs requires agile thinking, one needs to coordinate
work in a parallel way by considering many tasks including resource sharing and
task scheduling. Furthermore, investigating the performance of parallel programs
is much more difficult than simply implementing a correct one. There exists
many paradigms in parallel computations, in which distributed memory, called
Message Passing Interface (MPI) and shared memory, called Open Multipro-
cessing (OpenMP) are most popular. MPI mostly targets a distributed memory
system. Each processor can only see memory available to them, as supposed to
shared memory, where all processing units can see the memory system. Its main
advantage over OpenMP is its scalability per cost provided the programme is
correctly implemented. Thus it has become the dominating programming model
for highly scalable scientific application over the years.
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4.3.1 Parallelising the Finite Element Method

A large scale finite element simulation can be decomposed into four components:
mesh partitioning, assembly, solution of linear system and input/output of data.
FEniCS seeks to automate these processes by having a general code to solve a
large class of problems.
FEniCS handles the mesh partitioning by a method called nodal grid partitioning.
It first constructs a graph from the mesh, then the graph is partitioned by
methods such as ParMETIS or PSCotch (parallel version of METIS and Scotch).
This results in a shared band of border elements. Consequently nodal grid
partitioning makes solver such as algebraic multigrid much easier since the
matrix row associated with a node is in one place.
Parallel assembly requires little care, as the matrices can be assembled locally;
and the input and output of the data can be stored locally then gathered post-
process.
Parallelisation for systems requiring precondition remains a problem. Linear
algebra of the solver requires some consideration regarding updates of ghost-node
(ref), but not all preconditioing schemes can be easily parallelised. Algebraic
multigrid shows great promise as a parallell preconditioner for coupled system
[89].
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Chapter 5

Bayesian Inference on
Simulator-based Model

The widespread of affordable computing power and tremendous improvements
in computational inference for statistical models open up many opportunities
for ambitious researchers to address complex datasets using advanced models.
In Bayesian inference, Markov chain Monte Carlo (MCMC) has been the universal
machinery for Bayesian inference for nearly 70 years since early 1990’s [90]
It has provided a guaranteed convergence to the quantities of interest with
minimal assumptions on the targeted distribution compared to the most standard
Monte Carlo methods that require direct simulation of the target. It has been
continuing to evolve from random walk to Hamiltonian Monte Carlo, each
proposing modifications to accelerate MCMC algorithms in the face of high
dimensionality in the parameter space. Approximate models and algorithms
are at the centre of statistical analysis as they reduce dimension and size while
capturing the important aspect of the data.
In this chapter the concept of bayesian inference is introduced, followed by
highlighting the progress and issues associated with MCMC. A collection of
algorithms called approximate bayesian computation (ABC) is then described in
detail among other solutions built upon approximate models and/or summarised
versions of the data. Finally applications of ABC in the realm of biostatistics
are discussed.

5.1 Bayesian inference with Markov chain Monte Carlo
(MCMC)

5.1.1 Bayesian Inference

The likelihood p(D|θ) describes how likely the data D are given fixed parameters
θ under the model m(θ,D). In constrast to frequentist approach, both parameter
model and the data are treated as random variables, allowing individuals to
specify prior distribution, p(θ), reflecting personal knowledge and belief on the
parameter prior to exposure of data. Bayes theorem (Bayes, Price, 1763) is then
applied to get the posterior p(θ|D):

p(θ|D) = p(D|θ)p(θ)
p(D) (5.1)
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where p(D) is the normalising constant and it is the integral of the following
form over Θ:

p(D) =
∫

Θ
p(D|θ)p(θ)dθ (5.2)

The level of difficulty in obtaining samples from the posterior distribution
p(θ|D) lies in the complexity of the model m(θ,D). While a conjugate prior to
the likelihood function would guarantee an explicit form for the posterior [91],
this choice is seldom used outside of context of toy examples in textbooks. One
approach is to focus on implementing efficient procedures in computing p(D)
numerically, which does not carry an exact form in relatively high dimension of
parameter space. Some numerical integration scheme such as quadrature [92],
trapezoidal or Simpson’s rule have shown success in relatively low dimension
parameter space [93]. Since p(D) is a constant, one can estimate the poste-
rior distribution without having to compute the integral. One of the popular
sampling-based approach is Markov chain Monte Carlo (MCMC) algorithms.
This approach will be briefly described in the following section.

5.1.2 Basics of MCMC

MCMC procedures [94] involve simulating a Markov chain that explores the
posterior target without knowing the shape of the true density. The output
generates a correlated output that requires some burnin time to ‘forget’ the
impact of the initial distribution, and such Markov chain is ergodic, meaning
that it will converge to the posterior distribution no matter where it started at
time t = 0 [94] .
Here the algorithm of Metropolis-Hasting [95–98] is demonstrated as an example
showing the working of MCMC. Given a computable density π (up to a nor-
malising constant) on the paramter space Θ, a proposal, q(·|·), as known as a
Markov kernel, a Markov chain can be generated with the proper stationary
distribution.

Algorithm 2 Metropolis-Hasting algorithm for generating a stationary distri-
bution

1: Choose initial value θ(0)

2: for n = 1 . . . N do
3: Generate θ′ from the proposal q(·|θn−1)
4: compute the acceptance probability

a(n) = min(1, π(θ′)q(θ(n−1)|θ′)
π(θn−1)q(θ′|θ(n−1))

)

5: Accept θn = θ′ if un ≤ a(n), un ∼ Unif(0, 1), θn = θ(n−1) otherwise
6: end for
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5.1.3 Various techniques on improving upon standard MCMC

A large part of the research on MCMC has been on the choice of the proposal
q(·, ·), as the convergence performance of the algorithm is dependent on the
efficiency of q to explore the parameter space.

Another aspect of the Metropolis-Hastings is the ever-growing complexity
in the evaluation of the likelihood during the accept-reject step even though
the normalising constant is not required. In the advent of ‘big data’, density
can be either too expensive to compute or intractable for complicated models
and large datasets. Many researches have been done on designing method using
approximations or appropriate estimators to circumvent the problem.

The progress on approaches to accelerate MCMC algorithms is summarised
here, and they can be divided roughly in a few categories, some improve knowledge
about the target distribution, while other modify the proposal in the algorithm.

Hamiltonian Monte Carlo (HMC) [99], popularised by [100, 101], is a hybrid
method that attempts to explore the geometry of the target density before
constructing the algorithm. This has now become central in statistical software
such as STAN [102]. Scalable MCMC methods attempt to address the burden of
large datasets on a single machine. This includes divide-and-conquer approaches
[103–105], partitioning the whole dataset into batches and run separate MCMC
algorithms on each data batch independently; as well as sub-sampling approaches,
aiming at reducing the number of individual datapoint likelihood evaluations.
Some efforts are devoted to exact subsampling methods [106, 107], while others
use approximate subsampling methods aiming at the target distribution [108,
109] or the acceptance probability [110, 111].
There are also other types of MCMC schemes exploiting the architecture of
modern parallel processor. Naive implementation, meaning running several
MCMC chains in parallel is theoretically sounding, however achieving stationarity
is difficult. There are several attempts found in the literature [112–114]. Other
more sophisticated schemes assign tasks of evaluating different parts of the
density in different processor and multiplied together at each MCMC step [115–
118].
Lastly, to resolve issues with multi-modality in MCMC in high dimensions,
meaning Markov chain being ‘trapped’ due to locally optimal proposals, an array
of methods were invented, including but not limited to: tempering techniques
[119–125], adaptive MCMC [126–130], multiple try MCMC [131–133] Readers
are referred to Robert 2018 for a comprehensive survey on various techniques of
MCMC acceleration.

5.2 Approximate Bayesian Computation (ABC) method and
others

There has been an increasing interest in applying statistical methods to models
that are easy to simulate but impossible to calculate transition probabilities
or likelihoods. ABC, along other techniques including variational Bayes [134],
empirical likelihood [135] and integrated nested Laplace approximation (INLA)
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[136] have shown to be indispensable in the analysis of complex stochastic models.
While traditional tools such as Monte Carlo-type simulation became impractical
for posterior distribution given infinite computing power [137], these techniques
are computational feasible at a cost of introducing bias. This balance between
improvement in precision and loss of information is currently at the centre of
discussion within the statistics community [138].

5.2.1 ABC

ABC is the approximation of posterior distribution by finding values that pro-
duces simulations that are sufficiently close to the observation. It was first
introduced in the context of population genetics [139, 140]. ABC only requires
a generative model, i.e, a model from with data are assumed to be generated,
however no assumption are made on the probabilistic features of the model
components.

In its simplest form, it can be formulated as follows:

Algorithm 3 Basic rejection sampling of ABC algorithm
1: for n = 1 . . . N do
2: repeat
3: Generate θ′ from the prior distribution π(·)
4: Generate y′ from the model f(·|θ′)
5: Compute the distance ρ(η(y0), η(y′))
6: until S(η(y0), S(y′)) < ε
7: Set θi = θ′

8: end for

Where f(·) denotes the generative model, ρ(·|·) is a distant metric, such as L2
norm, and Kullbeck-Leibler divergence, measuring the discrepancy between the
two data sets. S(·) is called summary statistics, replacing the data with much
smaller-dimension summaries. This allows sensible comparison of particular
aspects of data instead of expecting a close match between all components of
the observation and the simulated data. However finding a low-dimensional
sufficient statistics is nearly impossible, and it is a central topic in ABC litera-
ture. In practice, domain knowledge and heuristics are used to construct a set
of summary statistics that are hoped to be approximately sufficient. For choice
of summary statistics, it is referred to see the discussion in the work of [141,
142]. Another difficulty in ABC is to specify the threshold ε. This threshold
strikes the balance between degrees of bias in the approximations and the speed
of convergence. The choice of threshold is achieved by experimenting with
precomputed pool of simulations, or tuning the acceptance rate [143]. (see also
[144] for a discussion on the use of coverage property for choosing the threshold.)

Beyond the simple rejection sampling scheme, there are three pother popular
algorithms that improve upon the performance of the basic ABC algorithm.
MCMC ABC algorithm, based on Metropolis-Hastings MCMC and Sequential
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Monte Carlo (SMC) ABC, an adaptation of importance sampling [94] attempt
to construct proposals that are closer to the posterior; Post-sampling Correct
Methods seeks to ‘correct’ the sample obtained from ABC to be close to the
posterior [143, 145]. While different approximation schemes are being developed
and tested, with arguments ranging from efficient programming, to avoiding
simulations, to having an ability to deal with more complex structures, their
drawback is the overall incapacity to assess the amount of approximation involved.

5.3 Likelihood-Free Inference for simulator-based models

Simulator-based models, also called implicit models [146], by definition, are
any function that map parameters and some random variables to the data.
Parameters in the model are usually expressed as input of a computer programs,
governing the interests of the generated data. On the other hand, the random
variables are generated by a random number generator, expressing the stochastic
variation during the simulation process.

The mapping of the function is flexible in terms of complexity, usually
motivated by the need of researchers seeking realistic representation of the data
without being hindered by over-simplification of the model.

As the random variable is stochastic, the simulators are not guaranteed to
generate the same outcome given the same input parameters. In other words,
the distribution of the random variable is implicitly expressed. The probabil-
ity distribution of this random variable can be formally defined, however the
computation of this probability analytically is impossible for a complex model.
Instead, the outcome of the random variable for a particular simulation can be
compared empirically.

There exists a large body of literature on non-Bayesian approaches in addition
to Bayesian methods. For examples, readers are referred to methods of simulated
moments [147, 148] and indirect inference [149, 150] originated from econometrics.

In the following section one particular approach in recent development of
ABC is introduced. Full details of this work can be found in Gutmann and
Corander 2016.

5.3.1 Bayesian Optimisation for Likelihood-Free Inference
(BOLFI)

BOLFI, proposed [151] aims to improve performance of ABC. In particular, it
overcomes the obstacles of continuous evaluation of the (dis)similarity between
the simulated outcome to the observation. Under BOLFI, a probabilistic model,
e.g. Gaussian process, is used as a surrogate model to learn about the relation
between the parameters values and the distance. Once the model is learnt, the
knowledge is then used to approximate the likelihood for any threshold without
further runs of the simulator. It leverages techniques from Bayesian optimisation
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[152, 153] to efficiently acquire data in the regions of parameters space where
the distance of discrepancy is small.
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Chapter 6

Summary of Papers

Paper I – “Towards personalized computer simulation of breast cancer
treatment: a multi-scale pharmacokinetic and pharmacodynamic model
informed by multi-type patient data” constitutes the foundation of the whole
project. This work is to our knowledge the first of its kind in designing a multi-
scale mathematical model integrating individual patient data collected in a
clinical trial, including histopathology, magnetic resonance imaging, and molec-
ular profiling, and successfully simulating various response of tumour under
chemotherapeutic and anti-angiogenic treatments.
The model accounts for dynamics of tumour on a cross-section at three levels:
extracellular, intravascular and intracellular. Specifically the growth and death
of cancer cells are modelled by a multi-scale hybrid cellular automaton model (c.f.
Section 3.5.1) controlled by intracellular and environmental factors described
by ordinary and partial differential equations (Sections 3.3.1 and 3.3.2). Vessel
dynamic is modelled using a birth-death process whereby the respective prob-
abilities are dependent of the local VEGF concentration, which is controlled
internally by hypoxia mechanism and externally by the concentration of anti-
angiogenic agent.
Equipped with the model, we successfully simulated and validated against clini-
cal outcome of four patients, selected for their various treatment response on a
200 µm× 300 µm 2D tumour section. In addition, we tested in-silico alternative
treatment for better outcome. Consequently, possible mechanistic explanations
of their treatment outcomes were suggested: cell-cycle specific drugs are highly-
effective on highly proliferative tumours, while for tumour with slow cell-cycles,
a more frequent but lower dosage would be advantageous; moderate dose of
anti-angiogenetic agent would improve outcome of patients with severe hypoxia.
An important contribution of this paper to the literature of personalised can-
cer medicine is the identification of key parameters that cannot be accurately
estimated from available clinical data, namely the chemosensitivity of tumour
cells and sensitivity of vessels to VEGF concentration. The quantification of
uncertainties in these parameters becomes the central theme of Paper II.

Paper II – “Likelihood-free inference for hybrid cellular automaton models
for personalized simulation of breast cancer treatment” is a natural exten-
sion of Paper I. It addresses uncertainty quantification in key parameters found in
Paper I and prediction in the context of likelihood-free Bayesian inference. One
of the major limitation of developing mathematical models for clinical medicine
is the accurate tuning of many parameters given observed patients data (c.f.
Section 3.5.1). likelihood-free inference methods for simulation-based models,
discussed in Section 5.3 were developed for such case which likelihood can not
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be written out explicitly. In particular we favour the methods under Bayesian
framework for its ease of integrating relevant prior knowledge and interpretability
of uncertainties in parameter estimation (Section 5.1.1). Using BOLFI, a variant
of approximate Bayesian computation (ABC) technique, we demonstrated that
parameters defining the response of individual patient to chemotherapies can be
reliably estimated given clinical data hypothetically collected at various relatively
sparse interval in early stage of a treatment. Moreover, the distributions for the
cancer cell density at end of treatment were able to be predicted, hence inferring
the treatment outcome of the patients. This is our attempt at answering the
second and the third aim of this project.

Paper III – “Scalable solver for a multiscale model of personalized breast
cancer therapy” revisited the second aim of the paper in relation to robust
modelling of tumour heterogeneity. It tackles the numerical difficulties faced in
Paper I, where only small sections of patient’s histological biopsy were simulated.
This is especially relevant in precise integration of MRI data, as the spatial-
resolution of a voxel is of size 1 mm3. Compared to the simulation domain in
Paper I it is approximately 20 times larger. While continuous models can be
solved and scaled efficiently (Chapter 4), hybrid models combining stochastic
cellular automaton and continuous models require tailored treatment. In this
paper, an efficient and scalable algorithm, built upon our first attempt in Paper I
is presented. The algorithm exploits paralleling processing power of cluster
computing. It was able to minimise communication between processors during
discrete updates and preserve reproducibility of the model. We paid particular
attention to a patient with heterogeneous perfusion condition from previous
study whose outcome was difficult to simulate. The size of the simulation domain
is comparable to core needle biopsy of 1 cm in length. The complex effect of
heterogenous perfusion condition gave rise to stark cell growth pattern in the
simulated biopsy: in area with low perfusion, cells were hypoxic and seldom
killed by chemotherapy; in high perfusion area, chemotherapies were delivered
efficiently and rapidly kill cell in local area. This observation coincides with
patient’s MRI at week 0 and 1, where dense tumour core was found with high
cell activity on the edge of the tumour. This work is a significant instrument
in providing general framework for future development of software in in-silico
guided clinical trial for personalized cancer medicine.
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Chapter 7

Discussion

7.1 Significance

This project has been undertaken to design a novel mathematical approach for
personalised cancer therapy and to evaluate (i) its validity by simulating clinically
relevant biopsy sites and (ii) its accuracy by predicting treatment outcome using
individual patient data. Three papers have been produced to reflect these aims
in the viewpoint of modelling, inference and simulation, thus complementing
each other in delivering in-silico guided personalised therapy.

Pilot study (Paper I) represents the most important work of this thesis. It
demonstrates that, in first principle, a mechanistic mathematical model can
capture non-linear and multi-scale behaviours of a vascular tumour under treat-
ment. [154, 41, 155–164] A crucial difference between our approach to existing
attempts in personalised treatment optimisation is the incorporation of individ-
ual patient data into relevant biologically-specific mechanisms. This establishes
a quantitative framework, through mathematical modelling, for identification of
patient-specific parameters. Some parameters cannot be estimated before start
of therapy and are calibrated to meet the observed outcome.
The second aim of the study (Paper II) sets out to bridge the gap between formal
statistical inference and parameter calibration through simulation. Results from
this investigation confirm our findings in the pilot study that (the patient-specific
parameters in the models are necessary for predicting individual outcomes of
treatment. The research has also illustrated the importance of rich longitudinal
data in the very early stage of the trial to improve accuracy of outcome prediction.
This new understanding helps to strength our framework in quantifying the
impact of uncertainties in parameters of complex multi-scale mechanstic models
on cancer treatment prediction. It also adds to the rapidly expanding field of
approximate bayesian computation for simulation-based models ([165, 166]) with
a new perspective in the context of hybrid cellular automaton model.
Final study (Paper III) extends and refines the framework, by focusing on the
computational aspects of our simulator. Improved algorithm can simulate dy-
namics of cancer cells, in combination with other continuous models, in domains
that are hundreds of times larger than in the pilot study, thanks to distributed
computing. We take on the challenge of simulating a large section of patient’s
histological biopsy with realistic heterogenous perfusion condition. Results from
these simulations advocate the need for efficient implementation of hybrid cell-
based model in describing tumour heterogeneity. Our algorithm contributes to
the existing computational frameworks of multi-scale model simulation [167–173].
It is our first step towards creating scalable computing framework for multi-scale
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hybrid cell-based models based on open-source softwares.

7.2 Limitations and future directions

There are several means of extending works presented in this dissertation, many
of which are described in detail in the corresponding discussion section of the
articles. I shall instead look beyond individual works and address key issues
in relation to the objectives of my research, discuss their impact and provide
possible directions for future work.

Finding optimal therapeutical treatment regime One source of weakness
in Paper II which could have affected the quantification of uncertainty in the
parameters is that, it was based on simulated data. This issue is two-fold: One
is the limited availability and resolution of data, the other is the construction of
sufficient summary statistics based on the given data. Although the requirement
of likelihoods of ABC method is relaxed so that it can be applied to models
of arbitrary complexity, successful application of ABC in the past have been
centred on population genetics models [143, 174, 175]. In such application,
simulation of a few crucial underlying processes are often relatively simple so
that simple summary statistics are usually sufficient. In addition, simulation
data can be easily validated against observation from in-vitro experiments. In
contrast, in cancer modelling scenarios, the models are usually complex and
computationally demanding even with the help of large computing resources.
To our knowledge, we found very few application of ABC methods for inference
in agent-based models [166]. Compared to [166], although the current study is
based on simulated data, our summary statistics are intuitive and offers insights
into the impact of parameters on treatment outcome. Considerably more work
needs to be done to explore better summary statistics on the depth of data, such
as perfusion, collected at sparse interval.

Generalisation and improvement of numerical framework It is unfortu-
nate that Paper I did not include results of the full biopsy up to the end of
the 12 week treatment period. In this work, up to 200 thousand cells were
solved sequentially on a system of 3 equations in addition to 4 more pdes. The
simulation is computationally expensive and requires parallelisation for large
meshes. It would have not been possible without having access to powerful
computer cluster. Approximately 20000 CPU hours used for the production
of the scalability and simulation results notwithstanding debug and testing
time. Furthermore, after running the simulation, the challenge of large data set
and post-processing requires a lot of memory and becomes a significant part of
the work. Although the results were simulated for the first three weeks of the
treatment period, it did substantiate the potential in accelerating personalised
therapy simulations.
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Limitations and future directions

To speed up the simulations and limit the size of the output there is clearly a
need for improved numerical methods, faster algorithms, and efficient strategies
for saving only relevant output.

Beyond the ‘proof-of-concept’ model As a ‘proof-of-concept’ model, an
issue that was not addressed in the study was the omission of certain tumour
mechanisms such as cell migration [176], cell clonal expansion, complex mode of
actions of antiangeogenic drugs and drug synergy revealed by the molecular essays
[7, 177]. Despite its exploratory nature, the current model is capable of capturing
fundamental biological processes at an acceptable level of approximation, while
offering some insight into possible mechanistic explanation of individual treatment
outcomes. Currently, the scope of this work is limited to the analysis of five
patients due to limited time and amount of available resources. A natural
progression is to validate our model on more patients, and analyse if, given
the available data from the patients, a more complex and biologically realistic
model would provide more insights for more patients and better predictions at
individual level.
Taken together, the presented framework could then be expanded to probe
alternative therapies, and the knowledge learnt from these outcomes can be
used to set up in-silico clinical trials and to serve as a blueprint for future trial
designs.
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