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Abstract
Shear viscosity of hot and dense nuclear matter, produced in the central zone of central gold-gold
collisions at energies of NICA, is calculated within the UrQMD model. Besides the microscopic
simulations of heavy ion collisions, the procedure assumes the application of statistical model to
determine the temperature and chemical potentials in the system, and study of the relaxation
process within the UrQMD box with periodic boundary conditions. The latter is used for
calculation of the correlator which enters the Green-Kubo formula for shear viscosity. The
fluctuations at early and late stages of the system evolution are studied. Results are compared to
predictions of other models.

Keywords: relativistic heavy-ion collisions, microscopic transport model, box calculations, shear
viscosity, Green-Kubo formalism

(Some figures may appear in colour only in the online journal)

1. Introduction

Experiments on heavy-ion collisions at relativistic and ultra-
relativistic energies are the only means to study the properties
of hot and dense nuclear matter in the laboratory. Analyzing
the data obtained at RHIC (BNL) physicists came to the
conclusion that the created substance possessed the properties
of perfect fluid [1–4]. However, it became clear soon that one
had to employ the nonzero shear viscosity η for the correct
description of differential elliptic flow v2 of hadrons as
function of transverse momentum pT within the framework of
hydrodynamics. Recall, that the absolute minimum for the
ratio of η to the entropy density s, h s, estimated in the AdS-
CFT formalism, equals p1 4 [5] in system of natural units,
= = =c k 1B . Hydrodynamic calculations use a bit higher

values to describe the experimental data, i.e. h =s 0.12 at

RHIC for Au+Au collisions at =s 200GeV, and 0.20 at
LHC (CERN) for Pb+Pb collisions at =s 2.76 TeV [6].

As was pointed out in [7], the ratio h s reaches minimum
in the vicinity of tricritical point for all known substances. It
appears that at energies of LHC the phase transition between
the quark-gluon plasma (QGP) and hadrons is a smooth
crossover. The phase transition QGP−hadrons is expected to
be of the first order at much lower energies accessible for
beam energy scan (BES) at RHIC and future facilities NICA
(JINR) and FAIR (GSI). The search for the tricritical point,
where the first order phase transition becomes the second
order one, is in the agenda of all experiments planned at the
aforementioned accelerators. In the present work we would
like to study the shear viscosity and its ratio to entropy
density in the midrapidity range of central heavy-ion colli-
sions at energies between =E 10lab and 40AGeV generated
by the microscopic transport model UrQMD [8, 9]. Note, that
except of [10], h s ratio was studied in various models for
closed systems with fixed values of energy density and bar-
yon density [11–22]. We are going to extend the results of
[10], obtained within the equilibrium approach for calculation
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of the entropy density, to the nonequilibrium case. The paper
is organized as follows. Determination of shear viscosity by
means of Green-Kubo approach is described in section 2.
Section 3 presents the basic ingredients of model calculations
including the UrQMD model, statistical model (SM) of an
ideal hadron gas, and UrQMD box, which is a closed system.
Results of our study obtained both with equilibrium and
nonequilibrium entropy are discussed in section 4. Conclu-
sions are drawn in section 5.

2. Determination of shear viscosity. Green-Kubo
formalism

To determine the shear viscosity one usually employs the
Green-Kubo method [23, 24]. It assumes the exponential
damping of fluctuations whereas the closed system relaxes to
equilibrium. The shear viscosity for the system with volume V
and temperature T reads
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where t0 and t is the initial time and final time, respectively.
The correlator in the integrand is
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Here ( )( )p tk
i j and Ek(t) denote the i( j)-th components of

momentum and energy of k-th particle. The sum in Eq.(3)
runs over all particles. The correlator (2) should drop expo-
nentially with time in the vicinity of equilibrium, therefore, it
can be approximated by the exponential
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containing the effective relaxation time τ. Thus, to find the
shear viscosity one has to determine both T and τ, because
Eq.(1) is reduced to

( ) ( ) ( ) ( )h t p p= á ñt
V

T
t t . 5ij ij

0 0 0

Calculation of these parameters is explained in the next
section.

3. Model setup

From the description of the method of shear viscosity
extraction it becomes clear that we have to organize several
steps to complete our task. First, while running the transport
string model for heavy-ion collisions at given energy, we
should determine the volume to search for local equilibrium.

Previous studies reveal [25–28] that central cubic cell with
volume V=5×5×5=125fm3 is well suited for our
analysis. But the cell is an open system and particles can leave
it freely. The initially hot and dense fireball quickly expands,
and its bulk characteristics are promptly changing. In order to
investigate how far is the matter in the cell from local equi-
librium one has to extract three basic parameters, namely,
energy density ε, net baryon density rB, and net strangeness
density rS, and insert it as an input to the statistical model of
an ideal hadron gas. If the abundances of hadronic species and
their energy spectra in the microscopic model calculations are
close to those given by the SM, we can conclude that the
matter is in the vicinity of chemical and thermal equilibrium.
This procedure enables us to determine the temperature T,
baryochemical potential mB, and the strangeness chemical
potential mS. Finally, the behavior of the correlator

( ) ( )p pá ñt tij ij
t0 in a system with fixed parameters e r r, ,B S

should be studied. This can be done with the help of box with
periodic boundary conditions to keep key system parameters
constant. At this stage we get the value of shear viscosity at
given m mT , ,B S. The basic principles of the three stages are
presented below.

3.1. Microscopic transport model

The UrQMD is formulated as Monte-Carlo event generator
allowing to perform various analyzes of the measurable
quantities by introducing all necessary experimental cuts. The
model is designed to describe hadronic, hadron-nucleus, and
nucleus-nucleus collisions in a broad energy range. In the
hadronic sector UrQMD treats the production of new particles
via formation and fragmentation of specific colored objects,
strings. Strings are uniformly stretched, with constant string
tension k » 1 GeV/fm, between the quarks, diquarks and
their antistates. The excited string is fragmenting into pieces
via the Schwinger-like mechanism of ¯qq-pair production, and
the produced hadrons are uniformly distributed in the rapidity
space.

In contrast to models which rely on the color exchange
mechanism of string excitation, like QGSM [29, 30] or
NEXUS [31], the UrQMD model employs the longitudinal
excitation of strings. Here the string masses arise from the
momentum transfer. Tables of the experimentally available
information, like hadron cross sections, resonance widths,
their decay modes, and so forth are implemented. In case of
lacking the information, the model employs the detailed
balance considerations, the one-boson exchange model, and
isospin symmetry conditions. The propagation of particles is
governed by Hamilton equation of motion. Newly produced
hadrons can interact further only after a certain formation
time. The Pauli principle is taken into account via the
blocking of the final state, if the outgoing phase space is
occupied.

3.2. Statistical model of an ideal hadron gas

If the system is in thermal and chemical equilibrium, its
macroscopic characteristics are fully determined by particle
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distribution functions
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where p and mi is the momentum and the mass of the hadron
species i, respectively. Sign − stands for bosons and + for
fermions. One has to know just three parameters, namely,
temperature T and chemical potentials assigned to the con-
served charges, i.e. baryon chemical potential mB and stran-
geness chemical potential mS. Chemical potential of i-th
hadron depends on its baryon and strangeness content,
m m m= +B Si i B i S. The dependence on chemical potential mQ
associated with electric charge is disregarded here, because
mQ is usually an order of magnitude weaker compared to mB
and mS. Then, the expressions for particle number density ni,
energy density ei and pressure P read
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with gi being the spin-isospin degeneracy factor. The entropy
density si can be calculated either from the Gibbs thermo-
dynamic identity
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or via the distribution function
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The total energy density ε, baryon density rB and stran-
geness density rS calculated microscopically within the cell at
time t are inserted into the set of nonlinear equations
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to determine temperature T, baryon chemical potential mB and
strangeness chemical potential mS. After that all characteristics
of the system in equilibrium are known and particle spectra
can be compared with those obtained from microscopic model
calculations.

3.3. Box for simulation of infinite nuclear matter

The standard choice for such a simulation is a cubic box with
periodic boundary conditions [32–34] to ensure the energy
and momentum conservation. If one particle leaves the box,
another particle, fully identical to the first one, enters the box
from the opposite side. The box should be neither too big nor
too small, e.g. = ´ ´ =V 10 10 10 1000 fm3 [32] or

= ´ ´ =V 5 5 5 125 fm3 [33]. The energy density ε, the
net baryon density rB, and the net strangeness density rS are
fixed at the initial stage. Recall, that for the infinite nuclear
matter the net strangeness is zero, but for the central cell in
relativistic heavy-ion collisions, which is an open system, rS
can differ from zero [25, 27]. In case of r = 0S the initial
configuration in the box consists of protons and neutrons
uniformly distributed in the configuration space. Their
momenta are then rescaled to get the required energy density.
If r ¹ 0S certain admixture of kaons can be added. When the
system is prepared, hadrons start to interact, and one can
follow the microscopic model calculations to trace the system
evolution and study the relaxation of hadron-string matter in
the box to equilibrium.

4. Results

A bit more than 50.000 Au+Au collisions were generated at
each of four bombarding energies. Figures 1(a)–(c) shows
energy density, net baryon density, and net strangeness den-
sity obtained from the microscopic calculations in the central
cell at times between 1 and 20fm/c. Within first few fermi-
seconds the colliding nuclei fully overlap. This moment
corresponds to highest energy density and baryon density in
the fireball. The fireball expands, and both characteristics
drop. Strangeness demonstrates another behavior. It is nega-
tive for all four energies. After reaching minimum, rS is
relaxing to zero at late times. This behavior is explained by
domination of baryons over antibaryons in the cell. Therefore,
according to [25–28], positive kaons can leave the cell earlier
than negative kaons because of the smaller interaction cross
sections, thus maintaining the negative though small net
strangeness. Inserting the values of { }e r r, ,B S as an input in
the SM we obtain { }m mT , ,B S corresponding to equilibrated
ideal hadron gas. Evolutions of these parameters are shown in
figures 1(d)–(f). Since the matter in the cell at the very
beginning is far from the equilibrium, one should treat the SM
parameters obtained for earlier times with great care. Large
baryon and energy densities observed at t 5 fm/c are
caused by interpenetration of two Lorentz-contracted nuclei,
thus leading to very high temperatures of the hadron gas.
Chemical and thermal equilibrium of nuclear matter in
microscopic calculations in this energy range takes about
6-8fm/c. After this time, as seen in figure 1(d), the temp-
erature obtained at all four energies sit on the top of each
other. Both chemical potentials tend to rise with decreasing
energy of the collisions. However, mB in all cells increases
with time, whereas mS decreases.

We are ready now to start the box calculations. Figure 2
shows correlators defined by equation (1) calculated for all
four collision energies. The input data again are e r r, ,B S
extracted from the central cell of Au+Au central collisions at
times 1, 3, 6, 9, 12, 15, 18, and 20fm/c after the beginning of
the collision. The results of the box calculations are shown for
times t 300box fm/c, which are typical relaxation times of
hot and dense nuclear matter in the box [33]. All correlators
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reveal exponential falloff with time in accordance with
equation (5). For few of them, corresponding to early cell
times, the relaxation rates are significantly slower compared
to those corresponding to late times. One can see such
behavior in figure 2(c) and (d) for calculations with initial
conditions similar to those at t=3fm/c in the central cell of
central Au+Au collisions at =E 30lab and 40AGeV. This
occurs because of initialization of one (or two) very ultra-
relativistic kaons. It takes quite long time to redistribute their

energy and momenta among other particles in the box. The
correlators appear to rise at late times. These momentum
correlations arise because the UrQMD forces decay of all
strongly decaying resonances at the end of the box calcula-
tions. Figure 3 displays the relaxation time tint, determined by
means of equation (2), as function of the initial cutoff time t0.
The relaxation takes a longer period for t0 shorter than
200fm/c and vanishes for t 9000 fm/c. For the initial
times within the interval  t200 9000 fm/c the relaxation
time is constant, except for very early cell times.

Figure 1. Time evolution of (a) energy density ε, (b) net baryon density rB
net , (c) net strangeness density rS

net , (d) temperature TSM, (e) baryon
chemical potential mB, and (f) strangeness chemical potential mS in the central cell with V=125fm3 in central Au+Au collision calculated
within UrQMD at energies =E 10lab AGeV (circles), 20AGeV (triangles), 30AGeV (squares), and 40AGeV (diamonds). Lines are drawn
to guide the eye.

Figure 2. Correlators ( ) ( )p pá ñt t t0 for initial cutoff time =t 3000 fm/
c in the UrQMD box calculations. Initial conditions for the boxes are
taken from the central cell with V=125fm3 of Au+Au collisions at
(a) =E 10lab AGeV, (b) 20AGeV, (c) 30AGeV, and (d) 40AGeV
at times =t 1, 3, 6, 9, 12, 15, 18, 20 fm/c. Each distribution is
multiplied by its own factor 10n.

Figure 3. Relaxation time ( )t tint 0 for the collision energies (a)
=E 10lab AGeV, (b) 20AGeV, (c) 30AGeV, and (d) 40AGeV for

the cell times =t 1, 3, 6, 9, 12, 15, 18, 20cell fm/c in the UrQMD
box calculations.
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The behavior of tfit, obtained after fitting our results to
equation (3), is presented in figure 4. It is very similar to that
of tint, but it has no stochastic oscillations. Note that the
distributions demonstrates some slope in the plateau region at
t 2000 fm/c as compared to the results shown in figure 3.

This slope may somehow influence the determination of η

values. Therefore, we average the value of ( )tint fit over the
plateau in order to reduce statistical errors. Large values of the
relaxation time ( )tint fit for some early cell times tcell are
explained by the abundant production of new particles and
their rescattering in very hot and dense baryon-rich matter at
the very beginning of the collision. Additional time delay is
caused by the aforementioned single negative kaons. Com-
bination of these factors leads to the extension of the box
calculations up to 2000-2500 fm/c.

Results, obtained after averaging over the plateau, are
displayed in figure 5. Note that the statistical errors are

smaller than the symbol sizes. One can see that shear visc-
osity distributions for all four energies converge to each other
at »t 6 fm/c. The matter in the cell becomes very dilute at
the late times, and η drops almost to zero. This behavior is
almost identical to the decrease of the cell temperatures seen
in figure 1(d). Recall that the chemical potentials of net bar-
yon charge and net strangeness are different, as shown in
figure 1(e)-(f). It means that shear viscosity is predominantly
determined by the temperature and not by mB and mS. The
entropy density, however, does depend on both temperature
and chemical potentials.

To show this we present in figure 6 the dependencies of
ratio h s on (a) time, (b) temperature, (c) baryon chemical
potential, and (d) strangeness chemical potential for all four
reactions in question.

The nonequilibrium stages of the system evolution are
shown by dashed lines. We see that this ratio decreases with

Figure 4. The same as figure 3 but for relaxation time ( )t tfit 0 .

Figure 5. Shear viscosity ( )h tcell of hadrons in the central cell of central Au+Au collisions at (a) =E 10lab AGeV, (b) 20AGeV, (c)
30AGeV, and (d) 40AGeV within the UrQMD box calculations. Lines are drawn to guide the eye.
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increase of the bombarding energy. Since the shear viscosity is
almost the same, this circumstance implies the drop of entropy
density with rising Elab. It can be explained by faster loss of
energy density in the central cell in case of more energetic
collisions. Also, no distinct minima are observed. Recall,
however, that we used the entropy density, calculated for the
hadron gas in thermal and chemical equilibrium, even for the
early stages of the collision when the matter in the cell was far
from equilibrium. Obviously, the entropy density of none-
quilibrated system should be lower than that of the equilibrated
one. To estimate the nonequilibrium entropy, we insert in Eq.
(11) instead of the equilibrium distribution functions (6)

another ones provided by the hadron momentum distributions

( ) ( ) ( )p
=f p

Vg

dN

d p

2
15i

i

i
3

3

It is worth noting that the temperature at nonequilibrium
stage is determined as average of partial temperatures of
hadron species. Time evolution of h snoneq in the cell together
with its dependencies on temperature, on baryon chemical
potential, and on strangeness chemical potential are shown in
figure 7. Here the minima for all four energies are clearly
seen. This occurs at time » -t 5 6 fm/c corresponding to
maximum baryon density in the system. The lower the

Figure 6. Shear viscosity to entropy ratio h ssm as function of (a) time t, (b) temperature T, (c) baryon chemical potential mB, and (d)
strangeness chemical potential mS in the UrQMD calculations of central cell of central Au+Au collisions at =E 10lab AGeV (circles),
20AGeV (triangles), 30AGeV (squares), and 40AGeV (diamonds). Lines are drawn to guide the eye.

Figure 7. The same as figure 6 but for ratio of shear viscosity to nonequilibrium entropy density, h snoneq.
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bombarding energy, the deeper the minimum in of h s dis-
tribution. The study should be extended to lower energies in
order to see where the ratio of shear viscosity to entropy
density will stop to decrease. We are in the energy region
where the equation of state (EOS) is expected to be changed
because of the formation of non-hadronic objects, quark-
gluon strings.

5. Conclusions

The self-consistent procedure for determination of shear visc-
osity and its ratio to entropy density within the microscopic
model calculations is developed. It includes three steps. First,
we define the volume in A+A collisions to look for the local
equilibrium. This is a very important condition, because the
Green-Kubo formalism employed for determination of shear
viscosity implies the relaxation of out-of-equilibrium matter to
the equilibrated state. The central cubic cell with volume
V=125fm3 is well suited for our analysis. Second, we extract
the energy density, net baryon density, and net strangeness
density out of the tested volume. The procedure is repeated
with the time step D =t 1 fm/c. The extracted values are
inserted into a system of non-linear equations of the statistical
model of an ideal hadron gas with essentially the same number
of degrees of freedom, as in the microscopic model. This
allows one to determine temperature, baryon chemical poten-
tial, and strangeness chemical potential in the tested volume in
case the hadron yields and energy spectra, calculated micro-
and macroscopically, are close to each other. Finally, the
values of m mT , ,B S are used to initialize the box with periodic
boundary conditions in the framework of the same microscopic
transport model. Here the Green-Kubo formalism is applied to
determine η, ratio h s, and so forth.

The developed procedure was used to study the shear
viscosity of hot and dense nuclear matter in the central zone
of central gold-gold collisions at energies =E 10, 20, 30lab

and 40AGeV, accessible for BES, NICA, and FAIR facil-
ities. For calculations we employ the UrQMD model. We
found that, for all four tested energies, the temperatures and
shear viscosities are very close to each other after 5-6fm/c.
Both T, η and s in the cell drop with time, whereas the ratios
h s, however, reach minima at »t 5 fm/c, irrespective of the
bombarding energy. Then the ratios rise until the very late
stages of the system evolution. The minima in h s become
more pronounced if the nonequilibrium entropy density is
used. The rise of h s is accompanied by the simultaneous
increase of baryon chemical potential and decrease of both
temperature and strangeness chemical potential in the cell.
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