
Inseguendo Fagiani Selvatici: Partial Order
Reduction for Guarded Command Languages
Frank S. de Boer
CWI, Amsterdam, the Netherlands
f.s.de.boer@cwi.nl

Einar Broch Johnsen
Department of Informatics, University of Oslo, Oslo, Norway
einarj@ifi.uio.no

Rudolf Schlatte
Department of Informatics, University of Oslo, Oslo, Norway
rudi@ifi.uio.no

S. Lizeth Tapia Tarifa
Department of Informatics, University of Oslo, Oslo, Norway
sltarifa@ifi.uio.no

Lars Tveito
Department of Informatics, University of Oslo, Oslo, Norway
larstvei@ifi.uio.no

Abstract
This paper presents a method for testing whether objects in actor languages and active object
languages exhibit locally deterministic behavior. We investigate such a method for a class of guarded
command programs, abstracting from object-oriented features like method calls but focusing on
cooperative scheduling of dynamically spawned processes executing in parallel. The proposed method
can answer questions such as whether all permutations of an execution trace are equivalent, by
generating candidate traces for testing which may lead to different final states. To prune the set of
candidate traces, we employ partial order reduction. To further reduce the set, we introduce an
analysis technique to decide whether a generated trace is schedulable. Schedulability cannot be
decided for guarded commands using standard dependence and interference relations because guard
enabledness is non-monotonic. To solve this problem, we use concolic execution to produce linearized
symbolic traces of the executed program, which allows a weakest precondition computation to decide
on the satisfiability of guards.
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1 Introduction

Let us open this paper with the allegory of the pheasant-chasing wine-maker:

A vineyard is a place where wild pheasants are gobbling up the grapes and where
wine-makers chase these pheasants off the land. During this Sisyphean undertaking, a
theoretically inclined wine-maker may wonder: “will the order in which I chase the
pheasants affect the yield at season’s end?” Overwhelmed by the existential dimensions
of this question, the wine-maker could but observe the unfolding of the feast.

Leaving aside its existential dimensions, the astute reader may observe that the problem of the
pheasant-chasing wine-maker bears a remarkable similarity to the problem of testing whether
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10:2 Inseguendo Fagiani Selvatici

dynamically spawned processes operating on a shared state space exhibit deterministic
behavior in the sense that the final state is independent of the local scheduling decisions. We
hope that we, by studying a particular instance of the latter problem, can also shed some
light on the former.

Different forms of dynamically spawned processes have been studied extensively by
Gabbrielli [12–14]. The problem that we address in this paper is to test whether in an
imperative context cooperatively scheduled tasks executing on a shared state space exhibit
deterministic behavior. This problem lies at the heart of the development of a testing theory
for a single active object, or a single actor in an actor system. For a general overview of
different programming languages and paradigms, we refer to Gabbrielli’s course notes [28].

Actor systems [2] are inherently prone to social distancing, based on a strong sense
of isolation and asynchronous communication: by design, one actor cannot directly affect
the local state of another actor, it only sends messages. Active objects [10] extend these
attractive features of actors to an object-oriented setting with asynchronous method calls and
futures [22,26]. As a consequence, both actor and active object systems are almost confluent:
if there are no communication races and local scheduling is deterministic, asynchronously
communicating objects have been shown to have deterministic behavior [17].

Active object languages such as ABS [33] and Encore [11] allow methods to be cooperatively
scheduled: a task executing on an object may choose to suspend itself and allow other tasks
to be scheduled, such that the original task can only be rescheduled once an associated
Boolean condition holds. This extension makes the behavior highly non-deterministic because
suspended tasks that are enabled can be arbitrarily selected by the scheduler when an object is
idle. The authors have previously shown that even for cooperatively scheduled active objects,
it is sufficient to control the local behavior of each actor to ensure global confluence [9, 42]
and developed an axiomatic semantics of trace reachability for active objects [23]. However,
neither line of work addresses the problem of testing determinacy for active objects with
cooperatively scheduled tasks.

In this paper, we study the problem of testing whether an object with cooperatively
scheduled tasks locally exhibits deterministic behavior in the sense that the final state of the
object is independent of the local scheduling of tasks. The cooperatively scheduled tasks
of a single object can be abstracted in terms of a guarded command language over shared
state. The paper develops a behavioral theory of guarded commands in a slight variation of
Dijkstra’s guarded command language GCL [24]. The problem of deterministic behavior can
be formulated as determining whether all feasible schedulings of tasks (also called processes
in the sequel) will produce the same final state, or as testing whether, given a trace of a
guarded command program, are there permutations of the trace that are executable but not
observationally equivalent to the original trace? We tackle this problem by means of concolic
execution [15, 16, 31], such that the concrete run produces a linearized, symbolic trace of the
executed program. We then combine techniques for weakest-precondition calculation [7, 25]
and for partial order reduction [19, 29] to compute, for a given symbolic trace, all executable
traces which only differ in the interleaving of the individual local computations of the tasks
(threads) of the given trace and which may result in a different final state.

2 Partial Order Reduction

Partial order reduction (POR) is a technique to reduce the size of the search space when
exploring the different executions of a parallel program by exploiting the commutativity of
concurrently executed independent transitions [19, 29]. This commutativity relation between
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transitions is lifted to an equivalence relation ∼ on traces over these transitions. Given a
trace θ reflecting an interleaved execution of a number of parallel processes, we denote by
[θ] the set of traces equivalent to θ according to the equivalence relation ∼; the traces in
this set agree on the sequential order of transitions for the individual processes, but the
processes may be interleaved in different ways. Thus, all equivalent traces have the same
length and contain the same labeled transition steps. Let s θ−→ s′ denote that a state s′ can
be reached from a state s by a sequence of labeled transition steps, where the trace θ is the
corresponding sequence of labels representing scheduling events for the different transition
steps. We use the following notation for traces: ε denotes the empty trace and θ · τ the
composition of a trace θ and an event τ . With a slight abuse of notation, we will write θ1 · θ2
for the composition of traces θ1 and θ2 and τ · θ for the trace which starts with event τ and
continues as trace θ.

The pruning of the search based on traces during model exploration can be justified when
the traces are sufficiently expressive to make sure that equivalent traces lead to equal states;
i.e., the following must be a theorem [29]:

I Theorem 1. If s0
θ1−→ s1, s0

θ2−→ s2 and θ2 ∈ [θ1], then s1 = s2.

Observe that, given a trace θ, the elements of [θ] can be enumerated by successively
permuting adjacent commuting (i.e., independent) transition steps. An additional problem is
to identify syntactic criteria to approximate this semantic notion of equivalence. This can
be done by identifying transitions that correspond to interference-free statements [6]; e.g.,
two transitions are independent if their corresponding statements do not affect each others’
program variables.

I Example 2 (Independent processes). Consider a program

x7→1,y7→2, { x := x+1 || y := 3 }

with two parallel statements x := x+1 and y := 3 and a shared state that is initialized
with program variables x with value 1 and y = 2. Assume that the two statements are
executed by processess ι1 and ι2, respectively, and, for simplicity, that the execution of each
assignment is atomic. The final result of this program is a state in which x has value 2 and y
has value 3. However, there are two traces θ1 and θ2 of this program, reflecting that either
of the two processes ι1 and ι2 can be scheduled first without affecting the outcome of the
program. Thus, θ1 and θ2 belong to the same equivalence class.

POR can be used to explore the different equivalence classes of executions, without
exploring every execution path of each equivalence class. If we can decide whether two traces
are in the same equivalence class, we can stop the analysis of a candidate execution path
if we know that its trace is equivalent to the trace of an execution that has already been
explored.

I Example 3 (Interfering processes). Consider a program

x7→1, { x := x+1 || x := 3 }

which describes two processes x := x+1 and x := 3 executing interleaved on a shared state
where program variable x has value 1. This program may have two outcomes: in the final
state, x will have as value either 3 or 4, depending on the scheduling of the processes. Let us
assume that the two statements are executed by processes ι1 and ι2, respectively. Then these
two executions can be represented by execution traces θ1 and θ2 in which the scheduling of
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Prog ::=σ, g

σ ∈ State ::= ε | σ[x 7→ v]
g ∈ GrdStm ::= skip | eB s | sC eB s | g; g

s ∈ Stm ::=x := e | spawn(g)
e ∈ Exp ::= True | False | x | v | op(e, . . . , e)

Figure 1 The syntax of GCL.

transition steps (which we can represent as events) for ι1 and ι2 occur in different orders.
Since the outcome of executing the program depends on the selected trace, θ1 and θ2 do not
belong to the same equivalence class.

The interference of two scheduling events can be approximated by syntactic criteria. A
common approach is to decorate the scheduling events with the sets of read and written
variables in the executed atomic blocks, such that a standard notion of interference [6] can
be applied (i.e., write-variables in one process interfere with both read- and write-variables
in the other process). In this case, scheduling events τ will have the format ι〈W,R〉, where ι
is a process identifier and W and R are the write- and read-sets of the underlying transition.
Thus, we get the traces ι1〈{x}, {x}〉 · ι2〈{x}, ∅〉 and ι2〈{x}, ∅〉 · ι1〈{x}, {x}〉 for the executions
of Example 3. With events on this format, we can syntactically approximate non-interference
by comparing write- and read-sets:

ιi〈Wi, Ri〉 ∼ ιj〈Wj , Rj〉 ⇐⇒ Wi ∩ (Rj ∪Wj) = ∅ ∧ (Wi ∪Ri) ∩Wj = ∅.

By Theorem 1, two traces θ1 · τ1 · τ2 · θ2 and θ1 · τ2 · τ1 · θ2 are equivalent and lead to the
same final state s1 from a given initial state s0 if the events τ1 and τ1 are non-interfering, as
captured by τ1 ∼ τ2. In this case, there is no need to execute both traces. In contrast, if
τ1 6∼ τ2, the two traces may be in different equivalence classes and can lead to different final
states from s0. However, we cannot in general know that the events in τ1 · θ2 can be executed
after θ1 · τ2. For example, with dynamically spawned processes, the execution associated
with τ1 may create the process scheduled by τ2. This dependency between events can be
captured by a so-called must happen before relation, which is a transitive relation over the
events of the traces: if two events τ1 and τ2 associated with different processes are in a
causal ordering, they cannot be permuted even if τ1 ∼ τ2. Thus, there is a clear resemblance
between equivalence classes in our setting and Mazurkiewicz traces [35].

POR can be used to systematically generate traces which correspond to all possible
behaviors of a program up to trace equivalence without executing all the traces of the
program, for example for the purpose of systematic testing [4]. The basic idea is to ensure
that all equivalence classes are visited by at least one execution. Given a trace θ that
corresponds to some execution, and θ1 · τ1 · τ2 · θ2 ∈ [θ] (where [θ] is an equivalence class)
such that τ1 6∼ τ2, we know that the any trace that extends θ1 · τ2 is a candidate trace for
a different equivalence class than [θ]. An algorithm can successively run executions which
extend a given trace prefix (e.g., θ1 · τ2), such that all equivalence classes will eventually be
visited. The best known such algorithm is perhaps DPOR [27], which is usually implemented
by directly manipulating the data structures and the scheduler of the runtime system of a
targeted language.



F. S. de Boer, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa, and L. Tveito 10:5

3 GCL: A Language with Guarded Commands

This section presents a guarded command language (hereafter GCL), which is a slight
simplifying variation on Dijkstra’s original language [24]. The syntax of GCL is given in
Figure 1. A program Prog consists of a state σ and a guarded statement g. The state σ binds
program variables x to values v. Guarded statements g are skip, sequential composition
g; g and the two statements eB s and s1 C eB s2, where e is an expression and s, s1, s2 are
simple statements. Simple statements s are assignments x := e and spawn(g). The guarded
statement e B s allows s to be executed when the guard e holds. The guarded statement
s1 C e B s2 will execute s1 when e holds, otherwise s2. The guarded statement skip is
used to denote both internal actions and termination, i.e., we identify g with g; skip and
define a solitary ι(skip) (explained below) to represent a terminated process. Expressions e
include basic propositions True and False, program variables x, values v (such as Boolean
values true and false, and numbers), and operations over expressions (such as addition of
numbers and logical operators over Booleans). Expressions are assumed to be well-typed.
Their syntax is standard and not further detailed in Figure 1. The GCL language is kept
intentionally simple, but see Section 6 for some straightforward extensions such as loops,
nested guarded statements and procedure calls.

Runtime syntax

The execution of GCL programs is organized around a set of processes in the form of guarded
commands. Processes are executed in an interleaved way. Any enabled process may be
selected to execute at any scheduling point, which makes GCL highly non-deterministic. The
runtime syntax extends Fig. 1 as follows:

rs ∈ RuntimeState ::=σ, P

P ∈ ProcessSet ::= ∅ | {ι(g)} | P ∪ P

A runtime configuration rs is a tuple which consists of a state σ and a set P of processes. A
state σ assigns values to the program’s shared variables. A state update σ[x 7→ v] denotes
the state resulting from assigning the value v to the variable x. By σ(e) we denote the value
resulting from the evaluation of the expression e in state σ. Note that evaluating expressions
is free of side effects. Processes are written ι(g) and consist of a process identifier ι and a
guarded statement g (which can be a compound statement g; g). All processes in a runtime
configuration are required to have unique process identifiers. The initial process, which is
not created by a spawn statement, is assigned the process identifier ι0.

The operational semantics of GCL is defined as a transition system rs −→ rs′ between
runtime configurations rs and rs′, shown in Fig. 2. Rule Assign updates the global state
with the effect of an assignment under the assumption that the guard is true. Rule Spawn
creates a new process. The process identifier ι′ of the spawned process is non-deterministically
chosen (uniqueness is guaranteed by the Interleaving rule and the above requirement
that all its processes in a runtime configuration have unique process identifiers). Rule Skip
can always reduce since its implicit guard is taken to be True. Each of the Choice rules
schedules the enabled guarded statement (note that the premises of both rules result from
the execution of the enabled statement). Rule Interleaving nondeterministically chooses a
process to execute, which will trigger the execution of one of the other rules, depending on
the guarded statement g.

The initial runtime configuration of a program σ, g is given by σ, {ι0(g)} with the
initial process identifier ι0. A successful execution of a program from an initial runtime

Gabbr i e l l i ’ s Fes t schr i f t



10:6 Inseguendo Fagiani Selvatici

(Assign)
σ(e) = True σ′ = σ[x 7→ σ(e′)]

σ, {ι(eB x := e′; g)} −→ σ′, {ι(g)}

(Choice1)
σ, {ι(eB s1; g)} −→ σ′, P

σ, {ι(s1 C eB s2; g)} −→ σ′, P

(Spawn)
σ(e) = True

σ, {ι(eB spawn(g′); g)} −→ σ, {ι(g), ι′(g′)}

(Choice2)
σ, {ι(¬eB s2; g)} −→ σ′, P

σ, {ι(s1 C eB s2; g)} −→ σ′, P

(Skip)
σ, {ι(skip; g)} −→ σ, {ι(g)}

(Interleaving)
σ, {ι(g)} −→ σ′, P ′

σ, P ∪ {ι(g)} −→ σ′, P ∪ P ′

Figure 2 Operational semantics of GCL.

configuration σ, {ι0(g)} is a sequence of transitions which ends in a terminal configuration
where all processes are of the form ι(skip). An execution deadlocks if it reaches a non-
terminal configuration in which no rule is applicable. This can happen when the guards
of all the initial statements evaluate to False. We denote by −→∗ the transitive closure of
the transition relation −→ and by σ, g →∗ σ′ the existence of a successful execution of the
program σ, g with initial state σ and final state σ′.

4 A Concolic Semantics for GCL

A concolic semantics for GCL can be defined by lifting the non-deterministic operational
semantics of Fig. 2 to a labeled transition system in which the labeled transitions of each
rule of the operational semantics capture the symbolic execution step corresponding to the
concrete transition. The labeled transition relation l−→ is given in Fig. 3; apart from the
labeling the rules are the same as their non-labeled versions in Fig. 2.

I Definition 4 (Labels). A label l takes one of the following forms:

l ::= τ | ι(eB x := e′) | ι(eB spawn(ι′))

Here, τ denotes the empty label and, in the other labels, ι corresponds to the identifier of the
process that was executed.

The guarded statements in labels are non-branching (i.e., a guarded assignment or spawn).
However, in case of the execution of a spawn instruction we record in the label the identifier
of the new process (encoded by spawn(ι′), where ι′ denotes the new process identifier).

The trace θ generated by an execution in this transition system is the sequence of (non-
empty) labels of the corresponding transition steps. The trace records a symbolic linearization
of the executed program; i.e., the trace ignores the branching points in the control flow of
the source program. Thus, there may be many traces which correspond to the different
executions of a GCL program.

I Example 5 (Traces). Consider a GCL program with an initial process ι0 that spawns two
processes ι1 and ι2, where ι1 doubles the value of a counter x if a guard flag is true, and ι2
increments the value of x by one and negates the value of flag four times, then increments
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(Assign)
σ(e) = True σ′ = σ[x 7→ σ(e′)]

σ, {ι(eB x := e′; g)} ι(eBx:=e′)−−−−−−−→ σ′, {ι(g)}

(Choice1)
σ, {ι(eB s1; g)} l−→ σ′, P

σ, {ι(s1 C eB s2; g)} l−→ σ′, P

(Spawn)
σ(e) = True

σ,{ι(eB spawn(g′); g)} ι(eBspawn(ι′))−−−−−−−−−→σ,{ι(g), ι′(g′)}

(Choice2)
σ, {ι(¬eB s2; g)} l−→ σ′, P

σ, {ι(s1 C eB s2; g)} l−→ σ′, P

(Skip)
σ, {ι(skip; g)} τ−→ σ, {ι(g)}

(Interleaving)
σ, {ι(g)} l−→ σ′, P ′

σ, P ∪ {ι(g)} l−→ σ′, P ∪ P ′

Figure 3 Concolic operational semantics for GCL.

an unrelated variable y. Initially, we let the counters x and y have value 0 and flag has
value true. In the surface syntax of GCL, the program looks like this:

x7→0, y 7→0, flag 7→true,
True B spawn(x==0∨flag B x:=2*x); // ι1
True B spawn(x:=x+2Cflag B x:=x-1; True B flag:=¬flag; // ι2

x:=x+2Cflag B x:=x-1; True B flag:=¬flag;
x:=x+2Cflag B x:=x-1; True B flag:=¬flag;
x:=x+2Cflag B x:=x-1; True B flag:=¬flag;
True B y:=y+1)

A possible execution of this program, resulting in a state x 7→4, y 7→1, flag 7→true,
schedules ι2 until it completes before scheduling ι1. The trace θ0, of the concolic transitions
corresponding to this execution is

θ0 : ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(True B y:=y+1) · ι1(x==0∨flag B x:=2*x)

Note that well-formed permutations in traces θ (e.g., permutations respecting program or-
der in the different processes) will generate different linearizations with possible different final
states due to the non-deterministic nature of GCL. Such possible well-formed permutations
will be explored in the next section.

Let e[e′/x] denote the substitution operation which replaces all occurrences of x in e by
e′ (it binds stronger than any other logical operation/connective). The path condition of a
symbolic trace θ expresses all the guards of θ in terms of the initial state. We define path
conditions symbolically as follows.

I Definition 6 (Path condition). Let θ be a trace over labels l. The path condition path(θ) is
defined inductively:

Gabbr i e l l i ’ s Fes t schr i f t
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path(ε) = True
path(τ · θ) = path(θ)
path(ι(eB x := e′) · θ) = e ∧ path(θ)[e′/x]
path(ι(e B spawn(ι′)) · θ) = e ∧ path(θ)

I Example 7 (Path conditions). We compute the path conditions for the trace in Example 5.

path(θ0) =path(ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(True B y:=y+1) · ι1(x==0∨flag B x:=2*x))

=flag == true

We can see how the computation produces the weakest precondition for the guards to hold;
thus, any state in which the initial state of flag has value true allows the execution of θ0.

For a symbolic trace θ, let g(θ) denote the corresponding guarded statement obtained sim-
ply by dropping the empty labels τ , removing the process identifiers ι (such that eBspawn(ι)
becomes eB spawn(skip)), and connecting the resulting sequence of guard statements via
sequential composition. We have the following basic property for path conditions.

I Theorem 8 (Formal justification of path conditions). For any symbolic trace θ and initial
state σ, if σ(path(θ)) = True then there exists a state σ′ such that σ, g(θ)→∗ σ′.

Proof. The proof proceeds by a straightforward induction on the length of θ (assuming that
for the base case g(ε) = skip). J

5 Partial Order Reduction for GCL

This section describes an algorithm which, from a given run, constructs all scheduling policies
which respect the local flow of control of the individual processes. In order to reduce the
search space we apply a partial order reduction based on a non-interference relation between
the labels of the concolic operational semantics.

5.1 Symbolic Traces and Equivalence
We first define equivalence for the symbolic traces of the concolic semantics of GCL. Let
vars(e) denote the program variables in an expression e. For a label l, we define the write-
and read-sets, written as W (l) and R(l) respectively, as follows:

W (ι(e1 B x := e2)) = {x} R(ι(e1 B x := e2)) = vars(e1) ∪ vars(e2)
W (ι(eB spawn(ι′)) = ∅ R(ι(eB spawn(ι′)) = vars(e)

Building on the general explanation of non-interference in Section 2, we can now define the
non-interference relation ∼ between labels for GCL as follows:

I Definition 9 (Non-interference). For any two labels l1 = ι1(e1 B s1) and l2 = ι2(e2 B s2)
we denote by l1 ∼ l2 that

W (l1) ∩ (R(l2) ∪W (l2)) = ∅ ∧ (W (l1) ∪R(l1)) ∩W (l2) = ∅
∧ ι1 6= ι2
∧ s1 6= spawn(ι2) ∧ s2 6= spawn(ι1)
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This definition of non-interference captures both the non-interference of independent
transitions and the must-happen-before relation for the semantics of GCL: two events of
the same process must happen in program order, a process cannot be scheduled before it is
created, and events with overlapping write- and read-sets cannot be reordered.

Recall from Section 2 that an equivalence relation between events can be extended
to an equivalence relation on traces over those events. We extend the non-interference
relation of Definition 9 to the smallest equivalence relation between symbolic traces such
that θ′ · l1 · l2 · θ′′ ∼ θ′ · l2 · l1 · θ′′, if l1 ∼ l2.

I Example 10 (Trace permutations and equivalence.). Consider the following traces, which
are permutations of trace θ0 from Example 5. In the traces, the changing position of the
label ι1(x==0∨flag B x:=2*x) is highlighted.

θ1 : ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι1(x==0∨flag B x:=2*x) · ι2(True B y:=y+1)

θ2 : ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι1(x==0∨flag B x:=2*x)
· ι2(True B flag:=¬flag) · ι2(True B y:=y+1)

θ3 : ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι1(x==0∨flag B x:=2*x)
· ι2(True B flag:=¬flag) · ι2(¬flag B x:=x-1)
· ι2(True B flag:=¬flag) · ι2(True B y:=y+1)

Trace θ1 is in the same equivalence class as θ0, denoted by θ1 ∈ [θ0], since ι1(x==0∨flag B
x:=2*x) ∼ ι2(TrueBy:=y+1). However, θ2 6∈ [θ0] since ι1(x==0∨flagBx:=2*x) � ι2(TrueB
flag:=¬flag), and similarly θ3 6∈ [θ0], θ3 6∈ [θ2], etc.

I Example 11 (Path conditions continued). We compute path conditions for the traces from
Example 10. By computing path(θ2) we get the constraint

path(θ2) = path(ι0(True B spawn(ι1)) · ι0(True B spawn(ι2))
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι2(True B flag:=¬flag)
· ι2(flag B x:=x+2) · ι2(True B flag:=¬flag)
· ι2(¬flag B x:=x-1) · ι1(x==0∨flag B x:=2*x)
· ι2(True B flag:=¬flag) · ι2(True B y:=y+1))

= flag == true ∧ x ==-2

Gabbr i e l l i ’ s Fes t schr i f t
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Thus, θ2 is not executable from the initial program state of Example 5, but it would be
executable from states satisfying this constraint (i.e., for initial states in which the value of
flag is true and the value of x is -2). By computing path(θ3), we see that θ3 is executable
from the initial state of Example 5, since its path condition reduces to flag == true.
Observe that although θ0 and θ3 have the same path condition, their final states differ.
The final state for θ3 when executed from the initial program state of Example 5 will be
x7→5, y7→1, flag 7→true.

To easily decide whether two traces are in the same equivalence class, we define a canonical
representation for the traces of GCL executions. In general, a lexicographic ordering on
traces can be used to select the smallest in a set of traces, assuming a total order on the
elements of the traces. Traces in the same equivalence class differ only in the ordering of
adjacent, commuting labels [35]. Hence, a partial order on labels that commute will suffice
to define the canonical representative for the traces in an equivalence class. This partial
order can for example be expressed by lifting a strict total order on the process identifiers,
since commuting events must belong to different processes.

I Definition 12 (Canonical representatives for GCL traces). Assume a strict total order <
on process identifiers ι0, ι1, ι2, . . . For any labels l1 and l2 with process identifiers ι1 and ι2,
respectively, let l1 < l2 if and only if ι1 < ι2. The canonical representative of a trace θ,
denoted canon(θ), is defined inductively as follows:

canon(ε) = ε

canon(ε · l) = ε · l
canon(θ · l1 · l2) = canon(θ · l1) · l2 if l1 6∼ l2 or l1 < l2
canon(θ · l1 · l2) = canon(canon(θ · l2) · l1) if l1 ∼ l2 and l2 < l1

If we consider the traces from Examples 5 and 10 and a strict total order ι0 < ι1 < ι2 on
process identifiers, we can observe that canon(θ0) = θ1.

The set of processes in a runtime state of a GCL program can be derived from the trace
leading to that state. We define a function which, for a given trace, returns the set of process
identifiers for these processes.

I Definition 13 (Active processes). Let θ be a symbolic trace representing the execution of a
GCL program. The set of active process identifiers proc(θ) is defined inductively as follows:

proc(ε) = {ι0}
proc(θ′ · eB spawn(ι)) = proc(θ′) ∪ {ι}
proc(θ′ · l) = proc(θ′) for l ∈ {τ, ι(eB x := e′)}

This definition is easily justified: If θ is a trace of σ, {ι0(g)} →∗ σ′, P , then P = proc(θ).
The proof is straightforward by induction over the length of θ.

We can now formalize what it means for a symbolic trace to be executable. Let ≤ denote
the prefix relation on symbolic traces. and θ ↓ι the projection of a symbolic trace θ unto
all labels of of process identifier ι (i.e., labels of the form ι(. . .)). For a symbolic trace θ, let
length(θ) denote the length of θ and θn the initial prefix of θ of length n (i.e., θn ≤ θ and
length(θn) = n).

I Definition 14 (Trace executability). Let g be a GCL program, σ a state, l a label with
process identifier ι, and assume that θ is a permutation of a symbolic trace of the execution
σ, {ι0(g)} →∗ σ′, P . The trace θ is executable in σ if σ(path(θ)) = True and ι ∈ proc(θn−1)
for all n ≤ length(θ), where θn = θn−1 · l.
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Trace executability allows us to strengthen Theorem 8 by expressing that the source
program can produce executable permutations of one of its traces. We say that a permutation
θ′ of a symbolic trace θ preserves local order if ∀ι ∈ proc(θ) : θ′ ↓ι= θ ↓ι.

I Theorem 15 (Soundness). For any GCL program g and state σ, such that θ is a symbolic
trace of σ, {ι0(g)} →∗ σ′, P and let θ′ be a permutation of θ which preserves local order. If θ′
is executable in σ then there exists a σ′′ such that θ′ is a symbolic trace of σ, {ι0(g)} →∗ σ′′, P .

Proof. The proof proceeds by induction on the length of θ (assuming that for the base case
g(ε) = skip). J

5.2 The Fagiani Algorithm
We now present an algorithm1 which, given an initial state σ and an initial symbolic trace θ
generated by a successfully terminating concolic execution in the above labeled transition
system, constructs a set I of all the canonical representatives of permutations of θ which are
executable in σ; i.e., the algorithm generates one representative for each equivalence class
of the traces which are permutations of θ. For simplicity, we assume that θ is in canonical
form. Considering our running example, if we start the algorithm with state σ and trace
canon(θ0) from Example 5, the algorithm will compute traces such as θ1, θ2 and θ3 from
Example 10. The algorithm will detect that canon(θ1) = canon(θ0) so canon(θ1) can be
discarded, that canon(θ2) is not executable from the initial state σ of Example 5 and can
therefore discarded, and that canon(θ3) 6= canon(θ0) and therefore canon(θ3) is added to I.

The algorithm is presented in the form of pseudo code in Algorithm 1. In the pseudo code
we abstract from the data structures representing states and traces. Let θ′ be a symbolic
trace such that for any process ι its local computation in θ′ is a prefix of its local computation
in the initial symbolic trace θ. We then denote by next(ι, θ′) the next instruction of process
ι as defined by θ. Formally, the next instruction of a process can be defined as follows:

I Definition 16 (Process-local next). Let θ and θ′ be symbolic traces, ι ∈ proc(θ), and assume
that θ′ ↓ι≤ θ ↓ι. The next ι-event after θ′ is defined as follows:

next(ι, θ′) = l if (θ′ · l) ↓ι≤ θ ↓ι
next(ι, θ′) = nil if θ′ ↓ι= θ ↓ι

We use the process-local next to ensure that new traces preserve local order. In the code
we also assume the inductive definitions of the path condition path(θ) (see Definition 6),
the canonical representative canon(θ) (see Definition 12) and the active processes proc(θ)
(see Definition 13) of a symbolic trace θ, and the inductive definition of the value σ(e) of
expression e in a state σ. As before, length(θ) denotes the length of the trace θ, i.e., the
number of instructions it contains, and ε the empty trace.

The algorithm itself iterates over the length of the initial trace θ in canonical form. Each
such iteration in turn iterates over all the traces currently stored in I. Since this inner
iteration updates the set I, we “freeze” the initial value of I upon each iteration of the outer
for-loop. The set I will then store the newly updated canonical traces.

Formally, the computed set I of permutations, which respect the local order of the input
trace θ, satisfies

I = {canon(θ′) | σ(path(θ′)) ∧ ∀ι ∈ proc(θ′) : θ′ ↓ι= θ ↓ι}.

1 A prototype implementation of the concolic semantics of GCL and the Fagiani algorithm is available at
https://github.com/larstvei/GCL.
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Algorithm 1 The Fagiani Algorithm

Input: θ0: a global symbolic trace in its canonical form
Input: σ: an initial state
Auxiliaries: path, canon, proc, next: see Definitions 6, 12, 13, 16
Result: I: A set of executable permutations of θ0
I := {ε};
for i := 1 to length(θ0) do

I ′ := I;
I := {};
foreach θ′ ∈ I ′ do

foreach ι ∈ proc(θ′) do
if next(ι, θ′) 6= nil then

θ′′ := canon(θ′ · next(ι, θ′));
if θ′′ 6∈ I ∧ σ(path(θ′′)) then I := I ∪ {θ′′};

end
end

end
end

To prove this, it suffices to show that after the i’th iteration, i = 1, . . . , length(θ), I satisfies

I = {canon(θ′) | length(θ′) = i ∧ σ(path(θ′)) ∧ ∀ι ∈ proc(θ′) : θ′ ↓ι≤ θ ↓ι}.

The computed set I forms the basis for a set of test cases. We use this set for testing
whether these different traces have an observable effect on the state. It is easy to see
that the set I consists of executable traces, such that Theorem 15 applies. For each trace
the corresponding test case simply consists of the underlying scheduling policy, which is
represented by a sequence of process identifiers. The execution of such a test case then
consists of an execution from the given initial state σ following the specified scheduling policy,
and checking the final state.

6 Language Extensions

This section presents some conservative extensions to the language: nested guarded statements,
a looping construct, named procedures, and local scopes for variables.

Nesting

Guarded statements may be nested without adding any particular complexity to the calculus.
Let us consider statements with the syntax eB g and g1 C eB g2. The guarded skip eB skip,
which corresponds to an assert-statement, needs an additional label of the form ι(eB skip).
With this extension, it has the obvious semantics of Skip provided that the guard e holds in
the current state, and with the above label. We get the following rules in the semantics:
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(NestedGuard)
σ, {ι((e1 ∧ e2) B g; g′)} l−→ σ′, P

σ, {ι(e1 B (e2 B g); g′)} l−→ σ′, P

(NestedChoice1)
σ, {ι((e1 ∧ e2) B g1; g)} l−→ σ′, P

σ, {ι(e1 B (g1 C e2 B g2); g)} l−→ σ′, P

(NestedChoice2)
σ, {ι(¬(e1 ∧ e2) B g2; g)} l−→ σ′, P

σ, {ι(e1 B (g1 C e2 B g2); g)} l−→ σ′, P

Loops

We can add a loop construct eB∗ s to repeat a guarded statement zero or more times, which
can be captured by the following transition rules:

(While1)
σ, {ι(eB s; eB∗ s; g)} l−→ σ′, P

σ, {ι(eB∗ s; g)} l−→ σ′, P

(While2)
¬σ(e)

σ, {ι(eB∗ s; g)} ε−→ σ′, {ι(g)}

Note that such a loop construct would require a straightforward generalization of our concolic
testing theory to non-terminating computations by imposing a bound on the length of the
computations.

Procedures

It is also straightforward to spawn new processes by procedure calls: We can add procedure
definitions proc p{g } and add syntax p() for procedure calls to the statements. If we assume
given a mapping PT from procedure names p to procedure bodies g, it suffices to add the
following rule to the semantics:

(Proc)
PT(p) = g′

σ, {ι(eB spawn(g′); g)} l−→ σ′, P

σ, {ι(eB p(); g)} l−→ σ′, P

To model procedure calls locally in the context of a single process can be described by inlining
the procedure body.

Local scopes

Local scopes {σ′, g} can also be added as guarded statements. Here, we are not interested
in seeing the local variables in the labels, because they are private and do not affect other
processes. For this reason, we remove local variables from the labels by applying the local
substitution before we (in most cases) reuse rules without local scope to create the labels. We
need additional rules for scoped assignment and spawning, for leaving an empty scope and
we assume that an inner scope takes precedence over an outer scope to unfold nested scopes.

Gabbr i e l l i ’ s Fes t schr i f t
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(LeaveScope)
σ, {ι({σ′, skip}; g)} ε−→ σ, {ι(g)}

(ScopedSpawn)
P ′ = P ∪ {ι({σ′, g′}; g′′)}

σ, {ι(σ′(e) B spawn(g); skip)} l−→ σ, P

σ, {ι({σ′, eB spawn(g); g′}; g′′)} l−→ σ, P ′

(UnfoldScope)
σ, {ι({σ′′, g}; {σ′, g′}; g′′)} l−→ σ′′′, P

σ, {ι({σ′, {σ′′, g}; g′}; g′′)} l−→ σ′′′, P}

(ScopedAssign1)
x ∈ dom(σ)

σ, {ι(σ′(e) B x := σ′(e′); g)} l−→ σ′′, {ι(g)}

σ, {ι({σ′, eB x := e′; g}; g′′)}
l−→ σ′′, {ι({σ′, g}; g′)}

(ScopedAssign2)
x 6∈ dom(σ) e′′ = (e ∧ (e′ == e′))

σ′, {ι(σ(e) B x := σ(e′); g)} l−→ σ′′, {ι(g)}

σ, {ι({σ′, eB x := e′; g}; g′)}
ι(σ′(e′′)Bskip)−−−−−−−−−→ σ, {ι({σ′′, g}; g′)}

7 Related Work

Parallel and distributed systems are difficult to analyze because of their inherent non-
determinism. Both testing and formal verification have their limitations for these systems.
Model checking, which can be situated between testing and formal verification, here suffers
from state explosion [19]; in practice, model checking relies on analyzing models with a
tractable state space. Software model checking techniques either adapt model checking into
techniques for systematic testing of programs (e.g., [4, 18, 30, 44]) or abstract programs into
models for which traditional model checking techniques apply (e.g., [8, 20,32,36,38]). Our
work fits into the former category.

Stateless model checking avoids state space explosion by exploring the executions of a
program without explicitly storing all the program states [29], and has been implemented
in tools including VeriSoft [30] and CHESS [37]. Stateless model checking can be realized
by combining a runtime scheduler which controls the program execution with an algorithm
which explores the different ways in which processes can be scheduled. The combinatorial
explosion of different executions for parallel programs can be reduced by means of partial
order reduction (POR) [19,29,39], which introduces an equivalence relation on executions
based on Mazurkiewicz traces [35]. POR explores at least one execution in each equivalence
class. Ideally, only one trace of each equivalence class needs to be explored; the precision (i.e.,
performance) of a particular algorithm depends on the number of execution paths visited in
each equivalence class. Dynamic partial order reduction (DPOR) [1,27,34,39,40,43] makes
POR more precise by detecting and exploiting interference dynamically. DPOR assumes
access to the scheduler and state of the runtime system, both to guide execution and to
decide whether an action is enabled. Our work uses partial order reduction, but it does not
need access to the scheduler of the runtime system.

Actor systems [2] are well-suited for systematic testing using POR because their inherent
isolation of local state limits the number of races in a program. TransDPOR [40] extends
DPOR to explore that the dependency relation of actor systems is transitive. SYCO [4,5]
is a testing tool for actor-based concurrency which combines the transitivity exploited by
TransDPOR with a dependency relation based on process interference [6], similar to the
non-interference relation discussed in Section 2, and to consider synchronization primitives
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as found in active object languages [10], such as ABS [33]; i.e., they handle await-statements
which synchronize on the resolution of futures. ContextDPOR [3] introduces a context-
sensitive notion of non-interference between events. This is achieved by deciding on the
equivalence between subsequences of the traces and the next action (resulting in so called
sleep sequences). Technically, this is done by storing the state resulting from the one trace
together with the sleep sequence. In contrast, our motivation for studying GCL stems from
the problem of swapping events in the traces with intra-actor synchronization based on
non-monotonic Boolean await-statements (in contrast to futures, which keep an enabled state
after reaching it). Similar to ContextDPOR, we had to go beyond the read- and write-sets
traditionally used to determine interference in order to decide at the level of traces whether
the permutation of an observed trace is executable. In contrast to ContextDPOR, our work
is based on a weakest-prefix calculation over symbolic traces to decide on their executability.
The relationship between concrete and symbolic execution with partial-order reduction has
previously been studied by the authors in [21]; that previous work focussed on soundness and
correctness of the symbolic execution framework but not on weakest-precondition computation
for executability as we address in this paper.

A major limitation of DPOR algorithms is that they are implemented inside the runtime
system of the language. We are currently developing ExoDPOR, a stateless model checker
for ABS which is implemented outside the runtime system, such that it can perform parallel
stateless model checking by exogenously coordinating the runs of a number of instances
of the runtime system [41]. This is enabled by extending the backend of ABS with a
trace record and replay mechanism [42] and manipulating traces directly to trigger new
runs. Whereas ExoDPOR can handle most of ABS (including deployment components and
real-time behavior), it does not yet handle await statements with Boolean conditions (a
non-monotonic guard statement). We expect the work in this paper to provide a basis to
address this currently missing piece in our tool.

8 Conclusion

This paper presented a method for testing the deterministic behavior of dynamically spawned
processes executing on a shared state. We have developed an algorithm which, starting from
the symbolic trace of an initial run of a program, generates all traces which may result in
different final states. Each trace represents an execution with a different local scheduling of
the program’s processes, but the traces may result in the same final state because the non-
interference relation is an approximation. Therefore, the generated traces need to be tested to
determine whether the program outcome is independent of the local scheduling decisions. We
rely on recording traces of executions, partial order reduction to eliminate traces which are
obviously equivalent to previously generated traces, and weakest precondition calculation to
eliminate infeasible (non-executable) traces. The weakest precondition calculation allows the
proposed method to handle the non-monotonic enabledness conditions of guarded commands
without explicitly computing the different states of the program.

This proposed method can be extended in a straightforward way to generate “seed traces”,
executable trace prefixes that lead to different end states than the one in the original recorded
run. To formulate seed traces, the concolic operational semantics of Section 4 can simply be
extended by a new label type that records the conditional in the choice expression. These
seed traces can be used to implement stateless model checking for parallel systems given a
controllable scheduler. We plan to implement this method as an extension of ExoDPOR [41],
our stateless model checker for the active object language ABS.
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