
1

A Machine Learning-based Tool for Passive OS
Fingerprinting with TCP Variant as a Novel Feature

Desta Haileselassie Hagos, Student Member, IEEE, Anis Yazidi, Senior Member, IEEE, Øivind Kure, Senior
Member, IEEE, and Paal E. Engelstad, Senior Member, IEEE

Abstract—With the emergence of Internet of Things (IoT),
securing, and managing large, complex enterprise network
infrastructure requires capturing and analyzing network traffic
traces in real-time. An accurate passive Operating System
(OS) fingerprinting plays a critical role in effective network
management and cybersecurity protection. Passive fingerprinting
doesn’t send probes that introduce extra load to the network and
hence it has a clear advantage over active fingerprinting since
it also reduces the risk of triggering false alarms. This paper
proposes and evaluates an advanced classification approach to
passive OS fingerprinting by leveraging state-of-the-art classical
machine learning and deep learning techniques. Our controlled
experiments on benchmark data, emulated and realistic traffic
is performed using two approaches. Through an Oracle-based
machine learning approach, we found that the underlying TCP
variant is an important feature for predicting the remote OS.
Based on this observation, we develop a sophisticated tool for
OS fingerprinting that first predicts the TCP flavor using passive
traffic traces and then uses this prediction as an input feature
for another machine learning algorithm for predicting the remote
OS from passive measurements. This paper takes the passive
fingerprinting problem one step further by introducing the
underlying predicted TCP variant as a distinguishing feature. In
terms of accuracy, we empirically demonstrate that accurately
predicting the TCP variant has the potential to boost the
evaluation performance from 84% to 94% on average across
all our validation scenarios and across different types of traffic
sources. We also demonstrate a practical example of this potential,
by increasing the performance to 91.2% and 95.3% on average
using a tool for loss-based and delay-based TCP variants
prediction in an emulated setting. To the best of our knowledge,
this is the first study that explores the potential for using the
knowledge of the TCP variant to significantly boost the accuracy
of passive OS fingerprinting.

Keywords—Operating System, Fingerprinting, Machine
Learning, Deep Learning, IoT, Passive Traffic Measurements

I. INTRODUCTION AND MOTIVATION

AS modern network infrastructures grow in size,
collecting detailed relevant knowledge about the dynamic

characteristics and complexity of large heterogeneous networks

D. Hagos, Ø.Kure, and P. Engelstad are with the Autonomous Systems
and Sensor Technologies Research Group, Department of Technology
Systems, University of Oslo, Oslo, 0316, Norway (e-mail: destahh@ifi.uio.no;
oivind.kure@its.uio.no; paal.engelstad@its.uio.no).

D. Hagos, A.Yazidi, and P. Engelstad are with the Autonomous
System and Network (ASN) Research Group, Department of Computer
Science, Oslo Metropolitan University, Oslo, 0130, Norway (e-mail:
desta.hagos@oslomet.no; anis.yazidi@oslomet.no; paalen@oslomet.no).

Submitted For Publication in IEEE Internet of Things Journal

is crucial for many purposes e.g., network vulnerability
assessment and monitoring, spam detection, etc. The
interconnection and heterogeneity of IoT-enabled devices
connected to the Internet also raises potential security issues
and it has gained a lot of research attention from the
industry to academia [3, 25, 45, 54]. Developing advanced
network security and monitoring techniques are important
for both the research and security practitioners. There has
been a significant research work in the context of network
management and cybersecurity on developing network security
tools to fingerprint remote and local Operating Systems
(OSes) [34, 35, 36, 55, 56]. OS fingerprinting is the process
of inferring the information about the underlying OS of a
machine operating with TCP/IP packets by a remote device
connected on the Internet without having physical access to
the device [27].

There are many different existing custom tools for
fingerprinting of the most commonly used OSes based on the
characteristics of its underlying TCP/IP network stack [27] and
this, to a large extent, is due to variability in how the TCP/IP
stack is traditionally implemented across different variations
of OSes [33]. One common approach, for example, is by
collecting the TCP/IP stack basic parameters [31], e.g., IP
initial Time To Live (TTL) default values [8], HTTP packets
using the User-agent field [30], Internet Control Message
Protocol (ICMP) requests [39], known open port patterns, the
size of the TCP receiver window [24], TCP Maximum Segment
Size (MSS) [41], IP Don’t Fragment (DF) flag [40], a set of
other specific TCP options to mention a few. However, in our
work, we want to take this one step further by combining
these basic features and other settings with the underlying
TCP variant as a feature in our model due to the fact
that different OSes have slightly different implementations
of TCP. Some implementations of common TCP variants
quickly overshoot the size of the Congestion Window (cwnd)
because of differences in the variant implementations. Hence,
we believe that knowing the implementation of the underlying
OS may help us understand better their exact behavior. It can
also help us explore how to classify an OS when different
classes of OSes are implementing the same TCP variant.

Fingerprinting Techniques: We can determine what OS a
remote computer on the Internet is running by either passively
listening to traffic captured from a network or by actively
sending it packets. The most widely used complementary
remote OS fingerprinting proven approaches that employ a
variety of TCP/IP stack scanning are broadly categorized into
classes of active and passive techniques.



2

• Active Fingerprinting: This technique is based on actively
transmitting one or more specially crafted network
packets with different packet settings or flags to a remote
network device in order to analyze the corresponding
potentially identifying replies [34, 55]. This method
determines knowledge of the underlying OS according
to the received responses from the target device by
examining the network behavior of known TCP/IP
stack [46]. However, since this approach injects additional
traffic to the network by generating active probes, it may
itself trigger alarms and get blocked by firewall rules and
Network address translators (NATs) [14].

• Passive Fingerprinting: This approach, on the other hand,
inspects and analyzes packets traveling between end hosts
without injecting any traffic into the network [35, 36, 56].
This technique with little resource simply analyzes a
pattern of the OS-specific information that has already
been sent in the network traffic and compares for a
match with a predefined database that contains a list of
known signatures of different OSes. Passive fingerprinting
doesn’t send probes and hence it has a clear advantage
over active fingerprinting since it reduces the risk of
triggering alarms [14].

OS fingerprinting can also be performed using classical
techniques known as “banner grabbing”. It is an approach used
to gain detailed information about a remote computer system
on a network and the associated services running on its opened
ports [43]. Using techniques like this, some remote computers
announce their underlying OS freely and running application
services with their versions in use to anyone connecting to
them as part of welcome banners or header information.
Some of the widely used services that serve banner grabbing
are: Telnet, FTP, NetCat, SMTP, etc. However, it is useful
to remember that some of these basic services are effective
against less secure networks.

Potential benefits and applications: Network scanning and
accurate remote OS fingerprinting are the crucial steps for
penetration testing in terms of security and privacy protection.
Note that attackers can also embrace passive fingerprinting
techniques to search for potential victims in a network. For
example, by identifying the OS running on a remote computer
and the list of services it runs, an attacker can target the device
to eavesdrop on the communication between the endpoints
without having physical access to the device. However, we
argue that our work presented here is motivated by a number
of practical applications that can be positively used by network
and system administrators. Passively fingerprinting an OS by
analyzing the packets it generates and transmits over a network
is extremely important in the areas of network management
and computer security for several reasons. For example, it
is useful to explore a network for potential exploitations of
security vulnerabilities which can be exploited by attackers,
auditing, identify critical attacks, reveal new information about
a network user etc. Network administrators can, therefore, use
this OS related information to maintain the security policy and
reliability of their network by configuring a network-based
Intrusion Detection Systems (IDS) [32]. Vulnerabilities and

security threats in a network may result from rogue or
unauthorized devices [49], unsecured internal nodes within
the network, and from external nodes [7]. Hence, passively
fingerprinting an OS has a potential benefit in addressing these
critical problems. This, from an academic point of view, is
interesting and something that needs to be addressed from a
network security research point of view.

Client Oses of sending nodes

Fingerprinter

Receiving nodes 
on the Internet

35.195.9.67

Intermediate node (monitor)

Fig. 1: Network architecture for passive OS fingerprinting by
an intermediate node.

Limitations of previous works: Traditionally, most of
the existing general OS fingerprinting techniques resort to
manually generated signature matching from a database of
heuristics which contains features of widely used OSes. This
means, after comparing the generated signatures, the first set
of responses match with the highest confidence against a
database of fingerprints would be used to select the specific
probable OS. However, manually updating a large number
of signature and managing databases of new OSes adds a
considerable amount of time and hence we may suffer from
the consequences of the lack of recent signature updates of the
known OSes. For example as reported in [30], the last updates
of the fingerprint databases of Ettercap [36] and p0f [56]
date to 2011 and 2014 respectively. Consequently, new OSes
families like Android 4.4 and higher versions of Android,
Windows 10 distributions, etc. will not be recognized by these
tools since they are not included in their fingerprint databases.
Hence, we argue that it is important to consider making use of
a fingerprint database that contains variations of most currently
used OSes and automating these tasks by employing learning
algorithms capable of extracting all possible OS-specific
features for discovering the underlying OSes. To explore this
idea of applying machine learning algorithms, we present
a unified and robust classification approach to an advanced
passive OS fingerprinting that leverages both machine learning
and deep learning methods. Our fingerprinting technique is
completely passive meaning that we only need to be able
to observe network traffic from a target machine at any
observation point on the network without injecting any traffic
into the network. Note that the TCP/IP header fields would
not be impacted by SSL/TLS encryption of the TCP payload.
Hence, since we utilize features that are readable even with
encryption, our approach is independent of whether the flow
is encrypted or not. Figure 1 shows the architecture for
implementing our fingerprinting methodology.

Why use machine learning approaches to perform OS
fingerprinting? There are several limitations imposed by
classical fingerprinting techniques. Passive OS fingerprinting



3

generally relies on recognizing the default values for various
TCP/IP stack parameters. Traditional approaches to OS
fingerprinting resort to TCP header parameters such as the
initial SYN packet size, TTL in the IP header, and the
size of the TCP receiver window of the first packet in a
TCP session which can be easily manipulated by experienced
users for Quality of Service (QoS) or by an adversary with
malicious intent. Therefore, the traditional approaches can be
easily misled by changes in TCP/IP input features limiting
the accuracy of OS classification. If a user changes these
parameters, the task of OS fingerprinting becomes much more
challenging. Most of the existing works on OS fingerprinting
provide little capability to address this challenge.

Motivated by this problem, we proposed a novel approach
by leveraging both machine learning and deep learning-based
techniques that consider the set of parameters as a whole,
rather than individually so that our model caters for variations
in TCP parameters. If a user changes the initial receive window
size, for instance, we may still be able to recognize the
OS from other parameters that have not been changed (TCP
congestion control algorithm, initial cwnd size, etc.). Note that
this depends entirely on the changes made by the user to the
default TCP or OS stack parameters that are commonly used
for signature-based fingerprinting. In this paper, we investigate
the potential of knowing the underlying TCP variant and how
much it might improve the OS fingerprinting accuracy. The
advantage of introducing the TCP variant as input feature is
the fact that it is a characterizing feature of an OS that is
difficult to manipulate. Modifying the TCP behavior of an
operating system is not an easy task and needs changes to the
kernel of the underlying operating system. Thus, TCP behavior
is believed to be a robust input feature that is less prone to
changes in the configuration by the user. The other reason
why we create a model by employing learning techniques is
to understand the complex patterns of the varying values in the
TCP header and extract useful input features. Because machine
learning offers new possibilities as it can extract patterns and
general rules for classification. Machine learning can also be
more robust to small variations in the input parameters. In
addition to this, with the use of learning techniques, we argue
that avoiding using manually updated static signature databases
has two potential benefits. Firstly there is no tedious task of
creating these unique fingerprints, all you need is a set of
values or features. The second benefit comes from a known
flaw in many of the existing fingerprinting tools, where a
“first-match” policy is applied, meaning that if two fingerprints
are equal the tool would always predict the first OS with that
exact fingerprint. However, learning techniques, on the other
hand, make calculated guesses of which of the classes with
the same fingerprint that will be predicted.

Contributions: We summarize our main contributions below.

• We propose and evaluate a robust approach to OS
fingerprinting from passive measurements by leveraging
machine learning and deep learning techniques.

• We investigate the use of TCP congestion control variant
as a distinguishing feature in passive OS fingerprinting.

• We explore variability in implementations of TCP variant
by different OSes and its effect on classifying remote OS.

• We study the applicability of Recurrent Neural Networks
(RNN)-based models for robust and advanced passive OS
fingerprinting by combining the basic TCP/IP features and
the predicted TCP variant as input vectors.

• We show that the TCP flavor has a great potential for
boosting passive OS fingerprinting accuracy.

• We build a universal tool that can be applied to first
estimate the TCP cwnd from passive measurements,
second predict the underlying TCP flavor, and finally uses
the predicted TCP variant as an input feature to fingerprint
the remote computer’s OS.

Roadmap: The rest of the paper is organized as follows.
Section II discusses related work, and Section III presents
the experimental datasets. Section IV presents the machine
learning of the OS fingerprinter. The role of TCP variant in
passive OS fingerprinting and its feasibility across all use
cases is presented in Section V. The experimental results
with the loss-based and delay-based predicted TCP variants
and the transfer learning are presented in Section VI. Finally,
Section VII concludes our paper and suggests directions for
future research work.

II. RELATED WORK

Remote OSes fingerprinting has a long history in the
computer security community [2, 30, 31, 34]. In this section,
we briefly summarize the relevant related works as follows.

TCP/IP header fingerprinting and any information related to
application protocols are used to identify the underlying OS
running on a remote host either actively or passively [33]. As
we explained in Section I, there are multiple existing tools
for both the predominant active and passive OS fingerprinting
approaches, where Nmap [34] is one of the most prominent
open-source active fingerprinting tools. The work presented
in [47], SYNSCAN, works in a similar fashion to Nmap,
but it performs the fingerprinting task by actively sending a
small number of crafted network packets to a single TCP
port. Xprobe2 [55] is another popular remote active OS
fingerprinting tool, which relies primarily on different types
of ICMP packets. By actively sending a small number of
User Datagram Protocol (UDP) and ICMP request packets
to the remote target host, Xprobe2 triggers ICMP datagram
responses. Xprobe2 uses a fuzzy logic matching algorithm
based on a statistical computation of scores for each test
performed. Since Xprobe2 utilizes a simple fuzzy signature
matching against the signature database, its detection accuracy
is prone to small changes to the default TCP/IP stack
parameters that might harden the detection of the underlying
OS. However, Xprobe2 is more robust to small fingerprint
variations as compared to Nmap. This is due to the fact that
Nmap uses static rule matching while Xprobe2 enjoys more
flexibility thanks to its fuzzy matching logic.

As explained above the other OS fingerprinting tools,
Ettercap [36] and p0f [56], have not been updated since 2011
and 2014 respectively to include variations of most widely used
modern OSes. For passive OS fingerprinting to be effective, we



4

believe that the limitations of these fingerprinting tools need
to be addressed. The work in [31] also demonstrates that the
OS fingerprinting accuracy of the Ettercap and p0f signature
databases is low and techniques to improve performance was
proposed. It presents rule-based machine learning classifiers
capable of identifying 75 classes of OSes from TCP/IP
packet headers found in the Ettercap database. Lippmann et
al. proposed a classifier technique using k-nearest neighbors
(KNN) that returns an approximate first match for an OS
from a fingerprint database. This counters the problem of
classifying remote and local hosts as unknown if no exact
match is found in the database [31]. However, their evaluation
yielded poor experimental results, rejecting as much as 84%
of the test packets, while 44% of the accepted patterns were
wrongly classified [31]. The problems contributing to poor
OS classification performance were believed to be caused by
two main reasons. The first reason is substitution errors due
to multiple OSes sharing exactly the same fingerprint feature
values. The second reason for this poor OS classification
performance is the high rejection rate caused by numerous
unique feature values derived from the same OS. This error can
only be reduced by combining OS classes. After combining all
the OS classes, the error percentage was reduced to 9.8% with
no rejected packets. It is worth mentioning that fingerprinting
techniques have been also extended to remote device level
fingerprinting [12], thus going beyond remote OS detection
using TCP/IP network stacks.

A recent study that is most closely related to our work,
and which has also given a comprehensive survey on passive
fingerprinting methods, can be found in [30]. The authors
have employed OS fingerprinting methods in the environment
of wireless networks. Besides using the three basic TCP/IP
stacks (i.e., TTL, window size, and initial SYN packet size),
the authors suggested also using the user-agent information in
HTTP request headers and communication with OS-specific
domains can be usable in large dynamic networks [30]. As
shown in Table II, the average accuracy of OS classification
using the TCP/IP parameters reported in [30] is 80.88%.
Zhang et al.’s paper on OS detection [57] utilizes only one
machine learning technique namely Support Vector Machine
(SVM). However, the testing error rate of identifying some
of the OSes e.g., Mac, Cisco, FreeBSD, and OpenBSD
is 25.80%, 24.22%, 17.71%, and 15.85% respectively [57].
Aksoy et al. [2] have employed genetic algorithms for
identifying packet features suitable for OS classification based
on the analysis of the network TCP/IP packets using machine
learning algorithms. However, most of these previous works
use the basic actual TCP/IP features for evaluating passive
OS fingerprinting. Besides, we believe that these tools have
the inability to extract all possible OS-specific features for
passively fingerprinting the underlying OSes. Examples of
those features include OS-specific Domain Name System
(DNS) queries [6], Dynamic Host Configuration Protocol
(DHCP) options [28], etc.

In contrast, what separates our contribution in this paper
from the other previous related works is that our tool
supports a wider range of TCP/IP network stack features.
As shown in Figure 2, the main goal of our work presented

here is to combine these basic TCP/IP features that are
the basis of OS fingerprinting with the underlying TCP
variant by leveraging both machine learning and deep learning
techniques. This contribution remains largely unexplored and
is not used by existing OS fingerprinting techniques. Detecting
the implementation of a TCP variant passively is a challenging
task and this, we believe, is the reason why no previous
works use it to passively fingerprint remote and local OSes.
However, in our case, we already have a general solution for
this difficulty presented in our previous works [18, 19, 20].
The reason why we focus on the implementations of the
underlying TCP variant as a feature in our OS classifier
model is due to the fact that different OSes are doing slightly
different implementations of TCP. Hence, we believe that
passively observing the network-level characteristics found in
TCP packets can give us more information about the remote
computer’s underlying OS. We further believe that this will
also help us to explore in detail the long-term characteristics
of TCP traffic. To the best of our knowledge, this is the first
study that sheds light on the potential of the underlying TCP
variant feature in boosting significantly the accuracy of passive
OS fingerprinting using machine learning and deep learning
techniques. The classification performance of our machine
learning and deep learning approaches in comparison with
other state-of-the-art tools for passive OS fingerprinting, such
as p0f [56], is presented in Table XVI.

III. EXPERIMENTAL DATASETS

Our machine learning models for OS classification is
developed and tested on three datasets, presented below.

A. Benchmark Data
First, we utilize a large benchmark dataset that has been

used for OS fingerprinting in a previous related work [30]. This
dataset is closely aligned with our task, and it was collected
from a university wireless network. The benchmark dataset was
used in the previous work for OS fingerprinting based on the
HTTP header, while the ambition of our paper is to do generic
fingerprinting based only on the TCP packet fields. Since we
aim at fingerprinting that is not application-specific, the TCP
information in the dataset is useful for our purpose, while the
HTTP User-agent information in our experiments is used only
to establish ground truth about the OS that was used.

TABLE I: Statistics and distribution of the OSes and their
market shares within the OS-family.

Android Windows Mac OS Linux iOS Unix Other
8.0 10 Mojave Ubuntu 16.04 12.1 Solaris 11.4 Unknown
8.1 7 High Sierra Ubuntu 18.04 11.4 FreeBSD 11.2
6.0 8.1 Sierra Ubuntu 18.10 12.0
7.0 8.0 El Capitan Fedora 29 10.3
7.1 XP Yosemite Debian 9 9.3
5.1 Vista Mavericks CentOS 7.6 11.2

openSUSE 42.3
36.5% 35.99% 6.37% 0.79% 13.99% 1.58% 4.78%

The benchmark dataset contains 79087345 flows, activity
of 21746 unique users, 253374 WiFi sessions, 25642 unique



5

MAC addresses, and 6104 unique IP addresses, a fingerprint
database of 2078 standard TCP/IP signatures of 51 known
unique OSes with a total of 529 variations when considering
major and minor versions [30]. The dataset consists of three
basic TCP/IP network stack features, i.e., initial SYN packet
size, TTL, and TCP window size [30]. For the dataset
with no label reductions, an accuracy of 84% was achieved.
After our first set of testing, we realized that the data was
severely skewed and that only a few of the classes contained
almost all of the entries, giving us artificially good OSes
classification results. In order to fix this issue, we explored two
approaches: (1) keeping a bias, but with reduced differences,
and (2) removing all bias and creating a dataset with equally
distributed fingerprints for each class. For the first approach,
the fewer occurring OS classes were copied until they reached
the presence of at least half of the most occurring class. In
the second approach, we removed most of the very seldom
occurring classes and ended up with 33 reduced classes. We
also removed all traffic that did not contain HTTP User-agent
information, since we could not establish ground truth for this
traffic. This led to the creation of a new fully general dataset
where all the OS classes were bucketed into seven groups,
consisting of the six most widely used major OS families:
Android, Linux, Mac OS, Unix, Windows, iOS, and a seventh
class called “Other” for OSes not suited for any of the other
groups as shown in Table I. Finally, we ended up distributing
all of the labels equally so that each OS class had the same
number of occurrences. This is not necessarily the approach
that gives a model with the best classification accuracy, but it
creates the most versatile model with balanced training data.
This helps us improve the generalizability of our model with
a unified approach that encompasses all variations of the most
widely used OSes.

TABLE II: The performance of OS classification from previous
related work [30]

Method Accuracy Precision Recall F-score
User-agent 0.9189 0.9812 0.6063 0.7495
TCP/IP parameters 0.8088 0.5249 0.4643 0.4927
Specific domains 0.8402 0.6286 0.4907 0.5512
Combination 0.8582 0.6587 0.6041 0.6302

B. Realistic Traffic
While benchmark traffic is useful to link our experiments

to previous related work, we also wanted additional realistic
traffic for which we have more control, and that allows us
to make our own assurances of the quality of the data. Thus,
we passively collected our realistic dataset from TCP traffic
originated from the internal network of the Oslo Metropolitan
University and destined to various hosts on the Internet. First,
we collected data for fixed (non-mobile) desktop computers
(typically using OSes like Windows, Linux, Unix, Mac OSx,
etc.) by using an intermediate node as shown in the network
setup in Figure 1. Then, we passively collected the data that
covered mobile devices, like android and iOS. The latter was
collected from the 5G 4IoT research lab [1, 44] of the Oslo
Metropolitan University.

We spent a significant amount of effort in establishing
ground truth, i.e., determining the actual OS that has been
used for each traffic flow. To establish ground truth in the
realistic dataset, we follow two approaches. The first approach
was only applicable to the non-mobile desktops, while the
second method was used for both mobile and non-mobile
devices. With the first method, we leveraged the DHCP log
messages associated with the non-mobile desktops to derive the
ground truth from the DHCP server of the Oslo Metropolitan
University network that logs the sessions by the MAC address
and name of the device. Since we collect the real data from
the internal network of our university, extracting the DHCP
log messages showing the distribution of MAC addresses
and device names of the TCP sessions can give us detailed
information about the OSes. The reason why we make use of
these logs to determine the ground truth of the non-mobile
devices is: since the network is dynamic, we cannot have full
control over the connected devices. However, with a useful log
of all the connected devices like this, we can make predictions
and then compare the distribution of the predicted underlying
OSes with the distribution of the MAC addresses and device
names of the TCP sessions logged in the central DHCP server
of our university.

Extracting the DHCP log messages can give us accurate
matches and detailed information about the predicted
underlying operating systems. We could, for example, see
information about the vendor-specific prefixes since most of
the OS variants are identified based on their vendors. The list
of device vendor prefixes is useful in revealing the specific
implementation of an OS because most of the modern OSes
from the same device vendor usually share the same OS kernel
and similar network behaviors. For example, we found out that
Apple products often share the same TCP/IP parameters. This
was the first approach we employed and it is so assuring though
it takes a significant amount of effort. The second approach we
used to identify the OS of the mobile and non-mobile devices is
getting the predefined browser strings that loosely tell the name
of the underlying OS assigned by the vendor from Webserver.

We believe changing the default device names by all users is
not that common and sometimes discouraged by the vendors,
e.g., Google and Apple OSes. However, the device name
of Linux and Windows OSes could be changed easily by
experienced users which would make passively identifying
these devices hard. Since a number of computer vendors offer
devices with a pre-installed OS and default device name and
MAC address, we can use this information to derive the ground
truth for OS fingerprinting. For example, Apple devices use
a default string name of “<user>-iPhone”, “<user>-iPad”,
Microsoft uses “Windows-Phone” for its mobile devices, and
Android uses “android-<android−id>”, etc. Our real traffic
covers the communication to and from our university and
hence all traffic whose source and destination IP addresses
are within the subnets of our internal network. Hence the
network administrator of our university has full control over
the internal machines with real IP addresses that are not going
to a NAT gateway, and therefore it is fairly possible to tell
whether it is a laptop or a desktop PC by looking it up in
the internal database owned by the university. However, since



6

it is a dynamic network we do not have full control over
external machines, because they can be anything behind an
IP address that changes dynamically. This is because there is
an endless number of machines spoofing scanning the network
and they can appear as Linux-powered OSes but they could be
Windows and vice versa and this happens because the user may
have strongly tuned the TCP stack to look like something else.
It is pretty hard to certainly say anything about the external
computers because the communication can go through a NAT
gateway possessing another OS type. For example, if a user is
connected to a student wireless network, there is a chance
that it may go to a Linux NAT gateway, and hence from
outside the user is seen as Linux NAT which makes it hard to
predict whether the underlying OS is Linux, Mac or Windows.
Therefore, fingerprinting devices behind NAT technology on a
distributed network where a number of devices can hide behind
a NAT is another critical challenge. It is, therefore, worth
noting that establishing ground truth in dynamic networks at
a larger scale is a challenging problem and requires a lot of
effort in the data preparation phase. Further investigation to
explore these difficulties will be done in our future works.
Finally, due to the privacy protection of possibly sensitive data,
the payload of all the network packets collected was removed
and anonymized with a prefix-preserving algorithm [10, 51].
Furthermore, we were only allowed to collect TCP headers of
the traffic flows, while we could not collect complete traffic
captures, due to privacy protection and legal reasons.

C. Emulated Traffic
In a real scenario where the OS fingerprinting is going

on continuously in an intermediate node of an enterprise or
production network, the intermediate node will have more
information available than only the TCP header, such as
the traffic profile or the knowledge of congestion or the
outstanding bytes-in-flight of a TCP flow. In our experiments
below, we show how this information can be very useful for
OS fingerprinting. Since we do not have full traffic packet
captures in our benchmark dataset or in our realistic dataset,
we needed an additional dataset that we collected from an
emulated network, where there would be no privacy protection
or legal issues related to our dataset.

The architecture of our emulated network is similar to
the network setup shown in Figure 1, except that all the
nodes (the sender, the intermediate node, and the receiver)
are implemented in virtual machines. All background traffic
of the OSes for our emulated scenario is generated using the
iperf [9]. In our experiment, the TCP flows were captured in
the order of 1 minute duration and at a variable rate of 10 to
1000 Mbit/s. In order to build our model, we used about 3GB
amount of training data. The setup to capture the traffic and
the assumptions that we made are explained in further detail in
our previous works [18, 19, 20]. Establishing ground truth in
an emulated setup is straightforward, as we have full control
of the OSes used when generating the traffic. In addition to
establishing the ground truth, we also wanted to allow the
intermediate node to establish a prediction of the TCP variant
by monitoring the on-going traffic profile of the TCP flow

between the sender and the receiver. As shown later in the
paper, using definitive or predicted knowledge of the TCP
variant as an additional input feature to the OS fingerprinting,
might boost the fingerprinting accuracy significantly. How the
machine learning model for prediction of the TCP variant in
the emulated scenario is trained and how the TCP variant is
subsequently predicted are presented in the following section.

OS PredictionFingerprinter using
Machine Learning/
Deep Learning 

Input features

Packet Size

Window Size

TTL

TCP VariantOracle Predicted TCP Variant

1.
Ba

se
li

ne
 

Ex
pe

ri
me

nt

2. Oracle-based 
Experiment

3. Prediction-based 
Experiment

Fig. 2: The process implemented on the intermediate node for
passive OS fingerprinting.

Bytes in 
Flight

Predicted 
TCP Variant

Predicted cwnd

Intercepted Traffic Deep Learning/LSTM 

Fig. 3: The process implemented on the monitor for prediction
of the TCP variant of the passively intercepted TCP traffic
flow. An LSTM-based machine learning module predicts the
cwnd from the outstanding bytes-in-flight. In the next step, the
cwnd behavior is used to predict the underlying TCP variant
as explained in further detail in our previous works [18, 19,
20]. As we can see in the bottom right part of Figure 2, The
predicted TCP variant is finally used as an input feature to the
OS fingerprinting process.

IV. MACHINE LEARNING OF THE OS FINGERPRINTER

A. Classical Machine Learning Approaches
The OS fingerprinter takes various features as input

parameters, and use machine learning to predict the OS as
shown in Figure 2. Many machine learning techniques could
be used to implement a model for passive OS fingerprinting. In
this paper, we have employed the following most commonly
used classical machine learning methods suitable for our
task. In order to train and test our classification models, we
employed every experiment with a ratio of 60% training,
40% testing split, and 5-fold cross-validation setting on all
variations of the features into one learning model.

SVM: In order to perform an efficient multi-class SVM
classification through cross-validation, we tuned the SVM
hyperparameters using a GridSearchCV that allows specifying



7

only the ranges of values for optimal parameters by
parallelization construction of the model fitting. Finally, in
our evaluation, we found out that SVM with a Radial Basis
Function (RBF) kernel for classification model yields a
substantially better result.

Random Forest (RF): We tuned the meta-estimator by varying
the number of decision trees between 1 and 1000. We found
out that increasing the number of trees more than 10 doesn’t
give much improvement in the classification accuracy.

KNN: We applied KNN by testing different values of K
ranging from 5 to 100 followed by a weight function for a
total of 20 observations. The observations have been conducted
in two ways. In the first experiment, we set the weight to
uniform. In the second experiment, the points are weighted by
the inverse of their distance, causing closer neighbors to have
greater influence. Finally, we choose the model that has the
highest accuracy for a given unseen instance.

Naive Bayes (NB): Intuitively, advanced and modern machine
learning methods are expected to perform better than classical
techniques. Hence, in our experiment, we have employed
classical classification machine learning methods like NB
model as a baseline classifier. As it is shown in the
experimental results, given its simplicity and effectiveness, it
consistently performs comparably well as the other traditional
classification models with a small inaccuracy margin.

B. Deep Learning Approaches
To find the deeper characteristics of TCP variants

implemented by respective OSes and exploit the extra
OS-specific information, we apply the following two neural
network architectures.

Multilayer Perceptron (MLP). In our evaluation, MLP model
with a single-layer feedforward neural network [22, 42] has
been used to classify the different classes of OSes. After
the hyperparameter tuning, we tested our MLP model with
a different number of batch sizes, hidden layers, and nodes
(e.g., 0, 1, 2, 32, 64, 128) in each layer. Combining all of
these, a total of 324 models were trained with and without
the default TCP variant. We found out that the results for
both with and without a known TCP variant were almost the
same with an insignificant drop in the accuracy irrespective of
which hyperparameters performed the best. Finally, 150 nodes
of the network per dataset are trained for 500 epochs with
a batch size of 500 by SGD with momentum of 0.9 and a
constant learning rate of 0.01. However, we learned that SGD
is sensitive in regards to the selection of the learning rate
since it doesn’t automatize the values and we also found that
it suffers from premature convergence and is outperformed
by Adam-based optimization methods. Hence, both Adam
and Nadam gradient-based optimization algorithms fit for our
purpose and that is because we wanted to use an optimization
algorithm that adapts its learning rate dynamically in a way that
doesn’t affect the objective function and learning process of the
model. Our experimental results show that the hyperparameter
tuning baseline experiments by applying tanh as activation

function and Adam optimization algorithm and training the
model for 500 epochs, provides a substantial improvement in
accuracy as compared to the other parameters.

Long Short-Term Memory (LSTM) models. We have
explored an approach to classify the underlying OS from
passive measurements using LSTM-based RNN architecture by
combining the basic TCP/IP features and the underlying TCP
variant shown in Table 2 as input vectors. For more details
about LSTM applied in the context of computer networks, we
refer the reader to our previous paper [19]. We trained our
LSTM model over 500 epochs of the training samples with
a batch size of 250 as values in time-series. We propagate
the input feature vector (x) to the model through a multilayer
LSTM cell followed by a fully connected dense layer of 150
hidden nodes with Rectified Linear Unit (ReLU) activation
function using the hard sigmoid as recurrent activation for
the different layers that generates an output of a sequence
dimensional vector of predicted OSes (yt). We trained our
LSTM-based learning algorithm without the knowledge of the
input features from the true signatures of the OSes during
the learning phase. We learn the model from the training
data and then finally predict the test labels from the testing
instances on all variations of the OS-specific parameters. In
order to get a more stable and robust to changes of the passive
OS classification model, we have applied the Adam stochastic
optimizer algorithm [26]. It is one of the most effective
optimization algorithms in the deep learning community. In our
experiment, the algorithm is set with an initial learning rate of
0.001 and exponential decay rates of the first (β1) and second
(β2) moments set to 0.9 and 0.999 respectively. We further
optimize a wide range of important hyperparameters related
to the neural network topology to improve the performance of
our passive OS classification model.

C. Comparative Suitability
Here, we demonstrate the comparative suitability of

implementing each classical machine learning and deep
learning classifiers analyzed for the benchmark, emulated, and
realistic datasets we used in our paper.

SVM is often used as a baseline technique for both
binary and multi-class classification tasks in the machine
learning community. In addition to this, SVM classifiers
use kernelization in order to handle non-linearly separable
features. SVM techniques also work fine with unbalanced
datasets like the benchmark data we used in our paper.
In our experiment, we employed kernel SVM with RBF
for classification equipped with different kernel functions
and regularization parameters. RF classification models,
as compared to SVM classifiers, have fewer problems
handling non-linearity. Furthermore, RF models perform
slightly better when it comes to high-dimensional regression
and classification tasks. Another main reason why we
used RF as an evaluation approach in our experiments
is that it is relatively fast and it is possible to maintain
a reasonably acceptable accuracy with inconsistent and
unbalanced datasets. Moreover, state-of-the-art KNN models
for neighborhood-based classification are very simple,



8

effective, and also handle both linearly and non-linearity
separable features reasonably well. Bayesian methods, on
the other hand, are incapable of handling well non-linearly
separable features. NB operates with the strong hypothesis
of statistical independence between the features of the
model. However, the reason why we have employed NB
in our evaluation as a baseline classifier is to compare the
performance of modern and older machine learning methods.
Advanced deep learning models have great potential for
handling non-linearity in the dataset but at the cost of longer
training time as can be seen in Table XVII and by introducing
a heavy computational burden.

D. Experimental Hardware Setup
All our machine learning experiments are carried out using a

cluster of HPC machines based upon the GNU/Linux operating
system running a modified version of the 4.15.0-39-generic
kernel release. The prediction model is performed on an
NVIDIA Tesla K80 GPU accelerator computing with the
following characteristics: Intel(R) Xeon(R) CPU E5-2670 v3
@2.30GHz, 64 CPU processors, 128 GB RAM, 12 CPU
cores running under Linux 64-bit. All nodes in the cluster
are connected to a low latency 56 Gbit/s Infiniband, gigabit
Ethernet, and have access to 600 TiB of BeeGFS parallel file
system storage.

E. Objectives of Our Experiments
The aim of our experiments is to explore the role of the

underlying TCP variant as an input feature when passively
detecting the underlying OS. To investigate this, we divide
our analysis into three different experiments.

First, in the baseline experiment presented in Section V, we
carry out the OS fingerprinting without using a known TCP
variant as an input feature. This corresponds to the simplest
state-of-the-art transport layer method, which is illustrated in
the upper part of Figure 2. Since there is a close connection
between existing popular OSes and the TCP variants they
use, our hypothesis was that the potential for improvement
by using the TCP variant as an input feature would be
significant. For example, CUBIC [15] is the default congestion
control algorithm as part of the Linux kernel distribution
configurations from version 2.6.19 onwards. Since Android
devices are also Linux-powered, CUBIC remains to be the
default TCP congestion control algorithm. Many Windows
7 distributions have been shipped with the default New
Reno [21] and whereas Windows 8 families with CTCP [48].
Therefore, in the next Oracle-based experiment presented
in Section V, we investigate the potential of knowing the
TCP variant, and how much this knowledge might boost the
fingerprinting accuracy. Here we assume that there is an Oracle
that can identify and give the TCP variant used in the TCP flow
that is fingerprinted. This is illustrated in the bottom left part
of Figure 2. However, in a real scenario, the intermediate node
would not have access to definite knowledge of the TCP variant
(e.g., given by an Oracle). Instead, the intermediate node might
at best try to infer it from the monitored traffic. Thus, in the
third prediction-based experiment presented in Section VI, we

first allow the intermediate node to predict the TCP variant
passively. This is illustrated in the bottom right part of Figure
2. The OS fingerprinter then uses that TCP variant prediction
as an input feature to make the OS prediction illustrated in
the upper part of Figure 2. The TCP variant is predicted by
analyzing the famous sawtooth pattern behavior of estimated
cwnd of TCP, which is computed based on the outstanding
bytes-in-flight [19, 20]. This is presented in more detail in the
next section. Since the latter experiment requires TCP traffic
details of outstanding bytes-in-flight, which is not available in
our benchmark and realistic datasets, this experiment is only
possible with our emulated dataset.

V. THE ROLE OF TCP VARIANT IN PASSIVE OS
FINGERPRINTING AND ITS FEASIBILITY

In this section, we perform primary experiments on
whether the underlying TCP variant is a relevant input feature
in passive OS fingerprinting.

A. Baseline experiment: Results without knowing the TCP
variant

Here we present the results of the machine learning and deep
learning techniques under all the validation scenarios presented
above without a known underlying TCP variant which will play
the role of baseline for the other evaluations.

Based on benchmark data from previous related work:
Looking at Table III, both machine learning and deep
learning classification techniques have consistently achieved
good levels of precision and recall for all general classes of
OSes except iOS. Quantitatively, iOS, and Mac OS devices
were underrepresented in the benchmark data from previous
related work. Besides, as it is shown in Figure 4, there is a
slightly higher misclassification of iOS as unknown and this
is why the precision and recall of iOS are comparably lower
than the rest of OSes. We also believe that the limited TCP/IP
stack basic features could contribute to the indistinguishability
and misclassification of OS classes with the same kernel
implementation. The false positives are easier to notice in
the corresponding confusion matrices. As discussed above,
since the benchmark dataset presented in [30] is skewed we
argue that using balanced accuracy is a better indicator of
performance for such datasets as shown in Tables III and VI.

Based on realistic traffic: Our performance results of the
realistic traffic without a known TCP variant using the machine
learning and deep classification techniques are presented in
Table IV. The respective normalized confusion matrix for each
technique are presented in Figure 5.

Based on emulated traffic: Our performance results of
the emulated traffic without a known TCP variant as an
input feature using both machine learning and deep learning
techniques are presented in Table V. As we can see in
the corresponding normalized confusion matrices presented
in Figure 6, the precision and recall for most of the OSes
using both machine learning and deep learning techniques are
reasonably good.



9

TABLE III: Benchmark data [30] experimental results without a known TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.75 0.89 0.86 0.90 0.86 0.90 0.68 0.85 0.75 0.92 0.77 0.85
Linux 0.84 0.83 0.91 0.91 0.86 0.94 0.83 0.82 0.90 0.82 0.83 0.85

Mac OS 0.64 0.76 0.61 0.82 0.59 0.83 0.64 0.76 0.62 0.81 0.62 0.83
Other 0.91 0.81 0.91 0.81 0.91 0.81 0.88 0.81 1.00 0.74 0.91 0.81
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.94 0.99 0.94 0.99

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.98 0.79 0.97 0.91 0.97 0.86
iOS 0.71 0.54 0.71 0.54 0.79 0.48 0.69 0.54 0.67 0.57 0.79 0.55

Average 0.82 0.82 0.85 0.84 0.85 0.83 0.80 0.79 0.84 0.82 0.83 0.82
Balanced Accuracy 82.17% 84.76% 84.28% 80.11% 82.98% 81.87%

TABLE IV: Realistic traffic experimental results without a known TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.75 0.89 0.86 0.90 0.84 0.93 0.68 0.85 0.81 0.83 0.76 0.86
Linux 0.89 0.82 0.94 0.89 0.93 0.88 0.85 0.82 0.89 0.79 0.90 0.81

Mac OS 0.63 0.81 0.61 0.82 0.61 0.82 0.64 0.76 0.61 0.82 0.82 0.79
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.92 0.99 0.94 0.99

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.98 0.82 0.98 0.89 0.97 0.89
iOS 0.88 0.72 0.86 0.73 0.88 0.72 0.86 0.72 0.84 0.73 0.70 0.92

Average 0.85 0.83 0.86 0.85 0.87 0.85 0.83 0.81 0.84 0.83 0.83 0.84
Accuracy 83.43% 85% 85.10% 81.25% 83.91% 83.27%

TABLE V: Emulated traffic experimental results without a known TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.74 0.90 0.86 0.90 0.85 0.91 0.74 0.88 0.75 0.88 0.91 0.85
Linux 0.92 0.82 0.94 0.89 0.92 0.90 0.84 0.85 0.93 0.78 0.92 0.74

Mac OS 0.63 0.81 0.61 0.82 0.61 0.82 0.64 0.76 0.62 0.81 0.86 0.88
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.94 1.00

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.97 0.88 0.93 0.91 0.98 0.73
iOS 0.88 0.73 0.86 0.73 0.88 0.73 0.88 0.73 0.88 0.73 0.82 1.00

Average 0.85 0.84 0.86 0.85 0.87 0.85 0.84 0.83 0.85 0.83 0.89 0.88
Accuracy 84.67% 85.73% 85.27% 83.12% 84.05% 88.44%

TABLE VI: Benchmark data [30] experimental results with Oracle-given TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.96 1.00 0.99 0.98 0.99 0.98 0.93 0.98 0.98 0.96 0.96 0.99
Linux 0.86 0.93 0.92 0.95 0.91 0.95 0.82 0.92 0.87 0.94 0.90 0.93

Mac OS 0.99 0.90 0.96 0.92 0.96 0.92 0.98 0.88 0.96 0.92 0.99 0.90
Other 0.93 0.81 0.93 0.81 0.91 0.83 0.91 0.81 0.93 0.81 1.00 0.74
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.97 0.91 0.99 0.89 1.00 0.78 0.97 0.91 0.83 0.92
iOS 0.75 0.88 0.75 0.91 0.75 0.91 0.71 0.89 0.76 0.89 0.72 0.85

Average 0.92 0.92 0.93 0.93 0.93 0.92 0.91 0.89 0.92 0.92 0.91 0.90
Balanced Accuracy 91.83% 92.56% 92.33% 90.05% 91.97% 91.58%

Comparison of results without known TCP variant: As
shown in Tables III, IV, and V, our experimental results are
pretty consistent. Firstly, we can see that there is not much
difference in performance across different machine learning
and deep learning techniques. But more importantly, there are
not many differences in performance between results from

using different types of experimental data. This is intuitively
correct, since the OS fingerprinting is based on the basic
TCP/IP packet fields, and should not differ much between
various types of data, whether we do evaluation using the
benchmark data, real data or emulated data. Secondly, we
believe accuracy in the range of 82-88% (average value) is



10

TABLE VII: Realistic traffic experimental results with Oracle-given TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.99 0.98 0.99 0.98 0.93 1.00 0.97 1.00 0.97 0.97
Linux 0.86 0.91 0.94 0.93 0.92 0.94 0.83 0.91 0.91 0.92 0.90 0.93

Mac OS 0.99 0.90 0.96 0.92 0.97 0.92 1.00 0.88 0.99 0.90 0.97 0.90
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.99 0.89 0.99 0.89 1.00 0.84 0.99 0.89 0.99 0.89
iOS 0.93 0.96 0.91 0.99 0.92 0.98 0.91 0.96 0.91 0.98 0.92 0.97

Average 0.95 0.95 0.96 0.96 0.96 0.96 0.94 0.94 0.95 0.95 0.96 0.95
Accuracy 94.81% 95.65% 95.69% 93.62% 95.12% 95.14%

TABLE VIII: Emulated traffic experimental results with the Oracle-given TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.97 0.98 0.99 0.98 0.99 0.98 0.95 1.00 0.98 0.97 0.96 0.98
Linux 0.90 0.91 0.95 0.93 0.92 0.95 0.88 0.90 0.97 0.89 0.93 0.91

Mac OS 0.99 0.90 0.97 0.92 0.97 0.92 0.99 0.90 0.93 0.94 0.94 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.97 0.91 0.97 0.91 0.99 0.89 0.99 0.89 0.98 0.88
iOS 0.91 0.98 0.92 0.98 0.93 0.97 0.91 0.97 0.91 0.99 0.91 0.97

Average 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
Accuracy 95.10% 96.02% 95.83% 94.60% 95.24% 95.08%

(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 4: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using the benchmark data from previous related work [30].



11

(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 5: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using a realistic traffic.

perhaps not sufficient for a product in a real deployment. Our
hypothesis is that this accuracy could be boosted considerably
had we only known the implementation of the underlying TCP
variant. We will explore this hypothesis in the next section.

B. Oracle-based experiment: Results using Oracle-given TCP
variant

Here we assume that we know exactly the underlying TCP
variant, i.e., we assume it is given by an Oracle. We show
that knowledge of the TCP variant has a great potential for
boosting passive fingerprinting of OSes, and in this section,
we will try to quantify this potential. In the next section, we
will show that much of this potential can be harvested by using
a tool that predicts the underlying TCP variant.

Based on benchmark data from previous related work:
Table VI shows a significant performance gain across all
classes of OSes when we assume prior knowledge of the
underlying TCP variant, as compared to the results when the
TCP variant is unknown presented in Table III.

Based on realistic traffic: The performance results of the
realistic traffic with the Oracle-given TCP variant presented in
Table VII shows the potential of knowing TCP variant given by
an Oracle for passive OS fingerprinting in a realistic scenario.

Based on emulated traffic: Our performance results of
the emulated traffic with the Oracle-given TCP variant
using both classical machine learning and deep learning
techniques are presented in Table VIII. We can see that this
shows a significant improvement in performance over the
results without a known TCP variant presented in Table V.
Both machine learning and deep learning techniques have
comparable and consistent results in terms of accuracy.

Comparison of results with Oracle-given TCP variant:
Our accuracy results presented in Tables III, VII, and VIII,
demonstrate that by knowing the TCP variant we obtain a
considerable performance boost in all our experimental results,
compared to our previous results obtained without knowledge
of the TCP flavor. With an Oracle-given TCP variant, we
obtain a prediction accuracy of 94-96%, with an average value
of 94.1% over all traffic classes and of 95.4% over only
emulated traffic. The accuracy results are pretty consistent
across all scenarios. Comparing these results with our previous
results that do not use the Oracle (84.1% on average for
all traffic types and 85.6% only for emulated traffic), we
observe a solid increase in the OS fingerprinting performance.
This improvement would significantly boost the usefulness of
a product to be implemented in a real enterprise network
infrastructure. As in the previous section, here again, we
observe highly consistent performance results across different



12

(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 6: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using emulated traffic.

machine learning and deep learning techniques and also
between the use of different types of experimental data. The
latter is useful knowledge for the next section since it means
that performance increases obtained over one traffic type is
shown to be amenable to other traffic types as well.

In the next section, we will have to base our evaluation on
emulated data, since we do not have the TCP traffic patterns
of the realistic data or benchmark data at hand. These traffic
patterns are required to be able to passively infer the TCP
variant in the experiments presented in the next section. In this
section, the idealistic Oracle was used only to demonstrate the
potential of knowing the TCP variant, but this is not a realistic
assumption. Thus, in the next section, we will instead base our
evaluation on a TCP variant that is passively predicted by a
deep learning-based tool that we developed and presented in
our previous work [18, 19, 20]. Using this tool, we explore
how close our performance will get to the ideal solution of
having an Oracle-given TCP variant.

Feature Selection: For the traditional machine learning
algorithms, we can employ any feature selection algorithm
that can be used to experiment with the performance of each
input feature. Feature selection is an NP-hard problem and
the vast majority of those feature selection algorithms employ
some greedy criteria to select a subset of features. However,
since we have very few input features (4 features in our case),

we opted for a more systematic and computationally feasible
approach where we checked all possible combinations of 2
features and 3 features to yield an optimal feature selection as
shown in Tables IX and X. This could help us understand the
impact of each input feature on the passive OS classification
performance. Interestingly, the TCP flavor was present in the
combination of 2 features and 3 features and it consistently
improves the classification performance as shown Tables IX
and X. We could employ this approach for all the classical
machine learning algorithms presented in our paper. However,
to avoid redundancy for the reader, the feature combinations
presented in Tables IX and X are only for the RF algorithm.
Effective passive OS fingerprinting analysis requires more
variations in network traffic. As it is specified in [41] and [40],
inspecting a combination of the TTL in the IP header and the
size of the TCP receiver window of the first packet in a TCP
session is often enough in order to successfully fingerprint
various OSes of target remote computers. One main reason
behind why the values of TTL and TCP receiver window
size vary is that different OSes and different versions of the
same underlying OS set different default values for these
parameters [40, 41]. As it can be seen from the experimental
results presented in Tables IX and X, a combination of the
input features TTL and the TCP window size achieves a better
accuracy consistently when we have both two and three pairs
of the input features.



13

TABLE IX: RF classification results of emulated traffic using two features combinations of the initial SYN packet size (PS),
TCP receiver window size (WS), TTL, and the Oracle-given TCP variant.

Feature Combinations
PS, WS PS, TTL PS, Oracle-given TCP WS, TTL WS, Oracle-given TCP TTL, Oracle-given TCP

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.72 0.77 0.78 0.59 0.68 0.90 0.72 0.89 0.79 0.88 0.66 0.90
Linux 0.91 0.75 0.80 0.84 0.91 0.74 0.86 0.82 0.90 0.84 0.89 0.75

Mac OS 0.62 0.78 0.60 0.78 0.64 0.76 0.64 0.76 0.61 0.82 0.64 0.76
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99

Windows 0.94 0.77 0.92 0.80 0.95 0.86 0.95 0.87 0.95 0.88 0.94 0.81
iOS 0.75 0.74 0.75 0.74 0.85 0.73 0.88 0.73 0.88 0.73 0.85 0.73

Average 0.80 0.79 0.79 0.78 0.83 0.81 0.84 0.83 0.85 0.84 0.83 0.81
Accuracy 79.8% 78.2% 81.4% 82.6% 83.7% 81%

TABLE X: RF classification results of emulated traffic using three features combinations of the initial SYN packet size (PS),
TCP receiver window size (WS), TTL, and the Oracle-given TCP variant.

Feature Combinations
PS, WS, TTL PS, TTL, Oracle-given TCP WS, TTL, Oracle-given TCP PS, WS, Oracle-given TCP

OS Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.86 0.90 0.92 0.91 0.97 0.98 0.92 0.97
Linux 0.94 0.89 0.94 0.82 0.89 0.91 0.92 0.87

Mac OS 0.61 0.82 0.91 0.88 0.97 0.92 0.97 0.88
Unix 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.98 0.89 0.87 0.86 0.94 0.89 0.98 0.83
iOS 0.86 0.73 0.88 0.96 0.92 0.96 0.87 0.98

Average 0.86 0.85 0.92 0.91 0.95 0.94 0.93 0.93
Accuracy 85.73% 91.4% 94.5% 92.9%

C. TCP variant prediction tool

The main goal of the experiments in the emulated network is
to use the predicted TCP variant as an additional distinguishing
input feature to the passive OS fingerprinting. The TCP variant
is predicted by the process illustrated in Figure 3. As described
in sufficient detail in our previous works [18, 19, 20], we used a
database to match and join the intercepted TCP traffic on both
the intermediate node and the sending node. The outstanding
bytes-in-flight of the traffic (i.e., the number of bytes that have
been sent but not yet acknowledged) is used as input to our
machine learning model to predict the cwnd behaviour of the
traffic. We use LSTM for the machine learning. We trained and
verified the machine learning model by matching the predicted
TCP states with the actual TCP kernel states directly logged
from the Linux kernel of the sending node. Since we have full
control of the sending nodes, we can track the system-wide
TCP state of every packet that is sent and received from
the kernel to verify our model’s prediction accuracy against
the actual TCP variant by matching with the actual sending
TCP states using the techniques presented in our previous
works [18, 19, 20].

After the verification, we can run our learning model and
get the cwnd predictions of the TCP stack in use. Once
we can estimate the cwnd of the sender, we can also infer
the multiplicative back-off factor to decrease the cwnd on
a loss event (β) which is an important feature for uniquely
identifying the TCP variants. Finally, we combine the predicted
TCP variant as the basis of OS fingerprinting with the basic
TCP/IP features as shown in Figure 2. Here, we consider only
loss-based TCP congestion control algorithms, e.g., BIC [52],
CUBIC [15], CTCP [48], Reno [23], and New Reno [21].
Our approach could also be useful to other TCP variants like

Google’s QUIC [29]. QUIC is a general-purpose transport
layer network protocol that uses packet loss as an indicator
of congestion and supports a number of different congestion
control algorithms, including CUBIC [15] and BBR [5].

VI. PASSIVE OS FINGERPRINTING BASED ON PREDICTED
TCP VARIANT

Based on the types of implicit congestion signals and
other local information, the underlying TCP congestion control
algorithms are categorized into loss-based and delay-based
variants. Int his section, we demonstrate the potential of
passively predicting both the loss-based and delay-based TCP
flavors for improving the passive OS fingerprinting.

A. Results using loss-based TCP variant prediction
In Section V, we showed that Oracle-given knowledge of the

underlying TCP variant has a great potential for improving
the passive OS fingerprinting. In reality, however, we don’t
have an Oracle-given TCP variant. Since passively detecting
the TCP variant is a challenging task, this is where our tool
from previous works on predicting the underlying TCP variant
from passive measurements [18, 19, 20] comes into play. In
this Section we use the TCP variant passively predicted by
this tool as an input feature for the passive OS fingerprinting.
The TCP variant is inferred from the famous Additive Increase
and Multiplicative Decrease (AIMD) sawtooth pattern of
TCP’s estimated cwnd computed based on the outstanding
bytes-in-flight. Since we don’t have access to the actual cwnd
of the senders in the benchmark data and realistic traffic, here
we consider only the emulated traffic.



14

Based on emulated traffic: In this section, we use a tool to
predict the TCP variant from passive measurements of TCP
traffic patterns, and this prediction is used as input to the
OS fingerprinting method presented above. The experimental
results of both techniques are presented in Table XI.

Comparison of results with a predicted TCP variant:
Results with emulated data and a passive prediction of the
TCP variant as shown in Table XI reveal an accuracy of
91.2% on average, which comes pretty close to the accuracy
of 95.3% obtained on emulated traffic with the TCP-variant
given by the Oracle. Intuitively, when we perform learning
based on the TCP variant prediction, the OS classification
accuracy must be lower than the Oracle-given TCP variant.
But the question is how close can we get to the idealistic
scenario of having an Oracle. Our results show that using our
tool for TCP variant prediction from passive measurements
gives reasonably good OS fingerprinting accuracies that come
close to the results obtained by using the Oracle-given TCP
variant. Even though the performance results with the TCP
variant passively predicted by our deep learning-based tool
are slightly lower as compared to the TCP variant given by an
idealistic Oracle, our performance results of using our tool are
reasonably competitive.

B. Results using delay-based TCP protocols
The passive OS fingerprinting method presented above,

where the cwnd is first computed based on the outstanding
bytes-in-flight, then the underlying TCP flavor is predicted
from the estimated cwnd, is particularly efficient for loss-based
TCP variants that consider packet loss as an implicit
indication of congestion. Unlike traditional loss-based TCP
variants, delay-based TCP congestion control algorithms use
the changes in queueing delay measurements as implicit
feedback to congestion in the network. Delay-based congestion
control algorithms attempt to avoid network congestion by
monitoring the trend of network path’s Round-Trip Time
(RTT) information contained in packets [16]. By design,
unlike loss-based TCP algorithms, the multiplicative decrease
parameter (β) of delay-based congestion control algorithms is
not fixed which makes it fundamentally challenging to predict
the TCP variant from passive traffic measurements when there
is variability in delay. For example, TCP Veno [13] sets β
factor to 0.8 when the queueing delay is small. However, when
the queueing delay is high, TCP Veno [13] sets β to 0.5.
The back-off parameter along with other TCP characteristics
can be used to predict the underlying TCP congestion control
algorithms. In our previous work [17], we have developed an
efficient tool for the prediction of the underlying delay-based
TCP flavors from passive measurements by utilizing the β
and queueing delay values. By using different data-driven
classification techniques based on probabilistic models and
Bayesian inference approaches, we addressed how the β varies
as a function of queueing delay changes and investigated
into how the TCP variants of delay-based congestion control
algorithms can be predicted both from passively measured
traffic and real measurements over the Internet [17].

In this section we will extend the passive OS fingerprinting
method presented above by coupling to our previous work [17]
to also cover delay-based TCP variants, e.g., TCP Vegas [4],
TCP Veno [13], BBR [5], etc. The performance results with
emulated data and a passive prediction of the delay-based TCP
flavors as presented in Table XII show an accuracy of 95.24%
and 95.38% on average using both classical machine learning
and deep learning techniques respectively. The corresponding
confusion matrices of these techniques are presented in
Figure 7. We can see that this shows a significant improvement
in performance over the results without a known TCP variant
presented above in Table VIII. Both machine learning and deep
learning techniques have comparable and consistent results
in terms of accuracy. Our experimental results show that
using our statistical methods for delay-based TCP flavors
prediction gives reasonably good OS fingerprinting accuracies.
However, in a realistic assumption, we don’t know exactly if
the sending node is using either a loss-based or delay-based
TCP flavor implementation. Therefore, we need a generic
passive OS fingerprinting tool that can take both loss-based
and delay-based TCP variants as input, and make a reasonably
good OS classification.

To make our passive OS fingerprinting tool generic, we run
a separate extensive experiment in an emulated setting with a
combination of loss-based (e.g., TCP Reno [23], BIC [52],
and CUBIC [15]) and delay-based (e.g., TCP Veno [13]
and TCP Vegas [4]) TCP variants. As a result, we obtain
an OS fingerprinting performance accuracy of 94.95% and
95.22% on average using machine learning and deep learning
techniques respectively as shown in Table XIII. This shows that
our model can also be applied equally well to loss-based as
well to delay-based TCP variants as input. As in the previous
sections, here again, we observe both our machine learning
and deep learning classification techniques under an emulated
setting have consistently achieved good levels of precision
and recall for all general classes of OSes. By combining
different variants of TCP, we demonstrate that our passive OS
fingerprinting tool is generic enough which gives promising
and comparable results in terms of accuracy across different
experimental scenarios.

C. Transfer Learning Results
One of the primary benefits of employing machine learning

and deep learning techniques as discussed in Section I is
the concept of transfer learning. In the machine learning
community, transfer learning is defined as the ability to take
a model trained in one experiment scenario and apply it for
classification in a different experiment scenario. For example,
in our case, that means we are able to train our model on a
dataset created in an emulated network with an Oracle-given
TCP variant and apply it for classification of our dataset from
the realistic traffic. Results presented in Table XIV shows
that the learning of the OS fingerprinter using loss-based
TCP variants transfers well into other scenarios. Similarly,
as it can be seen from the results shown in Table XV,
the learning of our OSes fingerprinting model using both
loss-based and delay-based predicted TCP variants transfers



15

TABLE XI: Emulated traffic experimental results with loss-based predicted TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.92 0.96 0.92 0.97 1.00 0.97 0.92 0.95 0.95 0.97 0.92 0.96
Linux 0.79 0.85 0.94 0.82 0.92 0.94 0.80 0.89 0.98 0.79 0.86 0.90

Mac OS 0.96 0.88 0.97 0.87 0.85 0.94 0.97 0.88 0.95 0.90 0.95 0.88
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.92 0.78 0.85 0.80 0.88 0.91 0.98 0.65 0.94 0.77 0.97 0.77
iOS 0.85 0.94 0.86 0.96 0.93 0.87 0.84 0.95 0.82 0.99 0.88 0.96

Average 0.90 0.90 0.91 0.91 0.93 0.93 0.91 0.90 0.92 0.91 0.92 0.92
Accuracy 90.01% 91.09% 92.15% 90.40% 91.45% 91.93%

TABLE XII: Emulated traffic experimental results with delay-based predicted TCP variant using machine learning and deep
learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.98 0.98 0.99 0.98 0.95 1.00 0.97 0.97 0.98 0.95
Linux 0.88 0.90 0.91 0.94 0.94 0.93 0.86 0.91 0.96 0.88 0.93 0.91

Mac OS 0.99 0.90 0.98 0.92 0.98 0.92 0.99 0.90 0.93 0.94 0.95 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.89 0.98 0.88 0.99 0.89 0.99 0.89 0.97 0.91 0.98 0.89
iOS 0.91 0.97 0.92 0.98 0.91 0.99 0.93 0.96 0.91 0.97 0.90 0.98

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
Accuracy 94.60% 95.86% 95.81% 94.68% 95.61% 95.14%

TABLE XIII: Emulated traffic experimental results with a combination of loss-based and delay-based predicted TCP variant
using machine learning and deep learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.97 0.98 0.97 0.98 0.99 0.98 0.94 0.99 0.98 0.98 0.98 0.97
Linux 0.91 0.91 0.91 0.90 0.91 0.95 0.89 0.90 0.93 0.91 0.96 0.87

Mac OS 0.99 0.90 0.98 0.92 0.97 0.92 0.97 0.91 0.94 0.94 0.92 0.94
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.89 0.98 0.90 0.99 0.89 0.98 0.88 0.99 0.89 0.95 0.90
iOS 0.91 0.98 0.91 0.97 0.92 0.98 0.90 0.96 0.92 0.98 0.91 0.97

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.94 0.94 0.95 0.95 0.95 0.94
Accuracy 95.04% 95.28% 95.78% 93.70% 95.37% 95.07%

TABLE XIV: Transfer learning experimental results with loss-based predicted TCP variant using machine learning and deep
learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.98 0.98 0.99 0.98 0.94 0.99 0.97 0.98 0.97 0.96
Linux 0.86 0.91 0.90 0.95 0.92 0.95 0.85 0.93 0.95 0.85 0.91 0.91

Mac OS 0.99 0.90 0.98 0.92 0.97 0.92 0.99 0.90 0.94 0.94 0.96 0.90
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.98 0.90 0.97 0.91 0.99 0.84 0.99 0.89 0.98 0.87
iOS 0.93 0.96 0.93 0.97 0.93 0.97 0.90 0.95 0.90 0.98 0.90 0.98

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.94 0.93 0.95 0.95 0.94 0.94
Accuracy 94.79% 95.35% 95.76% 93.54% 94.72% 94.28%

well across other scenarios. A transfer learning experiment
combining the loss-based and delay-based predicted TCP
variants for an OS fingerprinting as presented in Table XV
gives an accuracy of 94.83% and 94.88% on average using
both classical machine learning and deep learning techniques
respectively. The corresponding normalized confusion matrix
for both machine learning and deep learning techniques is
shown in Figure 8. Good transfer learning results indicate that

our passive OS fingerprinting model is able to discern the
results of unforeseen scenarios and still perform reasonably
well. In our previous works, we have also demonstrated that
the TCP variant predictor performs well in terms of transfer
learning [18, 19, 20]. In summary, this shows that our
multi-class classification model is general bearing similarity
to the concept of transfer learning in the machine learning
community [37, 38, 50].



16

(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 7: Normalized confusion matrix comparison of the classical machine learning and deep learning OS classification techniques
for predicted delay-based TCP variants using emulated traffic.

TABLE XV: Transfer learning experimental results with a combination of loss-based and delay-based predicted TCP variant
using machine learning and deep learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.96 1.00 0.96 1.00 0.99 0.98 0.92 0.97 0.98 0.95 0.98 0.97
Linux 0.88 0.90 0.91 0.91 0.94 0.94 0.89 0.91 0.94 0.88 0.94 0.90

Mac OS 0.99 0.90 0.99 0.90 0.97 0.92 0.97 0.88 0.93 0.94 0.93 0.94
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.99 0.97 0.90 0.99 0.89 0.94 0.89 0.97 0.91 0.99 0.87
iOS 0.91 0.89 0.92 0.97 0.91 0.98 0.92 0.96 0.91 0.97 0.91 0.98

Average 0.95 0.97 0.95 0.95 0.96 0.96 0.94 0.94 0.95 0.95 0.95 0.95
Accuracy 94.83% 94.99% 95.74% 93.78% 94.90% 94.86%

D. Discussion

Comparison of our approach with other OS fingerprinting
tools: Here, the accuracy of our machine learning and deep
learning approaches presented in this paper are compared
against the state-of-the-art passive OS fingerprinting tool,
p0f [56]. Table XVI presents the comparison of our approaches
and p0f evaluated using emulated traffic under different
settings. As we can see from Table XVI, even though the
performances are reasonably comparable, the experimental
results show that our passive OS fingerprinting approaches
outperform the state-of-the-art p0f method across all scenarios
except without a known TCP variant.

TABLE XVI: Performance comparison of our approaches with
p0f using emulated traffic under different settings.

Loss-based TCP variants
Our approach P0fMachine Learning Deep Learning

Without a known TCP 84.70% 86.25% 88.12%
Oracle-given TCP 95.39% 95.16% 90.03%
Predicted TCP 90.91% 91.69% 90.89%

Delay-based TCP variants
Predicted TCP 95.24% 95.38% 91.73%

Loss-based and delay-based TCP variants
Predicted TCP 94.95% 95.22% 91.38%



17

(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 8: Transfer learning: Normalized confusion matrix comparison of the classical machine learning and deep learning OS
classification techniques for loss-based and delay-based predicted TCP variants.

	0

	50

	100

	150

	200

	250

	300

	350

	400

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

cw
nd

	[S
eg

m
en

ts
]

Time	[Seconds]

TCP	Reno	non-slow	start	peaks	for	passive	TCP	variant	prediction

cwnd
Non-slow	start	peaks

(a) TCP Reno [23]

	0

	100

	200

	300

	400

	500

	600

	700

	800

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

cw
nd

	[S
eg

m
en

ts
]

Time	[Seconds]

TCP	BIC	non-slow	start	peaks	for	passive	TCP	variant	prediction	

cwnd
Non-slow	start	peaks

(b) TCP BIC [52]

	0

	50

	100

	150

	200

	250

	300

	350

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

cw
nd

	[S
eg

m
en

ts
]

Time	[Seconds]

TCP	CUBIC	non-slow	start	peaks	for	passive	TCP	variant	prediction	

cwnd
Non-slow	start	peaks

(c) TCP CUBIC [15]

Fig. 9: Non-slow start peaks for passive TCP variant predictions of (a) Reno (b) BIC and (c) CUBIC using emulated traffic.

Execution time complexity: The time complexity of the
approaches presented in our paper in terms of how long it
takes (in seconds) to passively perform OS fingerprinting is
presented in Table XVII. The CPU execution time of each
machine learning and deep learning techniques for all the
scenarios we considered in our paper is using the same
NVIDIA Tesla GPU requirements. For comparison reasons,
we have also provided the CPU execution time for p0f [56]

in Table XVIII. The execution time for the SVM model
is significantly longer than the rest of traditional machine
learning classification techniques and this is because the
computing kernel values of SVM takes more time and memory
requirements. Irrespective of their execution time, the ability
in dealing with unbalanced data is one of the reasons why
we included both SVM, RF, and KNN classification methods
in our experiment. NB, as compared to the other machine



18

TABLE XVII: The CPU execution time (seconds) of our machine learning and deep learning techniques.

Loss-based TCP variants
SVM RF KNN NB MLP LSTM

Benchmark Without a known TCP variant 2258.2201247215 1.1143145561 1.9390485286 1.1081347370 112.7487759590 1806.6641292572
Oracle-given TCP variant 1120.1224200725 1.1178588867 2.0935020446 1.1160198802 114.5473096370 1777.9395036697

Realistic Without a known TCP variant 8789.4385774135 7.2072355747 9.9768719673 6.1865331881 573.7393236160 5753.8345386981
Oracle-given TCP variant 3726.3648753166 7.2179739475 11.4665050506 7.1971922931 577.4705853462 5702.6515867710

Emulated
Without a known TCP variant 3937.6824579238 4.1011998653 6.9211487770 4.1011255760 250.6548788547 748.2380180358
Oracle-given TCP variant 1571.1400921344 4.1095368862 5.1454861164 3.1089884179 251.8693726062 652.0555405616
Predicted TCP variant 975.8222060203 3.9419437313 5.9578386783 3.1154929704 19.2053611278 673.2168228626

Delay-based predicted TCP variants
Emulated Predicted TCP variant 3819.2830920219 4.3223826885 5.7427815914 3.2945567131 484.2410390377 1305.2965178489

Loss-based and delay-based predicted TCP variants
Emulated Predicted TCP variant 11348.1196880340 4.2940688133 9.2223489284 4.2719212722 733.8166005611 3743.1047005653

Transfer Learning
Loss-based TCP Variants 935.2456374168 5.1156289577 6.0417027473 4.1121685368 250.9682075977 2973.5155694484

Loss-based and delay-based TCP variants 8255.4148607254 5.3129029273 9.9110872745 4.3107805252 786.6981770992 1980.7358047962

TABLE XVIII: The CPU execution time (seconds) of the p0f method in an emulated setting.

Loss-based TCP variants Delay-based TCP variants Loss-based and delay-based predicted TCP variants

Emulated
Without a known TCP varian 416.2753609951 445.3576065092 438.0222019243
Oracle-given TCP variant 356.8463136578 384.9783740717 364.0198976217
Predicted TCP variant 265.3799823076 297.0376978639 227.3164050639

TABLE XIX: TCP variant prediction accuracies on emulated scenarios with a different number of peaks.

The first one peak The first two peaks The first three peaks The first five peaks All peaks (the whole flow)
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

BIC 1.00 0.53 1.00 0.65 1.00 0.85 0.97 0.97 0.97 1.00
CUBIC 0.70 0.97 0.73 0.97 0.81 0.97 0.92 0.97 0.97 1.00
Reno 0.57 0.61 0.66 0.66 0.83 0.79 0.94 0.89 1.00 0.95

Average 0.75 0.70 0.79 0.76 0.88 0.87 0.94 0.94 0.98 0.98
Accuracy 70.37% 75.93% 87.04% 94.44% 98.15%

TABLE XX: TCP variant prediction confusion matrices on emulated scenarios with a different number of peaks.

Predicted
The first one peak The first two peaks The frist three peaks The first five peaks All peaks (the whole flow)

Actual BIC CUBIC Reno BIC CUBIC Reno BIC CUBIC Reno BIC CUBIC Reno BIC CUBIC Reno
BIC 18 0 16 22 0 12 29 0 5 33 0 1 35 0 0

CUBIC 0 35 1 0 35 1 0 35 1 0 35 1 0 35 0
Reno 0 15 23 0 13 25 0 8 30 1 3 34 1 1 36

learning and deep learning models, takes relatively a small
amount of time to train the prediction model as it can be
seen in Table XVII since it is faster to train. As we can see
from all our experimental results, the performance of MLP
and LSTM models is reasonably comparable. However, the
execution time of MLP is relatively smaller than the LSTM
model as seen in Table XVII. The reason why the LSTM model
takes much longer average execution time is that MLP is much
more efficient.

Amount of traffic for TCP variant prediction: In order
to determine the amount of traffic our approach requires to
passively infer the underlying loss-based and delay-based TCP
variants of clients, we consider the whole flow of the TCP
session since it significantly improves the overall prediction
performance. As shown in Table XIX, we carried out an
experiment under a different number of peaks to test how our
approach infers the loss-based TCP variant using emulated
traffic. We based our peak analysis for predicting the TCP
variant on the multiplicative back-off parameter, β, value by

averaging out the window size of AIMD algorithm every time
we have a peak so that we don’t do the computation of the
multiplicative decrease factor only on a slow-start phase. There
are two approaches to measure the β value of a TCP congestion
control algorithm: (i) when there is a packet loss event, and
(ii) when a time out event occurs. The β value, along with
other TCP characteristics, especially for loss-based congestion
control algorithms is one of the most important parameters
which determines important conditions of network congestion
like the cwnd and slow-start threshold (ssthresh) [53]. Hence,
as shown in Figure 9, we use the β value so as to uniquely
predict the underlying TCP variant based on the multiplicative
back-off factor of the selected loss-based TCP variants.

According to the TCP standard specification, the β value of
Reno [23], BIC [52], and CUBIC [15] is set to fixed values
of 0.5, 0.8, and 0.7 respectively. The TCP variant prediction
accuracies on emulated scenarios with the first one, two, three,
five, all the peaks of the flow are 70.37%, 75.93%, 87.04%,
94.44%, and 98.15% respectively as shown in Table XIX and



19

their corresponding confusion matrix is depicted in Table XX.
As we can see from these results, it is clear that the higher the
number of peaks we consider for the analysis, the better the
TCP variant prediction is and this the reason why we argue
considering the whole flow of the TCP session is a better
approach. Unlike loss-based algorithms, it is worth noting that
delay-based TCP congestion control algorithms, by design,
have a variable β and the β value of these protocols varies
when there is variability in queuing delay which makes it
fundamentally challenging to predict the TCP variant from
passive traffic. In our previous work [17], we have presented an
effective TCP variant identification methodology that addresses
how β varies as a function of queueing delay and how
delay-based TCP variants can be predicted both from passively
measured traffic and real measurements over the Internet.

E. Limitations and possible improvements of our approach
Here we detail some limitations of our approach and

possible improvements to address them. In our method, we
have used the flow duration, which is in the order of 1
minute in our experiments (see Section III for more details),
as the granularity in the experiment. However, in practice, our
approach is rather dependent on observing enough number of
TCP events between endpoints in order to accurately recognize
the underlying TCP variant.

The current trend on the Internet is to use multiple streams
carrying HTTP traffic between the same endpoints to avoid
head of line blocking. This implies that the duration of flow
will be reduced in the future. However, the total number
of packets between endpoints will not change and only the
duration will be reduced. Hence, the number of TCP events
on multiple flows between the same endpoints, not the duration
of a single flow, is significant for fingerprinting, which is
worth investigating in future experiments. We believe that our
proposed approach can be easily adapted to accommodate
TCP variant identification after observing enough number
of congestion events between endpoints instead of relying
on a single TCP flow which might be too short to
observe those events. Furthermore, in this paper, we only
consider the potential of the underlying TCP variant as a
distinguishable input feature, but for future work, we believe
that a more comprehensive TCP-based feature which includes
the variations of the TCP cwnd computed in one stage can
form in itself a unique signature of an OS since the standard
implementations even of the same TCP congestion control
mechanisms differ [11].

VII. CONCLUSION AND FUTURE WORK

Passively fingerprinting the underlying OS implementation
of a remote host is important for security-conscious network
administrators. It can, for example, be used in identifying the
source of malicious traffic, exploring a network for potential
exploitations of security vulnerabilities, defining OS-based
access control security policies, configuring network-based
IDS to classify and prioritize extraneous security alerts etc. In
this paper, we proposed and evaluated a novel approach that

attempts to passively fingerprint the underlying remote OS by
leveraging state-of-the-art machine learning and deep learning
classification techniques under multiple controlled scenarios.
We show that knowing the Oracle-given TCP variant has a
great potential for boosting the classification performance of
passive OS fingerprinting. In our setting, we demonstrate
that using the idealistic Oracle has the potential to boost
the prediction accuracy from 84.1% to 94.1% on average
across all traffic types tested, and from 85.6% to 95.3% in
an emulated setting. However, in reality, we don’t have the
Oracle-given TCP variant and hence we don’t know exactly
the underlying TCP flavor. To address this, we demonstrated
a method for passive OS fingerprinting where the cwnd is
first computed based on the outstanding bytes-in-flight, then
the underlying TCP flavor is predicted from the estimated
cwnd, and finally, the predicted TCP variant is used as an
input feature to detect the remote computer’s OS. This is an
additional feature that is added to the basic TCP/IP features
that are the basis of OS fingerprinting in previous works.
We demonstrate that our method performs significantly better
than not using the predicted underlying TCP variant as an
input feature, increasing the accuracy in our experiment from
85.6% to 91.2% and 95.3% on average using loss-based and
delay-based TCP variants respectively.

By combining both loss-based and delay-based predicted
TCP flavors, our OS fingerprinting model achieves an accuracy
of 95.22%. The results of this method come close to the
accuracy of 95.4% obtained by using the idealistic Oracle.
To the best of our knowledge, this is the first study that
reports the potential of the underlying TCP feature in boosting
significantly the accuracy of passive OS fingerprinting. We
further validate and demonstrate the transferability approach
of our OSes classification models by conducting a series
of controlled experiments against other scenarios. Through
comparing the experimental results between the benchmark
dataset, realistic, and emulated traffic in terms of accuracy and
confusion matrix, it is clear that our passive OSes classification
models are able to discern the results to unforeseen scenarios.
Therefore, we are able to show that the learned passive OS
fingerprinting model by leveraging a pre-trained knowledge of
classification techniques from the emulated network performs
reasonably well as it is shown in the experimental results when
it is applied and transferred to a realistic scenario. Lastly,
in all our experiments, we made sure that both the training
and validation accuracies are closer which gives an idea about
the ability of the OSes classification models to generalize on
unforeseen scenarios.

Note that passively detecting the underlying TCP variant
is fundamentally a challenging task, which led to a two-step
approach in our paper, where the TCP variant prediction
of a deep learning-based tool is used as input to another
machine learning method in the next step. However, by
integrating the two machine learning approaches better, there
should be potential for increasing the passive OS classification
performance even further and get even closer to the idealistic
results of using an Oracle-given TCP variant. Exploring such
optimizations is also left for future work. It is known that TCP
clock drift improves OS fingerprinting and hence measuring



20

differences in the timing of how the IP stack works may allow
us to predict the underlying OS with greater assurance in terms
of accuracy. We, therefore, argue for using other TCP options
like timestamps and queueing delay characteristics as an input
feature vector for passive OSes fingerprinting model as another
interesting direction.

Finally, in addition to the difficulties of establishing ground
truth (e.g., the underlying TCP variant) at a larger scale on
a dynamic network addressed in Section III, there is a lot of
other work to be done as an extension of our work presented
here. As a future work, since our proposed method relies on
passively identifying the underlying TCP variant accurately,
we aim to study the vulnerability of our method to adversarial
changes in the behavior of the underlying TCP flavor which
usually requires a lot of user expertise.

ACKNOWLEDGMENT

We would like to thank the Norwegian center for research
data (NSD) for granting us the legal permission to collect
a realistic experiment dataset that contains OS-specific
information from the Oslo Metropolitan University network.
We would also like to thank the 5G 4IoT research lab at Oslo
Metropolitan University for allowing us to collect the realistic
data for android and iOS devices.

REFERENCES

[1] 5G4IoT. 5G4IoT. http://5g4iot.vlab.cs.hioa.no/, 2019.
[2] A. Aksoy, S. Louis, and M. H. Gunes. Operating system

fingerprinting via automated network traffic analysis. In IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2017.

[3] I. Andrea, C. Chrysostomou, and G. Hadjichristofi. Internet of
Things: Security vulnerabilities and challenges. In 2015 IEEE
Symposium on Computers and Communication (ISCC), pages
180–187. IEEE, 2015.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and avoidance,
volume 24. ACM, 1994.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson. BBR: Congestion-based congestion control.
Queue, 14(5):20–53, 2016.

[6] D. Chang, Q. Zhang, and X. Li. Study on OS Fingerprinting
and NAT/Tethering based on DNS Log Analysis. In IRTF
& ISOC Workshop on Research and Applications of Internet
Measurements (RAIM), 2015.

[7] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls
and Internet security: repelling the wily hacker. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[8] N. Davids. Initial TTL values. http://noahdavids.org/self
published/TTL values.html, 2011.

[9] ESnet. iperf3. https://iperf.fr/iperf-servers.php, 2017.
[10] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving

IP address anonymization: measurement-based security
evaluation and a new cryptography-based scheme. Computer
Networks, 46(2):253–272, 2004.

[11] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Combining
model learning and model checking to analyze TCP
implementations. In International Conference on Computer
Aided Verification, pages 454–471. Springer, 2016.

[12] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk,
and D. Sicker. Passive Data Link Layer 802.11 Wireless

Device Driver Fingerprinting. In USENIX Security Symposium,
volume 3, pages 16–89, 2006.

[13] C. P. Fu and S. C. Liew. TCP Veno: TCP enhancement for
transmission over wireless access networks. IEEE Journal on
selected areas in communications, 21(2):216–228, 2003.

[14] L. G. Greenwald and T. J. Thomas. Toward Undetected
Operating System Fingerprinting. WOOT, 7:1–10, 2007.

[15] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems
review, 42(5):64–74, 2008.

[16] D. H. Hagos, P. E. Engelstad, and A. Yazidi. A Deep
Learning Approach to Dynamic Passive RTT Prediction Model
for TCP. In IEEE 38th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2019.

[17] D. H. Hagos, P. E. Engelstad, and A. Yazidi. Classification
of Delay-based TCP Algorithms From Passive Traffic
Measurements. In 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA), pages 1–10.
IEEE, 2019.

[18] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. A
machine learning approach to TCP state monitoring from
passive measurements. In 2018 Wireless Days (WD), pages
164–171. IEEE, 2018.

[19] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. Recurrent
Neural Network-based Prediction of TCP Transmission States
from Passive Measurements. In 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA),
pages 1–10. IEEE, 2018.

[20] D. H. Hagos, P. E. Engelstad, A. Yazidi, and O. Kure. Towards a
Robust and Scalable TCP Flavors Prediction Model from Passive
Traffic. In 2018 27th International Conference on Computer
Communication and Networks (ICCCN), pages 1–11. IEEE,
2018.

[21] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The
NewReno modification to TCP’s fast recovery algorithm. RFC
6582, 2012.

[22] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989.

[23] V. Jacobson. Congestion avoidance and control. In ACM
SIGCOMM computer communication review. ACM, 1988.

[24] V. Jacobson, R. Braden, and D. Borman. TCP extensions for
high performance. RFC 1323, 1992.

[25] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu. Security
of the Internet of Things: perspectives and challenges. Wireless
Networks, 20(8):2481–2501, 2014.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[27] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing, 2(2):93–108, 2005.

[28] E. Kollmann. Chatter on the Wire: A look at DHCP
traffic. Online]. Avaliable: http://myweb. cableone.
net/xnih/download/chatter-dhcp. pdf [Accessed: May 19,
2010], 2007.

[29] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al. The
quic transport protocol: Design and internet-scale deployment.
In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 183–196. ACM, 2017.

[30] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and
D. Filakovsky. Passive os fingerprinting methods in the jungle
of wireless networks. In NOMS 2018-2018 IEEE/IFIP Network

http://5g4iot.vlab.cs.hioa.no/
http://noahdavids.org/self_published/TTL_values.html
http://noahdavids.org/self_published/TTL_values.html
https://iperf.fr/iperf-servers.php


21

Operations and Management Symposium, pages 1–9. IEEE,
2018.

[31] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein. Passive
operating system identification from TCP/IP packet headers. In
Workshop on Data Mining for Computer Security, volume 40.
Citeseer, 2003.

[32] R. Lippmann, S. Webster, and D. Stetson. The effect of
identifying vulnerabilities and patching software on the utility
of network intrusion detection. In International Workshop
on Recent Advances in Intrusion Detection, pages 307–326.
Springer, 2002.

[33] G. F. Lyon. Remote OS detection via TCP/IP stack
fingerprinting. Phrack Magazine, 8(54), 1998.

[34] G. F. Lyon. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. 2009.

[35] Netresec. Networkminer. https://www.netresec.com/?page=
NetworkMiner, 2007.

[36] A. Ornaghi and M. Valleri. Ettercap. https://www.
ettercap-project.org/, 2015.

[37] S. J. Pan. Transfer Learning., 2014.
[38] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE

Transactions, 2010.
[39] J. Postel. Internet control message protocol. RFC 792, 1981.
[40] J. Postel. Internet protocol. RFC 791, 1981.
[41] J. Postel. Transmission control protocol. RFC 793, 1981.
[42] F. Rosenbaltt. The perceptron–a perciving and recognizing

automation. Technical Report 85-460-1 Cornell Aeronautical
Laboratory, 1957.

[43] J. Scambray, S. McClure, and G. Kurtz. Hacking exposed.
McGraw-Hill Professional, 2000.

[44] SCOTT. European Leadership Joint Undertaking. https://
scottproject.eu/, 2019.

[45] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini.
Security, privacy and trust in Internet of Things: The road ahead.
Computer networks, 76:146–164, 2015.

[46] R. Spangler. Analysis of remote active operating system
fingerprinting tools. University of Wisconsin, 2003.

[47] G. Taleck. Synscan: Towards complete tcp/ip fingerprinting.
CanSecWest, Vancouver BC, Canada, pages 1–12, 2004.

[48] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound
TCP approach for high-speed and long distance networks. In
Proceedings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–12. IEEE,
2006.

[49] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley.
Passive online rogue access point detection using sequential
hypothesis testing with TCP ACK-pairs. In Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement,
pages 365–378. ACM, 2007.

[50] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of
transfer learning. Journal of Big Data, 2016.

[51] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and
performance of prefix-preserving IP traffic trace anonymization.
In ACM SIGCOMM, pages 263–266. ACM, 2001.

[52] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. In INFOCOM,
volume 4, pages 2514–2524. IEEE, 2004.

[53] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu.
TCP congestion avoidance algorithm identification. IEEE/ACM
Transactions On Networking, 22(4):1311–1324, 2013.

[54] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. A survey on
security and privacy issues in Internet-of-Things. IEEE Internet
of Things Journal, 4(5):1250–1258, 2017.

[55] F. Yarochkin and O. Arkin. Xprobe2- A’Fuzzy’Approach to
Remote Active Operating System Fingerprinting, 2002.

[56] M. Zalewski. p0f: Passive OS fingerprinting tool. Online at
http://lcamtuf.coredump.cx/p0f3, 2017.

[57] B. Zhang, T. Zou, Y. Wang, and B. Zhang. Remote operation
system detection base on machine learning. In 2009 Fourth
International Conference on Frontier of Computer Science and
Technology, pages 539–542. IEEE, 2009.

Desta Haileselassie Hagos received a Ph.D.
degree from the University of Oslo, Faculty of
Mathematics and Natural Sciences in April 2020.
He is currently a Postdoctoral Research Fellow at
the Division of Software and Computer Systems
(SCS), Department of Computer Science, School
of Electrical Engineering and Computer Science
(EECS), KTH Royal Institute of Technology,
Stockholm, Sweden. He received his B.Sc. degree
in Computer Science from Mekelle University,
Department of Computer Science. He obtained his

M.Sc. degree in Mobile Systems from Luleå University of Technology,
Department of Computer Science Electrical and Space Engineering, Sweden in
June 2012. His current research interests are in the areas of Machine Learning,
Deep Learning, and Artificial Intelligence.

Anis Yazidi (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees from the University of
Agder, Grimstad, Norway, in 2008 and 2012,
respectively. He was a Researcher with Teknova AS,
Grimstad. From 2014 to 2019, he was an Associate
Professor with the Department of Computer
Science, Oslo Metropolitan University, Oslo,
Norway, where he is currently a full Professor and
leading the Research Group in Applied Artificial
Intelligence. He is also Professor II with the
Norwegian University of Science and Technology

(NTNU), Trondheim, Norway. His current research interests include machine
learning, reinforcement learning, stochastic optimization, and autonomous
computing.

https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner
https://www.ettercap-project.org/
https://www.ettercap-project.org/
https://scottproject.eu/
https://scottproject.eu/


22

Øivind Kure received a Ph.D. degree from the
University of California, Berkeley in 1988. He is a
full professor at the University of Oslo, Department
of Technology Systems, Section for Autonomous
Systems and Sensor Technologies Research Group.
He joined Telenor after having received his Ph.D.
and has worked as a senior researcher and Research
Manager at Telenor Research from 1989 to 2000. His
current research interests include various aspects of
QoS, data communication, performance analysis, and
distributed operating systems.

Paal Engelstad has a Ph.D. in Computer Science
(UiO - 2005), a bachelor in Computer Science (UiO
- 2001), an M.Sc. degree in Physics (NTNU/Kyoto
University, Japan - 1994 - Honors degree with
distinction), and a bachelor in Physics (NTNU -
1993). He holds a number of patents and has been
publishing a number of papers over the past years.
He is now working as a research scientist at the
Norwegian Defence Research Establishment (FFI), a
full professor at the University of Oslo, Department
of Technology Systems, Section for Autonomous

Systems and Sensor Technologies Research Group. He is also a full professor
at the Department of Computer Science, Oslo Metropolitan University. His
current research interests include fixed, wireless and ad hoc networking,
cybersecurity, machine learning, distributed, and autonomous systems.


