
TECHNOLOGY AND CODE
published: 02 October 2020

doi: 10.3389/fphys.2020.583203

Frontiers in Physiology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 583203

Edited by:

Sanjay Ram Kharche,

University of Western Ontario, Canada

Reviewed by:

Dominic G. Whittaker,

University of Nottingham,

United Kingdom

Bradley John Roth,

Oakland University, United States

*Correspondence:

Christopher Schölzel

christopher.schoelzel@mni.thm.de

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 14 July 2020

Accepted: 31 August 2020

Published: 02 October 2020

Citation:

Schölzel C, Blesius V, Ernst G and

Dominik A (2020) An Understandable,

Extensible, and Reusable

Implementation of the Hodgkin-Huxley

Equations Using Modelica.

Front. Physiol. 11:583203.

doi: 10.3389/fphys.2020.583203

An Understandable, Extensible, and
Reusable Implementation of the
Hodgkin-Huxley Equations Using
Modelica
Christopher Schölzel 1*, Valeria Blesius 1, Gernot Ernst 2,3 and Andreas Dominik 1

1 Life Science Informatics, Technische Hochschule Mittelhessen - University of Applied Sciences, Gießen, Germany, 2 Vestre

Viken Hospital Trust, Kongsberg, Norway, 3 Psychological Institute, University of Oslo, Oslo, Norway

The Hodgkin-Huxley model of the squid giant axon has been used for decades as the

basis of many action potential models. These models are usually communicated using

just a list of equations or a circuit diagram, which makes them unnecessarily complicated

both for novices and for experts. We present a modular version of the Hodgkin-Huxley

model that is more understandable than the usual monolithic implementations and that

can be easily reused and extended. Our model is written in Modelica using software

engineering concepts, such as object orientation and inheritance. It retains the electrical

analogy, but names and explains individual components in biological terms. We use

cognitive load theory to measure understandability as the amount of items that have

to be kept in working memory simultaneously. The model is broken down into small

self-contained components in human-readable code with extensive documentation.

Additionally, it features a hybrid diagram that uses biological symbols in an electrical

circuit and that is directly tied to the model code. The new model design avoids many

redundancies and reduces the cognitive load associated with understanding the model

by a factor of 6. Extensions can be easily applied due to an unifying interface and

inheritance from shared base classes. The model can be used in an educational context

as a more approachable introduction to mathematical modeling in electrophysiology.

Additionally the modeling approach and the base components can be used to make

complex Hodgkin-Huxley-type models more understandable and reusable.

Keywords: understandability, cognitive load theory, Modelica, mathematical modeling, software engineering,

model engineering, Hodgkin-Huxley, action potential

1. INTRODUCTION

Since 1952, when Alan Hodgkin and Andrew Huxley published their conductance-based model
of the action potential generation in the squid giant axon, the Hodgkin-Huxley (HH) model has
been the basis of countless research projects to further the understanding of ionic currents and
action potentials in neurons and cardiac myocytes (Hodgkin and Huxley, 1952). Today’s models
feature more types of ion channels and pumps than the three channels identified by Hodgkin
and Huxley, but they still use the same electrical analogy and equation structure, which is why
we will call them HH-type models in the following (Courtemanche et al., 1998; Inada et al., 2009;
Fabbri et al., 2017; Bai et al., 2018). Although other types of ion channel models, such as Markov

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.583203
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.583203&domain=pdf&date_stamp=2020-10-02
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:christopher.schoelzel@mni.thm.de
https://doi.org/10.3389/fphys.2020.583203
https://www.frontiersin.org/articles/10.3389/fphys.2020.583203/full

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

Models, are emerging, HH-type models are still the gold standard
(Winslow et al., 1999; Fink and Noble, 2009). The descriptions
of these HH-type models usually follow one of three explanatory
approaches: Either the differential equations are given directly
with a short biological explanation of the major variables or
a diagram of the electrical analogy is shown and explained in
biological terms or a combination of both. Often a biological
drawing of the cell is also provided, but it is only used to
explain themodeled concepts and not tied to themodel equations
themselves. This holds for research articles (Courtemanche
et al., 1998; Inada et al., 2009), simulation toolkits (Hines and
Carnevale, 1997; Jordan et al., 2020) and textbooks (Voit, 2013;
Gerstner et al., 2014). However, these approaches pose significant
challenges for novices and limit the productivity of experts: A
novice has to become familiar with the formalism of differential
equations or with circuit diagrams at the same time as they try
to understand the model itself. Experts will have overcome this
barrier already, but they are also faced with much more complex
HH-type models that can easily grow to over 100 equations.
These equations all interact with each other in a multitude of
feedback loops, making it extremely difficult to spot small errors
or to reproduce and extend the model. The risk associated with
these barriers is 2-fold: On the one hand, students may choose
not to specialize in systems biology or electrophysiology, because
they perceive the field to be too difficult. On the other hand,
a published model that is described in this way may generate
new insights, but prove to be too hard to reuse and extend.
For example, the latter seems to be the case for a model by
Inada et al. (2009) (116 equations) which has been labeled as
“groundbreaking” (Noble et al., 2012) but has only been used for
simulations by two other research groups in 10 years. It becomes
apparent that there is room for improving the understandability
of HH-type models and that this should be a goal of both
the initial model design and its presentation in scientific and
instructional material.

One area from which such an improvement may originate is
software engineering, because software development faces similar
problems of understandability: The building blocks of source
code are easy to grasp, but creating and maintaining projects
with millions of lines of code requires additional organization.
A widely established solution to handle this complexity is
modularization. Instead of overseeing the whole project at once,
software engineers identify individual functions and parts of
a system and create small modules to represent them. Each
component only has a few lines of code and a limited number of
connections to the outside world which makes it understandable.
To form the whole system, the modules can be connected at a
higher level of abstraction, where each of them can be considered
to be a single entity.

In recent years, multiple researchers have advocated to
borrow concepts from software engineering for systems biology,
culminating in the formulation of the term “model engineering”
(Hellerstein et al., 2019). In accordance with this movement, we
found that the modeling language and consistent application of
relevant language characteristics can have a significant impact
on the model quality (Schölzel et al., 2020). In this paper
we therefore present a novel modular implementation of the

original HH model that is based on the electrical analogy, but
explains and visualizes each component in biological terms.
The model is written in the modeling language Modelica and
makes heavy use of the features of this language and of software
engineering techniques.

Due to the aforementioned anticipated benefits of these
techniques we pose the following research questions:

RQ1 Can the understandability of the HH model be improved
by a modular implementation that bridges the gap between
biological meaning and electrical analogy?

RQ2 Can a modular implementation of the HH model serve
as a unifying basis for extensions and therefore facilitate the
creation of more complex HH-type modules?

For the investigation of these questions, the term
understandability is central, as our model does not differ
from other solutions in terms of its output, but only its
presentation. We may find our assessment of what makes a
model more or less understandable intuitive, but in a scientific
context it is not sufficient to rely on intuition alone. This is
especially true, when it involves reasoning about the experiences
of other people which may have quite a different background
and perspective. Therefore, a model for understandability is
needed that is based on scientific evidence. For this task we use
cognitive load theory (CLT), a popular and well-validated theory
in cognitive psychology which frames understandability in terms
of the amount of items that have to be kept in active working
memory and the degree of interactivity between them.

CLT is introduced in more detail in section 2.1 along with
model engineering, the language Modelica, and the biological
basis of the Hodgkin-Huxley model followed by an overview over
the software engineering concepts that we apply and the resulting
model structure. Section 2 describes our rationale for reducing
cognitive load, for the component hierarchy, and the design of the
individual model components. Section 3 then shows and explains
the resulting model code including the graphical representation
followed by a discussion of the implications of the new model
structure for understandability and extensibility. Finally, section
4 sums up the answers to our research questions and discusses
possible alternative approaches, limitations and future work.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Model Engineering
To this day, many models are still built for a single purpose
without guidelines regarding code quality. However, when
models grow beyond a certain point, the modeling process
becomes an engineering task and the goal should not only
be to produce a model that is working and mathematically
sound, but also to build it with an architecture that facilitates
the anticipated use cases and makes the code maintainable and
accessible to other researchers (Hellerstein et al., 2019). This
includes documentation, testing, naming of variables, and the
use of established design patterns. In a previous work we have
found the consistent use of an appropriate modeling language
that is modular, descriptive, (human)-readable, open, graphical,

Frontiers in Physiology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 583203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

and hybrid (MoDROGH) to be a major driving factor for
model quality in terms of understandability and reproducibility
(Schölzel et al., 2020).

2.1.2. Modelica and Object-Oriented Programming
There are a few established and emerging languages that
exhibit MoDROGH-characteristics, such as the systems biology
markup language (SBML) (Hucka et al., 2003), CellML (Cuellar
et al., 2003), Simscape (The MathWorks, Inc., 2020), or
embedded domain-specific languages (DSLs) written in Python
or Julia (Olivier et al., 2005; Lopez et al., 2013; Elmqvist
et al., 2016; Rackauckas et al., 2020)1. In our opinion, the
modeling language Modelica (Mattsson and Elmqvist, 1997) is
a particularly interesting example, because it is an industrial
standard that emphasizes the engineering aspect of model
design. In contrast to SBML, CellML, as well as Python-
and Julia-based DSLs, Modelica supports full object oriented
design (e.g., through model inheritance), discrete variables for
the seamless integration of continuous and discrete model
parts, the graphical composition of models via drag and drop,
implicit differential/algebraic equations for acausal connections
between components via conservation laws, cross-language
export and import via the Functional Mockup Interface
(Blochwitz et al., 2012), grouping of interface variables to
connectors, and unrestricted mixing of implicit and explicit
equation formats. It shares these features with Simscape, but
unlike Simscape, Modelica provides an open environment,
more flexible mechanisms for model inheritance including
multiple inheritance and overwriting of variables and equations,
and extensible annotations, which could, e.g., be used to
implement support for ontological terms to the language.
Weak points of Modelica are the lack of existing support
for biological terminology and ontologies and the fact that,
while the OpenModelica integrated development environment
(IDE) (Fritzson et al., 2005) is open-source, many users prefer
the proprietary IDE Dymola (Dassault Systèmes, 2020), which
has its own compiler that is not always fully compatible
with OpenModelica.

In Modelica, modularity is realized by the principles of object-
oriented programming (Gamma et al., 1994). Code is structured
in classes that can be instantiated to reuse the same code at
different positions in a project and that can inherit behavior
and interfaces from abstract base classes. This reuse is not
only encouraged from one project to the following but also
within one project. This corresponds with one of the guiding
principles in software engineering called “don’t repeat yourself”
(DRY) suggesting that one should avoid writing duplicated code
with only very small differences, such as constant values or
variable names (Hunt and Thomas, 2000). Both DRY and object
orientation are most effective, when the implemented system can
be broken down into structurally similar components, which is
the case for the HH model.

1For a comparison of different language candidates see the supplementary note in

Schölzel et al. (2020).

2.1.3. The Biological Basis of the Hodgkin-Huxley

Model
The Hodgkin-Huxley model explains the time course of the
membrane potential of the squid giant axon during an action
potential by means of three ion channels: A sodium channel
lets Na+ cations enter the cell, which increases the potential. A
delayed-rectifier potassium channel permits K+ cations to leave
the cell, lowering the potential back toward the resting state.
Finally, a leak channel is responsible for maintaining the resting
potential while the other channels are closed. Both the sodium
and the potassium channel have voltage-dependent gates—
molecules that change their conformation with the membrane
potential to activate or inactivate the channel. The sodium
channel has both a fast activation gate and a slightly slower
inactivation gate, allowing the channel to open for a short period
of only a few milliseconds. The delayed-rectifier potassium
channel only has an activation gate with slower kinetics while the
leak channel is assumed to be always active.

2.1.4. Cognitive Load Theory
As mentioned in the introduction, we use cognitive load theory
(CLT) as a model for understandability (Sweller, 2019). In short,
CLT is based on the architecture of the human brain, which
has a very limited capacity for new information in the working
memory, but can easily transfer stored information from long-
term memory to working memory. The amount of items that
have to be kept in working memory to process an information
is called the cognitive load. The main driving factor of this metric
is element interactivity. Independent elements can be processed
one by one, but when elements have high interactivity they have
to be kept in working memory simultaneously. Hence, cognitive
load can be reduced in two ways: First, expertise can allow a
person that has understood a concept to further on process it as
a single item instead of the several items it comprises. Second, a
part of cognitive load does not originate from the complexity of
the taught concept itself, but from the way it is presented and can
therefore be reduced by choosing appropriate methods to present
the information and instruct the learner.

2.2. Model Design and Structure
For the sake of simplicity, we will consider the amount of
variables, parameters, and equations that constitute a model or
model component as an indicator of its cognitive load and thus its
understandability. Our goal is therefore to produce small model
components that have a low amount of elements and to reduce
element interactivity by introducing clearly defined interfaces
between these components that allow the learner to view one
component as a single item to be kept in working memory once
they understand it.

For this task we identify the following components in the HH
model: The lipid bilayer that separates the ionic concentrations
and therefore electrical charge on the outside and the inside of
the cell; the sodium, potassium, and leak channels; the voltage-
dependent gates inside the sodium and potassium channels; and
the current clamp that holds the current constant in order to
measure the voltage with reference to a ground electrode. All of

Frontiers in Physiology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 583203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

these components reside on the same hierarchical layer, except
for the gates which are components of an ion channel class.

To build the full model, two kinds of connections between
non-gate components are required: First, each component has
a positive electrical pin on the extracellular side and a negative
electrical pin on the intracellular side, allowing current to flow
through the component as positive outward current. Second,
the voltage-dependent gating molecules of the sodium and
potassium channels react more quickly at higher temperatures,
which establishes the need for an input-output temperature
connection from the lipid bilayer to the ion channels.

In the design of the Modelica model we follow our guidelines
established in Schölzel et al. (2020), i.e., implementing small
self-contained modules; describing only the “what” of the
model, not the “how”; keeping the code human-readable
with speaking names and additional documentation strings
for variables and parameters; using only open-source tools
(namely OpenModelica) for ease of reproduction; and adding
a graphical representation for each component. We also
published the full code of the model on GitHub as well as in
the Supplementary Data Sheet 1 including every information
required to reproduce our results. As mentioned in section
2.1.2, graphical annotations are part of the Modelica code. This
encompasses connection annotations that define the coordinates
of the line connecting two components and more complex icon
annotations that define a component icon as vector graphic. As
the latter can be quite large and tend to clutter the otherwise
human-readable code, we define all icons in separate classes and
include them via inheritance with the extends statement.

The model was implemented using OpenModelica version
1.16.0 (Fritzson et al., 2005) and Mo|E version 0.6.3 (Justus et al.,
2017) as well as Inkscape version 0.91 (Inkscape Developers,
2020) to add the component icons. Simulations can be replicated
with OpenModelica on Windows, Linux, and macOS. The code
is available on GitHub under the MIT license at https://github.
com/CSchoel/hh-modelica.

3. RESULTS

3.1. Model Code
The first thing to consider in a software engineering task are the
required interfaces. Hence, we start our implementation of the
HH model by defining the following basic connectors:

connector TemperatureInput = input Real(unit="degC");

connector TemperatureOutput = output Real(unit="degC");

connector ElectricalPin

flow Real i(unit="uA/cm2");

Real v(unit="mV");

end ElectricalPin;

Here, TemperatureInput and TemperatureOutput
follow a simple input-output relationship. All components that
have a TemperatureInput will be connected to a single
component with a TemperatureOutput that determines the
global temperature value. ElectricalPins that are connected
to each other will all have the same voltage v, but can have
different currents i (indicated by the keyword flow). During
compilation, Modelica will generate an equation following

Kirchhoff’s current law that ensures that the sum of all connected
currents equals zero. This allows to connect an arbitrary number
of components without having to determine the direction
of the flow. For the sake of terminology and for a visual

distinction PositivePin and NegativePin are introduced

as subclasses without any functional difference from the base

class.

connector NegativePin

extends ElectricalPin;

annotation(...);

end NegativePin;

connector PositivePin

extends ElectricalPin;

annotation(...);

end PositivePin;

Annotation code that defines the connector icons is not given

here for the sake of brevity and will be completely omitted

for further code examples. The same is true for most of the

documentation strings. These details can be viewed on GitHub

and the resulting visual design can be seen in Figure 1.
Since most components will have an electrical connection

both to the inside and the outside of the cell, it is beneficial to

introduce another base class for those two-pin components:

partial model TwoPinComponent

PositivePin p "positive extracellular pin";

NegativePin n "negative intracellular pin";

Real v(unit="mV") "potential difference between pins";

Real i(unit="ua/cm2") "current flowing through comp.";

equation

0 = p.i + n.i;

v = p.v - n.v;

i = p.i;

end TwoPinComponent;

This base class already introduces three small equations that

connect the positive (extracellular) and negative (intracellular)

pins. The first equation again follows Kirchhoff’s current law

to ensure that the sum of all currents entering and leaving the

components is zero. The other equations just introduce two

helper variables: The variable v can be used to measure (or

define) the voltage at this component as a difference between

the potential at the positive and the negative pin. The variable i
measures or defines the current flowing through the component

from the negative to the positive pin. The model is declared as
partial since the number of equations and variables is not
balanced. It does not yet specify the current-voltage relationship
but leaves it open for implementation in specific subclasses.

The simplest TwoPinComponent that specifies this
relationship is the LipidBilayer:

model LipidBilayer

extends TwoPinComponent;

extends HHmodelica.Icons.LipidBilayer;

TemperatureOutput temp = temp_m;

parameter Real temp_m(unit="degC") = 6.3 "temperature";

parameter Real c(unit="uF/cm2") = 1 "capacitance";

parameter Real v_init(unit="mV") = -90 "initial stim.";

initial equation

v = v_init;

equation

der(v) = 1000 * i/c;

end LipidBilayer;

Frontiers in Physiology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 583203

https://github.com/CSchoel/hh-modelica
https://github.com/CSchoel/hh-modelica
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

This model inherits the variables and equations of
TwoPinComponent and the graphical annotations from
the icon LipidBilayer. It therefore only has to introduce one
additional equation that describes the component as a capacitor,
which separates the inside from the outside and is charged when
a current is applied. A factor of 1,000 has to be introduced
to measure the derivative der(v) in millivolt instead of volt
per second. Since the voltage v only enters the equation as a
derivative, the initial value has to be determined. Hodgkin and
Huxley used this degree of freedom to simulate a “short initial
stimulation” of the Membrane, assuming that it has been kept
at a constant V = 0 until the time t = 0 where the voltage
is suddenly changed to V = Vinit and is then left to develop
under a constant current. In this implementation this behavior is
reflected by the parameter v_init. Additionally, the membrane
temperature is defined through the parameter temp_m and
propagated via the output connector temp.

The temperature is passed on to the Gates, which describe
the conformation changes of gating molecules in an ion channel:

model Gate "molecule that opens/closes an ion channel"

replaceable function fopen = expFit(sx=1, sy=1);

replaceable function fclose = expFit(sx=1, sy=1);

Real n(start=fopen(0)/(fopen(0) + fclose(0){)},

fixed=true);

input Real v(unit="mV");

TemperatureInput temp;

protected

Real phi = 3^((temp-6.3)/10);

equation

der(n) = phi * (fopen(v) * (1 - n) - fclose(v) * n);

end Gate;

In contrast to the LipidBilayer the Gate does not inherit
from TwoPinComponent, since it is not a component in the
electric circuit itself but only a part of the IonChannel. Here, n
is the gating variable that determines the ratio of gatingmolecules
that are in “open” conformation. The rates with which molecules
change formations depend on the current voltage v through the
functions fopen, which gives the rate of change from closed to
open, and fclose, which gives the rate of change from open to
closed. Instead of having variables α and β that change with an
equation as in the original formulation by Hodgkin and Huxley,
fopen and fclose actually can be seen as variables that store
the whole fitting functions. This allows us to keep the code DRY
by reusing these functions to determine the starting value for
n as the steady state that would be achieved by holding the
membrane voltage constant as V = 0mV. In the original model,
a change in one of the fitting parameters for the equation for α

would also require a change in the stating value for n which is
not immediately transparent by the description. The functions
fopen and fclose are explicitly declared as replaceable
so that each ion channel can redefine them as required. For
this the three fitting functions expFit, logisticFit and
goldmanFit are required in the original HH model. For the
sake of simplicity we will only discuss expFit here:

function expFit "exponential fitting function"

input Real x "input value";

input Real sx "scaling factor for x axis";

input Real sy "scaling factor for y axis";

output Real y "result";

algorithm

y := sy * exp(sx * x);

end expFit;

In function definitions, Modelica switches from the usual
declarative implementation style to an imperative style as in
C or MATLAB. In an algorithm section, equations are
variable assignments where an expression on the right-hand
side is evaluated and stored in the variable on the left-hand
side. This is also indicated by the assignment operator :=
which has a direction in contrast to the equals sign used for
normal equations. During compilation, an algorithm section
is transformed to a single equation that depends on all input
variables and determines the value of all output variables of
the function definition. Here, a simple exponential relationship
is defined between the main input x and the output y that
can be scaled by the additional fitting parameters sx and sy.
These fitting parameters are fixed to a constant value when the
function is instantiated as, for example, function fclose =
expFit(sx=1, sy=1). The resulting function now has only
x left as the single mandatory input and can therefore be called as
fclose(x) for any real value x. The functions logisticFit
and goldmanFit follow the same general structure, but realize
different fitting functions with additional fitting parameters.

As mentioned before, the Gate component is part of an
IonChannel component. As there are three different ion
channels in the HH model, it again makes sense to introduce a
common base class:

partial model IonChannel "ionic current through membrane"

extends TwoPinComponent;

extends HHmodelica.Icons.IonChannel;

Real g(unit="mmho/cm2") "ion conductance";

parameter Real v_eq(unit="mV") "equilibrium potential";

parameter Real g_max(unit="mmho/cm2") "max conduct.";

equation

i = g * (v - v_eq);

end IonChannel;

This component is a two-pin component and inherits a graphical
annotation from an icon component. It adds the missing
relationship between current and voltage by introducing a
conductance variable g. If g is constant, the IonChannel
behaves as a simple electrical conductor with the only exception
that the voltage is relative to the equilibrium potential for the ions
transported by this channel. This is true for the LeakChannel
which only introduces the additional equation g = g_max. The
sodium and potassium channels, however, have voltage- and
temperature-dependent gates. Therefore, GatedIonChannel
is introduced as another base class that is the same as
IonChannel but with an additional TemperatureInput
called temp. The delayed-rectifier potassium channel, which
lets K+ cations pass through the membrane when it is open,
then becomes:

model PotassiumChannel "channel selective for K+ cations"

extends GatedIonChannel(g_max=36, v_eq=12);

extends HHmodelica.Icons.Activatable;

Gate gate_act(

redeclare function fopen=

goldmanFit(x0=-10, sy=100, sx=0.1),

redeclare function fclose= expFit(sx=1/80, sy=125),

v=v, temp=temp

Frontiers in Physiology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 583203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

)"activation gate";

equation

g = g_max * gate_act.n ^ 4;

end PotassiumChannel;

This component inherits variables and equations from
GatedIonChannel and at the same time changes the
values for the maximum conductance and the equilibrium
potential. It uses a Gate component and redeclares the
appropriate fitting functions to use for fopen and fclose.
The only additional equation introduced is the dependency
between the conductance and the gating variable n. As Hodgkin
and Huxley determined, four gating molecules have to be in the
open conformation simultaneously in order to allow ion transfer
through a delayed-rectifier potassium channel. This is realized
by taking the fourth power of the gating variable n.

The sodium channel, which lets Na+ cations pass through the
membrane, looks similar but a little more complex:

model SodiumChannel "channel selective for Na+ cations"

extends GatedIonChannel(g_max=120, v_eq=-115);

extends HHmodelica.Icons.Activatable;

extends HHmodelica.Icons.Inactivatable;

Gate gate_act(

redeclare function fopen=

goldmanFit(x0=-25, sy=1000, sx=0.1),

redeclare function fclose=

expFit(sx=1/18, sy=4000),

v=v, temp=temp

)"activation gate";

Gate gate_inact(

redeclare function fopen=

expFit(sx=1/20, sy=70),

redeclare function fclose=

logisticFit(x0=-30, sx=-0.1, y_max=1000),

v=v, temp=temp

)"inactivation gate";

equation

g = g_max * gate_act.n ^ 3 * gate_inact.n;

end SodiumChannel;

Here we have three molecules that form an activation gate and
one molecule that forms an inactivation gate. The gates again
only differ in the choice of fitting functions and values for their
fitting parameters.

With this we already have all individual components that
constitute the cell membrane. To measure and to perform
experiments, however, we still need a model of the current clamp
which keeps the current through themembrane constant in order
to measure the voltage relative to a ground electrode:

model ConstantCurrent

extends TwoPinComponent;

parameter Real i_const(unit="ua/cm2");

equation

i = i_const;

end ConstantCurrent;

model Ground

PositivePin p;

equation

p.v = 0;

end Ground;

model CurrentClamp

extends HHmodelica.Icons.CurrentClamp;

PositivePin p "extracellular electrode";

NegativePin n "intracellular electrode(s)";

parameter Real i_const(unit="ua/cm2") = 40;

ConstantCurrent cur(i=i_const);

Ground g "reference electrode";

Real v = -n.v "measured membrane potential";

equation

connect(p, cur.p);

connect(n, cur.n);

connect(g.p, p);

end CurrentClamp;

This is the first part in the model where we use Modelica’s
connect equation to connect smaller components to one
large component. The Ground component simply sets the
potential of the extracellular compartment to zero while the
ConstantCurrent component ensures that the cell has a
constant positive outward current. The additional variable v
captures the actual membrane potential that would be measured
by a real current clamp experiment.

Now that all components are defined, putting together the
whole HH model becomes as simple as just placing them side
by side, connecting positive with positive and negative with
negative pins of neighboring components as well as connecting
the TemperatureOutput of the LipidBilayer to all
TemperatureInput connectors:

model HHmodular

PotassiumChannel c_pot;

SodiumChannel c_sod;

LeakChannel c_leak;

LipidBilayer l2;

CurrentClamp clamp;

equation

connect(l2.p, c_pot.p);

connect(c_pot.p, c_sod.p);

connect(c_sod.p, c_leak.p);

connect(c_leak.p, clamp.p);

connect(clamp.n, c_leak.n);

connect(c_leak.n, c_sod.n);

connect(c_sod.n, c_pot.n);

connect(c_pot.n, l2.n);

connect(l2.temp, c_pot.temp);

connect(c_pot.temp, c_sod.temp);

end HHmodular;

Annotations can be used to place the components on a coordinate
system and to give the connections a graphical representation.
Usually these annotations are not written manually but generated
by an IDE like OpenModelica, where the components can
be placed on a diagram view via drag and drop. Due to
restrictions in space we do not show all the annotations here
but only an example for the placement of the LipidBilayer
and the connection between the LipidBilayer and the
PotassiumChannel:

...

LipidBilayer l2 annotation(

Placement(visible = true, transformation(

origin = {-67, 3},

extent = {{-17, -17}, {17, 17}},

rotation = 0

))

);

...

equation

connect(l2.p, c_pot.p) annotation(

Line(

points = {{-66, 20},{-66, 40},{-33, 40},{-33, 20}},

Frontiers in Physiology | www.frontiersin.org 6 October 2020 | Volume 11 | Article 583203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

IK INa I l I=40 μA

T=6.3°C

outside

inside

FIGURE 1 | Diagram view of the modular Modelica implementation of the

Hodgkin-Huxley model. Each component has a positive electrical pin on the

top/outside and a negative electrical pin on the bottom/inside. From left to

right the components are: LipidBilayer, PotassiumChannel,

SodiumChannel, LeakChannel, and CurrentClamp. Extra connections

in red represent temperature dependence of gating variables.

color = {0, 0, 255}

)

);

...

The resulting diagram is shown in Figure 1. The lipid bilayer is
represented similar to diagrams in biology textbooks with circles
on the outside and curved black lines pointing to the inside of the
membrane. The channels are displayed as pores that are either
open for the leak channel or closed for channels that have to be
activated for ions to pass. The sodium channel additionally has a
hinged lid to represent the inactivation gate. Finally, the current
clamp is represented by two electrodes piercing the membrane.

3.2. Model Validation
When compiled, the modular version of the HH model reduces
to the exact same equation system as the original monolithic
version. Due to the modularization there are multiple versions
of one variable, but this only leads to the addition of a few trivial
equations of the form x = y or the form x = −y. Figure 2 shows
a plot of the monolithic and modular version to ensure that both
are functionally equivalent. This means that there are now two
very different implementations with the same functionality which
can and have to be analyzed for their suitability according to the
research questions we established in our introduction.

3.3. Assessment of Understandability (RQ1)
With RQ1, we asked if the understandability of the HH model
can be improved by a modular implementation that bridges
the gap between biological meaning and electrical analogy.
Using cognitive load theory as a framework, we will assume
that a model is more understandable if it requires fewer items
to be kept in working memory simultaneously. Although the
modular implementation has more lines of code in total, it
separates the model into small digestible parts. When a novice,
for example, wants to know what a Gate is, they only have
to process five variables and one equation, each of which
are documented with their physiological meaning. When they

FIGURE 2 | Comparison of the monolithic and modular versions of the HH

model. The plot shows perfect alignment of the voltage curves. Note that we

plot the membrane potential Vm as difference between the potential on the

inside and the potential on the outside of the cell. This conforms with current

standards, but is in contrast to the original equations by Hodgkin and Huxley,

which define V as the displacement from the resting potential with opposite

sign. We used the equation Vm = Er − V, assuming a resting potential Er of

−75 mV, which is also used in the HH-implementation in the BioModels

database (Le Novère, 2020) and corresponds to the resting potential of the

squid giant axon in vivo (Moore and Cole, 1960).

understand this component, they know that its purpose is to
produce a value between zero and one which is based on voltage
and temperature and represents the ratio of gating molecules in
open conformation. Once this concept is stored in long-term
memory it can be recalled as a single item into working memory.
This means that, when the learner moves on, the two gates in
SodiumChannel can be processed as two items instead of
twelve2. Moving from component to component, the modular
version presents the reader with at most two equations and five
variables or parameters at the same time. This constitutes a very
low cognitive load compared to the 15 equations and 33 variables
and parameters of the monolithic version that are presented all at
once or in loose groups without clearly defined interfaces.

One way to facilitate the transfer of new concepts in long-
term memory is to anchor them to existing knowledge. Our
implementation does this by annotating each component and
each variable or parameter in that component with biological
terms3. The implementation also uses speaking variable names
wherever possible to keep a close link between the biological
and themathematical representation—a common best practice in
software engineering (that could also be applied to a monolithic
version). Some parts of themodel, such as the seemingly arbitrary
fitting function goldmanFit, require more explanation which
can be given in Modelica by adding an HTML string to the
component for a detailed documentation.

Finally, on the highest hierarchical level, the component
HHmodular has still only five variables but ten connect
equations. For this model, however, a novice does not need to
read any code at all to understand it, because they can use the
diagram in Figure 1 instead. Since it is defined directly in the
code and tied to the individual components it is not only a
simplified documentation but an accurate graphical reflection of

2This benefit is even more pronounced considering that the formulas for the α

and β variables in the original model each consist up to seven seemingly arbitrary

mathematical operations that are now given a meaning by introducing the named

and documented fitting functions expFit, logisticFit, and goldmanFit.
3Due to spatial limitations we do not show all these annotations in this paper, but

they can be found at https://github.com/CSchoel/hh-modelica/.

Frontiers in Physiology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 583203

https://github.com/CSchoel/hh-modelica/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

the underlying implementation. This means that understanding
the model on this level of abstraction is not any harder than
understanding a corresponding biological drawing in a textbook.
Assuming that the learner is already familiar with what is
modeled, the implementation can again be anchored easily to that
existing knowledge.

3.4. Assessment of Extensibility and
Reusability (RQ2)
With RQ2, we asked if a modular implementation of the HH
model can serve as a unifying basis for extensions and therefore
facilitate the creation of more complex HH-type modules. The
current implementation already could reduce some duplicate
equations in the original model by reusing already existing code.
The current-voltage relationship of the three ion channels, the
rate of conformation change in the three different gates, and
the fitting functions expFit and goldmanFit each had to
be defined only once. Furthermore, the introduction of the
replaceable functions fopen and fclose eliminated the need
to define starting values for the gating variables. When new
components are added to the model, it is highly probable that
some of these existing components can be used to reduce the
implementation effort. Even more importantly, the argument
for the reduction of cognitive load by modularization gets more
weight as the model grows in size. In the modular version, the
only point where cognitive load may increase due to extensions
and therefore make the model less understandable is when there
are too many individual models at the highest hierarchical layer.
However, even then it is possible to form groups of components
(e.g., a group for all potassium-sensitive channels or for all
ion pumps) that are then connected on a new even higher
hierarchical level. Conversely, the cognitive load associated with a
monolithic model will grow with each variable and each equation
that is added to the model.

To give one specific example, a reasonable extension could be
the inclusion of slow inactivation of sodium channels. In contrast
to fast inactivation, that stops the influx of Na+ cations after a
few milliseconds, slow inactivation takes place over seconds or
even minutes of prolonged or high frequency depolarizations,
reducing the number of sodium channels available for activation
(Payandeh, 2018). This could be realized by simply adding
another Gate component to the SodiumChannel and
introducing a ratio p_slow that determines how much of the
total current is attributed to slow as opposed to fast inactivation.
The conductance equation would then change from

g = g_max * gate_act.n ^ 3 * gate_inact.n;

to:

g = g_max * gate_act.n ^ 3

* (p_slow * gate_inact_slow.n + (1-p_slow) * gate_inact_fast

.n);

Apart from choosing appropriate fitting functions for the new
gate, this would be the only change required. Arguably a
monolithic model would not require more changes, but it would
be more difficult to first identify which equations have to change
and thus it would be easier to make a mistake by missing
or interchanging an equation or variable. We encountered this

problem in a previous work with a model of the human cardiac
conduction system (Schölzel et al., 2020).

Other extensions might involve defining an alternative Gate
that uses fitting functions to determine the steady state n∞
and time constant τ instead of α (fopen) and β (fclose)
(Destexhe and Huguenard, 2000; Goldman et al., 2001) or new
components based on TwoPinComponent, such as channel
formulations based on the Goldman-Hodgkin-Katz flux equation
(Huguenard and McCormick, 1992; Destexhe and Huguenard,
2000) or models of ionic pumps (Di Francesco and Noble,
1985; Matsuoka and Hilgemann, 1992). Even in these cases the
underlying interfaces can stay the same and parts like the current
clamp formulation, common base classes, and fitting functions
can be reused.

4. DISCUSSION

We showed that a modular version of the HH model that
uses software-engineering techniques to manage complexity is
beneficial both for novices and for experts, answering both of our
research questions in the affirmative.

RQ1 asked whether the understandability of the HH model
can be improved by a modular implementation. We showed that
this is the case using CLT as framework and demonstrating a drop
of the cognitive load by a factor of 6. The biological concepts
can be explained and understood one at a time with an accurate
graphical representation at the highest level of abstraction instead
of having to navigate through a multitude of equations and
variables with high element interactivity. In summary this means
that with our implementation a deeper understanding of the HH
model can be achieved in less time and it is likely that novices
learning the model in this way will make fewer errors when
recalling the learned concepts at a later time.

RQ2 asked whether the modular implementation can also
serve as a unifying basis for extensions and facilitate the creation
of more complex HH-type models. We showed that, in contrast
to the monolithic version, adding new components does not
significantly increase the cognitive load associated with the
model. We also demonstrated that many components of our
model are easily reusable which reduces development time and
increases interoperability of solutions.

Similar results like ours would have been possible, for
example, using CellML, or SBML with the SBML-comp package.
In fact, Wimalaratne et al. (2009) also used the Hodgkin-Huxley
model as an example to promote the support for hierarchical
composition of CellML models. However, we used some
Modelica features for our design that do not exist in these other
languages. This includes the graphical composition of models,
object-oriented programming with multiple inheritance, acausal
connections between electrical and chemical components, the
grouping of interface variables to connectors, and the annotation
of the experiment setup within the model file itself.

One limitation of this approach is that some experts might be
much more familiar with the formalism of differential equations
than with object-oriented software design. It might be easier
for them to reduce a group of equations to a single item in

Frontiers in Physiology | www.frontiersin.org 8 October 2020 | Volume 11 | Article 583203

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

their working memory than it is to do the same with a piece
of code that represents a class. This means that, for models
of small to moderate size, the navigation through different
classes according to a modular design structure might actually
be detrimental to their understanding of the model and to their
productivity when working with it. A solution to this problem
could be to provide a third, equation-based representation of
the respective model in parallel to the existing graphical view
and the raw code. Authoring tools like OpenCOR for CellML
(Garny and Hunter, 2015) or COPASI for SBML (Hoops et al.,
2006) already provide these equation-based views. However,
they do not provide an overview of all equations in the whole
model, but only of the parts that are currently selected. For
Modelica we are only aware of a similar approach to OpenCOR
and COPASI in the proprietary IDE MapleSim (Maplesoft,
2020). Implementing such a representation in open-source tools,
such as OpenModelica would be possible due to the fact that,
like CellML and SBML, Modelica is declarative. OpenModelica
already has a feature to “instantiate” a model, which reduces
its structure to a “flat” format consisting of a single class
with a list of parameters, variables, and equations. Additionally,
OpenModelica models can be exported in an XML format that
contains all parameters, variables, and equations in a machine-
readable form. Based on these existing features, an “equation
view” could be implemented in the OpenModelica IDE OMEdit
that would allow experts to understand a model at first glance
based on the differential equations and without having to traverse
its hierarchical structure. Alternatively, such a representation
could be part of a documentation website associated with a
model or model library. As an added benefit a tool that provides
such an automated representation as typeset equations could
also provide an export as LaTeX or Word documents, which
can then be inserted in articles to guarantee that the published
version of the equations is exactly the same as the equations
used to simulate the model. We have implemented a first
prototype of such an equation-based web documentation using
the Julia package Documenter.jl (Piibeleht et al., 2020) and our
own package ModelicaScriptingTools.jl (Schölzel, 2020). The
resulting experimental documentation for the Hodgkin-Huxley
model presented in this article can be found at https://cschoel.
github.io/hh-modelica/dev/.

Another direction for future research is the application of our
techniques to larger and more complex models. We are already
using the model developed in this paper as a basis to reproduce

a large 116 equation model of the atrioventricular node (Inada
et al., 2009). We hope that this and other projects based on the
same methodology, be it with Modelica or another MoDROGH
language like CellML, may help to increase the quality and speed
of scientific progress in systems biology.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/
CSchoel/hh-modelica (archived as https://doi.org/10.5281/
zenodo.3947848).

AUTHOR CONTRIBUTIONS

CS and AD conceived the project. CS implemented the
models and performed the experiments. VB and GE provided
the physiological consultation and critique. CS drafted the
manuscript. All authors contributed tomanuscript revision, read,
and approved the submitted version.

FUNDING

Funding for article processing fees was provided by the central
publishing fund of the Technische Hochschule Mittelhessen -
University of Applied Sciences.

ACKNOWLEDGMENTS

We thank our two reviewers for their valuable comments.
We also thank Annina Hofferberth for proofreading
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2020.583203/full#supplementary-material

REFERENCES

Bai, J., Gladding, P. A., Stiles, M. K., Fedorov, V. V., and Zhao, J. (2018). Ionic

and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial

fibrillation: insights from mathematical models of human atrial cells. Sci. Rep.

8:15642. doi: 10.1038/s41598-018-33958-y

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., et al.

(2012). “Functional mockup interface 2.0: the standard for tool independent

exchange of simulation models,” in Proceedings of the 9th International

Modelica Conference (Munich), 173–184. doi: 10.3384/ecp12076173

Courtemanche, M., Ramirez, R. J., and Nattel, S. (1998). Ionic mechanisms

underlying human atrial action potential properties: insights from a

mathematical model. Am. J. Physiol. Heart Circ. Physiol. 275, H301–H321.

doi: 10.1152/ajpheart.1998.275.1.H301

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and

Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description

language. Simulation 79, 740–747. doi: 10.1177/0037549703040939

Dassault Systèmes (2020). Dymola. Available online at: https://www.3ds.com/

products-services/catia/products/dymola/ (accessed August 20, 2020).

Destexhe, A., and Huguenard, J. R. (2000). Nonlinear thermodynamic

models of voltage-dependent currents. J. Comput. Neurosci. 9, 259–270.

doi: 10.1023/A:1026535704537

Di Francesco, D., and Noble, D. (1985). A model of cardiac electrical activity

incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc.

Lond. B Biol. Sci. 307, 353–398. doi: 10.1098/rstb.1985.0001

Elmqvist, H., Henningsson, T., and Otter, M. (2016). “Systems modeling and

programming in a unified environment based on Julia,” in Leveraging

Applications of Formal Methods, Verification and Validation: Discussion,

Frontiers in Physiology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 583203

https://cschoel.github.io/hh-modelica/dev/
https://cschoel.github.io/hh-modelica/dev/
https://github.com/CSchoel/hh-modelica
https://github.com/CSchoel/hh-modelica
https://doi.org/10.5281/zenodo.3947848
https://doi.org/10.5281/zenodo.3947848
https://www.frontiersin.org/articles/10.3389/fphys.2020.583203/full#supplementary-material
https://doi.org/10.1038/s41598-018-33958-y
https://doi.org/10.3384/ecp12076173
https://doi.org/10.1152/ajpheart.1998.275.1.H301
https://doi.org/10.1177/0037549703040939
https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
https://doi.org/10.1023/A:1026535704537
https://doi.org/10.1098/rstb.1985.0001
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Schölzel et al. An Understandable, Extensible, and Reusable Hodgkin-Huxley Implementation

Dissemination, Applications, ISoLA 2016, Volume 9953 of Lecture Notes in

Computer Science (Corfu), 198–217. doi: 10.1007/978-3-319-47169-3_15

Fabbri, A., Fantini, M., Wilders, R., and Severi, S. (2017). Computational analysis

of the human sinus node action potential: model development and effects of

mutations. J. Physiol. 595, 2365–2396. doi: 10.1113/JP273259

Fink, M., and Noble, D. (2009). Markov models for ion channels: versatility versus

identifiability and speed. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367,

2161–2179. doi: 10.1098/rsta.2008.0301

Fritzson, P., Aronsson, P., Lundvall, H., Nyström, K., Pop, A., Saldamli, L.,

et al. (2005). “The OpenModelica modeling, simulation, and development

environment,” in Proceedings of the 46th Conference on Simulation and

Modelling of the Scandinavian Simulation Society (Trondheim).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional

Computing Series. Reading, MA: Addison-Wesley.

Garny, A., and Hunter, P. J. (2015). OpenCOR: a modular and

interoperable approach to computational biology. Front. Physiol. 6:26.

doi: 10.3389/fphys.2015.00026

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. Cambridge:

Cambridge University Press.

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. F. (2001). Global

structure, robustness, and modulation of neuronal models. J. Neurosci. 21,

5229–5238. doi: 10.1523/JNEUROSCI.21-14-05229.2001

Hellerstein, J. L., Gu, S., Choi, K., and Sauro, H. M. (2019). Recent advances

in biomedical simulations: a manifesto for model engineering. F1000Research

8:261. doi: 10.12688/f1000research.15997.1

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., et al. (2006).

COPASI–a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.

doi: 10.1093/bioinformatics/btl485

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Huguenard, J. R., and McCormick, D. A. (1992). Simulation of the currents

involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol.

68, 1373–1383. doi: 10.1152/jn.1992.68.4.1373

Hunt, A., and Thomas, D. (2000). The Pragmatic Programmer: From Journeyman

to Master. Reading, MA: Addison-Wesley.

Inada, S., Hancox, J. C., Zhang, H., and Boyett, M. R. (2009). One-dimensional

mathematical model of the atrioventricular node including atrio-nodal,

nodal, and nodal-his cells. Biophys. J. 97, 2117–2127. doi: 10.1016/j.bpj.2009.

06.056

Inkscape Developers (2020). Inkscape-Draw Freely. Available online at: https://

inkscape.org/ (accessed August 20, 2020).

Jordan, J., Mørk, H., Vennemo, S. B., Terhorst, D., Peyser, A., Ippen, T., et al.

(2020). NEST. Zenodo. Available online at: https://doi.org/10.5281/zenodo.

2605422 (accessed August 20, 2020).

Justus, N., Schölzel, C., Dominik, A., and Letschert, T. (2017). “Mo|E–a

communication service between Modelica compilers and text editors,” in

Proceedings of the 12th International Modelica Conference (Prague), 815–822.

doi: 10.3384/ecp17132815

Le Novère, N. (2020). BioModels: Hodgkin-Huxley Squid-Axon 1952. Available

online at: https://www.ebi.ac.uk/biomodels/BIOMD0000000020 (accessed

August 20, 2020).

Lopez, C. F., Muhlich, J. L., Bachman, J. A., and Sorger, P. K. (2013).

Programming biological models in Python using PySB. Mol. Syst. Biol. 9:646.

doi: 10.1038/msb.2013.1

Maplesoft (2020). MapleSim–Advanced System-Level Modeling and Simulation.

Available online at: https://www.maplesoft.com/products/maplesim/ (accessed

August 20, 2020).

Matsuoka, S., and Hilgemann, D. W. (1992). Steady-state and dynamic properties

of cardiac sodium-calcium exchange: ion and voltage dependencies of the

transport cycle. J. Gen. Physiol. 100, 963–1001. doi: 10.1085/jgp.100.6.963

Mattsson, S. E., and Elmqvist, H. (1997). “Modelica–an international effort to

design the next generation modeling language,” in 7th IFAC Symposium on

Computer Aided Control Systems Design, CACSD’97 (Gent), Vol. 30, 151–155.

doi: 10.1016/S1474-6670(17)43628-7

Moore, J. W., and Cole, K. S. (1960). Resting and action potentials of the squid

giant axon in vivo. J. Gen. Physiol. 43, 961–970. doi: 10.1085/jgp.43.5.961

Noble, D., Garny, A., and Noble, P. J. (2012). How the Hodgkin-Huxley

equations inspired the cardiac physiome project. J. Physiol. 590, 2613–2628.

doi: 10.1113/jphysiol.2011.224238

Olivier, B. G., Rohwer, J. M., and Hofmeyr, J.-H. S. (2005).

Modelling cellular systems with PySCeS. Bioinformatics 21, 560–561.

doi: 10.1093/bioinformatics/bti046

Payandeh, J. (2018). Progress in understanding slow inactivation speeds up. J.

Gene. Physiol. 150, 1235–1238. doi: 10.1085/jgp.201812149

Piibeleht, M., Hatherly, M., and Ekre, F. (2020). Documenter.jl. Available online at:

https://github.com/JuliaDocs/Documenter.jl (accessed August 20, 2020).

Rackauckas, C., Ma, Y., Widmann, D., Ranocha, H., Levien, E., Short, T., et al.

(2020).DifferentialEquations.jl Documentation. Available online at: http://docs.

juliadiffeq.org/latest/ (accessed August 20, 2020).

Schölzel, C. (2020). THM-MoTE/ModelicaScriptingTools.jl: V1.1.0-alpha.1.

Zenodo.

Schölzel, C., Blesius, V., Ernst, G., and Dominik, A. (2020). The impact of

mathematical modeling languages on model quality in systems biology:

a software engineering perspective. bioRxiv. doi: 10.1101/2019.12.16.

875260

Sweller, J. (2019). “Cognitive load theory,” in Advances in Cognitive Load Theory:

Rethinking Teaching, 1st Edn., eds S. Tindall-Ford, S. Agostinho, and J. Sweller

(Abingdon: Routledge), 1–11. doi: 10.4324/9780429283895-1

The MathWorks, Inc. (2020). Simscape. Available online at: https://www.

mathworks.com/products/simscape.html (accessed August 20, 2020).

Voit, E. O. (2013). A First Course in Systems Biology, 1st Edn. New York, NY:

Garland Science.

Wimalaratne, S. M., Halstead, M. D. B., Lloyd, C. M., Cooling, M. T., Crampin, E.

J., and Nielsen, P. F. (2009). Facilitating modularity and reuse: guidelines for

structuring CellML 1.1 models by isolating common biophysical concepts. Exp.

Physiol. 94, 472–485. doi: 10.1113/expphysiol.2008.045161

Winslow, R. L., Rice, J., Jafri, S., Marbán, E., and O’Rourke, B. (1999). Mechanisms

of altered excitation-contraction coupling in canine tachycardia-induced heart

failure, II: model studies. Circ. Res. 84, 571–586. doi: 10.1161/01.RES.84.5.571

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Schölzel, Blesius, Ernst and Dominik. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 10 October 2020 | Volume 11 | Article 583203

https://doi.org/10.1007/978-3-319-47169-3_15
https://doi.org/10.1113/JP273259
https://doi.org/10.1098/rsta.2008.0301
https://doi.org/10.3389/fphys.2015.00026
https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
https://doi.org/10.12688/f1000research.15997.1
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1093/bioinformatics/btl485
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1152/jn.1992.68.4.1373
https://doi.org/10.1016/j.bpj.2009.06.056
https://inkscape.org/
https://inkscape.org/
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.3384/ecp17132815
https://www.ebi.ac.uk/biomodels/BIOMD0000000020
https://doi.org/10.1038/msb.2013.1
https://www.maplesoft.com/products/maplesim/
https://doi.org/10.1085/jgp.100.6.963
https://doi.org/10.1016/S1474-6670(17)43628-7
https://doi.org/10.1085/jgp.43.5.961
https://doi.org/10.1113/jphysiol.2011.224238
https://doi.org/10.1093/bioinformatics/bti046
https://doi.org/10.1085/jgp.201812149
https://github.com/JuliaDocs/Documenter.jl
http://docs.juliadiffeq.org/latest/
http://docs.juliadiffeq.org/latest/
https://doi.org/10.1101/2019.12.16.875260
https://doi.org/10.4324/9780429283895-1
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://doi.org/10.1113/expphysiol.2008.045161
https://doi.org/10.1161/01.RES.84.5.571
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	An Understandable, Extensible, and Reusable Implementation of the Hodgkin-Huxley Equations Using Modelica
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. Model Engineering
	2.1.2. Modelica and Object-Oriented Programming
	2.1.3. The Biological Basis of the Hodgkin-Huxley Model
	2.1.4. Cognitive Load Theory

	2.2. Model Design and Structure

	3. Results
	3.1. Model Code
	3.2. Model Validation
	3.3. Assessment of Understandability (RQ1)
	3.4. Assessment of Extensibility and Reusability (RQ2)

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

