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Abstract 14 

Quantifying predictive uncertainty of ensemble air quality forecast is very crucial and 15 

challenging. This study integrated a Copula-based Bayesian Model Averaging 16 

(CBMA) and multiple deterministic artificial neural networks (ANNs) to make 17 

accurate ensemble probabilistic PM2.5 forecasts. The new approach (CBMA), has a 18 

flexible structure that grants the posterior distribution to have any shape owing to the 19 

Copula function. The CBMA approach could remove the data transformation and bias 20 

correction procedures as it is done in the original BMA, which was taken as the 21 

benchmark. The air quality in Taipei City of Taiwan was selected as a study case to 22 

evaluate the applicability and reliability of the proposed approach. Three kinds of air 23 

quality monitoring stations denoted heavy traffic loads, intensive commercial trading 24 

and human intervention, and a natural circumstance with fewer human activities 25 

respectively. The forecasts of PM2.5 concentrations were regarded as a math function 26 

involving meteorological and air quality variables, using long-term (2010-2018) 27 

hourly observational datasets. Firstly, four deterministic ANN models were 28 

established and evaluated to provide inputs for ensemble forecasting. Then, the two 29 

post-processing techniques (i.e. CBMA and BMA) were employed to produce 30 

ensemble probabilistic forecasts based on the forecasts obtained from multiple ANN 31 

models. The results demonstrated that the CBMA not only could outperform the 32 

BMA but also could provide a practical and reliable approach as a complement to 33 

multiple deterministic ANN models to create ensemble probabilistic forecasts. From 34 

horizons t+1 up to t+4, the CBMA approach could drive up the Containing Ratio (CR) 35 

values by 3.12% ˗ 9.58% as well as reduce the average Relative Band-width (RB) 36 

values by 8.63% ˗ 34.48% and the Continuous Ranked Probability Score (CRPS) 37 
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values by 7.62% ˗ 32.89%, in comparison with the BMA one. Consequently, the 38 

predictive uncertainty could be alleviated while model reliability and PM2.5 forecast 39 

accuracy could be considerably increased.  40 

Keywords: Air quality; Ensemble forecast; Uncertainty; Bayesian Model Averaging 41 

(BMA); Copula function 42 

 43 

1. Introduction 44 

Suspended atmospheric particulate matter (e.g. PM2.5, aerodynamic diameter less than 45 

2.5 µm) is one of main air pollutants (Huang et al., 2014; Zhang et al., 2018). Natural 46 

sources and anthropogenic sources transformation of precursor emissions in the 47 

atmosphere such as SO2 to Sulphates and NOX to Nitrates may also cause PM2.5 48 

(Berardis and Eleonora, 2017; Van Fan et al., 2018). The electricity generation 49 

process using overmuch fossil fuels would produce plenty of precursor emissions and 50 

trigger air pollution. The accurate and reliable air quality predictions can provide 51 

technical guidelines for the trade-off between fossil fuels energy and renewable 52 

energy outputs toward cleaner production. Air quality predictions and environmental 53 

impacts of the electricity generation process not only increase efficiencies in the uses 54 

of energy but also are in the interest of cleaner production in power industries (Han et 55 

al., 2019). It is essential to make accurate and reliable air quality forecasts in advance 56 

to mitigate environmental impacts and health risks. There is a noticeably growing 57 

trend to move away from purely deterministic air quality forecasting to probabilistic 58 

air quality forecasting (Krapu and Borsuk, 2019; Zhang, 2017; Zhai and Chen, 2018). 59 
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Some promising techniques (Table 1) have been used to quantify uncertainties in air 60 

quality forecasts, for instance, (1) pre-processing techniques: Fuzzy Clustering (FC) 61 

method, Wavelet Transform (WT) and bias-correction method (Dunea et al., 2015; 62 

Feng et al., 2015; Gong and Ordieres, 2016; Lohani et al., 2014; Lyu et al., 2017; 63 

Monteiro et al., 2013) and (2) post-processing techniques: Multiple Linear Regression 64 

(MLR), Kalman filtering, Generalized Likelihood Uncertainty Estimation (GLUE), 65 

Bayesian Uncertainty Processor (BUP) and Bayesian Model Averaging (BMA) 66 

(Aznarte, 2017; Djalalova et al., 2015; Garner and Thompson, 2013; Kaminska, 2018; 67 

Pucer et al., 2018; Zhai and Chen, 2018). Ensemble forecasting techniques are 68 

commonly used to characterize diverse uncertainties in air quality forecasts (Bai et al., 69 

2018; Thielen-del and Bruen, 2019). According to the comparative analysis for 70 

various probabilistic forecasting techniques (Table 1), the BMA, as one of the smart 71 

post-processing methods, employed for weather firstly forecasting, is being broadened 72 

to air quality modeling applications, which exhibits ensemble forecasts' advantage 73 

(Herr and Krzysztofowicz, 2015; Pucer et al., 2018; Krapu and Borsuk, 2019). 74 

Ensemble forecasts with post-processing techniques are commonly used to 75 

supplement the information provided by point-value deterministic predictions. 76 

Modular design, ensemble modeling and hybridization with deterministic models are 77 

yielding new tools for probabilistic air quality forecasting (Liu et al., 2019). 78 

Table 1 Comparison analysis of probabilistic forecasting methods 79 

Methods Categories Pros Cons 

Pre-processing Fuzzy Clustering (FC) Quantifying the input uncertainty 

possessing fuzzy characteristics  

Only for the input 

uncertainty possessing 

a specific 

characteristic, not for 

Wavelet Transform 

(WT) 

Quantifying the input uncertainty 

possessing periodic or seasonal 
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characteristics model structure and 

parameters uncertainty Bias-correction Quantifying the input uncertainty 

possessing systematic bias error 

Post-processing Multiple Linear 

Regression (MLR) 

Quantifying the overall predictive 

uncertainty of model structure and 

parameters possessing linear 

features 

Only for the 

uncertainty possessing 

linear features 

Kalman filtering Quantifying the overall predictive 

uncertainty of model structure and 

parameters possessing systematic 

bias error 

Only for the 

single-model 

independently 

Generalized 

Likelihood 

Uncertainty 

Estimation (GLUE) 

Quantifying the overall predictive 

uncertainty of model structure and 

parameters possessing nonlinear 

features 

Only for the 

single-model 

independently 

Bayesian Uncertainty 

Processor (BUP) 

Quantifying the overall predictive 

uncertainty of model structure and 

parameters possessing Gaussian 

features 

Only for the 

single-model 

independently and 

meeting Gaussian 

assumption 

Bayesian Model 

Averaging (BMA) 

Quantifying the overall predictive 

uncertainty of multi-model 

structure and parameters 

Only for the specific 

form of posterior 

distributions 

Any ensemble forecast approach relies upon model diversity that different models 80 

produce, with specific emphasis and different aspects of the features they want to 81 

model (Li et al., 2013; Raftery et al., 2005). Artificial Neural Networks (ANNs) used 82 

as data-driven methods to model air quality and meteorological systems have evolved 83 

rapidly over the last few decades (Ryan, 2016; Shen et al., 2018). For instance, the 84 

Back Propagation Neural Networks (BPNN), the Adaptive Neural Fuzzy Inference 85 

System (ANFIS), the Random Forest (RF), the Quantile Regression Neural Networks 86 

(QRNN), the Radial Basis Function (RBF), the Extreme Learning Machine (ELM), 87 

the Non-linear AutoRegressive with eXogenous inputs neural network (NARX), the 88 

Support Vector Machine (SVM) and the Long-Short Term Memory (LSTM) have 89 

been widely used to model air quality and meteorological forecasts (e.g. Akbari et al., 90 
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2018; Ausati and Amanollahi, 2016; Cannon, 2011; Chang et al., 2016; Gao et al., 91 

2018; Nieto et al., 2018; Prasad et al., 2016; Taghavifar et al., 2016; Voukantsis et al., 92 

2011; Yeganeh et al., 2018; Yu et al., 2016; Zhu et al., 2018; Zhou et al., 2019 a,b). 93 

The factors of geographical location, meteorological conditions, population, traffic 94 

density and industrial activities have an impact on the physical-chemical composition 95 

and the concentration of airborne particles (e.g. Fanizza et al., 2018; Li et al., 2018; 96 

Sun et al., 2016; Yu and Stuart, 2017). The mass concentration of atmospheric 97 

particulate matter (e.g. PM2.5) relies on a series of natural and anthropogenic 98 

processes, furthermore, the main contribution stems from secondary particles (Lin and 99 

Zhu, 2018; Lyu et al., 2016; Wu et al., 2018). Secondary particles' formation is 100 

attributed to a lot of factors: ozone, carbon monoxide, carbon dioxide, organic carbon, 101 

sulphur dioxide, nitrogen oxides and meteorological environments like temperature, 102 

precipitation, wind speed and direction as well as relative ambient humidity (Berardis 103 

and Eleonora, 2017; Coelho et al., 2014). Moreover, ensemble forecasting provides a 104 

practical and reliable approach that serves as a complement to ANN models for 105 

simulating and understanding of particle formation, transport, transformation and 106 

deposition mechanisms in the primary, secondary and natural sources and processes 107 

(Chen et al., 2018). Hence, it is interesting to make an in-depth study on ANN models 108 

for improving forecast reliability and accuracy and on the conversion of the 109 

deterministic forecasts into probabilistic forecasts using post-processing ensemble 110 

techniques. 111 

Predictive uncertainties are closely associated with the spatial discretization of 112 
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physical processes, model structure and parameterization. Because any air quality 113 

model is considered the brief conceptualization of complicated chemical-physical 114 

processes in the atmospheric system, the hypotheses in the conceptual model induce 115 

air quality forecasts to get inaccurate. To decrease model uncertainty, the model 116 

averaging method is commonly adopted to integrate an ensemble of multiple models 117 

by using a linear sum of diverse models. Such model-averaging approaches bring 118 

deterministic outputs' linear average and make a combined single-value, for instance, 119 

equal weights averaging, MLR, Akaike Information Criterion (AIC) or Bayesian 120 

Information Criterion (BIC)-based model averaging (Breiman and Friedman, 1997; 121 

Buckland et al., 1997; Granger and Ramanathan, 1984; Leslie and Holland, 1991). 122 

Even if these model averaging methods have achieved good practicality and 123 

applicability, some researchers (e.g. Hoeting et al., 1999; Raftery et al., 2005) 124 

contended that the weights cannot thoroughly characterize single models' contribution 125 

and advocated BMA's application. The BMA approach can integrate the Probability 126 

Density Function (PDF) of different model predictions by means of making a 127 

weighted one. The applications of BMA approach in meteorological forecasts 128 

motivated its several usages in air quality forecasts (e.g. Mok et al., 2018; Pucer et al., 129 

2018; Pannullo et al., 2016; Weber et al., 2016). However, the conditional PDF in 130 

standard BMA is supposed to conform to a Gaussian distribution (Raftery et al., 2005), 131 

which is appropriate for some specific predicted variables (e.g. atmospheric pressure 132 

and temperature). For other variables (e.g. PM2.5, PM10, Ozone, precipitation and 133 

wind speed), the Gaussian distribution would be a bad choice, whereas other PDF 134 
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distributions (e.g. Gamma, Gumbel, Pearson type III, Generalized Extreme Value, etc) 135 

would be good choices for fitting predicted variables (Mok et al., 2018; Pucer et al., 136 

2018). Additionally, the standard BMA application need transform the model outputs 137 

(or predicted variables) from original space to the Gaussian space. To prevent such 138 

information loss during data space transformation, multivariate Copula functions have 139 

been used in meteorological and hydrological fields (e.g. Chen and Guo, 2019; 140 

Khajehei and Moradkhani, 2017; Nelsen, 2006; Zhang and Singh, 2019), owing to 141 

their outstanding capability of modeling the nonlinear dependence of multiple 142 

variables and their allowance of some flexibility in choosing an arbitrary marginal 143 

distribution. In a study by Madadgar and Moradkhani (2014), the combination of 144 

multivariate Copula function and BMA (CBMA) can relax the Gaussian assumption 145 

of PDFs. The CBMA approach showed superior practicality and reliability in 146 

hydrologic forecasts (e.g. rainfall-runoff processes). Whereas the review of the 147 

available literature indicates the CBMA has not been applied in air quality forecasts. 148 

Consequently, it is imminent to implement an in-depth study on the exploration of 149 

CBMA for quantifying and reducing the uncertainty encountered in ensemble air 150 

quality forecasts.  151 

The research gaps and how did this work fulfill research gaps were described as 152 

follows. First, the current ensemble models for air quality forecasting mainly involved 153 

single-output ANNs and/or shallow learning ANNs whereas multi-output ANNs and 154 

deep learning ANNs were rarely applied in the ensemble forecast of air quality. 155 

Accordingly, the integration of the single-output, the multi-output, the shallow 156 
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learning, and the deep learning ANN models were proposed to configure the four 157 

members of the ensemble scheme for air quality forecasting (i.e. point forecasts). 158 

Second, the contribution of this study was attributed to exploring and extending our 159 

previous works (i.e. deterministic ANN models) (Zhou et al., 2019a,b) for making 160 

probabilistic ensemble PM2.5 forecasts. Third, the family of Bayesian ensemble 161 

forecast methods consists of BMA and CBMA. The BMA method has been widely 162 

adopted for air quality forecasting. Despite the CBMA is an existing method, it has 163 

been rarely employed in the air quality forecast field. Accordingly, the CBMA 164 

method was introduced to create a probabilistic ensemble scheme for air quality 165 

forecasting based on point forecasts driven by multiple ANNs.  166 

The novelties of this study relied on: multiple ANNs with various characteristics 167 

were for the first time integrated into a novel ensemble scheme for air quality 168 

forecasting while the combination of Copula function and BMA (CBMA) was taken 169 

as an existing method but rarely used in the air quality forecast field. 170 

In this study, a CBMA-based approach was proposed for integrating CBMA and 171 

multiple ANNs to reduce the prediction intervals of ensemble PM2.5 forecasts. Firstly, 172 

multiple ANN models were constructed for creating deterministic PM2.5 forecasts 173 

independently. Then for comparison purpose, the CBMA approach and the BMA 174 

approach were implemented to transform the deterministic PM2.5 forecasts of multiple 175 

ANN models into the ensemble probabilistic PM2.5 forecasts respectively. The 176 

regional PM2.5 forecasts in Taipei City of Taiwan were taken as a study case to assess 177 

the applicability as well as reliability of the proposed ensemble forecast method.  178 
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 179 

2. Methods 180 

Figure 1 illustrated the ensemble forecast architecture that integrated the four 181 

deterministic ANN models (Figure 1 (a)) with the BMA (Figure 1 (b)) or the CBMA 182 

ensemble forecast approach (Figure 1 (c)). The deterministic point forecasts were 183 

created by multiple ANN models independently. The ensemble forecast could be 184 

improved by CBMA, as compared with the benchmark method (i.e. BMA). The used 185 

methods were briefly described as below.  186 

2.1 Deterministic ANN models 187 

In this study, the selected ensemble members included single-output ANFIS 188 

(S-ANFIS) (Jang, 1993), multi-output SVM (M-SVM) (Xu et al., 2013; Zhou et al., 189 

2019a), single-output NARX (S-NARX) (Leontaritis and Billings, 1985) and 190 

multi-output deep learning LSTM (M-LSTM) (Zhou et al., 2019b) models. All models 191 

were the artificial neural network models and constructed for deterministic PM2.5 192 

forecasting. The models have the same network structures (i.e. input layer, hidden 193 

layer & output layer) whereas the models have different machine learning 194 

mechanisms. The S-ANFIS can extract the static and fuzzy feature between air quality 195 

and other factors, the M- SVM can extract the non-linear relationship between them, 196 

the S-NARX can extract dynamic feature between them, while the M-LSTM can 197 

extract the long and short-term relationship between them.  198 
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199 

Figure. 1 Ensemble probabilistic forecast architecture. (a) ANN models. (b) Bayesian 200 

Model Averaging (BMA). (c) Copula-based Bayesian Model Averaging (CBMA) for 201 

ensemble forecasting.   202 
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In the case of static ANNs (i.e. S-ANFIS and M-SVM), a typical three-layered 203 

static feedforward neural network, which is comprised of multiple elements including 204 

nodes and weight connections that link nodes. In the case of recurrent ANNs (i.e. 205 

S-NARX and M-LSTM), the recurrent neural network involves three layers and 206 

constitutes recurrent connections from the outputs, which can delay several unit times 207 

to produce new inputs. More detailed descriptions of the four models and their 208 

parameters setting for air quality forecasting can be found in the references (Ausati 209 

and Amanollahi, 2016; Ghazi and Khadir, 2009; Prasad et al., 2016; Zhou et al., 2019 210 

a,b). 211 

Air quality data with specific time-lags (e.g. PM2.5, PM10, ozone, oxynitride, 212 

nitrogen dioxide, nitric oxide, sulfur dioxide, carbon monoxide, etc) and 213 

meteorological data with specific time-lags (e.g. precipitation, temperature, wind 214 

speed and direction as well as relative humidity) constituted the input variables while 215 

multi-step-ahead air quality forecasts (e.g. PM2.5 concentration from t+1 up to t+4, 216 

horizon = 4) constituted the output variables. 217 

The differences of four ANN models were summarized as (1) the two models 218 

(S-ANFIS & S-NARX) possessed single-output model structures where the two 219 

models (M-SVM & M-LSTM) possessed multi-output model structures; (2) the 220 

former three models (i.e. S-ANFIS, M-SVM & S-NARX) were classified as shallow 221 

neural networks (i.e. number of hidden layers = 1) whereas the fourth model (i.e. 222 

M-LSTM) was classified as deep learning neural networks (i.e. number of hidden 223 

layers ≥ 2); and (3) the former two models (i.e. S-ANFIS & M-SVM) were classified 224 
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as static (i.e. non-recurrent) neural networks whereas the latter two models (i.e. 225 

S-NARX & M-LSTM) were classified as dynamic (i.e. recurrent) neural networks. 226 

Moreover, the S-ANFIS and S-NARX models need to construct multiple independent 227 

models to output air quality forecast at diverse monitoring stations whereas the 228 

M-SVM and M-LSTM models require only one forecast model to make air quality 229 

multi-outputs. That is to say, the selected four ensemble members can provide model 230 

diversity for the applications of the following ensemble forecast approaches.  231 

2.2 Bayesian Model Averaging (BMA) 232 

BMA is a post-processing technique used to integrate the forecast results that are 233 

created by different models in virtue of making an ensemble PDF. The predicted 234 

distribution of a realization of the observation   , considering the multiple forecasts 235 

of k models                   , and the observed data Y within the training stage 236 

can be formulated as follows. 237 

                                         
               (1) 238 

where                          is the predictive distribution of the realization of 239 

the observation   , given the independent forecasts of k models                   , 240 

and the observed data Y.              is the posterior distribution of function of y
t
, 241 

given model forecast     , and training data  .    is the weight coefficient of ith 242 

model. The general implementation procedure of the BMA approach consisting of 243 

four basic steps can be found in Appendix A. 244 

2.3 Copula-based Bayesian Model Averaging (CBMA) 245 

From what has been discussed above, the predictive distribution in the BMA approach 246 
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is generally confined to a specific parameter distribution (e.g. Gaussian distribution) 247 

and is computed by a weighted sum of forecast PDFs. Therefore, we clarified a 248 

general procedure that fused multivariate Copula function into the original BMA 249 

approach (CBMA) to relax the limitations of unbiased forecasts and Gaussian 250 

distribution.  251 

Let      
 and    

 be the sampling values in CDFs of    and    respectively. 252 

Let         
  and       

  be the Probability Density Functions (PDFs) of the 253 

forecast variables of multiple models (    ) and realization of observation (  ) 254 

respectively. Using the PDF of Copula function, a joint PDF of (     
,    

) and a 255 

conditional probability can be constructed as follows. 256 

       
    

     
      

    
          

        
               (2a) 257 

     
      

  
       

     

        
 

    
      

    
        

             (2b) 258 

where        
    

  is the joint PDF of (     
,    

).    
      

    
  is the Copula 259 

joint PDF of (      
,    

) and    is the parameter of the Copula function. 260 

     
      

  is the conditional probability of    
, given the value of      

. Then, the 261 

conditional probability (Eq. (2b)) is used to replace the posterior probability (Eq. (1)) 262 

and the predicted distribution of the realization of observation    is updated as 263 

follows.  264 

                                        

 

   

 

       
      

    
        

  
              (3) 265 

As seen in Eq. (3), the posterior distribution              is directly calculated 266 
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without needs to use both bias-correction methods (Eq. (1) in Appendix A) and 267 

Gaussian data transformation (Eq. (2) in Appendix A). The general implementation 268 

procedure of the CBMA approach consisting of four basic steps can be found in 269 

Appendix B. 270 

It is noted that the differences between BMA approach and CBMA approach 271 

include: (1) the former demands a particular conditional PDFs (e.g. Gaussian), or data 272 

transformation (Non-Gaussian PDFs) and bias-correction for model forecasts whereas 273 

the latter has a flexible structure and relaxes the type of conditional PDFs and (2) the 274 

former needs to estimate the parameters of weight (  ) and variance (  
 ) whereas the 275 

latter needs to estimate the Copula parameter (  ) and the weight (  ).  276 

The general implementation programming of used machine learning models 277 

(ANFIS, SVM, NARX, LSTM) and Copula function can be obtained from the Statistics 278 

and Machine Learning Toolbox of the Matlab software (website: 279 

https://ww2.mathworks.cn/products/statistics.html#machine-learning).  280 

2.4 Evaluation criteria 281 

The Root-Mean-Square Error (RMSE) and the goodness-of-fit with respect to the 282 

benchmark (Gbench) were introduced to assess the accuracy of the deterministic 283 

forecast model. The two indicators were defined as follows. 284 

       

 
             

 
 
                            (4) 285 

          
             

 
 
   

                   
   

                    (5) 286 

where       and      are the model forecast and observation at the t-th time, 287 

respectively.           is the observation moved backwards by nth time lags, for 288 
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instance, for the horizon t + n,          =Y     . 289 

To evaluate the performance of probabilistic forecast models, the Containing 290 

Ratio (CR), the average Relative Band-width (RB) and the Continuous Ranked 291 

Probability Score (CRPS), were adopted for assessing the goodness of the prediction 292 

bounds (Gneiting and Raftery, 2007; Gneiting, 2008; Xiong and O’Connor, 2008). 293 

Their mathematical formulas were described below.  294 

      
                              

                                

                  (6a) 295 

   
      

   

 
                                     (6b) 296 

   
 

 
  

           

    
  

                                  (7) 297 

                      
  

  
                        (8) 298 

where       and       are the lower and upper boundaries of the forecasted data 299 

corresponding to a given confidence level at the t time respectively.       and 300 

      are the cumulative distribution functions of the forecast and observation 301 

distributions, respectively. x is the variable of the cumulative distribution function. 302 

The value of      is either 0 or 1, in which 0 indicates the observed data falls 303 

outside of its prediction bounds while 1 indicates the observed data falls within its 304 

prediction bounds. These evaluation criteria indicate that models with higher Gbench 305 

and CR values but lower RMSE, RB and CRPS values would produce better 306 

performances.  307 

 308 

3. Study area and materials 309 

The study area (Figure 2) was briefly introduced as follows. With the economy and 310 
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population fast boosting, one of the hot topics in Taiwan focused on air quality 311 

deterioration. People in Taipei City were compelled to handle a high-level 312 

intervention of PM2.5. Air pollution not just induced respiratory diseases but also 313 

caused a matter of life or death. Hence, it is imperative to make accurate and reliable 314 

PM2.5 forecasts so as to adequately process the health risk caused by regional air 315 

pollution. 316 

317 
Figure. 2 Distribution of air quality monitoring stations (A1-A5) in Taipei City. 318 

 319 

The positions of Taipei City and 5 air quality monitoring stations were presented 320 

in Figure 2. Stations A1 (Yonghe) and A2 (Sanchong) where the stations located in 321 

areas of heavy traffic are traffic stations, Stations A3 (Songshan) and A4 (Shilin) 322 

where the stations located in areas of intensive human activities and commercial 323 

trading are general stations, and Station A5 (Yangming) where the station located in 324 

the Yang-Ming Park is a park station. The Environmental Protection Administration 325 
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(EPA) in Taiwan (https://taqm.epa.gov.tw/taqm/en/b0101.aspx) provided a 326 

convenient open data platform where researchers could get access to many kinds of 327 

Taiwan-related data such as air quality and meteorological datasets. Hourly data of 328 

air quality factors (eight variables: PM2.5, PM10, ozone, oxynitride, nitrogen dioxide, 329 

nitric oxide, sulfur dioxide, carbon monoxide) and meteorological factors (five 330 

variables: precipitation, temperature, wind speed and direction as well as relative 331 

humidity) over a span of 9 years (2010-2018) were available. A total of 78,888 332 

(=[(2×366)+(7×365)]×24) hourly datasets were used in this study, where 35,064 data 333 

(4 years) were used for model training while the remaining 26,304 data (3 years) and 334 

17,520 data (2 years) were used for model validating and testing respectively. The 335 

data standardization that centered the mean to 0 and the standard deviation to 1, was 336 

conducted to decrease the negative effect of the different scales of input data on the 337 

model’s learning ability.  338 

Figure 3 presented the statistic indexes of seasonal and annual PM2.5 339 

concentration at five air quality monitoring stations. We noticed that the statistic 340 

indexes of the maximum, average and standard derivation at traffic stations (A1 and 341 

A2) were the highest while those in the park station (A5) were the lowest, which 342 

could be due to the primary source of particulate matter of a station. Based on the 343 

highest values (≥ 0.5) of the Kendall tau coefficients (Maidment, 1993), 1h-4h time 344 

lags were identified for air quality factors at traffic stations (A1 and A2) and 1h-2h 345 

time lags were identified for air quality factors at general and park stations (A3, A4 346 

and A5) while 1h-4h time lags were identified for meteorological factors at all 347 

https://taqm.epa.gov.tw/taqm/en/b0101.aspx
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stations (Zhou et al., 2019 a,b).  348 

 349 

Figure. 3 Statistic indexes of seasonal PM2.5 concentrations from 2010 to 2018 (9 350 

years) at five air quality monitoring stations in Taipei City. The abbreviations (max, 351 

ave, min, std) denote the maximum, average, minimum and standard deviation 352 

respectively.  353 

 354 

4. Results and discussion  355 

Both the CBMA approach and the BMA approach were employed to integrate the 356 

PM2.5 forecasts of four deterministic ANN models and the BMA approach served as a 357 

benchmark. The results and findings were presented in the order of the deterministic 358 

PM2.5 forecasts of four ANN models (Section 4.1), the determination of marginal 359 

distributions and the Copula function (Section 4.2), the ensemble PM2.5 forecasts and 360 
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the summarization (Section 4.3), shown as follows. 361 

4.1 Deterministic PM2.5 forecasts of four ANN models 362 

The four models (S-ANFIS, M-SVM, S-NARX and M-LSTM) were applied for 363 

deterministic forecasting PM2.5 concentrations of five monitoring stations (A1-A5) 364 

from horizons t+1 up to t+4 respectively. The RMSE and Gbench scores over the testing 365 

stages were calculated for each ANN model (Table 2). The RMSE and Gbench scores 366 

indicated that the performance of static models (S-ANFIS & M-SVM) was not as 367 

good as the recurrent models (S-NARX & M-LSTM) at the traffic stations (A1 & A2) 368 

and the general stations (A3 & A4). While the single-output modes (S-ANFIS & 369 

S-NARX) performed better than the multi-output models (M-SVM & M-LSTM) at 370 

the park station (A5). This was mainly due to the different learning mechanisms (or 371 

model structures) used for the configuration of each model and the simulation of the 372 

different air pollutant generating processes. The secondary processes (e.g. stations A1 373 

& A2) and primary processes (e.g. stations A3 & A4) represented complex and 374 

indirect air pollutant generating mechanisms and then required complex ANN models 375 

(e.g. S-NARX or M-LSTM) with recurrent or deep learning algorithms (complex 376 

model structure and a large number of parameters) to characterize such processes. The 377 

natural processes (e.g. station A5) represented simplex and direct air pollutant 378 

generating mechanisms and then only required simplex ANN models (e.g. S-ANFIS 379 

or S-NARX) with single-output structure (simplex mode structure and fewer 380 

parameters) to characterize such processes. As a reminder, the multi-model ensemble 381 

strategy was a means to exploit the diversity of skillful predictions from different 382 
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models. Hence, from a perspective of regional air quality forecast accuracy, it needs 383 

an ensemble technique (BMAs) to combine PM2.5 forecasts of different deterministic 384 

models and improves their effectiveness for regional air quality forecasts. 385 

Table 2 Comparison performance of four ANN models for deterministic PM2.5 386 

forecasts from horizons t+1 up to t+4 in the testing stage at different stations.  387 

Station Horizon 

ANFIS SVM NARX LSTM 

RMSE 

(μg/m
3
) Gbench 

RMSE 

(μg/m
3
) 

Gbench 
RMSE 

(μg/m
3
) Gbench 

RMSE 

(μg/m
3
) Gbench 

A1 

t+1 4.86 0.92 4.62 0.93 4.51 0.95 4.41 0.95 

t+2 5.77 0.87 5.68 0.90 5.43 0.91 5.11 0.92 

t+3 8.35 0.82 8.09 0.85 7.32 0.86 6.14 0.87 

t+4 11.33 0.78 11.26 0.80 10.78 0.82 9.55 0.84 

A2 

t+1 4.66 0.91 4.58 0.92 4.47 0.94 4.31 0.95 

t+2 5.33 0.87 5.26 0.88 5.06 0.90 4.83 0.92 

t+3 7.49 0.76 7.34 0.78 7.12 0.82 7.04 0.85 

t+4 10.38 0.71 10.16 0.73 9.94 0.75 9.45 0.77 

A3 

t+1 4.13 0.92 4.05 0.93 3.88 0.93 3.65 0.94 

t+2 5.23 0.88 5.11 0.90 4.92 0.91 4.71 0.92 

t+3 6.20 0.78 6.13 0.81 6.05 0.83 5.94 0.85 

t+4 9.29 0.72 9.15 0.74 8.67 0.76 8.21 0.78 

A4 

t+1 3.86 0.90 3.72 0.92 3.61 0.93 3.55 0.94 

t+2 5.04 0.88 4.97 0.90 4.89 0.91 4.72 0.92 

t+3 6.30 0.80 6.21 0.83 6.13 0.86 6.06 0.88 

t+4 8.92 0.73 8.85 0.75 8.66 0.81 8.57 0.83 

A5 

t+1 2.51 0.91 2.58 0.89 2.12 0.93 2.65 0.88 

t+2 3.61 0.88 3.78 0.86 3.36 0.90 3.90 0.84 

t+3 5.18 0.84 5.57 0.81 5.03 0.87 5.86 0.78 

t+4 7.26 0.78 7.59 0.75 7.03 0.81 7.92 0.74 

 388 

 389 

4.2 Determination of marginal distribution and Copula function 390 

In the CBMA application for different horizons (t+1 ~ t+4), it needs to identify the 391 

best CDFs for fitting the observations (          ) and ith model forecasts 392 

(               ). It seems reasonable to consider that the observations (         ) 393 

follow the same marginal CDF of the variable (  ) and therefore only the cumulative 394 

distribution functions of the observation (  ) and model forecasts (               ) 395 
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need to be fitted (Koutsoyiannis and Montanari, 2015; Liu et al., 2018).  396 

 397 

Figure. 4 Statistic indicator (D) values for verifying the null hypothesis at the 5% 398 

significance level in the training stages at the Traffic Station A1. The critical value of 399 

statistic indicator (D) = 0.047. The large values (≥ 0.047) of statistic indicator (D) 400 

indicate that the null hypothesis for candidate distribution would be rejected at the 5% 401 

significance level and the small values (< 0.047) of statistic indicator (D) indicate that 402 

the null hypothesis for candidate distribution cannot be rejected at the 5% significance 403 

level. 404 
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Take traffic Station A1 for example, Figure 4 summarized the K-S statistic 405 

indicator values (D), which was used to verify the null hypothesis at the 5% 406 

significance level in the training stages. The null hypothesis was defined as the 407 

marginal distribution follows one candidate distribution, against the alternative that it 408 

did not follow such a candidate distribution. The results suggested that the null 409 

hypothesis for all four candidate distributions could not be rejected at the 5% 410 

significance level (critical value = 0.047), other than Gaussian and Pearson type III 411 

distributions. That is to say, both observations and model forecasts have non-Gaussian 412 

and Pearson type III properties. The Gumbel distribution provided minimal D values 413 

for all observations while the Log-Weibull distribution provided minimal D values for 414 

all model forecasts. In other words, the Gumbel distribution and the Log-Weibull 415 

distribution would be considered as the best fitted distributions for observations (  ) 416 

and model forecasts (               ) respectively.  417 

When the best marginal distribution was determined, a Copula function should be 418 

selected to model the joint distribution between model forecasts (     ) and 419 

observations (  ). Take the Traffic Station A1 for example, Table 3 presented the 420 

estimated parameters of the three candidate copula functions and the values of statistic 421 

indicator (D) in the training stages. The null hypothesis was defined as the joint 422 

distribution follows one candidate Copula function, against the alternative that it did 423 

not follow such a candidate Copula function. The results revealed that the null 424 

hypothesis for two candidate distributions could not be rejected at the 5% significance 425 

level (critical value = 0.047), other than Clayton Copula function. The smallest K-S 426 
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statistic indicator (D) was produced by the Gumbel-Hougaard Copula function. 427 

Consequently, the Gumbel-Hougaard Copula function could be considered as the best 428 

fitted joint distribution between observations (  ) and model forecasts (    ).  429 

Table 3 Estimated parameters of the candidate copula functions and the values of 430 

statistic indicator (D) in the training stages at the Traffic Station A1 431 

Model Variables 
Gumbel-Hougaard  Frank  Clayton 

θ D  θ D  θ D 

S-ANFIS 

(yt, Mt+1) 9.3 *0.017  21.4 0.023  16.6 0.092 

(yt, Mt+2) 9.0 0.022  20.7 0.027  16.0 0.105 

(yt, Mt+3) 8.6 0.029  19.8 0.034  15.2 0.111 

(yt, Mt+4) 8.1 0.036  18.6 0.040  14.2 0.124 

M-SVM 

(yt, Mt+1) 9.6 0.015  22.0 0.020  17.2 0.094 

(yt, Mt+2) 9.1 0.021  20.9 0.025  16.2 0.102 

(yt, Mt+3) 8.8 0.027  20.2 0.031  15.6 0.114 

(yt, Mt+4) 8.3 0.034  19.0 0.038  14.6 0.128 

S-NARX 

(yt, Mt+1) 10.3 0.012  22.3 0.016  18.6 0.085 

(yt, Mt+2) 9.8 0.016  21.2 0.020  17.6 0.094 

(yt, Mt+3) 9.3 0.021  20.1 0.025  16.6 0.109 

(yt, Mt+4) 8.9 0.030  19.3 0.032  15.8 0.120 

M-LSTM 

(yt, Mt+1) 10.2 0.014  22.5 0.017  18.4 0.089 

(yt, Mt+2) 9.8 0.017  21.6 0.021  17.6 0.097 

(yt, Mt+3) 9.4 0.020  20.7 0.027  16.8 0.105 

(yt, Mt+4) 9.0 0.028  19.9 0.034  16.0 0.117 

*A number in bold denotes the smallest value of statistic indicator (D) in its category. The values of 432 

yt are the observed PM2.5 concentrations of Traffic Station A1 at the current time t. The values of Mt+1, 433 

Mt+2, Mt+3, Mt+4 are the ANN models forecasts of PM2.5 concentrations of Traffic Station A1 at the 434 

horizons from t+1 to t+4. The critical value of statistic indicator (D) = 0.047. The large values (≥ 435 

0.047) of statistic indicator (D) indicate that the null hypothesis for candidate distribution would 436 

be rejected at the 5% significance level and the small values (< 0.047) of statistic indicator (D) 437 

indicate that the null hypothesis for candidate distribution cannot be rejected at the 5% 438 

significance level. 439 

 440 

4.3 Ensemble PM2.5 forecasts 441 

Moreover, QQ plots were employed to assess the reliability of ensemble PM2.5 442 

forecasts. Figure 5 presented the predictive QQ plots used for ensemble PM2.5 443 

forecasting (e.g. traffic Station A1, general Station A3 & park Station A5) from 444 

horizons t+1 up to t+4 in the testing stages, respectively.  445 
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 446 

Figure. 5 Predictive Quantile-Quantile (QQ) plots for ensemble PM2.5 forecasts from 447 

horizons t+1 up to t+4 in the testing stages at the traffic Station A1, general Station A3 448 

and park Station A5 respectively. The quantile of observed datum is the probability 449 

value corresponding to the observed datum while the quantile of U[0, 1] is the 450 

probability value corresponding to the forecasted datum.  451 
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According to Figures 5(b) and 5(c), it was easy to find that the QQ plot generated by 452 

the CBMA approach was closer to the 1:1 line, in comparison to that of the BMA one. 453 

That is to say, the CBMA approach produced higher reliability and smaller bias than 454 

the BMA one. The results pointed out that the CBMA approach could effectively 455 

quantify predictive uncertainty owing to its better agreement between the predictive 456 

distribution and the observations. This finding demonstrated that the CBMA approach 457 

performed significantly better from the perspective of reliability. 458 

For the ensemble PM2.5 forecasts (e.g. Traffic Station A1, General Station A3 & 459 

Park Station A5) at horizons from t+1 up to t+4, the values of CR, RB and CRPS 460 

scores were listed in Figure 6. For the Traffic Station A1 and the General Station A3, 461 

the CBMA approach produced better performance in all horizons whereas the BMA 462 

performed well only at horizons up to t+2 (e.g. CR was higher than 90%, RB was 463 

lower than 0.15 and CRPS was lower than 12 µg/m
3
 at the Station A1). For the Park 464 

Station A5, the BMA approach performed as well as the CBMA approach in all 465 

horizons. Take the Traffic Station A1 for example, the BMA approach produced small 466 

CR values, whereas the CBMA approach produced small RB and CRPS values. For 467 

horizon t+4, the CBMA approach could improve the CR value by 9.58 % as well as 468 

reduce the RB value by 34.48 % and the CRPS value by 32.89 %, as compared to the 469 

BMA one. That is to say, the CBMA approach not only could largely increase 470 

ensemble forecast accuracy at the goodness of the prediction bounds (in terms of CR 471 

and CRPS values) but also could decrease the impact of PM2.5 concentration 472 

magnitude on the band-width of the prediction bounds (in terms of RB values) 473 
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simultaneously.  474 

 475 
Figure. 6 CBMA and BMA performance of ensemble PM2.5 forecasts in the testing 476 

stage at the traffic Station A1, general Station A3 and park Station A5. All of indicator 477 

values are computed for the 90% prediction intervals.  478 

 479 

The results demonstrated that the CBMA approach had higher reliability and 480 

generalizability for ensemble PM2.5 forecasting, in comparison to the BMA one. The 481 

reason for causing the forecast accuracy of the CBMA approach superior to the BMA 482 

one consisted of: the Copula functions in CBMA approach were able to eliminate 483 

forecast bias and characterize the correlations between observed values and forecast 484 
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values so that the forecast errors and biases could be reduced significantly. In 485 

consequence, the simple bias correction with linear regression method would not need 486 

in the application of Copula functions in the CBMA approach, as compared to the 487 

BMA one.  488 

The weights created by CBMA and BMA approaches in the training stage were 489 

presented in Figure 7. Each data point suggested the weights (CBMA & BMA) for 490 

various models and different horizons (t+1 ~ t+4); there were 16 data points (4 491 

(models) × 4 (horizons) = 16) in each subplot. Except in the Park Station A5 492 

(correlation coefficient R = 0.65), the correlation of weights (R = -0.11 ~ 0.37) was 493 

very small, which could clearly demonstrate the different performance of CBMA and 494 

BMA. It was noted from Eqs. (5) and (8) that the weight of each model in the BMA 495 

(or CBMA) approach was expressed as a function of the latent variable   
     (or 496 

  
    ) and the posterior probability of training data was employed to compute it. 497 

Hence, the CBMA approach was not only restricted to the model diversity and the 498 

shape of posterior distributions, but it also had an effect on the weights assigned to 499 

each forecast model and the performance of EM algorithm.  500 
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501 

Figure. 7 Comparing the weights of four ANN models for the horizons (t+1 to t+4) in 502 

the training stage after the application of CBMA and BMA for each station. 503 

To clearly differentiate the capabilities of the BMA and the CBMA approaches, 504 

three PM2.5 events with maximal PM2.5 concentrations reaching 80 µg/m
3
 (low), 160 505 

µg/m
3
 (medium) and 250 µg/m

3
 (high), respectively, were applied for testing both 506 

approaches by evaluating whether the observed PM2.5 concentrations fell within the 507 

90% prediction interval at horizon t+4 in the testing stages, as shown in Figure 8. It 508 

revealed that: (1) most of the observed PM2.5 concentrations fell within the 90% 509 

prediction intervals generated by both approaches, (2) the CBMA approach provided 510 

better results in terms of predictive distribution, and (3) the CBMA approach was 511 

magically superior to that of the BMA one. From air pollutant mechanisms' 512 

perspective, primary emission's impact related to meteorological circumstances (i.e. 513 
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park Station A5) on the BMA and CBMA approaches was not significant, while 514 

secondary emission's impact related to meteorological circumstances (i.e. traffic 515 

Station A1 and general Station A3) on the BMA and CBMA approaches made a 516 

significant difference. For Taipei City, a fast urban growth city, regional air quality 517 

exchanges with traffic burdens, commercial trading and intensive human activities 518 

frequently. A high PM2.5 event driven by secondary processes was closely related with 519 

regional transportation of aged secondary aerosol or secondary transformation of 520 

gaseous pollutants, whereas a medium-low PM2.5 event driven by the primary or 521 

natural process was closely related with local weather conditions and primary 522 

emissions. Both CBMA and BMA approaches produced a better performance at the 523 

traffic station (A1) and general station (A3) than at the park station (A5). In other 524 

words, the CBMA approach not only greatly improved the ensemble forecast accuracy 525 

of PM2.5 concentration at traffic station and general station, but also performed as well 526 

as the BMA approach at the park station.  527 
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528 

Figure. 8 BMA and CBMA ensemble PM2.5 forecasts for air quality monitoring 529 

Stations A1, A3 and A5 at horizon t+4 respectively. Three PM2.5 events with maximal 530 

PM2.5 concentrations exceeding (a) 250 µg/m
3
 (high concentration, Station A1), (b) 531 

160 µg/m
3
 (medium concentration, Station A3) and (c) 80 µg/m

3
 (low concentration, 532 

Station A5) were selected for testing the constructed models, respectively. 533 

In brief, from the standpoint of model performance, RMSE and Gbench were 534 

employed to evaluate the accuracy of deterministic PM2.5 forecasts while QQ plot, CR, 535 

RB and CRPS indicators were employed to evaluate the reliability (QQ plot) and 536 

sharpness (CR, RB and CRPS) of ensemble PM2.5 forecasts. The CBMA approach not 537 

only could produce more stable and accurate ensemble forecasts but also could reduce 538 

the predictive distributions encountered in multi-step-ahead PM2.5 forecasts to small 539 
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ranges, by means of removing the requirements of data transformation and bias 540 

correction procedures, in comparison to the BMA approach. In light of 541 

methodological transferability, future research would extend the CBMA methodology 542 

on ensemble forecasting or comparison analysis studies between data-driven models 543 

and physically-based models (e.g. Weather Research and Forecasting Models). 544 

 545 

5. Conclusions 546 

This study explored a CBMA approach for modeling ensemble PM2.5 forecasts of 5 547 

air quality monitoring stations located in the Taipei City of Taiwan and the standard 548 

BMA one was selected as a benchmark. First, four ANN models with different 549 

complexities were used for PM2.5 forecasts of each air quality monitoring station. And 550 

then, the CBMA approach and the BMA approach were compared in ensemble PM2.5 551 

forecasting.  552 

The results demonstrated that the CBMA approach displayed better ensemble 553 

forecast skill in comparison to the BMA one. First, in terms of CR, RB and CRPS 554 

indicator values, forecast accuracy and reliability increased significantly after 555 

applying the CBMA approach in all air quality monitoring stations. For horizons t+1 556 

up to t+4, the CBMA approach would increase the values of CR indicator by 3.12% ˗ 557 

9.58% as well as decrease the values of RB indicator by 8.63% ˗ 34.48% and the 558 

values of CRPS indicator by 7.62% ˗ 32.89%, as compared to the BMA one. Second, 559 

results of QQ plots indicated that less bias, and more reliable forecast results when the 560 

CBMA approach was employed as a post-processing technique for multiple 561 
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deterministic models. In comparison to BMA, the CBMA approach could create a 562 

more precise predictive distribution with small uncertainty. The CBMA approach 563 

produced much better forecasts on the air quality concentrations at longer forecast 564 

horizons and significantly alleviated underpredicting phenomena. The reason that the 565 

CBMA approach succeeded in attaining favorable ensemble forecasts would be owing 566 

to the core strategy: the use of the Copula function could capture the dependence 567 

structure between variables, which avoided their transformation in the Gaussian space 568 

as it was done in the BMA approach.  569 

Therefore, the CBMA approach in place of the BMA one would be in the interest 570 

of reducing the predictive uncertainty of real-time PM2.5 forecasting. In the 571 

application of the CBMA approach, the key point was to detect and select a suitable 572 

marginal PDF for each observation and model forecast, and then a Copula function 573 

was constructed for modelling a joint PDF between observation and model forecast. 574 

Finally, it was worth noting that the computational time (less than 2 minutes) of the 575 

proposed approach was extremely short and therefore it could be applied with success 576 

to real-time air quality forecasting. 577 

From the perspective of regional PM2.5 characteristics, Taipei City acts as 578 

Taiwan's political, economic and cultural center, while its air quality concentrations 579 

are attributed to high traffic influences, high human activities and commercial trading 580 

influences in comparison to these in other cities of Taiwan. The proposed 581 

methodology could be effectively employed not only to model the heterogeneities in 582 

different air pollutant-generating mechanisms (e.g., primary and secondary 583 
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mechanisms, and natural situations) and different seasons, but also to provide reliable 584 

and accurate probabilistic regional PM2.5 forecasts in the interest of Taiwan's social 585 

and industrial development.  586 

 587 

Appendix A 588 

General implementation procedure of BMA approach 589 

Step 1: Implement bias-correction. One requirement of BMA application is that the 590 

model forecasts      should be bias-corrected due to the non-bias assumption. A 591 

bias-correction with linear regression method suggested by Raftery et al. (2005) was 592 

adopted prior to BMA execution and the original model forecast results (    ) ought 593 

to be substituted by the bias-corrected forecast variables (    ).  594 

                                               (1) 595 

where      and      are the ith bias-corrected value and original model forecast 596 

respectively.    and    are the linear regression coefficients of ith model forecast.  597 

Step 2: Transform data space. Another requirement of BMA application is that the 598 

bias-corrected values (    ) should be converted to special datasets with a Gaussian 599 

space. Box-Cox transformation proposed by Box and Cox (1964) was used to conduct 600 

data transformation and was described as below.  601 

    
   

      

 
       

             
                              (2) 602 

where     
  and   are the bias-corrected value of ith model at the t time and Box-Cox 603 

coefficient respectively. In this study, the artificial covariate method (Dag et al., 2013) 604 

was employed to determine the optimal value of Box-Cox coefficient while the K-S 605 
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test statistic (Lilliefors, 1967) was employed to prove the Gaussianity of the 606 

transformed data. After implementation of the data transformation, the posterior 607 

distribution          
     would follow a Gaussian distribution 608 

         
              

    
  . 609 

Step 3: Estimate parameters. A log-likelihood function was adopted to estimate the 610 

parameters of weight (  ) and variance (  
 ) and was formulated as follows.  611 

                   
     

                         (3) 612 

where   is the vector of parameters       
            .  613 

The Expectation-Maximization (EM) suggested by Raftery et al. (2005) was 614 

utilized to search the optimal parameters of weight (  ) and variance (  
 ) when a 615 

termination criterion (early stopping or the maximal iteration) was achieved. As the 616 

EM algorithm proceeds, the parameters of weight (  ) and variance (  
 ) were 617 

updated as follows. 618 

      
 

 
   

     
                                  (4a) 619 

  
     

   
            

  
 

 
   

   
     

   
                            (4b) 620 

  
     

                 
    

        

                  
    

        
   

                 (4c) 621 

                          
    

      
   

 
              (4d) 622 

where T is the number of the training datasets and   
     is the latent variable for the 623 

ith model at the t time in the jth iteration.  624 

Step 4: Create BMA ensemble forecasts. After the parameters of weight (  ) and 625 

variance (  
 ) were estimated, we used the Monte Carlo simulation method to generate 626 
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BMA ensemble forecasts (Raftery, 2005; Zhou et al., 2016). The procedure was 627 

described as follows. 628 

a) Generate an integer value of i in [1, 2, …, k] by using the corresponding 629 

probabilities [  ,   , …,   ]. Set the initial cumulative weight   
    and 630 

calculate cumulative weight   
      

     for i = 1, 2, …, k. Create a random 631 

variable u between 0 and 1. If     
      

 , it indicates that the ith model forecast 632 

would be selected and used in the next step.  633 

b) Generate a realization of the observation    using the PDF          
    

  .  634 

c) Repeat the above two steps (a) & b)) for K times. K is the number of Monte Carlo 635 

simulation and set as 1000 in this study. At last, data conversion is needed to convert 636 

the ensemble forecasts from a Gaussian space to their original space. Furthermore, 90 % 637 

confidence intervals between the 5 % and 95 % quantities were employed to reveal 638 

the uncertainty of BMA ensemble forecasts. 639 

 640 

Appendix B 641 

General implementation procedure of CBMA approach 642 

Step 1: Configure the marginal distributions of the forecast variable of each model 643 

(    ) and realization of observation (  ) respectively. Let             and 644 

          are the Cumulative Distribution Functions (CDFs) of the forecast 645 

variable of each model (    ) and realization of observation (  ) respectively. It would 646 

specify and determine the marginal distribution          of the forecast variable of 647 

each model (     ) and the marginal distribution        of the realization of 648 
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observation (  ) to construct posterior probability in the next step. Seven different 649 

probability distributions, including Gaussian, Gamma, Gumbel, Pearson type III, 650 

Generalized Extreme Value (GEV) and Log-Weibull were tried in this study and 651 

summarized in Table 1.  652 

Table 1 Candidate univariate distributions adopted for fitting the marginal 653 

distributions 654 

Distribution Probability distribution function (pdf) Range Parameters 

Gaussian      
 

    
     

      

   
          

  

  

Gamma      
  

    
                 

  

  

Gumbel                                      
  

  

GEV 

     
 

 
     

   

 
  

        

           
   

 
  

    

  

        

  

  

  

Person type III      
  

    
                         

  

  

  

Log-Weibull 

     
 

        
 
         

 
 

   

       
         

 
 

 

  

    

  

  

  

Owing to the wide practicality of the L-moments method (Hosking, 1990; Zhou 655 

et al., 2014) and the K-S statistic test method (Lilliefors, 1967; Razali and Wah, 2011), 656 

these two methods were used to estimate the distribution parameters and find the best 657 

marginal distribution respectively. The 5% significance level was applied to deciding 658 

whether a fitted distribution was acceptable or not, and then the probability 659 

distribution that possessed the minimum K-S test statistic indicator D (i.e. the 660 

maximum difference between the values of the empirical and the expected cumulative 661 

distributions) value was recommended as the best fitted distribution. 662 

Step 2: Apply Copula function to constructing the posterior probability of forecast 663 

variable of each model             . Various family members of Copula functions 664 
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have been introduced by Nelsen (2006). The Archimedean Copula functions have 665 

impressive practicality in hydrologic and meteorological research domains because it 666 

is easy to construct (e.g. Chen and Guo, 2019; Zhang and Singh, 2019).  667 

Table 2 Candidate bivariate Archimedean copula functions 668 

Copula function Joint distribution function Parameter 

Gumbel-Hougaard                         
         

  
   

  
     

 

 
 

    

Frank             
 

 
     

                          

         
  

    
 

 
 
 

 
 

 

      

 

 

      

        

Clayton               
     

     
    

 
  

 

   
 

    

*   is the Kendall’s coefficient. 669 

In this study, three Copula functions were tested, including Gumbel-Hougaard, 670 

Clayton and Frank from Archimedean Copula functions (Table 2). Then, the Kendall’s 671 

coefficient and the K-S statistic test method were employed to estimate the parameter 672 

of Copula functions and choose the best Copula function. The copula function 673 

possessing the smallest K-S statistic indicator (D) at the 5% significance level would 674 

be selected as the most suitable one. 675 

Step 3: Apply EM algorithm to estimating weight parameter (  ) of each model. After 676 

the posterior distribution is constructed, its weight parameter was estimated by using 677 

the EM algorithm by means of a few adjustments in the Eq. (4) of Appendix A.  678 

      
 

 
   

     
                                           (5a) 679 

  
     

                   
  

                    
  

   

 
           

      
              

            
      

             
 
   

      (5b) 680 

                    
      

    
        

  
   

 
                  (5c) 681 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

39 

where   
     is the latent variable for the ith model at the t time in the jth iteration 682 

based on the Copula conditional probability. As seen, the estimation of variance 683 

parameter (  
 ) has not occurred in Eq. (5). Furthermore, the posterior probability 684 

     
      

  is calculated only one time in Eq. (5) and that remains the same for all 685 

the iterations. While the posterior probability          
    

        in the BMA (Eq. 686 

(4) in Appendix A) should be computed and updated when the variance parameter (  
 ) 687 

changes.  688 

Step 4: Apply the Monte Carlo simulation method for producing the realization of 689 

observation (  ). a) Generate an integer value of i in [1, 2, …, k] by using the 690 

corresponding probabilities [  ,   , …,   ]. Set the initial cumulative weight 691 

  
    and calculate cumulative weight   

      
     for i = 1, 2, …, k. Create 692 

a random variable u between 0 and 1. If     
      

 , it indicates that the ith 693 

model forecast would be selected and used in the next step. b) Generate a realization 694 

of observation    using the conditional PDF    
      

    
        

 . c) Repeat the 695 

above two steps (a) & b)) for K times. K is the number of Monte Carlo simulation and 696 

set as 1000 in this study. Similarly, 90 % confidence intervals were employed to 697 

reveal the uncertainty of CBMA ensemble forecasts.  698 
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