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the brain tracks auditory rhythm 
predictability independent of 
selective attention
Maja D. foldal1,2 ✉, Alejandro O. Blenkmann1,2, Anaïs Llorens1,3,4, Robert T. Knight4,  
Anne-Kristin Solbakk1,2,3,5 & tor endestad1,2,5

The brain responds to violations of expected rhythms, due to extraction- and prediction of the temporal 
structure in auditory input. Yet, it is unknown how probability of rhythm violations affects the overall 
rhythm predictability. Another unresolved question is whether predictive processes are independent 
of attention processes. In this study, EEG was recorded while subjects listened to rhythmic sequences. 
Predictability was manipulated by changing the stimulus-onset-asynchrony (SOA deviants) for given 
tones in the rhythm. When SOA deviants were inserted rarely, predictability remained high, whereas 
predictability was lower with more frequent SOA deviants. Dichotic tone-presentation allowed for 
independent manipulation of attention, as specific tones of the rhythm were presented to separate 
ears. Attention was manipulated by instructing subjects to attend to tones in one ear only, while 
keeping the rhythmic structure of tones constant. The analyses of event-related potentials revealed 
an attenuated N1 for tones when rhythm predictability was high, while the N1 was enhanced by 
attention to tones. Bayesian statistics revealed no interaction between predictability and attention. A 
right-lateralization of attention effects, but not predictability effects, suggested potentially different 
cortical processes. This is the first study to show that probability of rhythm violation influences rhythm 
predictability, independent of attention.

Context, behavioral relevance, and predictions provide top-down influences on human perception1,2. Bayesian 
inference, defined as inference that follows rules of probability3 is proposed as a core component of sensory 
perception, and may be used to examine the specific neuronal processes underlying top-down influence4. The 
assumption of Bayesian inference underpinning the interplay between top-down predictions and bottom-up 
sensory input fits well with the predictive coding theory5,6, which is a theoretical computational framework of 
sensory perception. The main idea is that neural responses do not represent sensory input directly. Instead, they 
reflect a computed difference between the predicted and the actual sensory input, also known as the prediction 
error. This theory is often used for interpreting effects related to the expectancy or predictability of the sensory 
input7. Here, the terms expectancy and predictability are used in a statistical manner, assuming that inference 
follows rules of probability.

A growing body of research suggests that sensory perception and prediction follow rules of probability (for 
a review, see7). One way sensory prediction has been studied is by investigating deviance detection responses, 
such as the mismatch negativity (MMN) event-related potential (ERP)8. The MMN is elicited by violation of 
several auditory stimulus features such as tone pitch, location, or intensity9–11. Relating to rules of probability, 
it has been shown that the MMN in response to violations, often termed ‘oddballs’ among frequent ‘standards’, 
are affected by the ratio between the ‘oddballs’ and the ‘standards’. Specifically, the MMN evoked by ‘oddballs’ 
decreases as the probability of ‘oddballs’ increases12. One dimension of sensory predictions that is far less studied 
is the time-dimension, which is surprising given that a crucial part of a prediction would involve prediction of 
‘when’ and not only ‘what’. To our knowledge, there are no studies demonstrating that neural responses to spe-
cific stimulus-onset-asynchronies (SOAs) are influenced by probability in the same manner as it has been shown 
for other stimulus features, such as pitch12. Hence, the neural computations underlying processing of interval 
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probability are less understood13. This is despite several studies reporting that expectancy related to the intervals 
between stimuli impacts neural processing of sensory input13,14. Furthermore, there seems to be a lack of studies 
investigating more general effects of probability or uncertainty, as the main focus has primarily been on the pro-
cessing of the unexpected events (i.e., the oddballs). For instance, in rhythmic auditory stimuli, an interval may 
be considered predictable or ‘standard’ as its timing can be inferred by the rhythmicity in preceding tones. At 
the same time, occasional violations of the expected rhythm, and the frequency of occurrence of such violations, 
could render the rhythmic stimuli being perceived as more or less predictable (i.e., less frequent rhythm violations 
increase the predictability). It remains to be understood how probabilities defined by a given context, such as the 
probability of rhythm violation, affect neural processing of auditory rhythmic patterns.

Finally, it is not well known how systems involved in extracting rules from auditory input are influenced by 
attention, another important component of auditory perception. Only a few studies have manipulated predict-
ability and attention independently within the same experiment15,16. Yet, there is a lack of studies in which both 
the predictability regarding stimulus-timing and attention have been manipulated independently. Knowledge 
regarding the potential interplay between prediction and attention mechanisms is important for understanding 
auditory perception.

ERP studies have shown that stimulus predictability, including predictability concerning timing between con-
secutive events, is typically reflected in attenuation of early negativities such as the auditory N1 component (for 
a review, see17). The auditory N1 is associated with early perceptual processing, as it is elicited in response to 
tone onsets regardless of task demands and is considered an exogenous, stimulus-driven component18. However, 
the amplitude of the N1 is influenced by sustained selective attention and stimulus predictability (for a review, 
see19). This suggests that top-down processes influence auditory responses at early stages of sensory processing. 
Lange20 reported attenuation of the N1 to tones preceded by an isochronous, predictable sound sequence, com-
pared to when the same tone was preceded by sound sequences with random timing. Importantly, the timing of 
the last tone could be predicted based on the isochronous preceding sequence. Another study from this group 
investigated whether the effect reflected stimulus predictability, and not merely sequence regularity21. The same 
experimental paradigm was used in this study, but the timing of the last tone was no longer constant. Hence, the 
exact timing of the last tone could no longer reliably be predicted, and accordingly the auditory N1 was no longer 
attenuated21. Effects of temporal predictability in the N1 time range have also been demonstrated in studies inves-
tigating the repetition-suppression effect, an effect that involves attenuation of auditory neural responses with 
increasing number of prior stimulus repetitions22. Specifically, this effect is enhanced if tones are presented with 
a predictable temporal structure23.

However, in this line of research, predictability of event-timing has been manipulated in terms of the regular-
ity in preceding intervals using two specific levels; isochronous versus random. In order to investigate whether the 
learning of timing-rules in rhythmic stimuli is based on probabilistic inference, a manipulation of probability is 
required. Furthermore, generalization of prediction mechanisms assumed by computational frameworks, such as 
predictive coding, to various levels in the processing hierarchy (i.e., predictability based on abstract rules or sta-
tistical probabilities) requires an investigation of sensory predictions of increased complexity. For instance, recent 
findings suggest that an increased level of rhythmic complexity is associated with a reduced MMN in response 
to rhythm violations24. Lumaca, et al.24 argues that the effect indicates that rhythmic complexity makes it more 
difficult for the brain to fit a probabilistic model to the stimuli.

Furthermore, it is not known to what degree updating of sensory predictions depends on the behavioral rele-
vance of incoming sensory information. Maneuvering successfully in an environment with an extensive amount 
of sensory input necessitates directing attention to the most relevant aspects of the environment for effective 
goal-directed behavior. The ability to prioritize and attend to goal-relevant information while suppressing irrele-
vant information is referred to as selective attention19. Few studies have manipulated predictability and attention 
independently within the same experiment15,16, and even fewer have investigated predictability regarding SOAs 
specifically25. A common topic for these studies is the interaction between attention and deviance processing 
(rule violations). To our knowledge, only one other study has investigated the interaction between attention and 
processing of rhythm predictability (regular vs. random). It was found that the N1 was attenuated for tones in a 
regular compared to a random temporal sequence. Furthermore, the effect was present even when participants 
engaged in watching a silent video, directing their attention away from the tones26. However, it is still unknown 
whether the difference in N1 amplitude between the regular and random temporal context is driven by extraction 
of probabilistic rules in the auditory stimuli. Accordingly, it becomes problematic to make assumptions regarding 
the interplay between attention and specific predictive processes. Experimental designs in which both predicta-
bility and attention are manipulated independently, might give additional knowledge regarding assumptions of 
separate neural networks involved in the effects of predictability and attention. For instance, a right-hemisphere 
dominance has been suggested for attention processes27, while a specialized role of the left hemisphere has been 
suggested in the processing of rapidly presented stimuli such as musical rhythms28. Effects of attention and 
rhythm predictability on N1 amplitude might therefore have different topographical representations over the 
scalp.

This current study had two main objectives. The first was to test the idea that the processing of timing rules 
in rhythmic stimuli is based on probabilistic learning, and how this is reflected in ERP indices of auditory pro-
cessing, specifically the N1 component. To this aim, participants listened to repeating rhythmic sequences, with 
a given number of repetitions representing a rhythmic context (experimental blocks). Rhythm predictability was 
defined in terms of the probability of rhythm violations (SOA deviants) for a given rhythmic context. The high 
predictability condition had reduced probability of rhythm violation (less frequent), while the low predictability 
condition had increased probability of rhythm violation (more frequent). This permitted investigation of whether 
the brain is sensitive to probabilistic information that requires evaluation of a given temporal context. In line with 
the extant literature, and given that N1 attenuation for regular compared to random temporal structure reflects 
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probabilistic learning of timing rules, we predicted N1 attenuation to tones in the high predictability compared to 
low predictability conditions.

The second objective of the current study was to address the interplay between attention and probabilistic 
learning of interval timing in rhythmic stimuli. Specifically, we tested whether rhythm predictability based on 
rules derived from probabilities is processed independent of selective attention. To this aim, the auditory rhythm 
in each block was presented dichotically, with specific tones of the rhythm presented to separate ears. Attention 
was manipulated by instructing subjects to attend to tones in one ear only. In this way, the rhythmic structure of 
the tones in both ears combined was identical across experimental blocks, permitting manipulation of auditory 
selective attention independent from rhythm predictability. As effects of temporal predictability (regular vs ran-
dom) have been reported when participants do not selectively attend to the tones (i.e., watching a silent video)26), 
we expected to find effects of rhythm predictability independent of attention. Further, assuming different under-
lying mechanisms for the effect of predictability and attention, we expected the effects of attention and rhythm 
predictability to be stronger over right- and left hemisphere electrodes, respectively.

Methods
participants. A sample of 34 healthy adult volunteers were recruited for the study. All participants reported 
having accomplished high-school level education, and 31 reported currently being a student at an institution 
for higher-level education or having a university- or college degree. All reported normal hearing, no neurolog-
ical problems, and no cognitive difficulties. Participants also reported not receiving any psychiatric treatment, 
including no medication for mental illness. None were professional musicians (performing artists, music teach-
ers, or conservatory students). All participants gave written informed consent before participation. The study was 
approved by the Department of Psychology’s internal research ethics committee (University of Oslo), and was 
conducted in agreement with the Declaration of Helsinki.

Stimuli and experimental design. Rhythmic sequences of 6 tones were presented repeatedly. Each 
sequence had a total duration of 2.4 seconds (SOAs between tones are illustrated in Fig. 1A). For the attention 
manipulation, the rhythm sequence was presented dichotically, such that specific tones in the sequence (blue 
color) were presented to one ear, while the other tones (red color) were presented to the opposite ear. The configu-
ration of which ear (left or right) received the specific tones (blue or red) was counterbalanced across experimen-
tal blocks. Note that the first tone was presented simultaneously to both ears. Each tone had a duration of 50 ms, 
with a smooth rise and fall period of 7 ms. We used complex tones consisting of 3 harmonics of a fundamental 
frequency of 220 Hz. These tone characteristics were identical for all the tones in the rhythm sequence.

Each block consisted of regular and irregular sequences of tones (Fig. 1B), and eight blocks were presented in 
total (Fig. 1C). The irregular sequences contained one SOA deviant (−90 ms) in one of the five tones following the 
first tone. The reason for having SOA manipulations for all tones in the sequence was to make sure participants 
could not strategically prepare for one single tone in the sequence. Participants were asked to attend to tones 
in either the left or the right ear during each block, and to respond with a button press to SOA deviants in the 
attended ear. Participants used their dominant hand and were instructed to respond as quickly and accurately as 
possible. All blocks contained 50 regular sequences, and rhythm predictability was manipulated by varying the 
number of irregular sequences (containing a SOA deviant) between blocks. High predictability blocks contained 
10 irregular sequences (2 SOA deviants for each tone except the first), while low predictability blocks had 25 
irregular sequences (5 SOA deviants for each tone except the first) (Fig. 1B). The order of regular and irregu-
lar sequences within each experimental block was semi-randomized, with the criterion of at least one regular 
sequence between irregular sequences. Tones were presented dichotically through headphones (i.e., ‘Red’ tones 
– Left, ‘Blue’ tones – Right). The eight blocks were used to counterbalance the attended ear (left, right), dichotic 
configuration (redright – blueleft, redleft – blueright), and predictability (high, low) (Fig. 1C). After each experimental 
block, participants received feedback in terms of ‘hit rate’ and ‘false alarm rate’ for that specific block.

Goldsmith musical sophistication index. As the current study involved rhythmic stimuli, the Goldsmith 
Musical Sophistication Index (Gold-MSI) questionnaire29 was used to assess the participants’ level of musi-
cal experience. This allowed us to investigate potential association between the participant’s level of musical 
experience and the ERP effects. The Gold-MSI is employed as a nuanced measure of musical experience in a 
non-musician sample, not only involving formal musical training. This self-report inventory has five subscales 
assessing (1) ‘active musical engagement’, (2) ‘perceptual abilities’, (3) ‘musical training’, (4) ‘singing abilities’, and 
(5) ‘sophisticated emotional engagement with music’. Finally, a measure of ‘general musical sophistication’ can be 
computed, based on a selection of items from all five subscales. For the current study, we only used the measure 
of general musical sophistication, in order to have a single measure for each participant that captured both amount 
of musical training as well as other factors that contribute to a participants level of musical experience. Possible 
scores ranges from 18 to 126, with higher scores indicating increased level of musical experience.

Seashore rhythm test. The Seashore Rhythm Test30,31 was used to assess the participants’ perception of 
auditory rhythm. The test requires participants to discriminate between like and unlike pairs of simple musical 
rhythms. This assessment was used to ensure that all participants included in the analysis fell within the normal 
range in terms of rhythm perception. Furthermore, the test is considered a useful tool for examining concen-
tration and tracking abilities, meaning that poor performance may reflect deficient rhythm perception and/or 
tracking abilities32. Both rhythm perception abilities (detect rhythm violation) and tracking abilities (sustained 
selective attention) were crucial in the current study. The range of possible raw scores is from 0 to 30.

procedure. At the beginning of the experimental session, participants performed a practice session to get 
familiar with the stimuli and instructions. The practice involved listening to the stimulus-ear configurations 
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(‘Blue’ Left – ‘Red’ Right, and ‘Red’ Left – ‘Blue’ Right, configurations are also illustrated in Fig. 1C). Each configu-
ration was played twice, once with instruction to tap along with the right-ear tones, and then to the left-ear tones. 
There was no tapping during the actual experiment. In addition, a short task involving detecting SOA deviants 
in the attended ear (hits) and ignoring SOA deviants in the unattended ear (false alarms) was conducted to make 
sure participants understood the nature of the task. After the practice, participants performed eight experimental 
blocks. At the beginning of each block, eight habituation sequences were played: four monaural (unattended ear 
silenced) and four binaural. The purpose was to make it easier to direct attention to the instructed side, as well 
as to familiarize participants with the rhythmic stimuli before introducing the experimental stimuli. There was 
a break between each block, and the participants initiated the next block when they were ready to continue. The 
order of the eight experimental blocks was randomized individually for each participant. The frequency of each 
block-type per block-order position (1st through 8th) across all subjects are illustrated in Fig. 2. Each block-type 
was presented in each block-order position at minimum 2 times and at maximum 9 times.

Analysis of behavioral data. In order to assess potential association between behavioral performance and 
electrophysiological effects we computed an overall measure of task performance for each participant. D-prime33 
was considered an appropriate measure as it captures both the hit rate (H) of the SOA deviants in the attended 
ear, as well as the false alarm rate (FA) of the SOA deviants in the unattended ear. D-prime was computed for each 
participant as; z (H) – z (FA).

Figure 1. Illustration of the stimuli and experimental design. (a) Temporal structure of the 6-tone rhythm 
sequences. Total sequences duration (above) and SOA between tones (below) are indicated in milliseconds 
(ms). Colors (blue and red) indicate how the rhythm was dichotically presented. The configuration of which 
ear (left/right) received which tones (blue/red) was counterbalanced across experimental blocks. (b) Schematic 
illustration of the number of regular (reg.) and irregular (irr.) rhythm sequences per high- and low predictability 
(pred.) blocks. All possible irregular sequences are illustrated in terms of where in the sequence a deviant 
(D) SOA was introduced, the number of each irregular sequence, as well as the total number of irregular 
sequences per high- and low predictability blocks. Irregular sequences are shaded as tones from these sequences 
were not included in the ERP analysis. Note that the number of events presented in the experiment and the 
number used for analysis differs. (c) Counterbalancing within each participant; attended ear (right vs. left), 
dichotic configuration (redright – blueleft vs. redleft – blueright), and predictability (high vs. low) resulted in eight 
experimental blocks. Filled (grey) headphones indicate the attended ear, while empty (white) indicate the 
unattended ear. (d) Rhythm sequences illustrated according to experimental conditions. The black arrows mark 
the tone of interest (5th) used for the N1 analysis. Attention to tones is indicated by solid (attended) or striped 
(unattended) lines. Top panels represent sequences in high predictability blocks, and bottom panels the low 
predictability blocks (the grey circles indicate the proportion of regular and irregular sequences). Left panels 
illustrate the attended condition as the 5th tone appears in the attended ear (solid), while right panels illustrate 
the unattended condition as the tone appears in the unattended ear (striped).
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EEG-recording and pre-processing. Continuous EEG and electro-oculography (EOG) data were 
recorded using a BioSemi Active Two 64 Ag-AgCl electrode system (BioSemi, Amsterdam, Netherlands). 
Electrodes were attached according to the International 10–20 system for electrode placement34. Data were sam-
pled at 1024 Hz during online recording. EOG electrodes were positioned above and below the right eye, and lat-
eral to the participant’s left and right eye. Additional external electrodes were positioned on left and right earlobes 
for later re-referencing.

We used the Fieldtrip toolbox35 for Matlab (R2018a, Mathworks Inc., Natick, MA, USA) for offline EEG data 
processing. Continuous EEG data were filtered with a 0.5 Hz high-pass filter in order to remove slow drifts in the 
data, as well as possible influence from slow preparatory ERP components (i.e., the contingent negative variation). 
The data were referenced to earlobes and down-sampled to 512 Hz. Noisy segments of the continuous data and 
bad channels were identified by visual inspection (i.e., large muscle artifacts). The sample information of the noisy 
segments was saved for later rejection of epochs overlapping with these segments (see below). Bad channels were 
removed before running an independent component analysis (ICA). The ICA was used to identify- and then 
manually remove blinks and horizontal eye movements (ocular components) in the non-epoched data.

The data were segmented into epochs of −500 to 1000 ms relative to the onset of the tones, specifically the 
5th tone within the rhythmic sequences (Fig. 1D). Typically, events closer to the end of rhythmic sequences were 
selected for analyses in previous studies20,21,24. Due to the short pre-stimulus interval (200 ms) for the last (6th) 
event in our sequences, we decided to use the 5th event in order to obtain a better baseline for our events of inter-
est (pre-stimulus interval of 400 ms), while still selecting an event towards the end of the sequences. Tones for 
which the previous sequence contained a SOA deviant were excluded from the analysis, resulting in ~40 trials 
per each high-predictability block, and ~25 trials per low-predictability block. Epochs were rejected based on 
previously defined noisy segments in the continuous data if the defined noisy segments overlapped with the first 
1000 ms of an epoch (−500 to 500 ms relative to stimulus onset). The mean number of rejected epochs per partic-
ipant was 4.7. Removed bad channels were re-constructed using spherical spline interpolation to ensure that data 
from all participants had the same set of channels36. Power-line noise was removed by zeroing the components 
associated with the noise (50 Hz) and its harmonics (100 and 150 Hz) in the discrete Fourier transform of the 
epoched data. The data were referenced to a common average of all 64 EEG-electrodes, and baseline correction 
was applied using a 50 ms pre-stimulus (−50 to 0 ms) time-window.

eRp analysis. Nine fronto-central electrodes were selected for the following analysis of the ERPs, targeting 
the auditory N1; left hemisphere (F3, FC3, C3), midline (Fz, FCz, Cz), and right hemisphere (F4, FC4, C4). 
Electrodes were selected based on an expected fronto-central distribution of the auditory N1 component37, as well 
as effects being consistently reported over fronto-central electrodes in other studies manipulating prediction and 
attention independently within the same experiment15,16,26.

N1 analysis. For the N1 analysis, ERPs averaged across the midline electrodes (Fz, FCz, Cz) were computed. 
Only midline electrodes were selected as left- and right ear tones were collapsed for this specific analysis, and we 
wanted to avoid potential influence of hemispheric difference effects from the lateral electrodes. ERPs to the tones 
were averaged for each individual as a function of attention (attended vs unattended) and predictability (high vs 
low), resulting in four conditions. As left- and right ear tones had been pooled, this resulted in ~80 trials (high 
predictability) or ~50 trials (low predictability) per condition (the mean number of trials across participants per 
condition included in the analysis is presented in Table 1). We defined the time-window used to extract N1 mean 
amplitudes based on the grand average waveform across all participants and all conditions. The two time-points 
at which the voltage was equal to 50% of the N1 peak value, before and after the N1 peak, served as time-window 
endpoints38. This resulted in a time-window ranging from 82 to 107 ms relative to tone onset, from which the 
mean N1 amplitude was computed for all four conditions separately.

Figure 2. Frequency of each block-type per block-order position (1st–8th). The color code for each block-type 
is illustrated in the top right corner, and is given by predictability (high or low), attended ear (left or right), and 
tones in attended ear (‘red’ or ‘blue’ – see Fig. 1).
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Analysis of hemispheric differences. An analysis of hemisphere effects was included in order to investigate poten-
tial hemispheric differences for either attention-related processing or processing of rhythm predictability, as 
well as for detecting left or right ear advantages in processing the stimuli. It has been shown that enhanced N1 
amplitude at contra- compared to ipsilateral electrodes during monaural tone-presentation, is associated with 
enhanced source-estimated cortical activation in contra- compared to ipsilateral auditory regions39,40. Hence, 
a left-right asymmetry in auditory evoked potentials might reflect different involvement of the left and right 
cerebral hemispheres. Note that in the current study, hemispheric differences refer to the differences between 
electrodes positioned over the left and right scalp. The average across the three left hemisphere electrodes (F3, 
FC3, C3), and the average across the three right hemisphere electrodes (F4, FC4, C4) were used for this analysis.

For investigation of hemispheric differences for attention processes, ERPs were averaged for each individual as 
a function of stimulated ear (left, right), hemisphere (left, right), and attention (attended, unattended). For investi-
gation of hemispheric differences for rhythm predictability processing, ERPs were averaged for each individual as 
a function of stimulated ear (left, right), hemisphere (left, right), and rhythm predictability (high, low).

Statistical analysis. The normality of all data variables were evaluated using the Shapiro-Wilks test and 
visual inspection of Normal Q-Q plots. Variables with a distribution that differed significantly from a normal 
distribution according to the Shapiro-Wilks test (p > 0.05) were visually inspected using Normal Q-Q plots. For 
the N1 midline analysis, all variables conformed to assumptions of normality (p > 0.05). For the analysis of hemi-
spheric differences one variable in each repeated measures analysis of variance (ANOVA) violated the assumption 
of normality (p < 0.05). However, visual inspection of the Normal Q-Q plots suggested reasonable normal distri-
bution of these variables. Hence, analyses were run using parametric tests.

N1 analysis. The mean N1 amplitude averaged across the midline electrodes were analyzed using a repeated 
measures ANOVA, involving two within-subject factors; attention (attended, unattended) and predictability 
(high, low).

Two separate repeated measures ANOVAs were used to analyze hemispheric differences for attention 
and rhythm predictability effects. The first addressed hemispheric differences for attention effects, and three 
within-subject factors were included: attention (attended, unattended), stimulated ear (left, right), and hemi-
sphere (left, right). The second addressed hemispheric differences for rhythm predictability effects, and included 
the three within-subject factors: rhythm predictability (high, low), stimulated ear (left, right), and hemisphere (left, 
right).

To assess effect strength, omega squared (ω2) was computed for all main effects and interaction effects. The ω2 
is an estimate of the proportion of variance in the dependent variable accounted for by the independent variable. 
ω2-values greater than 0.14 indicate large effects, values between 0.06 and 0.14 suggest medium sized effects, and 
values between 0.01 and 0.06 are considered small effects41.

Bayesian statistics. In order to investigate whether our results favored a main effect model of attention and 
prediction, or an interaction between attention and prediction, we computed Bayes factors (BFs; with default 
priors (uniform) for repeated measures ANOVA, using JASP free online software, v.0.10.2, https://jasp-stats.org/, 
University of Amsterdam, Netherlands). The BF is used to compare the probability of two models, in order to 
determine the plausibility of these models given the data. It is computed as the ratio between the probabilities of 
the two models. We report the BF as the ratio of the probability of a main effect model and an interaction model:

=
|
|

BF probability main effect model data
probability interaction model data

( )
( ) (1)

Hence, BF values less than 1 favor the interaction model, while BF values higher than 1 favor the main effect 
model. We interpreted the BF values according to existing recommendations42, considering values between 1 
and 3 as anecdotal evidence, and values greater than 3 as substantial evidence in favor of the main effect model.

Correlations of N1 amplitude with behavioral performance and musical experience. Finally, we assessed whether 
the effects of attention and predictability on N1 amplitude were associated with the behavioral measures, specif-
ically d-prime (task performance) and Gold-MSI scores (musical experience). We also assessed whether there 
was any association between task performance and musical experience. The attention effect was computed as 
the difference in mean N1 amplitude between unattended and attended tones (unattended minus attended), 
for each individual participant. For the predictability effect, we computed the difference in mean N1 amplitude 

Condition No. of trials (SD)

Predictability high attended 78.7 (1.5)

Predictability low attended 49.8 (2.1)

Predictability high unattended 79.1 (1.6)

Predictability low unattended 50.4 (1.4)

Table 1. Mean number of trials per condition used in the ERP analysis at midline electrodes (across 
participants, n = 32). The numbers represent the mean after excluding trials preceded by sequences containing 
SOA deviants, as well as removing trials contaminated by noise in the signal. Note that tones presented to left 
and right ears were collapsed. Parentheses indicate the standard deviation (SD).
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between tones in the high and low predictability condition (high minus low), for each individual participant. 
Two-tailed Pearson’s correlation coefficients were computed to investigate the correlation of attention- and pre-
dictability effects with d-prime and/or Gold-MSI scores, and the correlation between task performance and musi-
cal experience.

All statistical analyses were performed using JASP (v.0.10.2, https://jasp-stats.org/, University of Amsterdam, 
Netherlands) free software.

Results
Behavioral performance. Two participants were excluded from the analysis. One due to not following 
instructions properly when performing the experimental task. A second participant was excluded due to Seashore 
Rhythm test performance below the 5th percentile based on normative data, combined with difficulties under-
standing and following instructions during the experimental task. The final sample consisted of 32 participants. 
Group demographics, task performance, and level of musical experience are presented in Table 2. A wide range in 
the hit rates (0.24 to 0.94) indicated that the task of detecting SOA deviants was demanding. However, the d’prime 
measure, which takes into account the false alarm rate, suggested that all participants were able to distinguish 
between the attended and to-be-ignored (unattended) SOA deviants. This was reflected in all participants having 
a higher proportion of ‘hits’ than ‘false alarms’ (d’prime > 0).

eRp results. N1 effects at midline electrodes. ERP time courses for each condition at each midline electrode 
are illustrated in Fig. 3A, and the topographical representation of the N1 component across all task conditions is 
illustrated in Fig. 3B. Analysis of N1 amplitude revealed a main effect of attention, F(1,31) = 10.25, p = 0.003, ω2 
= 0.076, reflecting enhanced N1 amplitude for attended compared to unattended tones (see Fig. 3C, top). There 
was also a main effect of predictability, F(1,31) = 4.25, p = 0.048, ω2 = 0.017, revealing an attenuated N1 ampli-
tude when predictability was high (see Fig. 3C, bottom). The repeated measures ANOVA showed no significant 
interaction between attention and predictability on N1 amplitude, F(1,31) = 0.06, p = 0.808, ω2 < 0.001. A com-
plementary Bayesian repeated measures ANOVA showed moderate to substantial support42 for the main effect 
model relative to the interaction model, Bayes Factor (BF) = 3.712, indicating no interaction between auditory 
selective attention and predictability.

Hemispheric differences in N1. Finally, analyses of hemispheric differences for attention- and predictability 
effects were performed. ERP time-courses for all conditions are presented in Fig. 4A for the attention effects, and 
Fig. 4B for the predictability effects. Two separate repeated measures ANOVAs were performed, as no significant 
interaction between attention and predictability was found in the analysis of N1 at midline electrodes.

The repeated measures analysis for the effect of attention on N1 showed a significant main effect of attention, 
F(1,31) = 7.30, p = 0.011, ω2 = 0.033, that was modified by a significant interaction between attention and hem-
isphere, F(1,31) = 4.48, p = 0.042, ω2 = 0.011. Bonferroni-corrected post-hoc comparisons revealed a significant 
difference only for attended compared to unattended tones over right hemisphere electrodes, t = −3.43, p = 
0.007, reflected by a more negative N1 for the attended tones (Fig. 4C, middle).

The repeated measures analysis for the effect of predictability showed a trend-level main effect of predicta-
bility, F(1,31) = 3.96, p = 0.056, ω2 = 0.013, which indicated attenuation of N1 amplitude for tones in the high 
predictability condition. There was no significant interaction between predictability and hemisphere, F(1,31) = 
1.33, p = 0.258, ω2 = 0.001 (Fig. 4C, bottom).

Neither attention nor predictability interacted significantly with the ear of tone presentation. However, the 
results revealed a significant main effect of ear, F(1,31) = 5.17, p = 0.030, ω2 = 0.013, while the main effect 
of hemisphere was not significant F(1,31) = 0.69, p = 0.41, ω2 < 0.001. Furthermore, there was a significant 
interaction between ear and hemisphere, F(1,31) = 8.05, p = 0.008, ω2 = 0.025. Bonferroni-corrected post-hoc 
comparisons showed a significant difference only for left- compared to right ear tones over right hemisphere 
electrodes, t = −3.63, p = 0.004, reflected in a generally more negative N1 in response to left ear tones across the 
other experimental conditions (Fig. 4C, top).

Ratio or mean (range) SD

Demographics

Gender (females: males) 17:15

Hand dominance (right: left) 28:4

Age years, mean (range) 24.1 (19–35) 4.3

Task performance and musical experience

Experimental task

Hit Rate, mean (range) 0.62 (0.24–0.94) 0.20

False Alarm Rate, mean (range) 0.10 (0.00–0.31) 0.08

d-prime, mean (range) 1.77 (0.42–3.65) 0.82

Seashore Rhythm test, mean raw score (range) 28.3 (25–30) 1.4

Gold-MSI, mean raw score (range) 65.9 (35–107) 17.1

Table 2. Group demographics, task performance, and questionnaire data (n = 32). SD = standard deviation (SD).
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Correlations of N1 amplitude with behavioral performance and musical experience. Pearson’s correlation coeffi-
cients were computed to investigate whether effects of attention and predictability on N1 amplitude were associ-
ated with behavioral performance (d-prime) and/or musical experience (Gold-MSI). The N1 attention effect did 
not correlate significantly with d-prime (r = 0.04, p = 0.813) or with the Gold-MSI scores (r = −0.19, p = 0.310). 
Also, the N1 predictability effect did not correlate significantly with d-prime (r = −0.16, p = 0.382) or with the 
Gold-MSI scores (r = −0.04, p = 0.838). Finally, there was a significant positive correlation between d’prime 
and Gold-MSI scores (r = 0.42, p = 0.017), showing that participants with higher level of musical experience 
performed better on the experimental task.

Discussion
We investigated the effects of rhythm predictability on electrophysiological indices of auditory processing, spe-
cifically the N1. Predictability was defined by the probability of rhythm violation (SOA deviants) in experimen-
tal blocks consisting of rhythmic tonal stimuli. We also examined whether rhythm predictability was encoded 
without attentional resources being allocated to the tones. We observed an attenuated auditory N1 to tones in 
high predictability blocks, in which there was a low probability of rhythm violation, while the N1 was enhanced 
by attention to tones. Importantly, the effect of rhythm predictability occurred independent of spatial selective 
attention. Furthermore, attention effects were larger over right hemisphere electrodes, while the effect of rhythm 
predictability did not significantly differ between hemispheres.

The attenuation of the N1 in high predictability blocks is in line with studies showing a reduction in early 
sensory responses when the timing of stimuli is predictable20,23. Predictive coding has been proposed as a possible 
underlying mechanism17. However, in these previous studies predictability was defined primarily by the timing 
of immediately preceding intervals (i.e., isochronous versus random timing). Lumaca, et al.24 manipulated the 
complexity in the regularity of preceding intervals, yet the main focus was on the neural responses to deviance. 
An assumption of the predictive coding theory is that sensory prediction has a hierarchical organization in the 

Figure 3. Illustration of results from the N1 analysis at midline electrodes. (a) Grand average ERPs at the 
midline electrodes (Fz, FCz, Cz) for attended (left panel) and unattended (right panel) tones. The high- and 
low-predictability conditions are illustrated by the blue and red lines, respectively. The shaded area around the 
lines represents the standard error of the mean. The time-window used for analyzing the mean N1 amplitude 
(82–107 ms) is shaded in grey. An additional 30 Hz low-pass filter was applied for visualization purposes. (b) 
Topographical representation of the N1 component (82–107 ms) across all task conditions. The three midline 
electrodes are highlighted (black dots). (c) Mean N1 amplitude (82–107 ms) for tones across the midline 
electrodes (Fz, FCz, and Cz). Plot of the attention effect (top), and the predictability effect (bottom), *p < 0.05, 
**p < 0.01. Error bars represent the standard error of the mean, and individual data points are plotted (grey 
dots).
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brain, and is accompanied by the premise that inference follows rules of probability5,43. It might be problematic 
to assume a predictive coding mechanism underlying the N1 attenuation for stimuli with regular compared to 
random timing, as it involves manipulation of neither hierarchical prediction nor probabilities. The current study 
found attenuation of the N1 in response to tones embedded in rhythmic stimuli when predictability was increased 
in terms of probabilities. As the timing of immediately preceding stimuli was kept identical across conditions, 
the effect was not due to differences in the rhythmicity of the preceding intervals themselves. Hence, our results 
provide support for interpreting N1 attenuation in light of predictive coding, specifically probabilistic inference.

To our knowledge, this is the first study to manipulate rhythm predictability in terms of rhythm violation 
probability. However, a few studies have shown that MMN responses to pitch deviance are modulated by the 
probabilistic structure of stimulus pitches44,45. Specifically, the MMN in response to tone pitch is increased when 

Figure 4. Illustration of results from analysis of hemispheric differences. (a) ERP time-courses for attended 
(blue) and unattended (red) tones. (b) ERP time-courses to tones occurring in high predictability- (blue) and 
low predictability (red) blocks. (a,b) Left panels represent the average of left hemisphere electrodes (F3, FC3, 
C3), and right panels represent the average of right hemisphere electrodes (F4, FC4, C4), highlighted in the 
head plots with red markers. Top-panels represent left ear tones, and bottom panels right ear tones. The shaded 
area around ERP time courses represents the standard error of the mean. The time-window used for analyzing 
the mean N1 amplitude (82–107 ms) is shaded in grey. An additional 30 Hz low-pass filter was applied for 
visualization purposes. (c) Plots of the interaction between hemisphere (LH = left hemisphere, RH = right 
hemisphere) and the three factors; stimulated ear (top, RE = right ear, LE = left ear), attention (middle, U = 
unattended, A = attended), and predictability (bottom, L = low pred., H = high pred.). Mean N1 amplitude is 
plotted for each condition. Error bars represent the standard error of the mean, *p < 0.05, **p < 0.01, n.s = not 
significant.
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tones are embedded within a narrow distribution of tone pitches (low variability) compared with a broad distri-
bution of pitches (high variability). The N1-attenuation in our study is in line with these findings, in which it is 
argued that the human brain seems capable of tracking the probabilistic structure in auditory stimuli, and not 
only simple sequence-based rules44. Our study reveals that these effects might extend to other dimensions in 
which stimuli can vary, such as variability regarding SOAs in rhythmic stimuli.

It is still an open question how this effect manifests over time. Rhythm predictability is probably not repre-
sented by a constant unique value. Instead, predictions are made continuously based on experience encompassing 
both shorter and longer time segments. Hence, the observed effect of rhythm predictability on the N1 is a simple 
representation of the dynamics in the updating of temporal predictions. One potential underlying mechanism 
could be repetition suppression to the repeating tones, reflecting local adaptation within auditory cortex46,47. 
Suppression of evoked responses to repeating tones has been shown to be modulated by the regularity in the 
temporal structure with which the tones are presented, at both cortical- and subcortical processing stages23,48. 
In contrast to these studies, in our study tones were presented with the same rhythm structure, and a repetition 
suppression effect would have to be explained by the time between rhythm violations (SOA deviants), which dif-
fers between high and low predictability blocks. Whether SOA deviants in rhythms of varying complexity affect 
repetition suppression to repeating tones is currently not known. However, the interval between two consecutive 
tones has been shown to influence adaptation responses, as adaptation is larger for shorter intervals49. In this 
case, we would expect to see larger adaptation (i.e., N1 attenuation) in the low predictability blocks, opposite 
of our results, as these blocks had a higher number of SOA deviants (shorter intervals). This suggests that other 
mechanisms might be mediating our effects of rhythm predictability. Furthermore, Garrido, et al.44, showing 
that MMN responses are sensitive to the probability distribution of tone pitches, reported that the differences in 
MMN responses between high and low variability conditions could not solely be explained by local adaptation. It 
remains to be defined what neural mechanisms are contributing to effects beyond local adaptation effects. Recent 
studies suggest a specific role of the prefrontal cortex in predicting sensory input based on more abstract and 
complex rules (i.e., probabilities) in humans50 as well as in non-human primates51.

Notably, the effect of rhythm predictability was present for attended as well as unattended tones. This was 
suggested by a non-significant interaction between attention and predictability, as well as by the complementary 
Bayes factor analysis. The latter showed that a main effect model was more likely than an interaction model. 
The results are in line with previous studies demonstrating that the human brain responds to unexpected sound 
stimuli in a variety of different states in which selective attention to the sounds is absent. Some of these studies 
involved a similar experimental manipulation of selective attention as we employed, specifically the use of an 
attended and unattended stimulus stream15,16,25,52. Others have shown that the brain responds to unexpected 
sound stimuli even when in a state of reduced consciousness such as under general anesthesia53,54, or other causes 
of coma55–57. Garrido et al.58 addressed the lack of independent manipulations of attention and prediction, as well 
as pointing to the existence of conflicting findings. They investigated MMN responses to attended and unattended 
tones, and similar to our results they found no interaction between tone predictability (standard vs. deviant pitch) 
and attention58.

However, this line of research has mainly addressed how rule violation itself is processed independent of 
selective attention to tones. In the current study, we rather tested the hypothesis that the brain might be sensitive 
to probabilities in the sensory stimuli independent of attention. Our results concur with research suggesting that 
the brain is in fact capable of tracking probabilities (i.e., statistical structure) in auditory stimuli, even when the 
stimuli are task-irrelevant and unattended44. A more recent follow-up study indicated that cognitive task-load 
does not interfere with these processes45. At the same time, our study is the first to show that rules of probabilities 
in the timing of auditory stimuli are processed independent of attention, as the previous studies manipulated 
probability with regard to stimulus pitch44,45. Garrido, et al.45 argued that automatic learning of statistical proper-
ties of stimuli allows for perceptual inference in otherwise noisy environments. This renders it possible to detect 
important changes in the environment while simultaneously engaging in parallel goal-directed behavior. Our 
results suggest implicit and automatic processing of temporal structure in auditory stimuli related to the proba-
bility of event timing in rhythms.

A potential limitation of the current study is that unattended sounds were still part of the temporal structure 
in the rhythm sequences. In that way they might not be completely task-irrelevant, if one assumes that the brain 
processes the information from the two streams in an integrated fashion (as one rhythm), and not as separate 
and independent auditory input streams. If the tones from separate ears were processed as independent streams, 
an enhancement of the auditory N1 contralateral to the stimulated ear would be expected, due to stronger con-
tralateral than ipsilateral pathways within the auditory sensory system59. However, the significant interaction 
between stimulated ear and hemisphere was driven mainly by a difference over the right hemisphere electrodes, 
with more negative N1 amplitude to the left ear tones. As the same effect for right ear tones was not present over 
left hemisphere electrodes, this suggests that left and right ear tones were not processed as independent stim-
ulus streams. Furthermore, the enhanced N1 to left ear tones over right hemisphere electrodes, might reflect a 
right-hemisphere advantage in processing tonal stimuli60–62.

The two predictability conditions might also differ in terms of how one is catching more attention than the 
other. Possibly, frequent SOA deviants (which occurred for tones delivered to both ears) resulted in more atten-
tional resources being allocated to the unattended ear. In this case, the larger N1 amplitude for unattended tones 
in the low predictability condition could merely reflect increased attention to these tones, and not probabilistic 
learning. In order to disentangle processes related to sensory prediction and processes related to attention, com-
plementary information regarding the cortical sources of the effects is needed. If the cortical sources differ, this 
might at least suggest that different processes are involved, and that the effects are not driven by the same atten-
tion processes. Interestingly, our result of hemispheric differences in N1 amplitude suggested that attention effects 
were more strongly lateralized to right hemisphere electrodes. This is in line with previous research suggesting a 
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specialized role of the right hemisphere in auditory attention processes (for a review, see27). This specialization has 
been shown in neuroimaging studies involving healthy participants63,64, as well as in studies of participants with 
acquired brain injury65,66. On the other hand, the effects of predictability did not show any significant difference 
between left- and right-hemisphere electrodes. If any, visual inspection of ERPs would point towards a larger 
difference between predictability conditions over left hemisphere electrodes. Previous research has suggested 
left-hemisphere dominance in the processing of rhythm-related aspects of auditory stimuli28,67. Our findings 
suggest that the effects of predictability and attention might result from different cortical processes. However, 
one should exert caution when making assumptions regarding underlying anatomy based on scalp EEG data 
alone. Future research investigating the interplay between prediction- and attention processes should find ways 
to disentangle the specific processes underlying the updating of sensory predictions from attentional processes.

Finally, we found a positive correlation between musical experience and task performance, reflecting that 
more musically experienced individuals performed better on the task. This result is in agreement with studies 
showing that musically trained individuals perform better on a variety of rhythm tasks68,69. On the other hand, 
neither performance on the experimental task (d´prime) nor musical experience (Gold-MSI) were associated 
with the effects of attention and predictability on N1 amplitude. A potential explanation for this is that the abil-
ity to detect and respond to the SOA deviants is not directly related to the processing of the probability of SOA 
deviants. More specifically, one might be able to detect a specific stimulus, even if information regarding its prob-
ability of occurrence is absent, as long as one allocates attention to each presented stimulus. This raises interesting 
questions for future research, i.e., which processes crucial for the perception and understanding of temporal 
structure in music are influenced by musical experience, and which are not?

In the current study, we have shown that the brain processes rhythm predictability defined by timing proba-
bilities, independent of selective attention. What remains to be understood are the specific neural mechanisms 
underlying these effects, isolating the mechanisms related to processing of temporal regularities defined by prob-
abilities from those related to local adaptation.

Data availability
The ethical approval of the current study does not permit public archiving of the anonymized datasets generated 
and/or analyzed during the current study. Readers can request access to the datasets supporting claims of the 
current study by contacting the corresponding author Maja Dyhre Foldal or project manager Tor Endestad (tor.
endestad@psykologi.uio.no).

Received: 14 November 2019; Accepted: 7 April 2020;
Published: xx xx xxxx

References
 1. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2, 

704–716 (2001).
 2. Gilbert, C. D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron 54, 677–696 (2007).
 3. Aitchison, L. & Lengyel, M. With or without you: predictive coding and Bayesian inference in the brain. Curr. Opin. Neurobiol. 46, 

219–227 (2017).
 4. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).
 5. Friston, K. A theory of cortical responses. Philos. T. R. Soc. B 360, 815–836 (2005).
 6. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field 

effects. Nat. Neurosci. 2, 79–87 (1999).
 7. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).
 8. Garrido, M. I., Kilner, J. M., Stephan, K. E. & Friston, K. J. The mismatch negativity: a review of underlying mechanisms. Clin. 

Neurophysiol. 120, 453–463 (2009).
 9. Blenkmann, A. O. et al. Auditory deviance detection in the human insula: An intracranial EEG study. Cortex 121, 189–200 (2019).
 10. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: 

a review. Clin. Neurophysiol. 118, 2544–2590 (2007).
 11. Phillips, H. N., Blenkmann, A., Hughes, L. E., Bekinschtein, T. A. & Rowe, J. B. Hierarchical organization of frontotemporal 

networks for the prediction of stimuli across multiple dimensions. J. Neurosci. 35, 9255–9264 (2015).
 12. Fisher, D. J., Grant, B., Smith, D. M. & Knott, V. J. Effects of deviant probability on the ‘optimal’multi-feature mismatch negativity 

(MMN) paradigm. Int. J. Psychophysiol. 79, 311–315 (2011).
 13. Nobre, A. C. & van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).
 14. Arnal, L. H. & Giraud, A.-L. Cortical oscillations and sensory predictions. Trends Cogn. Sci. 16, 390–398 (2012).
 15. Chennu, S. et al. Silent expectations: dynamic causal modeling of cortical prediction and attention to sounds that weren’t. J. Neurosci. 

36, 8305–8316 (2016).
 16. Kompus, K., Volehaugen, V., Todd, J. & Westerhausen, R. Hierarchical modulation of auditory prediction error signaling is 

independent of attention. Cogn. Neurosci., 1–11 (2019).
 17. Lange, K. The ups and downs of temporal orienting: a review of auditory temporal orienting studies and a model associating the 

heterogeneous findings on the auditory N1 with opposite effects of attention and prediction. Front. Hum. Neurosci. 7, 263 (2013).
 18. Rosburg, T., Boutros, N. N. & Ford, J. M. Reduced auditory evoked potential component N100 in schizophrenia — a critical review. 

Psychiat. Res. 161, 259–274 (2008).
 19. Schröger, E., Marzecová, A. & SanMiguel, I. Attention and prediction in human audition: a lesson from cognitive psychophysiology. 

Eur. J. Neurosci. 41, 641–664 (2015).
 20. Lange, K. Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain Cognition 69, 

127–137 (2009).
 21. Lange, K. Can a regular context induce temporal orienting to a target sound? Int. J. Psychophysiol. 78, 231–238 (2010).
 22. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 

14–23 (2006).
 23. Costa-Faidella, J., Baldeweg, T., Grimm, S. & Escera, C. Interactions between “what” and “when” in the auditory system: temporal 

predictability enhances repetition suppression. J. Neurosci. 31, 18590–18597 (2011).
 24. Lumaca, M., Haumann, N. T., Brattico, E., Grube, M. & Vuust, P. Weighting of neural prediction error by rhythmic complexity: a 

predictive coding account using mismatch negativity. Eur. J. Neurosci. 49, 1597–1609 (2019).

https://doi.org/10.1038/s41598-020-64758-y


1 2Scientific RepoRtS |         (2020) 10:7975  | https://doi.org/10.1038/s41598-020-64758-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 25. Campbell, A. M. & Davalos, D. B. Levels of attention and task difficulty in the modulation of interval duration mismatch negativity. 
Front. Psychol. 6, 1619 (2015).

 26. Schwartze, M., Farrugia, N. & Kotz, S. A. Dissociation of formal and temporal predictability in early auditory evoked potentials. 
Neuropsychologia 51, 320–325 (2013).

 27. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 
(2002).

 28. Samson, S., Ehrlé, N. & Baulac, M. Cerebral substrates for musical temporal processes. Ann. N. Y. Acad. Sci. 930, 166–178 (2001).
 29. Müllensiefen, D., Gingras, B., Musil, J. & Stewart, L. The musicality of non-musicians: an index for assessing musical sophistication 

in the general population. PLoS One 9, e89642 (2014).
 30. Reitan, R. M. & Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. 

(Neuropsychology Press, Tucson, AZ, 1985).
 31. Seashore, C. E., Lewis, D. & Saetveit, J. Seashore Measures of Musical Talents. (The Psychological Corporation, New York, 1960).
 32. Lezak, M. D. Neuropsychological Assessment. (Oxford University Press, USA, 1995).
 33. Stanislaw, H. & Todorov, N. Calculation of signal detection theory measures. Behav. Res. Meth. Instrum. Comput. 31, 137–149 

(1999).
 34. Chatrian, G., Lettich, E. & Nelson, P. Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. 

Am. J. EEG Technol. 25, 83–92 (1985).
 35. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and 

invasive electrophysiological data. Comput. Intel. Neurosc. 2011, 156869 (2011).
 36. Perrin, F., Pernier, J., Bertrand, O. & Echallier, J. F. Spherical splines for scalp potential and current density mapping. 

Electroencephalogr. Clin. Neurophysiol. 72, 184–187 (1989).
 37. Näätänen, R. & Picton, T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the 

component structure. Psychophysiology 24, 375–425 (1987).
 38. Lopez-Calderon, J. & Luck, S. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 8, 

213 (2014).
 39. Picton, T. W. et al. Intracerebral sources of human auditory-evoked potentials. Audiol. Neurotol. 4, 64–79 (1999).
 40. Hine, J. & Debener, S. Late auditory evoked potentials asymmetry revisited. Clin. Neurophysiol. 118, 1274–1285 (2007).
 41. Kirk, R. E. Practical significance: a concept whose time has come. Educ. Psychol. Meas. 56, 746–759 (1996).
 42. Dienes, Z. Using Bayes to get the most out of non-significant results. Front. Psychol. 5, 781 (2014).
 43. Friston, K. Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211 (2008).
 44. Garrido, M. I., Sahani, M. & Dolan, R. Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. 

Biol. 9, e1002999 (2013).
 45. Garrido, M. I., Teng, C. L. J., Taylor, J. A., Rowe, E. G. & Mattingley, J. B. Surprise responses in the human brain demonstrate 

statistical learning under high concurrent cognitive demand. NPJ Sci. Learn. 1, 16006 (2016).
 46. Garrido, M. I. et al. Repetition suppression and plasticity in the human brain. Neuroimage 48, 269–279 (2009).
 47. Groves, P. M. & Thompson, R. F. Habituation: a dual-process theory. Psychol. Rev. 77, 419–450 (1970).
 48. Gorina-Careta, N., Zarnowiec, K., Costa-Faidella, J. & Escera, C. Timing predictability enhances regularity encoding in the human 

subcortical auditory pathway. Sci. Rep. 6, 37405 (2016).
 49. Lanting, C. P., Briley, P. M., Sumner, C. J. & Krumbholz, K. Mechanisms of adaptation in human auditory cortex. J. Neuropsysiol. 110, 

973–983 (2013).
 50. Dürschmid, S. et al. Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. P. Natl. Acad. Sci. USA 

113, 6755–6760 (2016).
 51. Chao, Z. C., Takaura, K., Wang, L., Fujii, N. & Dehaene, S. Large-scale cortical networks for hierarchical prediction and prediction 

error in the primate brain. Neuron 100, 1252–1266 (2018).
 52. Woldorff, M. G., Hackley, S. A. & Hillyard, S. A. The effects of channel‐selective attention on the mismatch negativity wave elicited 

by deviant tones. Psychophysiology 28, 30–42 (1991).
 53. Heinke, W. & Koelsch, S. The effects of anesthetics on brain activity and cognitive function. Curr. Opin. Anesthesio. 18, 625–631 

(2005).
 54. Koelsch, S., Heinke, W., Sammler, D. & Olthoff, D. Auditory processing during deep propofol sedation and recovery from 

unconsciousness. Clin. Neurophysiol. 117, 1746–1759 (2006).
 55. Fischer, C. et al. Mismatch negativity and late auditory evoked potentials in comatose patients. Clin. Neurophysiol. 110, 1601–1610 

(1999).
 56. Tzovara, A., Simonin, A., Oddo, M., Rossetti, A. O. & De Lucia, M. Neural detection of complex sound sequences in the absence of 

consciousness. Brain 138, 1160–1166 (2015).
 57. Tzovara, A. et al. Prediction of awakening from hypothermic postanoxic coma based on auditory discrimination. Ann. Neurol. 79, 

748–757 (2016).
 58. Garrido, M. I., Rowe, E. G., Halász, V. & Mattingley, J. B. Bayesian mapping reveals that attention boosts neural responses to 

predicted and unpredicted stimuli. Cereb. Cortex 28, 1771–1782 (2018).
 59. Marsh, J. E., Pilgrim, L. K. & Sörqvist, P. Hemispheric specialization in selective attention and short-term memory: a fine-coarse 

model of left-and right-ear disadvantages. Front. Psychol. 4, 976 (2013).
 60. Sininger, Y. S. & Bhatara, A. Laterality of basic auditory perception. Laterality 17, 129–149 (2012).
 61. King, F. L. & Kimura, D. Left-ear superiority in dichotic perception of vocal nonverbal sounds. Can. J. Psychol. 26, 111–116 (1972).
 62. Kimura, D. Left-right differences in the perception of melodies. Q. J. Exp. Psychol. 16, 355–358 (1964).
 63. Pardo, J. V., Fox, P. T. & Raichle, M. E. Localization of a human system for sustained attention by positron emission tomography. 

Nature 349, 61–64 (1991).
 64. Petit, L. et al. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study. 

Restor. Neurol. Neuros. 25, 211–225 (2007).
 65. Wilkins, A. J., Shallice, T. & McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 25, 359–365 (1987).
 66. Rueckert, L. & Grafman, J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34, 953–963 (1996).
 67. Gordon, H. W. Left hemisphere dominance for rhythmic elements in dichotically-presented melodies. Cortex 14, 58–70 (1978).
 68. Schaal, N. K., Banissy, M. J. & Lange, K. The rhythm span task: Comparing memory capacity for musical rhythms in musicians and 

non-musicians. J. New Music Res. 44, 3–10 (2015).
 69. de Fleurian, R., Blackwell, T., Ben-Tal, O. & Müllensiefen, D. Information‐theoretic measures predict the human judgment of 

rhythm complexity. Cogn. Sci. 41, 800–813 (2017).

Acknowledgements
This study was partially supported by the Research Council of Norway through its Centres of Excellence scheme 
(project number 262762 RITMO), RITPART International Partnerships for RITMO Centres of Excellence 
(project number 274996), and a grant from the Research Council of Norway (project number 240389 to A.-K.S. 
and T.E.).

https://doi.org/10.1038/s41598-020-64758-y


13Scientific RepoRtS |         (2020) 10:7975  | https://doi.org/10.1038/s41598-020-64758-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
M.D.F., A.-K.S. and T.E. contributed to the conceptualization and design of the study; M.D.F. recruited 
participants and collected the data; M.D.F. performed the processing of the EEG data and the statistical analysis, 
with A.O.B., A.-K.S. and T.E. providing substantial supervision; A.O.B., A.L., R.T.K., A.-K.S. and T.E. contributed 
with discussion of results and interpretation; M.D.F. wrote the first draft of the manuscript; All authors 
contributed to the manuscript in terms of editing, reading and approving the submitted version.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.D.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64758-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The brain tracks auditory rhythm predictability independent of selective attention
	Methods
	Participants. 
	Stimuli and experimental design. 
	Goldsmith musical sophistication index. 
	Seashore rhythm test. 
	Procedure. 
	Analysis of behavioral data. 
	EEG-recording and pre-processing. 
	ERP analysis. 
	N1 analysis. 
	Analysis of hemispheric differences. 

	Statistical analysis. 
	N1 analysis. 
	Bayesian statistics. 
	Correlations of N1 amplitude with behavioral performance and musical experience. 


	Results
	Behavioral performance. 
	ERP results. 
	N1 effects at midline electrodes. 
	Hemispheric differences in N1. 
	Correlations of N1 amplitude with behavioral performance and musical experience. 


	Discussion
	Acknowledgements
	Figure 1 Illustration of the stimuli and experimental design.
	Figure 2 Frequency of each block-type per block-order position (1st–8th).
	Figure 3 Illustration of results from the N1 analysis at midline electrodes.
	Figure 4 Illustration of results from analysis of hemispheric differences.
	Table 1 Mean number of trials per condition used in the ERP analysis at midline electrodes (across participants, n = 32).
	Table 2 Group demographics, task performance, and questionnaire data (n = 32).




