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Abstract 11 

This paper presents a novel Dynamic Kernel PCA (DKPCA) method devoted to process monitoring in nonlinear 12 
dynamical systems. It focuses on the optimal dynamical structure constructed through the powerful mathematical 13 
tool in fractal theory, the Fractal Dimension (FDim). DKPCA offers a generic data-driven framework for treating 14 
nonlinear dynamical systems and enables modelling the possible dynamic behaviour. The Fractal Dimension 15 
(FDim) provides an accurate intrinsic measure of the complexity of a data set and it is used to explore the nonlinear 16 
dynamics and the chaotic behaviour. This paper integrates the two strategies to overcome the shortcomings 17 
associated with classical methods based on linear dynamic PCA and DKPCA exhibiting linearity assumptions on 18 
the dynamical structure. These limitations are alleviated through the proposed Fractal-based DKPCA (FDKPCA) 19 
framework. An additional contribution is a new approach for selecting the exact number of Principal Components 20 
as the main phase in dimensionality reduction based on FDim. The novel fault detection and diagnosis method is 21 
verified through seven applications using the Process Network Optimization (PRONTO) benchmark with real 22 
heterogeneous data, FDKPCA showed superior performance compared to contemporary approaches.     23 
 24 

Keywords: Fault Detection and Diagnosis; Dynamic Kernel PCA; Fractal Analysis; Correlation Dimension; 25 
Intrinsic Dimension; Process Network Optimization (PRONTO) Benchmark. 26 

 27 
1. Introduction 28 

 29 
Pre-empting failures in industrial processes via Fault Detection and Diagnosis (FDD) techniques has 30 

undergone considerable expansion in recent decades [1]. Indeed, FDD frameworks have been integrated into a 31 
variety of process control systems due to their increased complexity encompassing the modern technology.  Such 32 
techniques typically involve the model-based approaches [2, 3], relying on a priori knowledge about the 33 
mathematical and physical relationships of the system. Such approaches include filters [4, 5], observers, and 34 
parameter estimation [6, 7]. These methods might be intricate because it is still difficult to set up the most adequate 35 
mathematical model. Data-driven methods [8], on the other hand, have become more widespread and mostly 36 
adopted from researchers; requiring only the minimum a priori knowledge, they rely on fully exploiting the largely 37 
available historical data [8, 9]. These methods, however, are under continuous development aiming to facilitate 38 
and optimise their implementation. Multivariate Statistical Process Control (MSPC) techniques [10] are widely 39 
used for process monitoring. Principal Component Analysis (PCA) [11], Partial Least Squares (PLS) [12], Fisher 40 
Discriminant Analysis (FDA) [13], Support Vector Machines (SVM) [13], Independent Component Analysis 41 
(ICA) [14], and Slow Feature Analysis (SFA) [15] are common MSPC methods in FDD.  42 

PCA has received tremendous attention and diverse PCA extensions have been introduced to cope with 43 
process dynamics, nonlinearities, and unknown disturbances. Nonlinear PCA (NLPCA) [16] and Kernel PCA 44 
(KPCA) [17] map the process data into a high dimensional feature space using integral operators and nonlinear 45 
basis functions. Additionally, dynamic, recursive, moving-window, and multiple-mode PCA variants are 46 
originated from process dynamics and non-stationarities [18-20] with a paid cost of increased complexity. PCA 47 
and its descendants still, however, exhibit major shortcomings: PCA theory does not guarantee an optimal static 48 
PCA model exists for particular data; besides, an optimal PCA model is not well-defined in the existing literature; 49 
furthermore, the optimal structure that explains correctly the nonlinear dynamical process functionality in high 50 
dimensional settings remains an issue in research. Solving for the appropriate Number of PCs (NPC) to retain in 51 
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a static PCA model is an unsolved dilemma where many methods are proposed in the literature as pointed in [21]. 1 
Common methods include Kaiser’s rule [22], Cumulative Percent Variance (CPV) [23], Parallel analysis (PA) 2 
[24], scree test [25], cross-validation [26], and Variance of the Reconstruction Error (VRE) [27]. These methods 3 
are summarized and discussed in [28] where each of the criteria is derived from a particular rule of thumb and 4 
results in vague decisions for different PCA models and performance. The first contribution of this work will be 5 
to consider this issue through a completely new approach based on the rich and powerful theory of Fractal 6 
Dimension (FDim). It was reported in [8] that the major drawbacks associated with standard PCA are due to the 7 
covariance matrix which is scale variant and it is obtained through Pearson’s dependence measure which is 8 
sensitive to outliers. Instead, [29] proposed to form the coefficients of the rank correlation matrix through 9 
Spearman’s or Kendall tau’s coefficients between all the pairs of process variables where sequential eigenvector 10 
extraction lead to a sparse static PCA model. [30] combined PCA’s 𝑇2 statistic and Bayesian network to improve 11 
PCA’s capabilities of fault diagnosis and overcome the limitations of multivariate contribution plot. Alternative 12 
approaches to FDD include machine learning methods such as risk-based fault indicators using self-organizing 13 
map [31] which require larger amounts of data and computational resources and dynamic Bayesian network based 14 
control chart [32] for FDD in small to medium scale processes. 15 

The existing Dynamic PCA (DPCA) is a direct approach integrating dynamic dependency information in a 16 
linear static model extracted by PCA. The cardinality of each of the variables in a raw data matrix is expanded to 17 
the 𝑙 previous values such that 𝑿̃𝒃 = 𝟎 is solved to obtain the null space of the augmented data matrix 𝑿̃ [33]. 18 
Besides its major limitation to linear dependencies, the determination of a proper lag structure is a key challenge. 19 
This was described in [18] through the null-space dimension based on linear PCA. Similarly, [34] determined the 20 
number of lags by performing Singular Value Decomposition (SVD) of the extended data matrix. Vanhatalo et al. 21 
[35] proposed another method based on the the sample and partial autocorrelation matrices of the original data 22 
extended at different lags but also focusing on the eigenvalues. The aforementioned DPCA methods are not 23 
definite; extra-sensitive to the different criteria issue; and limited to linear relations through linear PCA where the 24 
process is approximated by a basic linear model. DPCA extension to nonlinear processes through Dynamic Kernel 25 
PCA (DKPCA) was firstly proposed in [36], integrating the potentials of KPCA and the dynamical properties of 26 
DPCA. DKPCA has been modified to batch DKPCA in [37], and incorporated with FDA (DKPCA-FDA) in [38] 27 
for fault isolation. These methods aim at capturing nonlinear static dependencies, however, their dynamical 28 
structure and the number of PCs are still identified using linear approximations that fail to address nonlinear 29 
dynamics.  30 

Henceforth, a data-driven algorithm that addresses properly nonlinear dynamical systems is highly 31 
demanded in the literature to limit design costs, model dimension, complexity, and improve performance 32 
potentials. This paper introduces a novel and powerful data-driven approach  whose subject matter is to optimally 33 
model the nonlinear dynamics exposed in the lag structure based on the actual Fractal Dimension (FDim). FDim 34 
[39] theory is effectively rich and not limited to time-series. Characteristically, large multivariate m-dimensional 35 
data lie intrinsically in a topological manifold of dimension 𝑑 < 𝑚; this lower dimension 𝑑 is the Intrinsic 36 
Dimension (IDim) defined practically as the number of independent variables required to describe the data set 37 
with minimal loss of information [40]. Moreover, the Correlation Dimension (CDim) [41], the most practical 38 
fractal dimension definition, identifies the number of the independent variables required to model the dynamical 39 
system [42]. Noticing that this definition states the ultimate objective of PCA except that it is the intrinsic 40 
characteristic of a particular data without a single assumption. FDim herin overcomes the reliance of PCA, DPCA, 41 
and DKPCA on simple SVD and rule-of-thumb techniques. For many decades, extensive research has been 42 
conducted to set up and analyse methods for determining the IDim. An inclusive survey on the most relevant IDim 43 
estimation techniques is provided in [43], emphasising the fractal-based methods as the most robust estimators.  44 

  Fractal theory gives a mathematical tool to deal with complex systems. The phase space of a system, defined 45 
as the space of variables that specify the state of the system, may attract the initial conditions to some subset called 46 
the attractor. For simple systems, the attractor could be a point of dimension zero or a closed curve of dimension 47 
one. For most real dynamical systems, the attracting set is more complex and chaotic in nature with a non-integer 48 
dimension. These are known as strange attractors characterized by the underlying dynamics that have space-filling 49 
properties expressed as the fractal dimension [44]. Exploring these chaotic dynamics of nonlinear systems is the 50 
main area where considerable progress has been made through the fractal theory, particularly for strange attractors 51 
[45, 46]. FDim was originally derived for image processing where the main objective was to estimate the 52 
topological characteristics of geometrical objects [47]. It was proved useful as a tool in machine learning 53 
applications to quickly select the most important attributes [48, 49]. FDim used in the literature of FDD is very 54 
limited to model-based techniques and small-scale applications such as temperature sensor [50]; crack and spalling 55 
failure detection [51]; induction motors faults [52]; and bearing faults [53, 54]. However, fractal theory was not 56 
investigated before in large-scale high-dimensional systems. Theoretically, no study has considered phase space 57 
reconstruction based on autocorrelations and cross-correlations associated with MSPC methods through FDim, 58 
especially for optimal dynamical structure stemming from constructing an attractor space composed of each 59 
independent degree of freedom which is often unknown for chaotic dynamical systems.  60 



This paper underlines these aspects and thorough analysis is left for future work from possibly even pseudo-1 
phase-space perspective. The proposed methods determine correctly the number of nonlinear correlation 2 
relationships in the extended dynamical model that ensures optimal phase space reconstruction under 3 
nonlinearities. The dynamic analysis accomplished using the FDim for KPCA so as to detect the nonlinear 4 
relationships remains coherent under nonlinear modelling via a nonlinear IDim estimator. The proposed approach 5 
is automatic and assumption-free that provides a sharp limit i.e. an important property of not being actually 6 
enforced to be an integer number. To address these challenges, the Fractal-based Dynamic Kernel PCA 7 
(FDKPCA) is proposed as an inclusive optimal monitoring framework for nonlinear dynamical systems. The 8 
novel concept is explained and proved in this article, it is then validated through seven applications using real 9 
heterogeneous data from the Process Network Optimization (PRONTO) benchmark. 10 

The remainder of this paper is organized as follows: The different techniques, methodologies, and the new 11 
proposed methods are presented in Sections 2, 3, and 4. Next in Section 5, the proposed fractal-based DKPCA 12 
framework is presented in details. Afterward, applications are implemented to analyse the monitoring results in 13 
Section 6. Finally, the conclusions are drawn in section 7. 14 

2. Fractal dimension: 15 

The Correlation Dimension (CDim) is selected in this paper to compute the FDim of the data set 𝑿 due to its 16 
effectiveness in providing an unbiased estimator of the intrinsic dimension by means of a computationally 17 
affordable algorithm [46]. CDim is computed based on the Grassberger-Procaccia algorithm [41, 55] on the basis 18 
of the probability that two points on the attractor are at a distance 𝜀 apart. 19 

The point correlation function for the normalized data matrix  𝑿 ∈ ℜ𝑁×𝑚 is the number of neighbours in a 𝑚-20 
dimensional ball of radius 𝜀 around a reference point 𝒙𝑖 , it is given as: 21 

𝐶𝑖(𝜀) =
1

𝑁 − 1
( 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝒙𝑗  𝑤𝑖𝑡ℎ𝑖𝑛 𝜀 𝑜𝑓 𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 𝒙𝑖)   

(1) 

The average of this point correlation functions over the 𝑁 points gives the radial correlation function: 22 

𝐶(𝜀) =
1

𝑁
∑𝐶𝑖(𝜀)

𝑁

𝑖=1

 (2) 

Based on the previous relations, the correlation sum can be defined as: 23 
 24 

𝐶(𝜀) = 𝑙𝑖𝑚
𝑁→ ∞

2

(𝑁(𝑁 − 1))
 ∑ ∑ 𝐼(

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝛿𝑖𝑗 ≤ 𝜀) (3) 

 25 

The correlation sum is characterized by 𝑁(𝑁 − 1)/2 pairwise similarities, where 𝛿𝑖𝑗 = ‖𝒙𝑗 − 𝒙𝑖‖
2
is the 26 

Euclidian distances between 𝑖𝑗 rows to the input matrix, and 𝐼 represents an indicator function defined as: 27 

𝐼(𝛿𝑖𝑗 ≤ 𝜀) = {
1   𝑖𝑓 𝛿𝑖𝑗 ≤ 𝜀

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

In other words, 𝐼 is 1 if the condition holds and 0 otherwise. 28 
As the distance 𝜀 gets smaller, the correlation sum is found to follow a power low as: 29 

𝐶(𝜀)~𝜀CDim (5) 

In the limit of 𝜀 and taking the logarithm of both sides, the correlation dimension CDim is obtained as: 30 

CDim ≡ 𝑙𝑖𝑚
𝜀→0

𝑙𝑜𝑔(𝐶(𝜀))

𝑙𝑜𝑔(𝜀)
 (6) 

Assuming a sufficient number of points have been acquired lying closely in the underlying space, then the 31 
slope of the linear part of the  𝑙𝑜𝑔 − 𝑙𝑜𝑔 plot of 𝐶(𝜀) versus 𝜀 represents the correlation dimension 𝐶𝐷𝑖𝑚.  32 

 33 
3. PCA-based Modelling 34 

Considering the data matrix 𝑿 = {{𝒙𝑖}𝑖=1:𝑚} ∈ ℜ
𝑁×𝑚, collected from a process in normal operation with N 35 

samples of m variables, the data is firstly normalized to zero mean and unit variance. PCA transforms this data 36 
matrix into the score matrix  𝓣 = {{𝒕𝑖}𝑖=1:𝑚} ∈ ℜ

𝑁×𝑚 through the projection: 37 
𝓣 = 𝑿𝑷 (7) 

where 𝑷 is the loading matrix obtained by an orthogonal transformation of the covariance matrix 𝚺 that can be 38 
computed through Singular Value Decomposition (SVD) as: 39 



𝚺 = 𝑷𝚲𝑷𝑇  (8) 

where 𝚲 = diag(λ1, λ2,⋯ , λ𝑚)  is the diagonal eigenvalues matrix. The data dimensionality reduction is to split 1 
𝑷 into modelled and non-modelled variations, 𝑷̂ ∈  ℜ𝑚×𝑑  for PCs and 𝑷̃  ∈  ℜ𝑚×(𝑚−𝑑) for residuals. A 2 
challenging task arises when trying to reduce the dimensionality from 𝑚 to 𝑑 ≪ 𝑚 is to select the appropriate 3 
criterion to derive 𝑑. Most of the criteria proposed so far, Kaiser’s rule, CPV, PA, the scree test, cross-validation, 4 
VRE, and others rely mainly on the evaluation of variances which becomes misleading when the raw data 5 
dimensionality is high. In this paper, we propose a novel criterion to obtain the number of PCs based on FDim. 6 
 7 

The number of PCs extraction through FDim aims at finding a subset of orthogonal variables 𝒁 ∈8 
{𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑃𝐶𝐴 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓(𝑿)} such that 𝒁 can thoroughly describe 𝑿. Hence, 𝒁 is the informative 9 
subset of the score matrix 𝓣 i.e. 𝒁 = {{𝒕𝑖}𝑖=1:𝑑} ∈ ℛ

𝑁×𝑑 ⊂ 𝓣 and 𝑑 is its cardinality investigated through FDim.   10 
Subsequently, the number of PCs is extracted on two bases to identify the exact number of independent PCs: 11 

1. If FDim(𝑿) = 𝑑𝑿 and FDim(𝓣) = 𝑑𝓣 and 𝑑𝓣 ≤ 𝑑𝑿, then {the number of PCs} = ⌈𝑑𝑿⌉ and 𝒁 ∈ ℛ𝑁×⌈𝑑𝑿⌉ 12 
to guarantee that these PCs tightly cover the original data. 13 

2. If FDim(𝓣) = 𝑑𝓣 > 𝑑𝑿, then {the number of PCs} = ⌈𝑑𝓣⌉ and 𝒁 ∈ ℛ𝑁×⌈𝑑𝓣⌉ in order to account for the 14 
informative subspace in raw data and in PCA-based model projections concurrently since each principal 15 
component reflects the maximum amount of variance in the observed variables 16 
that was not taken into account by the preceding component [56]. 17 

These conditions ensure that the least important component is not missed and hence increasing the model 18 
precision in accordance. The same exact procedure is applied to models derived using DPCA and DKPCA. The 19 
proposed algorithm is summarized in Table 1. 20 

Table 1. Pseudo-code of FDim-based number of PCs extraction 21 
Algorithm 

Input: Data set 𝑿 (either original data for PCA or augmented data matrix for DPCA and DKPCA) 
Output: Number of PCs 
Step 1: Compute CDim of the raw data set 𝑿 and set FDim(𝑿) = CDim(𝑿) = 𝑑𝑿 
Step 2: Compute the score matrix components 𝓣 = 𝑿𝑷 
Step 3: Compute CDim of 𝓣 and set FDim(𝓣) = CDim(𝓣) = 𝑑𝓣 
Step 4: Compare 𝑑𝑿 and 𝑑𝓣: 

           If  𝑑𝑿 ≥ 𝑑𝓣 then {the number of PCs} = ⌈𝑑𝑿⌉, 
           If 𝑑𝑿 < 𝑑𝓣 then {the number of PCs} = ⌈𝑑𝓣⌉. 

 22 

4. Nonlinear Dynamic Process Monitoring 23 

Large scale industrial processes exhibit nonlinear and/or dynamical behaviour. The application of static linear 24 
methods such as the standard PCA, that make heavy assumptions of linearity and/or steady-state conditions, may 25 
be insufficient to model the intrinsic structure of the process. Thereafter, more developed algorithms may be 26 
integrated in order to take into account the nonlinearity as well as the dynamical structure of the underlying process 27 
states. 28 

4.1. Dynamic PCA 29 

The dynamical structure represents an explicit description of the auto-/cross-correlations that exist within the 30 
process variables. An augmented matrix is composed to include delayed replicate of the original data matrix 31 
variables [18]. Based on the original raw data matrix  𝑿 = {{𝒙𝑖}𝑖=1:𝑚} ∈ ℜ

𝑁×𝑚, the augmented matrix is obtained 32 
as: 33 

𝑿̃  ≜  [𝑿(𝑘) 𝑿(𝑘 − 1) ⋯  𝑿(𝑘 − 𝑙)]  ∈ 𝕽(𝑁−𝑙)×𝑚(𝑙+1)  (9) 

where 𝑿(𝑘 − 𝑗) = {𝒙(𝑖 − 𝑗)}𝑖=1:𝑚
𝑗=0:𝑙 ∈ 𝕽(𝑁−𝑙)×𝑚 34 

In an attempt to investigate the linear autocorrelation in the augmented data matrix, Ku et al. [18] developed 35 
a method in which the number of lags 𝑙 needed to encapsulate the dynamics within the data is selected based on 36 
linear PCA modelling. This approach is highly eigen-analysis and linear correlations reliant on; it uses the 37 
conventional techniques for measuring dependencies in linear systems applied in the standard PCA. The 38 
dimensionality 𝑑 of 𝑚-dimensional data set (𝑑 < 𝑚) is estimated by calculating the eigenvalues and eigenvectors 39 



of the covariance or the correlation data matrix. This technique is restricted since it is based on a linear 1 
transformation which clearly deteriorates for nonlinear systems [40]. In realistic applications, chaotic behaviour 2 
can arise from even the simplist nonlinear dynamical systems where the linear theory cannot hold to any further 3 
extent. Systems exhibiting such chaotic behaviour naturally tend to have a stange attractor in the phase space 4 
which is typically explained by the fractal dimension. The FDim of the strange attractors is the most robust 5 
estimator of the intrinsic dimension. In this paper, an unconventional method based on FDim as a nonlinear 6 
correlation measure [42] is proposed to search the nonlinear relations in the extended data matrix. 7 

 8 
4.2. The Proposed New Method of Optimal Dynamical Structure Construction 9 
 10 

Having 𝑿 = {{𝒙𝑖}𝑖=1:𝑚} a data set based on a process and 𝒙𝑖  are its intercorrelated variables. A subset 𝓢 =11 
{{𝒙𝑖}𝑖=1:𝑑} ∈ 𝑿 is a set of independent variables whose total or partial combinations define the relations expressing 12 
each variable in 𝓡 such that  𝓡 = 𝑿− 𝓢 = {{𝒙𝑖}𝑖=1:(𝑚−𝑑)} i.e. there exists a mapping 𝑓: 𝓢 → 𝓡  that gives rise 13 

to linear/nonlinear relations from variables in 𝓢 to every variable in 𝓡. Hence referring that FDim provides the 14 
exact number of independent variables, the objective is to find the true dimension of 𝑿 that is the cardinality of  𝓢 15 
using the exact FDim estimator and therefore the number of relations as the main aspect in the dynamical structure 16 
construction. Based on this statement, the proposed procedure to determine the optimal lag structure consists of 17 
the following steps: 18 

1. A dynamical structure is constructed through attractor reconstruction of phase space. The dimension of this 19 
space is selected by finding relatively independent pieces of information. The common mode is to choose a 20 
variable 𝒙(𝑡) and its 𝑙 derivatives to span its {𝑙 + 1}-dimensional space. For data points separated by a time 21 
interval ∆𝑡, the derivatives are substituted with measurable differences as: 22 

𝑑𝒙

𝑑𝑡
≈
𝒙(𝑡) − 𝒙(𝑡 − ∆𝑡)

∆𝑡
𝑑2𝒙

𝑑𝑡2
≈
𝒙(𝑡) + 2𝒙(𝑡 − ∆𝑡) − 𝒙(𝑡 − 2∆𝑡)

∆𝑡2
⋮ }

 
 

 
 

 (10) 

Practically, higher order derivatives are corrupted by noise. An unassuming and yet better way is to use a set of 23 
time-delay variables, where the points in the phase space are (𝑙 + 1)-tuple of consecutive values of the 24 
coordinates: 𝒙(𝑡),𝒙(𝑡 − 𝜏), 𝒙(𝑡 − 2𝜏),⋯ , 𝒙(𝑡 − 𝑙𝜏) [57]. Extending this form to multivariate data, the phase 25 
space reconstruction is then: 𝑿(𝑡),𝑿(𝑡 − 𝜏),𝑿(𝑡 − 2𝜏),⋯ , 𝑿(𝑡 − 𝑙𝜏). For general use, 𝜏 is selected as the spacing 26 
interval ∆𝑡. This forms the generic phased space reconstruction representing a dynamical structure as 𝑿̃  ≜27 
 [𝑿(𝑡)  𝑿(𝑡 − ∆𝑡)  𝑿(𝑡 − 2∆𝑡) ⋯  𝑿(𝑡 − 𝑙∆𝑡)] ∈ ℜ(𝑁−𝑙)×𝑚(𝑙+1) which is indeed equivalent to Eq. (9) in the sense 28 
of sampled data sets. Hence, this phase space is formed to captures the dynamics of the normal operating 29 
conditions attractor. 30 

2. The fractal dimension is evaluated for the temporal data on the basis that it has the property of defining the 31 
linear and nonlinear correlations between the phase space variables. Using Eqs. (3), (5) and (6), FDim is computed 32 
through the CDim algorithm providing the cardinality of 𝓢 related to 𝑿̃. In these equations, the parameter 𝜀 is 33 

substituted with values from the set of distances {𝛿𝑖𝑗}𝑖=1:𝑁−𝑙
𝑗=1:𝑁−𝑙

 sorted in ascending order. Taking all the possible 34 

values of distances separating the points in 𝑿̃ can handle the limitation of the required number of samples 35 

encountered when estimating the correlation dimension [42], since there will be 
𝑁−𝑙(𝑁−𝑙−1)

2
 pairs of points 36 

(𝑙𝑜𝑔(𝛿𝑖𝑗), 𝑙𝑜𝑔 (𝐶(𝛿𝑖𝑗))) in the 𝑙𝑜𝑔 − 𝑙𝑜𝑔 plot holding a sufficient amount of information that can be explored 37 

about the structural properties of the data.  38 

3. The number of linear and/or nonlinear static and/or dynamical relations 𝑟 is the number of variables in the phase 39 
space minus the fractal dimension which is, in fact, the cardinality of subset 𝓡: 40 

𝑟 = 𝑚(𝑙 + 1) − CDim (11) 

4. The number of new relations 𝑟𝑛 is computed as in [18], the number of relations when 𝑙 = 0 is the number of 41 
static relations 𝑟(𝑙 = 0). The number of new relationships is strictly related to the correlation dimension of the 42 
data matrix under analysis. The inclusion of lagged features reveals new linear and/or nonlinear dynamical 43 
relations in the phase space at each increasing degree of dynamics. Hence, the number of new relations is 44 
computed by omitting the effect of the previously exposed relationships. The number of new relations is then 45 
given as: 46 



 1 

𝑟𝑛 = 𝑟(𝑙) −∑(𝑙 − 𝑖 + 1)𝑟𝑛(𝑖)

𝑙−1

𝑖=0

 (12) 

𝑟𝑛 is a decreasing function with respect to the number of lags. The process of exposing new raltionships is 2 
continued until all the important are incorporated in the augmented matrix. At this stage, the optimal dynamical 3 
structure is constructed with 𝑙 = 𝑙𝑜𝑝𝑡 as: 4 

𝑿̃𝑜𝑝𝑡 = [𝑿(𝑡) 𝑿(𝑡 − ∆𝑡) ⋯  𝑿(𝑡 − 𝑙𝑜𝑝𝑡∆𝑡)]  ∈ ℜ
𝑁𝐷×𝑚(𝑙𝑜𝑝𝑡+1) (13) 

with 𝑁𝐷 = 𝑁 − 𝑙𝑜𝑝𝑡 is the new size of the sampling points attained after forming the optimal dynamical 5 
structure. 6 
 7 

This optimal dynamical structure is related to attractor reconstruction in the phase space based on time-delayed 8 
coordinates and computation of FDim in accordance. The simplified procedure is provided in Table 2. 9 

Table 2. Pseudo-code of fractal-based dynamical structure construction 10 
Algorithm  

Input:      Raw input data 𝑿 = {{𝒙𝑖}𝑖=1:𝑚}  

Output:  The optimal dynamical structure  𝑿̃𝒐𝒑𝒕 ∈ ℜ
𝑵𝑫×𝒎(𝒍𝒐𝒑𝒕+𝟏) 

Step 1: Normalise the input data features. 
Step 2: Set 𝑙 = 0 

Repeat 

Step 3: Construct the augmented data matrix 𝑿̃  ≜  [𝑿(𝑡)  𝑿(𝑡 − ∆𝑡)  𝑿(𝑡 − 2∆𝑡) ⋯  𝑿(𝑡 − 𝑙∆𝑡)] ∈ ℜ(𝑁−𝑙)×𝑚(𝑙+1) 

Step 4: Compute CDim(𝑿̃). 

Step 5: Compute the number of relationships 𝑟 = 𝑚(𝑙 + 1) − CDim using Eq. (11). 
Step 6: Compute the number of new relationships 𝑟𝑛(𝑙) using Eq. (12). 

Until 𝑟𝑛(𝑙) ≤ 0 if not set 𝑙 = 𝑙 + 1 

Step 7: Set 𝒍𝒐𝒑𝒕 and construct the optimal dynamical structure 𝑿̃𝒐𝒑𝒕 ∈ ℜ
𝑵𝑫×𝒎(𝒍𝒐𝒑𝒕+𝟏) 

 11 

4.3. Kernel PCA 12 

Standard PCA is a rotation of the original axes by finding the orthogonal vectors that coincide with directions 13 
of maximum variance. The new axes are then a linear combination of the original axes executed through a linear 14 
transformantion. Therefore, standard PCA is inadequate to extract the nonlinear patterns incorporated in the 15 
complex realistic processes. Consequently, a nonlinear extension has been introduced to PCA through the use of 16 
kernel functions [33] that is the Kernel PCA (KPCA) [17]. KPCA maps the original data  𝑿𝑇 = {{𝒙𝑖}𝑖=1:𝑁} ∈17 
ℜ𝑚×𝑁 from the input space 𝒳 to an implicit kernel-induced feature space ℋ through a nonlinear mapping 𝚽 as: 18 

𝚽: 𝒳 ⟶ ℋ,𝒙 ⟶ 𝚽(𝒙) (14) 

Assuming that the points in the feature space are centred i.e.  19 

1

𝑁
∑𝚽(𝒙𝑖)

𝑁

𝑖=1

= 0 
 

(15) 

The covariance matrix in the feature space ℋ is a 𝑁 ×𝑁 matrix given by: 20 

𝑪 =
1

𝑁
∑𝚽(𝒙𝑖)

𝑁

𝑖=1

𝚽(𝒙𝑖)
𝑇 

 

(16) 

Detecting nonlinear relations in the input space 𝒳 is reduced to extracting the linear relations in the nonlinear 21 
feature space ℋ by means of the standard PCA applied to the new feature data points. This can be achieved by 22 
the eigendecomposition of the covariance matrix as follows: 23 

𝑪𝒑𝓀 = 𝜆𝓀𝒑𝓀 (17) 

Where the eigenvectors 𝒑𝓀corresponding to the 𝓀𝑡ℎ  eigenvalue 𝜆𝓀 for all 𝑁 eigenvalues (𝜆𝓀 ≠ 0)
𝓀=1

𝑁
 are in 24 

the span of the feature space data 𝒑𝓀 ∈ span{{𝚽(𝒙𝑖)}𝒊=𝟏
𝑵 } weighted by the coefficients 𝛼𝑖

𝓀 as: 25 



𝒑𝓀 =∑𝛼𝑖
𝓀𝚽(𝒙𝑖)

𝑁

𝑖=1

 

 

(18) 

Substituting Eq. 16 and Eq. 18 in Eq. 17, we get: 1 

1

𝑁
∑𝚽(𝒙𝑖)

𝑁

𝑖=1

𝚽(𝒙𝑖)
𝑇  ∑𝛼𝑖

𝓀𝚽(𝒙𝑖)

𝑁

𝑖=1

= 𝜆𝓀∑𝛼𝑖
𝓀𝚽(𝒙𝑖)

𝑁

𝑖=1

 

 

(19) 

Defining the kernel function: 2 

𝐾𝑖𝑗 = 𝜅(𝒙𝑖 , 𝒙𝑗) ;       𝜅(𝒙𝑖 , 𝒙𝑗) = 〈𝚽(𝒙𝑖),𝚽(𝒙𝑗)〉 = 𝚽(𝒙𝑖)
𝑇𝚽(𝒙𝑗) 

 

(20) 

The kernel matrix is then denoted as 𝑲 = {𝐾𝑖𝑗}𝑖=1:𝑁
𝑗=1:𝑁

  with entries 𝐾𝑖𝑗 3 

Using the last two equations, the condensed form to solve for the coefficients 𝛼𝑖
𝓀 based on the kernel function 4 

is: 5 

𝑲𝜶𝓀 = 𝑁𝜆𝓀𝜶𝓀 (21) 

𝜶𝓀 is the N-dimensional column vector of the weighting coefficients 𝛼𝑖
𝓀: 6 

𝜶𝓀 = [𝛼1
𝓀  𝛼2

𝓀  ⋯𝛼𝑁
𝓀]𝑇 (22) 

These weighting vectors are normalized to ensure that the eigenvectors are of unit-length as: 7 

𝜶̂𝓀 =
𝜶𝓀

√𝜆𝓀
 (23) 

Hence, the unit-length eigenvectors are: 8 

𝒑𝓀 =
1

√𝜆𝓀
∑𝛼𝑖

𝓀𝚽(𝒙𝑖)

𝑁

𝑖=1

 (24) 

Based on the radial basis function, the unnormalised Gaussian kernel is chosen with kernel width 𝜎 as: 9 

𝜅(𝒙𝑖 , 𝒙𝑗) = exp (
−‖𝒙𝑖 − 𝒙𝑗‖

2

2𝜎2
⁄ ) (25) 

Similar to PCA, the feature space data 𝚽(𝒙𝑖) must be centred. Since the computational cost of this requirement 10 
is usually prohibitive, the calculations in the feature space 𝚽 are implemented in an implicit form in the lower-11 
dimensional kernel matrix. This can be achieved by substituting the kernel matrix with the Gram matrix , the 12 
Gram matrix is then calculated as follows: 13 

𝑲̂ = 𝑲− 𝑲𝑰𝑁 − 𝑰𝑁𝑲 + 𝑰𝑁𝑲𝑰𝑁 (26) 

where 𝑰𝑁 is an 𝑁 × 𝑁 matrix with all entries equal to 1/𝑁. 14 

The kernel principal components 𝒕𝓀 (or the feature scores) are calculated based on the weighting vectors 𝜶𝓀 15 
obtained through the solution of Eq. (21). For the input space sample 𝒙, the feature space sample 𝚽(𝒙) is projected 16 
onto the eigenvector 𝒑𝓀 as: 17 

𝑡𝓀 = 〈𝒑𝓀 ,𝚽(𝒙)〉 =
1

√𝜆𝓀
∑𝛼𝑖

𝓀

𝑁

𝑖=1

〈𝚽(𝒙𝑖),𝚽(𝒙)〉 =
1

√𝜆𝓀
∑𝛼𝑖

𝓀κ(𝒙𝑖, 𝒙)

𝑁

𝑖=1

= ∑𝛼̂𝑖
𝓀κ(𝒙𝑖 , 𝒙)

𝑁

𝑖=1

 (27) 

The number of retained principal components 𝛾 is then selected to construct the lower 𝛾-dimensional principal 18 

scores 𝒕 = (𝑡𝓀)
𝓀=1

𝛾
 for 𝛾 < 𝑁. 19 



5. Fractal-based DKPCA Proposed framework 1 

The proposed FDKPCA monitoring procedure consists of two stages, namely, the offline modelling and the online 2 
monitoring. The complete procedure is illustrated as a flowchart in Fig. 1, and is summarized as follows: 3 

5.1. Fault Detection Phase 4 

- The training stage and explatory data analysis (Stage I): 5 

Given the input data matrix 𝑿 = {{𝒙𝑖}𝑖=1:𝑚} ∈ ℜ
𝑁×𝑚 with sampling point 𝒙𝑖 . All the input features are 6 

normalized to a standard scale ha zero mean and unit variance. The optimal dynamical structure is constructed 7 
using the new procedure proposed in Subsection 4.2, obtaining the optimal augmented matrix 𝑿̃𝑜𝑝𝑡 =8 

 [𝑿(𝑡) 𝑿(𝑡 − ∆𝑡) ⋯  𝑿(𝑡 − 𝑙𝑜𝑝𝑡∆𝑡)] ∈ ℜ
𝑁𝐷×𝑚(𝑙𝑜𝑝𝑡+1). Having constructed the optimal dynamical structure, 9 

KPCA is implemented in an implicit way whose pseudo-code is provided in Table 3.  10 

Table 3. Pseudo-code of KPCA on the augmented matrix 11 
Algorithm  

Input:      Augmented data matrix 𝑿̃𝑜𝑝𝑡
𝑇 ∈ 𝕽𝒎(𝒍𝒐𝒑𝒕+𝟏)×𝑵𝑫 

Output:   Nonlinear Feature score matrix 𝑻𝑟𝑒𝑓 ∈ 𝕽
𝑵𝑫×𝜸 

Step 1: Construct the kernel matrix 𝑲 (Eq. (20)) using Gaussian kernel (Eq. (25)). 

Step 2: Compute the Gram matrix (Eq. (26)) to obtain the centred kernel matrix 𝑲̂. 

Step 3: Compute (𝜶𝓀)
𝓀=1

𝑝
 (Eq. (21)) for the eigenvectors corresponding to the first 𝑝(< 𝑁𝐷) eigenvalues s.t.   𝜆𝑝 ≥ 10−10 

(a limit defined to consider an eigenvalue nonzero in practical calculations). 

Step 4: Normalize the coefficients (𝜶𝓀)
𝓀=1

𝑝
 using Eq. (23). 

Step 5: Replace 𝒙 with 𝒙𝑗  in Eq. (27) and calculate the normal nonlinear feature scores 𝒕𝑟𝑒𝑓
𝑗 = (𝑡𝑟𝑒𝑓,𝑗

𝓀 )
𝓀=1

𝑝
. 

Step 6: Repeat Step 5 for all vectors {𝒙𝑗}𝑗=1
𝑁𝐷

 in the augmented training set to obtain the feature score matrix 𝑻𝑟𝑒𝑓 =

{𝒕𝑟𝑒𝑓
𝑗 }

𝑗=1

𝑁𝐷
∈ ℜ𝑁𝐷×𝑝. 

Step 7: Calculate the correlation dimension CDim(𝑻𝑟𝑒𝑓) to estimate the NPC γ. 

Step 8: The retained feature score matrix for the training data set is 𝑻𝑟𝑒𝑓 = {𝒕𝑟𝑒𝑓
𝑗 }

𝑗=1

𝑁𝐷
∈ ℜ𝑁𝐷×𝛾. 

 12 

From the nonlinear principal scores and residuals, the two reference statistics, 𝑇𝑟𝑒𝑓
2  and 𝑆𝑃𝐸𝑟𝑒𝑓, are derived 13 

for the in-control training data set as follows [58]: 14 

𝑇𝑟𝑒𝑓,𝑗
2 = [𝑡𝑟𝑒𝑓,𝑗

1 , 𝑡𝑟𝑒𝑓,𝑗
2 ,⋯ , 𝑡𝑟𝑒𝑓,𝑗

𝛾
]𝚲−1[𝑡𝑟𝑒𝑓,𝑗

1 , 𝑡𝑟𝑒𝑓,𝑗
2 ,⋯ , 𝑡𝑟𝑒𝑓,𝑗

𝛾
]
𝑇
 (28) 

And  15 

𝑆𝑃𝐸𝑟𝑒𝑓,𝑗 = ∑(𝑡𝑟𝑒𝑓,𝑗
𝓀 )

2

𝑝

𝓀=1

−∑(𝑡𝑟𝑒𝑓,𝑗
𝓀 )

2

𝛾

𝓀=1

 (29) 

where 𝚲 is the diagonal eigenvalue matrix with diagonal entries (𝜆𝓀)
𝓀=1

𝛾
. 16 

 17 

The control limits (or thresholds) based on the above in-control statistics are defined as 𝐽𝑡ℎ,𝑇² and 𝐽𝑡ℎ,𝑆𝑃𝐸 at 18 
pre-defined significance level ℐ (type I error). Eventually, a detection rule is established to indicate the status 19 
of the process. 20 

 21 
- The testing stage and online process monitoring (Srage II): 22 

Once the reference model and the thresholds are established in the training stage (Stage I), they are 23 
employed in the online testing stage in order to monitor the process underevaluation. In concise, the 𝑁𝑡𝑠𝑡 24 

testing samples represented as a data set 𝑿𝑡𝑠𝑡 = {𝒙𝑡𝑠𝑡
𝑗 }

𝑗=1

𝑁𝑡𝑠𝑡
∈ ℜ𝑁𝑡𝑠𝑡×𝑚 are pre-processed; this data is normalised 25 

and shifted by 𝑙𝑜𝑝𝑡 lags according to the dynamical structure constructed in the training stage as: 26 



𝑿̃𝑡𝑠𝑡 = [𝑿𝑡𝑠𝑡(𝑡) 𝑿𝑡𝑠𝑡(𝑡 − ∆𝑡) ⋯𝑿𝑡𝑠𝑡(𝑡 − 𝑙𝑜𝑝𝑡∆𝑡)] ∈ ℜ
𝑁𝑡𝑠𝑡,𝐷×𝑚(𝑙𝑜𝑝𝑡+1) (30) 

 1 
with, 𝑁𝑡𝑠𝑡,𝐷 = 𝑁𝑡𝑠𝑡 − 𝑙𝑜𝑝𝑡. 2 
 3 
For each new observation 𝒙𝑡𝑠𝑡

𝑗
 from the above testing data set, the testing kernels are computed with reference 4 

to the training data points 𝑿̃𝑜𝑝𝑡 = {𝒙𝑖}𝑖=1
𝑁𝐷  according to Eq. (20) as: 5 

𝐾𝑖𝑗
𝑡𝑠𝑡 = 𝜅(𝒙𝑖 , 𝒙𝑡𝑠𝑡

𝑗 ) (31) 

 6 
The corresponding testing Gram matrix is then computed as: 7 

𝑲̂𝑡𝑠𝑡 = 𝑲𝑡𝑠𝑡 − 𝑲𝑡𝑠𝑡𝑰𝑁𝐷 − 𝑰𝑁𝑡𝑠𝑡,𝐷𝑲+ 𝑰𝑁𝑡𝑠𝑡,𝐷𝑲𝑰𝑁𝐷 (32) 

 8 
where 𝑰𝑁𝑡𝑠𝑡,𝐷 is 𝑁𝑡𝑠𝑡,𝐷 × 𝑁𝐷 matrix with all entries equal to 1/𝑁𝐷. Henceforth using Eq. (27), the testing kernel 9 
scores are calculated as follows: 10 

𝑡𝑡𝑠𝑡,𝑗
𝓀 =

1

√𝜆𝓀
∑ 𝛼𝑖

𝓀κ(𝒙𝑖 , 𝒙𝑡𝑠𝑡
𝑗 )

𝑁𝐷
𝑖=1  for 𝓀 = 1: 𝛾 (33) 

      From these kernel feature scores, the detection statistics of the Hotelling’s 𝑇² and 𝑆𝑃𝐸 for 𝒙𝑡𝑠𝑡
𝑗

 are calculated 11 
by: 12 

𝑇² = [𝑡𝑡𝑠𝑡,𝑗
1 , 𝑡𝑡𝑠𝑡,𝑗

2 ,⋯ , 𝑡𝑡𝑠𝑡,𝑗
𝛾

]𝚲−1[𝑡𝑡𝑠𝑡,𝑗
1 , 𝑡𝑡𝑠𝑡,𝑗

2 ,⋯ , 𝑡𝑡𝑠𝑡,𝑗
𝛾

]
𝑇
 (34) 

 13 

𝑆𝑃𝐸 = ∑(𝑡𝑡𝑠𝑡,𝑗
𝓀 )

2

𝑝

𝓀=1

−∑(𝑡𝑡𝑠𝑡,𝑗
𝓀 )

2

𝛾

𝓀=1

 (35) 

These two control charts are therefore checked against the thresholds (𝐽𝑡ℎ,𝑇² and 𝐽𝑡ℎ,𝑆𝑃𝐸). To affirm that 14 
the process is in-control the two detection statistics have to remain below the thresholds. Alternatively,  if any 15 
point gets beyond the thresholds, then the process is considered out-of-control and an abnormal behaviour 16 
exists in the process measurements. 17 

5.2. Fault Diagnosis Phase 18 

The faults detected using the proposed framework can be diagnosed in order to extract the root causes of the 19 
fault by determining which variables are directly related to the occurrence of the abnormal behaviour. This can be 20 
achieved through the analysis of the contribution plots based on both control charts 𝑇² and 𝑆𝑃𝐸. Contribution 21 
plots [59] have been successfully applied to fault diagnosis purposes [60, 61]. The kernel-based contribution plots 22 
used are based on the method proposed by [62] with substituting the kernels with dynamic kernels derived in this 23 
work as: 24 

𝐶𝑇2(𝑥𝑖) = 𝑥𝑖
𝜕𝑇2

𝜕𝑥𝑖
 (36) 

 25 

𝐶𝑆𝑃𝐸(𝑥𝑖) = 𝑥𝑖
𝜕𝑆𝑃𝐸

𝜕𝑥𝑖
 (37) 

𝑥𝑖 is the observed value of the 𝑖𝑡ℎ variable at time t (𝒙𝑡 = (𝑥𝑖)𝑖=1
𝑚 ). From Eqs. (27), (34), and (35),  𝑇2 and 𝑆𝑃𝐸 26 

can be rewritten as: 27 

𝑇2 = 𝒌𝒙𝑡
𝑇 𝑨̂𝛾𝚲

−1𝑨̂𝛾
𝑇𝒌𝒙𝑡 (38) 

 28 

𝑆𝑃𝐸 = 𝒌𝒙𝑡
𝑇 (𝑨̂𝑝𝑨̂𝑝

𝑇 − 𝑨̂𝛾𝑨̂𝛾
𝑇)𝒌𝒙𝑡 (39) 

 29 

where, 𝑨̂𝛾 = {𝜶̂
𝓀}
𝓀=1

𝛾
,  𝑨̂𝛾 = {𝜶̂

𝓀}
𝓀=1

𝑝
, and 𝒌𝒙𝑖 = [𝜅(𝒙1, 𝒙𝑡) 𝜅(𝒙2, 𝒙𝑡) ⋯𝜅(𝒙𝑁𝐷 , 𝒙𝑡)]

𝑇
 is already normalized 30 

according to the Gram-based scaling (Eq. (26)). 31 
 Consequently, Eqs. (36) and (37) becomes: 32 



 1 

𝐶𝑇2(𝑥𝑖) = 𝑥𝑖
𝜕

𝜕𝑥𝑖
(𝒌𝒙𝑡

𝑇 𝑨̂𝛾𝚲
−1𝑨̂𝛾

𝑇𝒌𝒙𝑡) = 2𝑥𝑖
𝜕𝒌𝒙𝑡

𝑇

𝜕𝑥𝑖
 𝑨̂𝛾𝚲

−1𝑨̂𝛾
𝑇𝒌𝒙𝑡   (40) 

 2 

𝐶𝑆𝑃𝐸(𝑥𝑖) = 𝑥𝑖
𝜕

𝜕𝑥𝑖
 (𝒌𝒙𝑡

𝑇 (𝑨̂𝑝𝑨̂𝑝
𝑇 − 𝑨̂𝛾𝑨̂𝛾

𝑇)𝒌𝒙𝑡) = 2𝑥𝑖
𝜕𝒌𝒙𝑡

𝑇

𝜕𝑥𝑖
 (𝑨̂𝑝𝑨̂𝑝

𝑇 − 𝑨̂𝛾𝑨̂𝛾
𝑇)𝒌𝒙𝑡 (41) 

 3 
Computing the testing contributions relative to the normal operating contributions as: 4 
 5 

𝑅𝐶𝑇2(𝑥𝑖) =
𝐶𝑇2(𝑥𝑖) − 𝑚𝑒𝑎𝑛(𝐶

𝑛𝑇2(𝑥𝑖))

𝑠𝑡𝑑(𝐶𝑛𝑇2(𝑥𝑖))
 (42) 

 6 

𝑅𝐶𝑆𝑃𝐸(𝑥𝑖) =
𝐶𝑆𝑃𝐸(𝑥𝑖) − 𝑚𝑒𝑎𝑛(𝐶

𝑛𝑆𝑃𝐸(𝑥𝑖))

𝑠𝑡𝑑(𝐶𝑛𝑆𝑃𝐸(𝑥𝑖))
 (43) 

 7 
The contribution plots are derived for the normal operating conditions using Eqs. (40) and (41) with 𝒙𝑡 are the 8 
observed vectors in the healthy data set. The contributions of each variable to the specific control chart are then 9 
obtained as the summation of the individual contributions in absolute value at each sample time in the desired 10 
region of analysis. For the sake of simplicity, the percentage of these contribution is used to depict the contribution 11 
plots. 12 
 13 

 14 
Fig. 1. Schematic diagram of the proposed Fractal-based DKPCA for fault detection and diagnosis framework 15 

 16 

6. Application 17 

The performance efficiency of fractal-based DKPCA is appraised by investigating three fault detection 18 
indices. These indices are: (i) the False Alarm Rate (FAR) quantifying the robustness and stability of the FDim 19 
system as the probability of type I error, (ii) Missed Detection Rate (MDR) for sensitivity evaluation as the 20 
probability of type II error, and (iii) fault detection Time Delay (TD). For each data set, a false alarm is triggered 21 



whenever any of the control charts signals an out-of control observation while the process is in the fault-free status 1 
(𝐹 = 0), whereas a missed detect is to affirm that the process is in-control while it is operating in a faulty condition 2 
(𝐹 ≠ 0): 3 

 FAR% = ℙ(Control chart > Threshold|𝐹 = 0) × 100% (44)      

 4 

 MDR% = ℙ(Control chart < Threshold|𝐹 ≠ 0) × 100 %     (45) 

 5 

 TD =  𝑡𝑑 − 𝑡𝑜     (46) 

 6 
where 𝑡𝑑 is the fault detection time and 𝑡𝑜 is the fault occurrence time.  7 

6.1.  Case study 1: Simulated 2 × 2 nonlinear system 8 

Firstly, FDim-based number of PCs extraction is testified using a 2 × 2 system defined by nonlinear relations 9 
as follows [32]: 10 

[
𝒚1(𝑘)

𝒚2(𝑘)
] = [

(𝒖1(𝑘) + 𝒖2(𝑘))²

(𝒖1(𝑘) − 2𝒖2(𝑘))²
] 

(47) 

where 𝒚1 and 𝒚2 are measured process outputs, 𝒖1 and 𝒖2 are the inputs taken from a white Gaussian noise 11 
𝑁(0,0.1). Clearly, the number of nonlinear relations in this system is two and the number of free variables is two 12 
as well which is the dimensionality of the data set. 100 samples are generated for 𝑿 = [𝒖1  𝒖2 𝒚1 𝒚2].  13 

Fig. 2(a) shows the 𝑙𝑜𝑔 − 𝑙𝑜𝑔 plots of the raw original data. It is readily discernible through the graphs and 14 
the estimated dimensionality that the correlation dimension provides a perfect estimation of the intrinsic 15 
dimension as the CDim computation yields CDim=1.8943 approaching 2 that is the real dimensionality of the 16 
system under analysis. An additional independent variable was added to attest the ability of FDim to detect the 17 
exact number of independent variables. The new system becomes 3×2 with new variable following 𝒖3~𝑁(0,0.1) 18 
and 𝒚1(𝑘) = (𝒖1(𝑘) + 𝒖2(𝑘) + 𝒖3(𝑘))², the dimension of the data is found to be CDim=2.8713 approximating 19 
3, again with perfect estimation. Pursuing PCA modelling, the number of PCs is obtained using FDim evaluated 20 
on 𝓣 revealing FDim(𝓣) = 1.8970 ≅ FDim(𝑿) = 1.8943 for the 2 × 2 system hence {the number of PCs} =21 
⌈𝑑𝑿⌉ = 2; and for the 3 × 2 system, FDim(𝓣) = 2.8813 ≅ FDim(𝑿) = 2.8713 resulting in 22 
{the number of PCs} = ⌈𝑑𝑿⌉ = 3. The results are shown in Figs. 2(b-c) for the two systems. To show superiority, 23 
FDim-based extraction of the number of PCs is compared to Kaiser’s rule [22], CPV [23], PA [24], and VRE [27] 24 
and the results are summarized in Table 2. It is obvious that CPV always overestimates the number of PCs while 25 
Kaiser’s rule taking eigenvalues greater than 1, PA with random profile generation and VRE looking for a 26 
minimum of reconstructions provide vague estimations unrelated to the true relations for which the thresholds, 27 
assumptions, random parallel profiles, and considering specific disturbances associated with these methods limit 28 
the uniqueness and optimality of the number of PCs estimation. Whereas, FDim estimations present an exact 29 
analysis both in raw data and PCA-based model projections. A further comparison based on performance 30 
potentials is summarized in Table 3. 31 

 32 

Fig. 2. CDim evaluation of (a) raw data sets having 2 and 3 independent variables (b) components in 𝓣 for the 2 × 2 system and (c) 33 
components in 𝓣 for the 3 × 2 system. 34 

Table 2. Comparison results of FDim-based extraction of the number of variables and CPV, PA, and VRE. 35 

 1 PC     CDim = 1.0028 
 2 PCs   CDim = 1.8718 
 3 PCs   CDim = 2.3184 
 4 PCs   CDim = 2.5874 
 5 PCs   CDim = 2.8813 

1 PC     CDim = 0.9776 
2 PCs   CDim = 1.6032 
3 PCs   CDim = 1.8858 
4 PCs   CDim = 1.8970 
 

2 × 2 system   CDim = 1.8943 
3 × 2 system CDim = 2.8713 
 

Fig. 1. Fractal-based DKPCA for fault detection and diagnosis procedure 



 
FDim (raw 

data) 
FDim (PCA 
projection) 

Kaiser’s rule CPV (95% PCA 

projection) 

PA (PCA 

projection) 

VRE ((PCA 

projection) 

2 × 2 system 1.8943 ⌈1.8970⌉ = 2 1 3 1 1 

3 × 2 system 2.8713 ⌈2.8813⌉ = 3 2 4 1 1 

 1 

Table 3. Comparison of the different criteria for selecting the number of PCs 2 

 FDim Kaiser’s rule CPV PA VRE 

Reliable      

Unthresholded      

Eigenvalue-independent      

Uniqueness      

User-independent      

Unbiased IDim estimator  ⍰ ⍰ ⍰ ⍰ 

Nonlinearity-accounted      

≡approved, ≡not approved, ⍰≡not assessed 3 

6.2. Case study 2: PRONTO heterogeneous benchmark 4 

The proposed FDKPCA method is then validated through seven applications including six real faults using 5 
the Process Network Optimization (PRONTO) benchmark which is a real process made recently available for 6 
research in 2019. The PRONTO heterogeneous benchmark is a multiphase flow facility located at the Process 7 
System Engineering Laboratory of Cranfield University [63]. The multiphase flow is an automated industrial-8 
scale process with high pressure operating conditions. For main processing, air, water, and oil flow rates are 9 
controlled and measured for transportation purposes. In this facility, air and water are mixed at the mixing zone, 10 
the mixed two-phase flow is pulled through the horizontal pipeline into the three-phase separator to separate the 11 
mixed flow into air and water. Consequently, water is reinjected to the system’s water storage tank (T100) through 12 
the water coalescer by means of the water coalescer outlet valve (LVC502), and air is exhausted to the atmosphere 13 
through the air outlet valve three-phase separator (PIC501 corresponding to valve VC501) [64]. An in-depth 14 
description of the facility and its schematic can be found in [65].  In this work, the benchmark data sets are adopted 15 
to validate the proposed framework for fault detection and diagnosis. The benchmark data sets are collected for 16 
testing multiple monitoring algorithms. 17 variables are used to build the FDD framework as listed in Table 4.  17 

Table 4. PRONTO process variables 18 

Variable Description unit 

FT305/FT302 Input air flow rate Sm3 /h 

FT305-T Input air temperature ◦C 

PT312 Air delivery pressure bar(g) 
FT102/104 Input water flow rate Kg/s 

FT102-T Input water temperature ◦C 

FT102-D Input water density kg/m3 

PT417 Pressure in the mixing zone bar(g) 

PT408 Pressure at the riser top bar(g) 
PT403 Pressure in the 2-phase separator bar(g) 

FT404  2-phase separator output air flow rate m3 /h 

FT406  2-phase separator output water flow rate kg/s 

PT501 Pressure in the 3-phase separator bar(g) 

PIC501 Air outlet valve 3-phase separator (%) 
LI502 Water level 3-phase separator (%) 

LI503 Water coalescer level (%) 

LVC502 Water coalescer outlet valve (%) 

LI101 Water tank level m 

 19 

The measurements were taken at a sampling rate of 1 Hz. Normal operating conditions are implemented by 20 
varying the process inputs set point which are the air and water flow rates. For FDD, the faulty scenarios are 21 
induced at only two operating conditions which are: 22 

-Operating condition A: 120 Sm3/h air, with 0.1 kg/s water flow rates; 23 

-Operating condition B: 150 Sm3/h air, with 0.5 kg/s water flow rates. 24 

        Three types of incipient faults (air blockage, air leakage, and diverted flow) are manually injected to simulate 25 
the real malfunctions occurring in the process. The air blockage faults are induced manually by gradually closing 26 



valve V11 whereas gradually opening valve V10 and U39 to simulate the air leakage and diverted flow faults, 1 
respectively.  2 

Table 5. Application faults, fault-free and faulty data sets, and their sizes  3 

 Data set Samples (s) 

Operating condition A 

F0_A Normal 1961 

F1 Air blockage 3843 

F2 Air leakage 3181 

F3 Diverted flow 7620 

Operating condition B 

F0_B Normal 1100 

F4 Air leakage 2880 

F5 Diverted flow 4499 
Operating condition C F0_C Normal 500 

 F6 Slugging 800 

 4 

The multiphase flow facility also suffers from slugging presented at seven operating conditions as listed 5 
in table 3 in [65]. Slugging occurs when large bubbles comprised of the lighter fluid flows in riser isolated from 6 
the heavier fluid. Slugging slows down the fluids flow rates and results in oscillations in the pressure, flow rate, 7 
and density through the riser. In this paper, the slugging tested is taken in the operating condition C that 8 
corresponds to 100 Sm3/h air, with 0.5 kg/s water flow rates. 9 

The number of samples used for each testing data set with their corresponding normal operating data sets are 10 
presented in Table 5. where the data are selected s.t. the fault is induced at the 301st sample (after 301 s) in each 11 
faulty set. [63, 65] include the full details of these faults injection and data collection procedures as well as the 12 
severity characteristics and impact of each fault on the process.  13 

6.2.1. Fault Detection results 14 

Firstly, the optimal dynamical structure is constructed for the normal data sets extracted from the PRONTO 15 
heterogeneous benchmark based on the proposed fractal dimension algorithm. The results of the analysis 16 
described in in Subsection 4.2 on the healthy training data set are presented in Table 6. As mentioned earlier, the 17 
fractal dimension FDim is computed using the correlation dimension algorithm CDim based on the 𝑙𝑜𝑔 − 𝑙𝑜𝑔 18 
plots as shown in Fig. 3(a). Because of the mutual dependencies between process variables, it is a difficult task to 19 
determine the number of degrees of freedom of the system, however, since the FDim provides an unbiased IDim 20 
estimator, the optimal number of lags is determined adequately. Table 5 indicates that 3.3541 uncorrelated features 21 
and 13.6459 static nonlinear relations are present for the original data without lags for operating condition A 22 
(normal data set F0_A) along with 3.9429 uncorrelated features and 13.0571 static nonlinear relations for the 23 
normal data set (F0_B) in operating condition B. Since CDim provides the exact number of independent variables 24 
there will be no need to check the autocorrelation and crosscorrelation plots at each stage as suggested in [18]. 25 
When adding 3 lags (𝑙 = 3) to F0_A, the number of new nonlinear relations becomes 0.0102, implying that weak 26 
dynamical relations have been added to the data as Eq.25 limits the effects of old relations at each increasing order 27 
of dynamics. Additionally, the fractal dimension is tending to a steady value of around 4.3 for 𝑙 ≥ 3. Hence, the 28 
optimal dynamical structure is selected for 𝑙𝑜𝑝𝑡F0_A = 2 for 0.3307 new nonlinear relations. For operating 29 

condition B, in like manner, 3 lags (𝑙𝑜𝑝𝑡F0_B = 3)  are selected to express the nonlinear dynamics of the process 30 

with 0.1174 new nonlinear relations. 31 

Kernel PCA was applied to the optimal augmented matrices with two and three lags for F0_A and F0_B, 32 
respectively. The number of PCs was selected using FDim as shown in Figs. 3(b) and 4(b), leading to 33 

FDim (𝑻𝑟𝑒𝑓A) = 1074.6325 and FDim (𝑻𝑟𝑒𝑓B) = 608.6708. Since 𝑑𝑿̃A = 3.9579 < 𝑑𝓣𝑨  and 𝑑𝑿̃B =34 

5.1110 < 𝑑𝓣𝑩 , hence 𝛾 = ⌈𝑑𝑻𝑟𝑒𝑓A
⌉ = 1075 and ⌈𝑑𝑻𝑟𝑒𝑓B

⌉ = 609 PCs are retained out of 1950 and 1089 35 

components corresponding to the nonzero eigenvalues (> 𝜖 = 10−10) for operating conditions A and B 36 
respectively. The control charts (𝑇𝑟𝑒𝑓

2  and 𝑆𝑃𝐸𝑟𝑒𝑓) were evaluated and the corresponding thresholds based on 99% 37 

Confidence Level (CL) were evaluated and the corresponding thresholds were established statistically based on 38 
the chosen significance level ℐ = 0.01. It is designed in such a manner that the desired FAR is not exceeded 39 



through tuning the thresholds in the training statge (Stage I) . For an assumptive FAR (ℐ = 0.01) × 100% = 1% 1 
in the reference data set, the threshold is selected such that FAR% =2 
ℙ(Control chart > Threshold|Training data set) × 100% ≤ 1%. This can be achieved by computing the (1 −3 
 ℐ) × 100% percentiles of the corresponding distribution using the percentile approach for limits correction [29]. 4 

Table 6. Fractal analysis on training data sets (F0_A and F0_B) of the PRONTO heterogeneous benchmark 5 

Operating condition A Operating condition B 

𝑙 𝑚(𝑙 + 1) CDim 𝑟(𝑙) 𝑟𝑛(𝑙) 𝑚(𝑙 + 1) CDim 𝑟(𝑙) 𝑟𝑛(𝑙) 

0 17 3.3541 13.6459 13.6459 17 3.9429 13.0571 13.0571 

1 34 3.8214 30.1786 2.8869 34 4.6030 29.3970 3.2827 

2 51 3.9579 47.0421 0.3307 51 4.9157 46.0843 0.3475 

3 68 4.0843 63.9157 0.0102 68 5.1110 62.8890 0.1174 

4 85 4.1605 80.8395 0.0501 85 5.2416 79.7584 0.0647 

5 102 4.2226 97.7774 0.0142 102 5.2321 96.7679 0.1402 

6 119 4.2738 114.7262 0.0109 119 5.2586 113.7414 -0.0361 

7 136 4.3113 131.6887 0.0137     

8 153 4.3099 148.6901 0.0388     

9 170 4.3300 165.6700 -0.0215     

 6 

 7 

Fig. 3. 𝐿𝑜𝑔 − 𝐿𝑜𝑔 plots of (a) fractal analysis of the training data F0_A with different lags, (b) number of PCs extraction in FDKPCA 8 
Dim (𝑻𝑟𝑒𝑓A)

= 1074.6325, and (c) number of PCs extraction in FDPCA FDim(𝓣A) = 10.2668.  9 

 10 

Fig. 4. 𝐿𝑜𝑔 − 𝐿𝑜𝑔 plots of (a) fractal analysis of the training data F0_ B with different lags, (b) number of PCs extraction in FDKPCA 11 
FDim (𝑻𝑟𝑒𝑓B) = 608.6708, and (c) number of PCs extraction in FDPCA FDim(𝓣B) = 12.6314. 12 

Table 7 lists the results of evaluating FAR, TD, and MDR for the different faulty scenarios using FDKPCA 13 
and compared to PCA, KPCA, DPCA, and FDPCA. The lag structure in the DPCA method was constructed based 14 
on the algorithm proposed in [18] using PA for selecting the number of PCs to retain. This method proposed 15 
augmenting the training matrices using two lags in time and the retained PCs was given as 5 and 6 for operating 16 
conditions A and B, respectively. The lag structure in FDPCA must be the same as for FDKPCA, while the number 17 

 𝑙 = 0 
 𝑙 = 1 
 𝑙 = 2 
 𝑙 = 3 
 𝑙 = 4 
 𝑙 = 5        
 𝑙 = 6  

 𝑙 = 0 
 𝑙 = 1 
 𝑙 = 2 
 𝑙 = 3 
 𝑙 = 4 
 𝑙 = 5        
 𝑙 = 6  
 𝑙 = 7       
 



of retained PCs selected using FDim are shown in Figs. 3(c), 4(c) where FDim(𝓣A) = 10.2668 and FDim(𝓣B) =1 
12.6314. Henceforth,  ⌈𝑑𝓣A⌉ = 11 PCs and ⌈𝑑𝓣B⌉ = 13 PCs were retained since 𝑑𝑿̃A = 3.9579 < 𝑑𝓣𝑨  and 2 

𝑑𝑿̃B = 5.1110 < 𝑑𝓣𝑩 . Table 7 reflects that the proposed FDKPCA method outperforms the other methods by 3 

reaching the optimal performance for most of the faults where the best results are highlighted in red. These results 4 
prove the proficiency of the proposed FDKPCA in detecting various range of faults of different types in 5 
comparison with the other methods. The proposed FDPCA is yet a powerful paradigm which is still less proper 6 
in detecting accurately the anomalies introduced in nonlinear processes but outperforms the parallel analysis-7 
based DPCA proposed by Ku et al. [18]. This provides further evidence that FDim provides the ideal number of 8 
PCs needed to interpret the data and PCA-based projections in an optimal way. However, the generic proposed 9 
nonlinear dynamical framework FDKPCA accomplished the best monitoring results. This can be seen also from 10 
the monitoring plots depicted in Figs. 5 and 6 showing the air blockage and air leakage faults in operating 11 
condition A and Fig. 7 visualizing the diverted flow fault in operating condition B using FDPCA and FDKPCA, 12 
where the horizontal green line presents the thresholds and the faulty region is highlighted in light red. The faults 13 
are induced at 301 s while the valves V10 (F1) and U39 (F5) are opened gradually whereas valve V11 (F2) is 14 
closed. The proposed FDPCA instantaneously detects the changes in the systems’ dynamics while opening or 15 
closing a valve. The correlation dimension integrated with DKPCA possesses the potential to detect the correlated 16 
measurements and locate the changes in nonlinear dynamics. This substantial integration is not introduced in the 17 
remaining methods where the delay of detection is misleadingly large. Small angles of valves opening or closing 18 
cannot be recognised and the fault could not be detected so that maintaining faulty process operation. The 19 
monitoring charts 𝑇² and 𝑆𝑃𝐸 obtained through FDKPCA are precise in detecting such small incipient faults 20 
soothingly that recognizes all the faults with a best false alarms-detection time delay to detection rate trade-off.  21 

Table 7. FAR%, TD(Samples in seconds), and  MDR% for PCA, KPCA, DPCA, FDPCA, and FDKPCA 22 

 

Operation condition A Operation Condition B 

Air blockage Air leakage Diverted flow Air leakage Diverted flow 

T
² 

SP
E

 

T
² 

SP
E

 

T
² 

SP
E

 

T
² 

SP
E

 

T
² 

SP
E

 

P
C

A
 

FAR (%) 0 0 0 0 6.66 6 0 0.66 3.66 3 

TD  2995 319 635 480 7289 563 1071 12 3387 5 

MDR (%) 84.5 55.2 37.9 21.7 99.5 21.2 60.1 12.7 98.9 12.4 

K
P

C
A

 FAR (%) 19.6 0 0 1.66 27.3 35.6 13.3 24.3 29.6 4.33 

TD  112 1293 625 595 608 328 481 15 444 43 

MDR (%) 67.0 77.9 21.6 21.8 85.0 91.1 20.6 25 32.5 68.2 

D
P

C
A

 FAR (%) 0 0 0 2.33 4.66 1.33 0 1 1.66 1 

TD  2996 1293 636 626 7290 635 1074 278 3389 252 

MDR (%) 84.5 67.3 37.9 21.7 99.5 29.9 60.2 16.0 98.9 16.0 

F
D

P
C

A
 FAR (%) 0 0.66 0 1.33 4.66 3 0 2 1.66 1.33 

TD  2996 0 636 88 7290 0 1072 0 3389 1 

MDR (%) 84.5 55.3 34.3 21.9 99.5 22.4 59.3 21.2 98.9 13.0 

F
D

K
P

C
A

 

FAR (%) 0 3.42 2.39 0.68 2.05 1.36 2.74 0.34 0 3.09 

TD  2 0 1 0 1 0 1 0 1 0 

MDR (%) 11.0 0 16.6 0.45 5.23 0 0.34 0 0.00 0 

 23 

 24 



 1 

Fig. 5. Monitoring results of (a) FDPCA and (b) FDKPCA using  T² and  SPE at 99% CL of F1. 2 

 3 

                          Fig. 6. Monitoring results of (a) FDPCA model and (b) FDKPCA using  T² and  SPE at 99% CL of F2 4 
 5 

 6 

                          Fig. 7. Monitoring results of (a) FDPCA model and (b) FDKPCA using  T² and  SPE at 99% CL of F5 7 
 8 

Slugging detection is also investigated in this work. Because slugging is just an unstable multiphase flow 9 
regime, its effect is not as severe as faults that generally lead to process failures if not detected and managed 10 
adequately. The slugging condition is detected using the generic proposed nonlinear dynamical framework 11 
FDKPCA easily and accomplished satisfactory monitoring results shown in Fig.8 (3.006% MDR after fault 12 
detected within 14s from occurrence (TD) and with 0% FAR before fault using 𝑇² and 2.20% MDR corresponding 13 
to 10 s TD with 7% FAR using 𝑆𝑃𝐸), hence capturing the systems nonlinear dynamics and oscillations 14 
simultaneously. 15 



 1 
     Fig. 8. Monitoring results of FDKPCA model using  T² and  SPE at 99% CL of slugging condition 2 

 3 

Table 8. Comparison of computational time of the faulty scenarios  4 

Operating condition A Operating condition B 

Algorithm F1 F2 F3 F4 F5 

PCA 1.193 s 1.015 s 1.277 s 1.381 s 1.452 s 

KPCA 4.938 s 4.825 s 7.245 s 2.660 s 3.395 s 

DPCA 3.614 s 3.361 s 3.721 s 2.654 s 2.809 s 

FDPCA 6.325 s 6.165 s 6.548 s 3.220 s 3.278 s 

FDKPCA 21.779 s 21.360 s 32.627 s 5.623 s 6.925 s 

 5 

The computational time complexity is assessed to the five faults using the different methods compared in 6 
this work. Table 8. Shows the computational time in seconds from the training stage to the testing of each faulty 7 
scenario. Incontestably, more complex algorithms suffer from increased time complexity. PCA as the standard 8 
static linear method has the advantage of low complexity and therefore fast data processing. Kernel and dynamic 9 
methods rise the complexity as their processed features are highly increased. The computational time depends on 10 
the size of the data since the data sets have different number of observations (see Table 5.). Faulty sets with larger 11 
number of samples tested on larger training normal observations exhibit an increasing computational time. The 12 
computational time of FDKPCA was slightly increased (still within seconds) as the proposed method merges a 13 
dynamic kernel method with fractal dimension computations which are both complex algorithms, however, with 14 
substantially higher accuracy in detecting the abnormal events. 15 

 16 

6.2.2. Fault Diagnosis results 17 

After the faults are effectively detected using FDKPCA, the monitoring process passes into the diagnosis 18 

phase using both 𝑇² and 𝑆𝑃𝐸 statistics. Fig. 8 illustrates 𝐶𝑇2 and 𝐶𝑆𝑃𝐸 after the fault is detected by the 19 
corresponding statistic according to the nonlinear contribution plots strategy stated in Subsection 5.2. From the 20 
diagnosis results, shown in Fig.8., the five abnormal events present changes to the process variables according to 21 
the main cause of each fault. Through the contribution plots, the root cause and influence of each fault is observed. 22 
Variable 3 (the air delivery pressure PT312) has the largest contribution to the air blockage fault (F1), air leakage 23 
(F2 and F4) implies the largest influence on the air outlet valve 3-phase separator (Variable 13 PIC501) as air 24 
leaks out to the atmosphere, PIC501 will close to maintain air as the input air reduces. The diverted flow faults 25 
(F3 and F5) are induced by gradually opening valve U39 which allowed the flow to be led straight to the riser, the 26 
contribution plots shows that this influence the variables 3 and 16 ( air delivery pressure PT312 and water 27 
coalecser outlet valve LVC502) and variable 17 ( water tank level LI101), respectively. It is noticed that both 28 

𝐶𝑇2 and 𝐶𝑆𝑃𝐸 can locate variables contributing to each fault up to immediately after the fault occurrence 29 
depending on the nonlinear components derived using the developed fractal-based DKPCA model. 30 



 1 

Fig. 9. Contribution plots for faults F1, F2, F3, F4, and F5 with (a) 𝑇² and (b) 𝑆𝑃𝐸 2 

7. Conclusion 3 
 4 

It is important, in complex systems, to design a monitoring framework that accurately detects component 5 
faults and abnormal behaviour precisely and diagnose its source in order to assure the correct operation conditions 6 
of the system and maintain high level of safety, efficiency, and reliability. This paper deals with nonlinear 7 
dynamical systems monitoring using the proposed Fractal-based DKPCA (FDKPCA) with a new methodology to 8 
construct the optimal dynamical structure based on the fractal dimension.  It was further used as a nonlinear feature 9 
parameter to select the number of PCs as an unbiased estimator of important components in PCA, KPCA, DPCA, 10 
and DKPCA and proved its efficiency against the traditional linear methods such as CPV, PA, and VRE through 11 
analytical systems. The application of the proposed FDKPCA was used as a generic nonlinear dynamical 12 
monitoring system for FDD on the industrial benchmark multiphase flow process. Through the implementation, 13 
it was shown that the proposed methodology has satisfactorily proven its capability in extracting the nonlinear 14 
relationships between time-lagged duplicates and furthermore its proficiency and efficacy in detecting the 15 
different types of faults. The real (manually injected) incipient faults were successfully detected at the earliest 16 
stage of occurrence, whereas, the remaining mentioned methods failed to detect these faults until the degree of 17 
fault severity gets considerably increased. Consequently, it provided the lowest performance indices, FAR, TD, 18 
MDR.  To extend the monitoring process, the fault diagnosis stage was carried out using the nonlinear contribution 19 
plots. Guided by the previous fault diagnosis ivestigations, the severity of all the faults was diagnosed accordingly 20 
using the model obtained through FDKPCA. 21 
 22 
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