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Automated determination of hybrid particle-field parameters by machine
learning
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ABSTRACT
The hybrid particle-field molecular dynamics method is an efficient alternative to standard particle-
based coarse grained approaches. In this work, we propose an automated protocol for optimisation
of the effective parameters that define the interaction energy density functional, based on Bayesian
optimisation. Themachine-learning protocolmakes use of an arbitrary fitness function defined upon
a set of observables of relevance, which are optimally matched by an iterative process. Employing
phospholipid bilayers as test systems, we demonstrate that the parameters obtained through our
protocol are able to reproduce reference data better than currently employed sets derived by Flory-
Hugginsmodels. The optimisation procedure is robust and yields physically sound values.Moreover,
we showthat theparameters are satisfactorily transferable amongchemically analogous species.Our
protocol is general, and does not require heuristic a posteriori rebalancing. Therefore it is particularly
suited for optimisation of reliable hybrid particle-field potentials of complex chemical mixtures, and
extends the applicability corresponding simulations to all those systems for which calibration of the
density functionals may not be done via simple theoretical models.
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1. Introduction

Hybrid particle-field (hPF) simulations are a class of effi-
cient methods that are well adapted for studying very
large softmatter systemswithmolecular resolution [1–4].
The essence of the hPF methodology is contained in the
two terms of the hPF Hamiltonian:

H({r}) =
∑
m

H0({r}m) + W[{φ(r)}]. (1)

Here H0, the Hamiltonian of a single molecule m, con-
tains the kinetic energy and the intramolecular potential
as defined in standard particle-based potentials, and W,

CONTACT M. Cascella michele.cascella@kjemi.uio.no Department of Chemistry and Hylleraas Centre for QuantumMolecular Sciences, University of
Oslo, P.O. 1033 Blindern, 0315 Oslo, Norway

the interaction energy functional [5–7] dependent on
the density-fields φ(r) of the different particle species,
models all intermolecular interactions.

Intramolecular forces, by their very nature, only act
on a single molecule, while the density-field interac-
tions manifest as a quasi-instantaneous external poten-
tial, coupling the motion of the different molecules. The
possibility of computing the external potential using
particle-mesh routines allows for a very efficient and
highly parallel implementation requiring very little com-
munication among processors, resulting in algorithms
formally exhibiting strong-scaling [8,9]. Very recently, a
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GPU-based implementation of the Monte Carlo-based
hPF (single chain in mean field) set a new milestone with
simulations of polymer melts composed of 10 billion
particles [9].

The coupling of hPF tomolecular dynamics in efficient
parallelised software [8,10] has allowed for the applica-
tion of hPF simulations on both conventional soft poly-
mer mixtures and biological systems [11–15]. Prominent
examples range from nanostructured multiphase mate-
rials [16–19] to organised and disorganised lipid/water
mixtures [20,21]. Recently, hPF was extended to sim-
ulations of polypeptides [15], and to include explicit
treatment of electrostatic interactions [22–24], the latter
opening up to the formulation of density functional-
based computational predictive models of the complex
phase behavior of lipopolysaccharides [25].

Despite the growing level of maturity reached by hPF
simulations, so far relatively little attention has been put
into developing systematic protocols for the parameter-
isation of the interaction energy functional W. In par-
ticular, the quality of hPF models depends on both the
physical model chosen for W[φ], and on the appropri-
ate calibration of all the numerical parameters it may
depend upon. The most commonly employed model for
W typically takes the form of:

W [φ(r)] = 1
2φ0

∫
dr

⎛
⎝∑

ij
χ̃ijφi(r)φj(r)

+ 1
κ

⎛
⎝∑

j
φj(r) − φ0

⎞
⎠

2⎞
⎠ , (2)

where the average number density of the system is
denoted φ0, κ is a compressibility term which controls
the level of fluctuations of the overall density, and the χ̃ij
matrix is an energetic parameter thatmodels localmixing
energy between species i, j present in the system.

Parameters for the localmixing energymay be derived
by different experimental approaches. For example, for
simple polymers in a solvent, the χ̃-parameter can be
obtained from thermometric data [26]. This is how-
ever not as easily available when considering hetero-
polymeric systems. Another approach is to estimate χ̃

by its relationship with the Hildebrand solubility param-
eter [27]. However this can be problematic as solubility
parameters are often inaccurate [28]. Most importantly,
for the molecular resolution of hPF models, which often
adopt coarse grained (CG) representations in the range
of four–ten atoms per bead, factorisation of global exper-
imental data into the individual molecular components
may not be trivial.

A more effective determination of χ̃ parameters may
be obtained using simple Flory-Huggins (F-H) lattice
models:

χ̃ij = −z
(
εij − 1

2
(
εii + εjj

))
, (3)

where εij is the mixing energy between species i and j,
and z is the coordination number, which takes the value
of 6 for three-dimensional Cartesian lattices. The mix-
ing energy between two species can be approximated by
the two-body interaction energy defined in the potential
of the underlying molecular model employed. While this
approach has been quite successful so far, there are a few
limitations that hamper its general use. Prominently, the
F-H model considers contact energies only, sometimes
even disregarding entropy contributions to the binding,
not taking into account many-body effects, or long-range
interactions. The latter are particularly important, for
example, in very polar or charged moieties. In practice,
F-H parameters provide very good qualitative guesses
for the values of χ̃ . Nonetheless, satisfactory quantitative
agreement with reference data, especially in chemically
complex systems, usually requires an a posteriori heuris-
tic fine tuning of at least some of the values of the χ̃

matrix [21].
Importantly, even though the first term of the inter-

action energy in (2) accounts in principle for the total
energy of mixing, in recent times the addition of other
terms to theW functional, for example explicitly describ-
ing electrostatics [22–24] or surface interactions [29,30],
poses the problem of appropriately factorising such con-
tributions out the mixing χ̃ term to avoid non-physical
double-counting. In these cases, χ̃ loses a direct phys-
ical meaning, and for this reason it is problematic to
define plausible values for χ̃ directly from theoretical
models.

The hPF interaction energy is globally dependent on
a large set of parameters comprising both the χ̃ matrix,
and any other parameter present in other energy terms
eventually employed. Therefore, the determination of an
accurate functional W should be addressed as a global
optimisation problem. Systematic approaches to param-
eterisation of ordinary particle-particle potentials in CG
force fields, such as force matching [31], Iterative Boltz-
mann Inversion [32] and InverseMonte Carlo [33], effec-
tively consider parameterisation as optimisation prob-
lems where parameters are chosen to satisfy a given
fitness function. For example, Iterative Boltzmann inver-
sion and Inverse Monte Carlo consider a high reso-
lution reference potential of mean force and optimise
interaction potentials to reproduce this reference using
the CG degrees of freedom. A key observation in such
attempts is that the potential of mean force and inter-
actions potentials, due to loss of entropy in the process
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of CG, most often are significantly different. Similarly,
the χ̃ parameter of continuum density-field for poly-
mers has not the direct meaning of a potential of mean
force, but rather that of a phenomenological energetic
term [7].

The determination of hPF χ̃ force fields parameters
poses a particularly challenging optimisation problem.
First, these interactions cannot be framed as in a reac-
tion coordinate form; therefore, χ̃ parameters cannot be
optimised through standard state of the art methods,
such as Iterative Boltzmann inversion or Inverse Monte
Carlo. Second, the gathering of hPF data does not yield
derivatives of themodel fitnesswith respect to the param-
eters, thereby restricting us to gradient-free optimisation.
Finally, the χ̃-matrixmay involve a large parameter space
for complex chemical mixtures, thus a general optimi-
sation method needs to be capable of dealing with large
dimensional parameter spaces.

Given such constraints, the large family of surrogate
(or response surface methodology [RSM]) model based
approaches, in which a response surface meta-model is
introduced and updated through sequential noisy sam-
pling, provides several possible optimisation techniques.
Methods in the literature, of particular relevance, are
classical sequential RSM [34,35], Lipschitz optimisa-
tion [36,37], Trust region methods [34,38], and Bayesian
optimisation [39–41] (BO). In addition, various ran-
dom search methods, such as genetic algorithms [42,43],
simulated annealing [44–46], Latin hypercube sam-
pling [47], or straight uniform random sampling, are
applicable.

Among the cited methodologies, BO is a versatile
scheme for the global optimisation of expensive non-
linear black-box functions for which derivatives with
respect to the input parameters are hard or impossible
to compute [39–41]. The BO algorithm, developed in
the 70s, has in the last decade emerged as a strong solu-
tion to derivative-free optimisation of computationally
expensive and noisy black-box functions, with powerful
performance in many practical applications, especially
within the field of machine learning hyper-parameter
optimisation [48–52].

In this work we present a protocol for the optimi-
sation of hPF parameters based on BO. The choice
of this methodology is based on its strong theoreti-
cal convergence properties when paired with an upper-
confidence bound (UCB) acquisition function [53],
its simple implementation, and its highly data effi-
cient sampling [54]. The effectiveness and robustness
of our optimisation protocol is tested against uniform
random sampling, the simplest possible optimisation
strategy, and previous literature data based on F-H
models.

2. Materials andmethods

2.1. The hybrid particle-fieldmethod

The phase space of a molecular system with total
energy (1) may be sampled either by Monte Carlo [1], or
by molecular dynamics (hPF-MD) [3]. In this work we
employed hPF-MD.

In hPF-MD, the equations of motion for the inde-
pendent particles are determined by the presence of an
external potential obtained as the functional derivative
of W. Specifically, the potential acting on each particle
species i located at position r takes the form [3]:

Vext
i (r) = δW [φ(r)]

δφi(r)

= 1
φ0

⎛
⎝∑

j
χ̃ijφj(r) + 1

κ

⎛
⎝∑

j
φj(r) − φ0

⎞
⎠

⎞
⎠ .

(4)

In the OCCAM hPF-MD software [8], which we employ
in this paper, the related forces are evaluated via a numer-
ical particle-mesh approach from spatial derivatives of
the external potential:

Fexti (r) = −∇Vi(r) = − 1
φ0

∑
j

(
χ̃ij + 1

κ

)
∇φj(r).

(5)
For more details on the computation of the forces, see
ref. [3].

2.2. hPF force field parameterisation protocol

To determine hPF force field parameters, we employ a
general iterative automated optimisation framework as
depicted in Figure 1. Starting from a force field param-
eter set x, a hPF trajectory is gathered and analysed
giving output data of relevance ysim.. The output data is
then compared to reference data yref ., which can be pro-
vided by any accurate source, including high(er) resolu-
tion simulations or experiment. An objective (or fitness)
function η = η(ysim., yref .; x) assesses the quality of the
parameterisation, and from the fitness value, the opti-
miser proposes a new hPF parameter set x. The full cycle
is automated and is repeated until satisfactory conver-
gence of the fitness is reached, yielding the optimal hPF
force field.

In principle, any optimiser that is not dependent on
gradient values of the fitness values, can be employed.
However, given the potentially large dimension of the
parameter space x and the computationally expensive
simulations needed to gather ysim., it is essential that
the optimiser should converge with the fewest possible
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Figure 1. Protocol for optimising hPF force fields.

amount of iterations. Next, simulation data has an ele-
ment of stochasticity due to only sampling a finite set
of system configurations in the ensemble average, there-
fore the optimiser needs to be robust against noise in
the fitness values. Finally, we note that computational
expensiveness of gathering ysim., makes almost any com-
putational cost of the optimiser itself negligible.

The protocol we propose makes use of BO, a surro-
gate based model for solving constrained optimisation
problems:

xopt = argmax
x∈X

η(x). (6)

The space of possible parameter configurationsX is usu-
ally a compact subset ofR and the objective function η is
in general unknown, non-convex, multimodal, and only
accessible through (computationally expensive) point-
wise noisy sampling. In the BO algorithm, a Gaussian
process (GP) function prior is placed on the underlying
true objective and updated via Bayesian posterior updat-
ing (Bayes’ rule) by sequential probing of η [54]. In this
way, a probabilistic response surface is built which rep-
resents, at each iteration, the model’s beliefs about the
objective (μ) and how confident the model is at each
point in X (σ ). BO achieves high efficiency in the sam-
pling of the parameter space by leveraging both μ and
σ in an acquisition function (AF), a(x) = a(μ(x), σ(x)).
Often, the AF contains a parameter β which governs
the trade-off between exploration (sampling areas in X
where the uncertainty is high) and exploitation (sampling
areas where good x are known to be located). The AF
guides the sampling by picking points x ∈ X to explore
according to a strategy for improving upon the currently
best found x.

The GP prior is a multivariate Gaussian distribution
over functions, uniquely defined by a covariance kernel

0 and a mean functionμ0. The kernel function induces

a metric on X which defines a measure of the distance
(similarity) between points x and x′. The choice of a spe-
cific such 
0 represents a priori assumptions about the
structure of the underlying true objective.

Often, one or more hyper-parameters in the covari-
ance kernel have to be specified. It is customary to
fix the values of these parameters by maximising the
marginal likelihood of themodel, given the observed data.
Marginalising out the true noise-free objective function
gives the likelihood of the model hyper-parameters. For
GPs, the log marginal likelihood integral in question is
analytically tractable, and may be easily maximised to
determine the optimal kernel hyper-parameters.

2.3. Test case: phospholipidmodel for bilayers

As test case we consider a hPF-MD model for fully-
saturated phospholipid bilayers, using in particular four
variants characterised by different lengths of the fatty
tail dipalmitoylphosphatidylcholine (DPPC), dimyris-
toylphosphatidylcholine (DMPC), distearoylphosphatidyl-
choline (DSPC), and mono-unsaturated dioleoylphos-
phatidylcholine (DOPC). For direct comparison, we use
the same mapping of the model developed by De Nicola
et al. [21] (Figure 2), which employs aMARTINI CG rep-
resentation of the phospholipids [55] and explicit solvent.

In this work, we limit our analysis to the optimisation
of the χ̃ij matrix, while the bonded terms and the com-
pressibility κ are kept the same in themodel by DeNicola
et al. [21].

A (13 × 13 × 14 nm3) simulation box containing 528
DPPC lipids and 14,000 water beads is employed. Each
simulation in the optimisation look lasts 20 ns. The
hPF simulations were run using OCCAM.1 The simu-
lations are performed under the NVT ensemble, using
the Andersen thermostat with a coupling time of 0.1 ps
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Figure 2. Summary of the hPF phospholipid model. Left: CG rep-
resentation of the DPPC phospholipid and solvent. Right: Outline
of the two terms in the hPF Hamiltonian.

and a collision frequency of 7.0 ps−1. A time step of
0.03 ps was used. The particle-mesh routines for particle-
field forces in OCCAM employed a grid size of 0.58 nm
(1.25 times the bond length used) and an update period
of 0.3 ps (10 time steps). hPF-MD simulations are per-
formed at a temperatures of 335, 325, and 303K for
DSPC, DPPC, and DMPC/DOPC, respectively. These
temperatures were chosen to allow direct comparison
with the results in [21].

To evaluate the fitness of the model we consider elec-
tron density profiles (ϕ) of the different species, com-
pared to those obtained from reference CG simulations
using the MARTINI force field. This choice is made to
have the best assessment of the quality of the BO proce-
dure as compared to the F-H parameters used in the liter-
ature currently. For optimal determination of hPFparam-
eters for phospholipids, more accurate all-atom models
or experimental data may be eventually employed. Note
however that using an experimental target for the objec-
tive function adds a layer of complexity due to the incom-
pleteness of the data as only the total electron density
across the membrane normal is available, not the density
of individual moieties.

The fitness η(ϕ; χ̃ ) is defined as the average mean
squared error over the electron densities of the different
species k:

η(ϕ; χ̃) = 1
nnk

nk∑
k=1

n∑
i=1

|ϕk
i − ϕ̂k

i |2, (7)

with ϕk
i being the electron density of species k at a posi-

tion zi = 2i�/n − � along the bilayer normal. The density

profiles are computed relative to the center of mass of all
carbon type beads in the simulation, which is taken to be
the center of the bilayer. ϕ̂k

i indicates the reference den-
sity to be matched (in our case the MARTINI simulation
results). The total number of different particle species is
denoted nk, while n is the number of bins in the chosen
density histogram. For a better of comparison with F-H
data [21], the absolute deviations Sk are also reported:

Sk(ϕ; χ̃ ) = 1
n

n∑
i=1

|ϕk
i − ϕ̂k

i |. (8)

In addition, Sp, the mean percentage error relative to the
average electron density ϕ0 over the full histogram across
all species, is reported:

Sp(ϕ; χ̃ ) = 1
ϕ0nnk

nk∑
k=1

n∑
i=1

|ϕk
i − ϕ̂k

i |, (9)

To avoid potential cold-start problems, each optimisa-
tion run is started with 2d (d being the dimension of
the parameter space) randomly sampled points. After
the initial random sampling period, new points to be
probed are selected according to the maximum of the
UCB acquisition function [53] (Figure 1). The explo-
ration/exploitation trade-off parameter in the acquisition
function is set to β = 2, favouring exploration of the
large parameter space. The Gaussian process underly-
ing the BO uses a Matérn covariance kernel [56,57] with
smoothing parameter ν = 5/2, and a constant zeromean
function. In addition, a diagonal white noise kernel is
added to account for the noisy sampling.

All χ̃ parameters are constrained to the values used
by De Nicola ±10 kJmol−1 [21]. Minimising the volume
of the X hypercube is important for reducing the com-
putational cost of the optimisation scheme, however the
range usedmust be large enough to include the true opti-
mum. As our fitness (MSE) is locally convex close to the
true minimum, an insufficiently large parameter subset
search would result in an optima on the edge of X being
reported by the BO method, as opposed to an interior
point. As no such results were found, the value used was
deemed to sufficiently balance both concerns.

3. Results and discussion

3.1. Optimisation of hPF parameters for DPPC

DPPC was used as prototypic test systems to assess
the effectiveness of BO for the determination of hPF χ̃

parameters. The choice of such a system was determined
both by the presence of a relatively complex chemical
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structure, and by the existence of a vast reference lit-
erature, including experimental [58–60] and computer
simulations [61,62], as well as hPF models [20,21].

Figure 3 reports the density profiles for hPF simula-
tions of DPPC after BO of the χ̃ parameters with respect
to the mean-squared-error objective function, computed
between the hPF and reference MARTINI density pro-
files (7). The density profiles for all the bead types match
well those of the reference, with Sk values smaller than
7.3 el./nm3 for all lipid beads, and with a Sp value less
than 2%.

Previously published hPF-MD models for phospho-
lipids are based on theMARTINICGmapping [55,63,64]
and employ a χ̃ matrix based on the F-H model (3).
F-H parameters are extracted from the corresponding
Lennard-Jones binding energies of the MARTINI force
field (χ̃F−H hereafter [21]). As noted in the original work,
using the lateral density profile as the benchmark prop-
erty, heuristic adjustment of the χ̃ parameter between C
and W beads was required to improve the stability and
overall structure of the bilayer. Overall, the F-H param-
eter set produces a satisfactory organisation of the lipid
bilayer (Figure 3), evidenced by a very good qualitative
agreement of the lateral density profiles for the different
moieties compared to reference CG simulations using the
MARTINI force field. Nonetheless, the hPF/F-H density
profiles are characterised by a Sp of about 4 to 5% for the
different lipids [21], and larger values of Sk, reaching a
maximum of 20.51 el./nm3 for the G bead. Comparison

of Sk and Sp values indicates that BO provides a substan-
tial improvement compared to F-H.

Given the use of theoretical models for the deriva-
tion of χ̃ , it has been hard so far to discern the ori-
gin of any discrepancies from reference data between
intrinsic approximations of the hPF method, or the use
of non optimal parameter sets. In particular, broader
density profiles in lipids were usually understood as a
consequence of the intrinsic softness of the field inter-
actions [22]. In fact, using BO parameters, there is an
appreciable sharpening of the distributions for all the
beads, even though the peaks remain broader than CG
simulations based on pair-interactions (Figure 3). This
is of particular interest, as it demonstrates that indeed,
in phospholipids, the F-H parameterisation is accu-
rate enough to capture the physics of the hPF model;
nonetheless, there is still space for significant quantitative
improvement by a global optimisation approach.

3.2. Feature importance

Data in Figure 3 show how the performance of the F-
H parameters is not equal for all the moieties present in
the system. In particular, F-H is better at reproducing the
distributions of the lipid head and tails, while the den-
sity profile of the glycerol groups (G beads) appears too
broad. The physical reason for such discrepancy may be
attributed to the fact that glycerol floats at the interface
between the phase-separated water and lipid fatty tails.

Figure 3. Density profiles and representative membrane snapshots from hPF-MD simulations of a DPPC bilayer using χ̃F−H param-
eters [21] (left), particle-based simulations using the MARTINI CG force field (centre), and hPF-MD χ̃BO parameters (right). The table
presents absolute deviations Sk in the density profiles between the F-H and BOparameter simulations, and the referenceMARTINI profile.
Percentage deviations Sp are given in parenthesis. Sk values are given in el./nm3.
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Figure 4. Left: Feature importance as ranked by themutual informationmeasure between the fitness and the individual χ̃ij parameters,
for hPF-MD simulations of a DPPCbilayerwith randomly sampled χ̃ matrices. Presented values are normalised relative to themost impor-
tant parameter (χ̃CW) (arbitrary units). Inset details the low relativeMI values found for the last sixmatrix elements (error bars omitted). χ̃
parameters are included in order of decreasing feature importance (left). Right: Best fitness achieved (here using the average coefficient
of determination, R2, across all bead species) for each dimension of the parameter space subspace used in hPF-MD BO protocol runs on
the DPPC bilayer system.

Therefore, its distribution depends more than the oth-
ers on a delicate balance among all the terms in W.
This effect may be difficult to reproduce adopting an
independent parameterisation of the individual elements
of the χ̃ mixing energy matrix. On the contrary, the
BO approach appears better suited to take into account
all competing interactions, producing more balanced χ̃

values.
The uneven error in the F-H distributions suggests

that the hPF model is not equally robust with respect to
variations of the different χ̃ terms. To verify this hypoth-
esis, we calculated the correlation (mutual information,
MI) between input χ̃ parameters and resulting fitness.
TheMI between two continuous random variablesX and
Y with probability density functions (PDF) fX and fY (and
joint PDF fX,Y ) is defined as [65,66]

I(X;Y) = −
∫
X

∫
Y
dx dyfX,Y(x, y) log

fX,Y(x, y)
fX(x)fY(x)

,

(10)
and can be understood as the reduction in uncertainty
about the values ofY, onceX is revealed. TheMI between
any input parameter χ̃kj and the resulting fitness η(φ; χ̃ ),
thus yields a measure of the feature importance for the
full parameter space.

Figure 4 shows the relative feature importance of the
different χ̃ij parameters, as well as optimisation results
from BO runs which only include the most important
ones. The fitness is here represented by the average coef-
ficient of determination, R2, over the density profiles of
all the different beads,

ηR
2
(ϕ; χ̃ ) = 1

nk

nk∑
k=1

R2(ϕk, ϕ̂k). (11)

Evidently, a subset of just four parameters carry the
majority of the feature importance, meaning optimising

only these four, keeping the others at their F-H model
value, yields results comparable to the ones obtained after
an optimisation over the full 10-dimensional parame-
ter space (Figures 4 and 5). The four relevant parame-
ters have a clear physical meaning, as they are the main
determinants for the hydrophilic/hydrophobic charac-
ter of the polar heads and the fatty tails, respectively
(χ̃NW, χ̃CW), and for the amphipathic behaviour of glyc-
erol (χ̃GW, χ̃GC).

3.3. Transferability of BO-hPF parameters

Table 1 reports the parameter sets obtained by BO for
DPPC compared to those obtained for two other sat-
urated phospholipids differing in the length of fatty
acid chains (DSPC, DMPC), and one unsaturated lipid
(DOPC). Overall, the most relevant four χ̃ matrix ele-
ments do not differ significantly from DPPC to DSPC.
The less hydrophobic character of the C bead in DOPC
may be attributed to the presence of the unsaturatedmoi-
ety.We remark that for sake of simplicity, the C=C bond
was represented by a different bead type, consistent with
the MARTINI mapping, and all χ̃ parameters involving
that were kept at the reference F-H values [21].

The transferability of the obtained data sets is tested
by performing hPF simulations for a lipid using param-
eters optimised on other structures. The absolute error
on the density profiles obtained exchanging χ̃ values are
presented in Table 2, and show how the global struc-
ture of the bilayers remain mostly unaffected, with rel-
atively small changes in Sk and Sp values, which remain
systematically lower than those of the F-H parameterisa-
tion. This fact indicates that the BO protocol is able to
find robust data-sets for chemically similar moieties, also
ensuring very good transferability.



8 M. LEDUM ET AL.

Figure 5. Top: Density profiles for hPF-MD DPPC bilayer simulations ran with Bayesian optimised parameter sets with four (left) and ten
(right) included χ̃ parameters. The four-parameter simulation uses χ̃F−H values for all but the χ̃ matrix elementswith the highest feature
importance, namely χ̃NW, χ̃CW, χ̃GW, and χ̃GC, c.f. column three of the table (bottom). Bottom: Resulting χ̃ matrices from the BO protocol
applied to hPF-MD simulations of a DPPC bilayer. Results reported for selected subspaces of the full 10-dimensional parameter space,
with the χ̃ijs shown in red being fixed and not part of the optimisation run. All χ̃ values given in kJmol−1. Mean percentage errors, Sp,
associated with each set of optimised parameters is given in the last row.

Table 1. Optimised χ̃ -matrix parameters found by the BO
scheme for hPF-MD simulations of DPPC, DMPC, DSPC, and DOPC
bilayer systems. The χ̃ matrix elements are given in order of
decreasing feature importance. Reference parameters are the
Flory-Huggins (χ̃F−H) parameters used in [21]. All values given in
units of kJmol−1.

Optimised with BO

Ref [21] DPPC DMPC DSPC DOPC

C–W 33.75 42.24 41.20 40.15 35.00
G–C 6.30 10.47 13.78 14.65 14.61
N–W −8.10 −3.77 −2.58 −3.02 −2.46
G–W 4.50 4.53 5.91 4.71 9.07
N–P −1.50 −9.34 −4.34 −5.91 −3.40
P–G 4.50 8.04 5.26 7.25 8.45
N–G 6.30 1.97 3.37 2.99 4.92
P–C 13.50 14.72 19.72 16.16 12.52
P–W −3.60 −1.51 −1.26 −2.17 −1.27
N–C 9.00 13.56 12.71 10.56 14.39

3.4. Robustness of BO-hPF procedure

Large multidimensional parameter spaces often exhibit
multiple locally optimal parameter sets or flat fitness sur-
faces that can hinder convergence towards the globally
optimal parameter set. Figure 6 shows one such example

for the hPF parameters, with a projection of the fitness
(estimated by the surrogate fitting function) in terms of
χ̃CW and χ̃GC. The plot exhibits a narrow region of unac-
ceptable values, and a relatively large flat plateau of high
score, were the determination of the position of themaxi-
mum is numerically non trivial, andmay lead to multiple
solutions.

However, our tests on transferability across lipid
species do not indicate such problems for the BO-
hPF procedure, finding instead systematically consistent
parameter sets for the different lipid species. Moreover,
as shown in Figure 6, BO converges steadily, and out-
performs random sampling protocols in finding the opti-
mal solution, even as both schemes improve upon χ̃F−H
after only a handful of iterations. In particular, after a
few efficient initial steps, random sampling is not able
to converge toward the best solution, and remains con-
fined in the large basin comprising of very different, not
fully optimised, combinations of parameters. This is in
agreement with results reported in the literature for BO
applied to toy model functions [48], and such diverse
fields as e.g. chemical design [67], active learning [68],
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Table 2. Mean absolute deviations in electron density, Sk , with respect to theMARTINI reference density for the different lipids simulated
with Bayesian optimised parameter sets on the different phospholipids (relative percentage deviations Sp in parenthesis). Comparison
with data from De Nicola, using the baseline χ̃F−H parameter set [21]. All Sk values given el./nm3.

N P G C W Average

DPPC
DPPC-optimised 4.65 4.10 6.52 7.26 8.91 6.29 (1.71%)
DMPC-optimised 4.45 4.05 6.44 8.37 8.36 6.34 (1.97%)
DOPC-optimised 5.39 8.15 12.05 9.81 6.51 8.38 (2.61%)
DSPC-optimised 5.02 6.08 8.71 9.40 9.63 7.76 (2.40%)
Reference [21] 9.29 12.19 20.51 12.23 12.82 13.41 (4.10%)
DMPC
DPPC-optimised 3.84 4.61 8.59 4.94 6.81 5.76 (1.85%)
DMPC-optimised 4.28 4.15 7.62 5.49 6.51 5.61 (1.81%)
DOPC-optimised 5.89 8.81 13.44 8.29 7.74 8.83 (2.87%)
DSPC-optimised 5.60 7.90 11.63 6.51 6.29 7.58 (2.45%)
Reference [21] 8.53 10.54 13.32 10.00 14.64 11.41 (3.63%)
DOPC
DPPC-optimised 3.28 4.55 6.27 7.59 8.55 6.05 (2.03%)
DMPC-optimised 3.77 3.61 5.44 8.87 7.22 6.78 (1.96%)
DOPC-optimised 3.21 3.37 5.11 8.41 8.63 5.74 (1.95%)
DSPC-optimised 3.21 2.98 5.25 8.80 10.58 6.16 (2.08%)
Reference [21] 10.33 6.21 13.38 13.98 24.26 13.63 (4.79%)
DSPC
DPPC-optimised 4.24 3.98 5.13 6.56 11.04 6.19 (1.86%)
DMPC-optimised 4.40 3.52 4.55 7.25 11.59 6.26 (1.88%)
DOPC-optimised 4.90 4.03 5.06 7.36 10.82 6.43 (1.94%)
DSPC-optimised 4.45 3.38 4.17 6.75 11.22 5.99 (1.80%)
Reference [21] 8.60 10.30 11.52 10.85 22.62 12.78 (3.80%)

Figure 6. Top left: The surrogate objective fitness surface (here using the average coefficient of determination,R2, across all bead species)
in an example DPPC BO run with only the four parameters exhibiting the highest feature importance scores included (χ̃CW, χ̃GC, χ̃NW,
and χ̃GW). Individual samplings with their associated fitnesses are represented as blue dots. A projection onto the subspace spanned by
χ̃CW and χ̃GC shown. All χ̃ matrix elements are given in kJmol−1. Top right: Best DPPC simulation membrane fitness (average R2) for BO
and random sampling with only the four parameters exhibiting the highest feature importance scores included. Comparison with the
fitness achieved by the reference χ̃F−H parameter set. Inset details when BO and random sampling surpass the χ̃F−H parameter set in
terms of R2 fitness. Bottom: Scatter matrices showing correlations between all pairs of χ̃ parameters in a BO run on a DPPC bilayer (left)
compared with random sampling (right). Only the four parameters exhibiting the highest feature importance scores are included in the
sampling. The matrix diagonal shows the density of sampled points for each individual χ̃ij parameter. All χ̃ matrix elements are given in
kJmol−1.
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robotics [69,70], and machine learning [71]. The faster
andmore robust convergence of BO is determined by the
intrinsic ability of the algorithm to learn what region of
the space is more relevant to sample, disregarding other
less relevant regions (Figure 6).

4. Concluding remarks

In this work, we proposed a protocol to determine accu-
rate potentials for hPF simulations, using BO as the
main driver for the optimisation of the free parameters.
Our scheme requires the definition of an arbitrary fit-
ting function based on any set of relevant observables
to be learned. The quantities of relevance may come
from experimental data or from more accurate higher-
resolution benchmark simulations (for example all-atom
or CG), the only requirement being that the pertinent
quantities can be straightforwardly estimated with a hPF
model.

Using DPPC, DMPC, DSPC, and DOPC phospho-
lipid bilayers as test systems, we showed how this pro-
cedure determines sets of parameters for the interaction
energy that significantly improve the models present in
the literature based on F-H theory. The new Bayesian-
optimised potentials also show excellent transferability
among chemically similar moieties.

Despite being more complex than F-H, the BO pro-
cedure here introduced offers various advantages. First,
the procedure does not require the estimate of two-body
interaction energies, which may be difficult to determine
with good accuracy, for example, in the absence of CG
models compatible with the mapping employed in the
hPF simulations. Second, the protocol is very general, and
can thus be used to concomitantly optimise the mixing
terms of the interaction energy (χ̃) and any other param-
eter of relevance present in other parts of the energy func-
tional. This is particularly interesting in the view of recent
advances for hPF model potentials, which include, for
example, specific potentials for peptides, for electrostat-
ics [22–24], or for surface energy terms [29,30]. Finally,
being an automatic procedure, BO does not require user-
based fine tuning of the parameters, ensuring a more sys-
tematic and reproducible determination of the potentials,
especially for chemically complex systems.

BO is robust in determining physically meaningful
parameters despite the relatively large variable space. This
is due to the ability of BO to restrain the search only in
a sub-region of the space where the physical solution is
contained. Nonetheless, this evidence cannot be assumed
as general, and it cannot be excluded that BO of hPF
parameters over even higher-dimensional variable spaces
would lead to numerical ambiguities. In this respect, we
may suggest that the best strategy for the optimisation of

hPF parameters implies the formulation of an adequate
Ansatz, for example using the F-H method, that would
be used as a starting point for the optimisation. In this
work, we showed how feature importance can be applied
to the BO procedure to identify on-the-fly those param-
eters that are not relevant for the convergence to the
best solution, and which can be thus dropped out of the
optimisation protocol. In this way, full BO optimisation
can be performed only on a subset of relevant parame-
ters, keeping all the others at (or in the neighbourhood
of) their initial F-H values. In case the F-H parameters
cannot be determined, or the parameter space is intrin-
sically too large, we foresee the possibility of introducing
penalty terms to the fitting function, similarly to those
used in other optimisation procedures like RESP [72],
even though this has not been explored in this work.

In conclusion, the establishment of an automated
machine-learning procedure for the optimisation of hPF
parameters promises to further expand the applicability
of this powerful simulation method toward increasingly
chemically complex systems.

Note

1. http://www.occammd.org/
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