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Background: Emerging biomarkers from medical imaging or molecular characterization of tumour biopsies
open up for combining the two and exploiting their synergy in treatment planning of cancer patients. We
generated a paired data set of imaging- and gene-based hypoxia biomarkers in cervical cancer, appraised the
influence of intratumour heterogeneity in patient classification, and investigated the benefit of combining
the methodologies in prediction of chemoradiotherapy failure.
Methods: Hypoxic fraction from dynamic contrast enhanced (DCE)-MR images and an expression signature of
six hypoxia-responsive genes were assessed as imaging- and gene-based biomarker, respectively in 118
patients.
Findings: Dichotomous biomarker cutoff to yield similar hypoxia status by imaging and genes was defined in
41 patients, and the association was validated in the remaining 77 patients. The two biomarkers classified
75% of 118 patients with the same hypoxia status, and inconsistent classification was not related to imaging-
defined intratumour heterogeneity in hypoxia. Gene-based hypoxia was independent on tumour cell fraction
in the biopsies and showed minor heterogeneity across multiple samples in 9 tumours. Combining imaging-
and gene-based classification gave a significantly better prediction of PFS than one biomarker alone. A com-
bined dichotomous biomarker optimized in 77 patients showed a large separation in PFS between more and
less hypoxic tumours, and separated the remaining 41 patients with different PFS. The combined biomarker
showed prognostic value together with tumour stage in multivariate analysis.
Interpretation: Combining imaging- and gene-based biomarkers may enable more precise and informative
assessment of hypoxia-related chemoradiotherapy resistance in cervical cancer.
Funding: Norwegian Cancer Society, South-Eastern Norway Regional Health Authority, and Norwegian
Research Council.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

methodologies in the clinic may improve treatment-decision, and is
an important step towards precision medicine [3,4]. Hypoxia is a
major adverse feature of solid tumours, leading to metastases and
resistance to radiotherapy, chemotherapy, and possibly molecular

Advances in medical imaging and molecular characterization of targeted drugs and immunotherapies [5,6]. Promising imaging- and
tumours have shown promise for identifying treatment-resistant gene-based hypoxia biomarkers have been proposed, including can-
cancer and deciding therapy [1-3]. Incorporation of the two didates derived from positron emission tomography (PET) and mag-
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netic resonance (MR) images [7], and gene expression signatures
recorded in tumour biopsies [8]. In particular, PET with the hypoxia
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Research in context

Evidence before this study: Many cancer patients die of metas-
tasis and treatment resistance caused by low levels of oxygen
(hypoxia) in their tumour. Better treatment strategies are
required, and biomarkers assessing the tumour hypoxia status
are needed for selection of patients to clinical trials and individ-
ual treatment regimes. Medical imaging and tumour biopsies
are cornerstones in the diagnostic procedures, and both imag-
ing parameters and biopsy-based gene expression signatures
show promise as hypoxia biomarkers. The two methodologies
have different strengths, and there is a need to understand how
they relate to each other and should be combined to fully
exploit their potential. Imaging provide information about the
entire tumour, whereas biopsy-based biomarkers are derived
only from a small part. Variations across the tumour volume,
intratumour heterogeneity, is thus a factor potentially affecting
hypoxia assessment. A PubMed search with the terms “hyp-
oxia”, “cancer”, “biomarker”, “gene signature”, “imaging”, and
“survival”, without restricting the search by date or language,
found no studies comparing imaging- and gene-based hypoxia
classification of patients in relation to intratumour heterogene-
ity and treatment resistance.

Added value of this study: We report the generation of a
paired data set on imaging- and gene-based hypoxia bio-
markers in 118 cervical cancer patients, enabling the compari-
son and combination of the two methodologies in hypoxia
assessment. By using an imaging biomarker constructed from
MR images with high spatial resolution compared to biopsy
size, intratumour heterogeneity in imaging-defined hypoxia
could be assessed on a scale of relevance for the gene-based
biomarker. Our results revealed robust classification for both
biomarkers, independent on intratumour heterogeneity. Mea-
suring the gene-based biomarker in a small sample relative to
the whole tumour volume thus seem to provide reliable hyp-
oxia information. For 25% of the patients, the tumours were
classified with a different hypoxia status using the imaging-
based biomarker as compared to the gene-based biomarker.
The two biomarkers therefore seem to contain different
information, and our results showed that combining them for
hypoxia classification, could improve the separation in progres-
sion-free survival for patients classified with a more or a less
hypoxic tumour.

Implications of all the available evidence: Our study encour-
ages implementation of a multifactorial biomarker in patients
with cervical cancer, where imaging and gene expression signa-
ture are combined to assess hypoxia-related treatment resis-
tance and thereby enable more information about the disease
before treatment-decision. The approach is clinically feasible as
the data are based on MR images and biopsies obtained during
state-of-the-art diagnostics. Combining tumour phenotype
information from both methodologies may be useful also for
other cancer types as well as other tumour phenotypes than
hypoxia.

tracer F-18-fluoromisonidazole (FMISO) has shown potential for tar-
geted, local radiation dose escalation in head and neck cancer [9].
Also, dynamic contrast enhanced (DCE)-MR imaging (MRI) has shown
benefit in monitoring effects of the hypoxia-modifying drug sorafenib
in cervical cancer [10]. Moreover, gene expression signatures with
predictive impact in hypoxia-modifying combination therapies of
head and neck and bladder cancer have been presented [11,12] and
some are evaluated in ongoing intervention trials (e.g. NCT01950689,
NCT01880359, NCT02661152, NCT04275713). These developments

constitute an excellent basis for combining imaging and molecular
characterization to exploit advantages of each methodology in an
extended treatment decision support system that includes hypoxia.

Imaging- and gene-based hypoxia biomarkers provide different
information of value for treatment planning. Imaging can non-inva-
sively visualize hypoxia in three dimensions prior to and during
therapy, assess intratumour heterogeneity, and monitor therapy
responses repeatedly [13]. Approaches based on MR and PET can be
implemented without high costs and changes in the hospital's infra-
structure, since these modalities are part of the state-of-the-art diag-
nostic procedures for many cancer types, including cervical cancer
[14]. On the other hand, gene expression signatures capture the tran-
scriptional state of cells and can inform about hypoxia-related resis-
tance mechanisms at play in individual tumours [15]. This is of
utmost importance for the choice of hypoxia-targeting drug amongst
a large number of existing and upcoming agents for combination
therapies [16]. A major obstacle is, however, that the information
provided in a biopsy may be biased by the cellular composition of the
sample and intratumour heterogeneity in hypoxia [17]. To exploit
the potential synergy between imaging- and gene-based hypoxia bio-
markers, a better understanding of how their information relates to
each other is crucial.

A major challenge in studies comparing the two methodologies is
a shortage of paired imaging and gene data in patient cohorts; exist-
ing reports are few and based on small cohorts [18]. We have pro-
posed imaging- and gene-based hypoxia biomarkers for cervical
cancer patients, derived from DCE-MR images and gene expression
data, respectively [19-22]. The biomarkers have shown prognostic
impact in several independent cohorts [19,21,23], and although they
both inform about hypoxia, their underlying biology differs. The
imaging biomarkers depend on physiological features related to oxy-
gen supply and consumption, such as blood perfusion, vascular den-
sity, and cell density [24], while the gene-based biomarkers measure
expression of hypoxia responsive genes. In the present work, we gen-
erated a unique paired data set of two of the most promising imag-
ing- and gene-based biomarkers for 118 cervical cancer patients
[21,22]. We compared the performance of the two biomarkers in
relation to the intratumour heterogeneity, and further investigated
how they could be combined in prediction of treatment resistance.

2. Materials and methods
2.1. Patient cohort and study design

Totally 118 patients with locally advanced carcinomas of the uter-
ine cervix, prospectively recruited to our observational chemoradio-
therapy trial at the Norwegian Radium Hospital from 2001 to 2007,
were included (Supplementary Table S1). Treatment and follow-up
were performed as described [20]. In short, external radiation of
50 Gy in 25 fractions was given to the tumour, parametria, and adja-
cent pelvic wall, while the remaining pelvis received 45 Gy. This was
followed by brachytherapy of totally 25 Gy to the tumour in 5 frac-
tions. Concurrent cisplatin (40 mg/m?) was given weekly in maxi-
mum six courses according to tolerance. Follow up was performed by
standard procedures. When symptoms of relapse were noted, MRI of
pelvis and retroperitoneum as well as X-ray of thorax were per-
formed. The study was approved by the Regional Committee for Med-
ical and Health Research Ethics in southern Norway (S-01129). All
patients gave written informed consent.

High quality paired DCE-MR images and gene expression data
were available for all patients. The cohort constituted a subgroup of
41 patients which were used to construct and define the classification
cutoff of the gene-based biomarker in previous work [21]. The classi-
fication cutoff of the imaging-based biomarker had not been deter-
mined before [22], and the same 41 patients were used to define this
cutoff (Fig. 1a). The remaining 77 patients were used to validate the
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Fig. 1. Study design and hypoxia biomarkers. (a) Patients included at different stages of the study. Independent subgroups of the total cohort of 118 patients were used to determine
biomarker cutoff for classification (n = 41) and to validate the association between the biomarkers and construct the combined biomarker (n = 77). The total cohort was used to
assess the importance of intratumour heterogenity for biomarker performance and compare the combined biomarker with existing clinical markers. (b) Determination of the imag-
ing-based biomarker from left to right, sagittal T,W-image of the pelvic showing localization of image slices numbered from lower to upper part of the tumour, example of axial
Agrix-image of the tumour (slice 6) superimposed on T,W-image, Agix-images of all slices covering the tumour, binary Ag;ix-images of the same slices showing voxels in hypoxic
and non-hypoxic regions according to an Ag,ix threshold value of 1.56, and classification based on the hypoxic fraction of all slices combined. (c) Determination of the gene-based
biomarker from left to right, sagittal T,W-image of the pelvic showing localization of the region accessible for biopsies in the lower part of tumour, the approximate size of the sec-
tions from 1—4 biopsies (median 2) taken from each tumour and pooled for RNA isolation, expression data of 6 signature genes, and classification based on the signature value.

association between the two biomarkers and to construct a combined
biomarker. The performance of this combined biomarker in relation
to existing clinical markers was evaluated in the entire cohort of 118
patients (Fig. 1a). The entire cohort was also used to compare the per-
formance of the individual biomarkers in relation to the intratumour
heterogeneity.

2.2. Imaging-based biomarker

Diagnostic DCE-MR images for the imaging-based biomarker were
acquired using a Signa Horizon LX-1.5T scanner (GE Medical Systems)
with a pelvic-phased-array coil and a fast bolus injection of 0.1 mmol/
kg body weight of Gd-DTPA (Magnevist®, Schering) [19,22] The
dynamic T;-weighted series were acquired with a fast spoiled gradi-
ent recalled echo sequence and included 2—12 (median of seven)
axial slices covering the whole tumour (Fig. 1b), with a slice thickness
of 5 mm, slice gap of 1 mm, and in-plane resolution of 0.78 mm. Axial
Ty-weighted (T,W) images from a fast spin echo sequence were used
for tumour delineation. The uptake of contrast agent; i.e. the relative
signal intensity increase as a function of time after GA-DTPA injec-
tion, was recorded for each voxel.

The Agiix-parameter in Brix pharmacokinetic model [24]| was
derived from the contrast uptake curves [19]. Fraction of voxels in

hypoxic regions was calculated from the Ag-values of all tumour
voxels, and this Agx-hypoxic fraction was used as biomarker
(Fig. 1b). The biomarker can be visualized in binary Agx-images and
is thus a clinically usable imaging biomarker [22]. The Ag;ix threshold
for hypoxia was 1.56. This threshold was established in a subgroup of
our patients to reflect a hypoxia level associated with chemoradio-
therapy resistance [22], and was considered to be valid for our
extended cohort examined with the same MR machine. To define a
cutoff of Agx-hypoxic fraction for dichotomous classification of
tumours, we considered the hypoxia status of the 41 patients used to
construct the gene-based biomarker [21] (Fig. 1a). This hypoxia status
from previous work was determined from the 20—30th percentile of
the Ag;ix-histogram for the entire tumour, and is less feasible as imag-
ing biomarker than the Ag;ix-hypoxic fraction applied in the present
study. The tumours classified as more hypoxic and as less hypoxic
had an Ag,ix-hypoxic fraction above and below 0.38, respectively, and
this cutoff was used to classify tumours according to their hypoxia
status with the imaging biomarker (Fig. 1b).

2.3. Gene-based biomarker

Gene expression profiles for the gene-based biomarker were gen-
erated based on pooled RNA from one to four biopsies (median of
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two) per tumour. The biopsies were taken from the lower, accessible
region of the tumour the day after MRI (Fig. 1c), immediately snap
frozen and stored at —80 °C. From each biopsy, 30 x 50 um slices
(approximately 5 x 5 x 1.5 mm) were used for RNA isolation. Assay
methods for RNA isolation and gene expression measurement by Illu-
mina BeadArray WG-6 v3 and HT-12 v4 (Illumina Inc.) were
described previously [21]. To compare classification from different
biopsies within tumours, two to four biopsies from nine patients (24
biopsies in total) were available for individual analyses. Expression
data were derived for each of these biopsies, using Illumina HT-12 v4
BeadArray and the same procedure as for the pooled samples.
Tumour cell fraction, defined as the percentage of tumour cells in a
haematoxylin and eosin stained section from the central part of the
biopsy, was available for all biopsies.

The gene-based biomarker was constructed by evaluating the
log,-transformed expression value of 31 hypoxia responsive genes
associated with Ag,ix in a cohort of 42 patients, as reported previously
[21]. In short, based on the ability of the expression values to separate
patients correctly according to an Ag;ix-defined hypoxia status, a six-
gene signature (DDIT3, ERO1A, KCTD11, P4HA2, STC2, UPK1A) was
identified and used as biomarker [21]. The six-gene signature pro-
vides a continuous output value calculated as a weighted sum of the
expression level of all signature genes [21]. The signature has a pre-
defined cutoff of zero, which was used for dichotomous classification
of tumours or samples according to their hypoxia status as more or
less hypoxic (Fig. 1c).

2.4. Heterogeneity and clustering of hypoxic regions

Intra- and inter-tumour heterogeneity in the biomarkers were
estimated based on data for several samples per tumour, using ran-
dom-effects one-way analysis-of-variance (ANOVA) models [25,26],
where the total variance (T) is divided into the within-tumour (W)
and between-tumour (B) variance. As a measure of the intratumour
heterogeneity that is invariant to the measurement unit, W/T, where
T =W + B, was used. Thus, a W/T > 0.5 indicates a larger intratumour
than intertumour heterogeneity, whereas for W/T < 0.5 the heteroge-
neity within tumours is less than between tumours. When the bio-
marker value for each tumour is calculated based on the average of k
samples instead of one, the within-tumour variance (W) is reduced
by a factor 1/k, and thus the intratumour heterogeneity of the bio-
marker using these averages (W,/T) is given by:

We _ ¥

T WiB

where W and B are the within- and between-tumour variance calcu-
lated using ANOVA with single sample values [26]. ANOVA was per-
formed on continuous biomarker values, and for the imaging-based
biomarker, logit-transformed data were used.

Clustering of hypoxic regions was identified from the variance in
imaging-based hypoxic fraction of numerous virtual samples ran-
domly collected within an image slice. Each sample included 12 vox-
els, mimicking the size of a biopsy used for the gene-based
biomarker. The number of virtual samples per patient was set to 1/12
of the total number of voxels in the corresponding slice. The variation
in hypoxic fraction for the virtual samples from a tumour depends on
the spatial distribution of the hypoxic areas as well as the hypoxic
fraction of the slice, with lower variation for low and high hypoxic
fractions. Therefore, to identify tumours with more or less clustering
of hypoxic regions, the virtual sample variation adjusted for hypoxic
fraction of whole slice was used as follows: The standard deviation
(SD) of the hypoxic fractions for the virtual samples was calculated
for each tumour and plotted versus the hypoxic fraction of the whole
slice. Then, a generalized additive model (GAM) was fitted to the data

to separate tumours with more and less clustering, defined as having
positive and negative residuals, respectively.

2.5. Hypoxia classification by imaging and genes combined

The imaging- and gene-based biomarkers were combined into a
composite hypoxia measure for each patient to define a new classifi-
cation cutoff that included both biomarkers. Based on a correlation
plot of the continuous biomarker values, the optimal line for separa-
tion of the more and less hypoxic tumours to achieve the best associ-
ation to progression-free survival (PFS) was determined:

Y =Yo- %*X

where y and x are the values of the two biomarkers and yo and xg are
the points where the line intersects the y- and x-axis, respectively.
The optimal separation line and, hence, xo and y,, were determined
in an iterative procedure, where the log-rank test was used to test
the difference in PFS between patients with more and less hypoxic
tumours for numerous possible lines. The distance (d) from the point
(x,y) to the separation line was calculated for each patient to classify
the tumour as more or less hypoxic:

(%ﬂlﬁ 1)
(Ver-&r)

where less hypoxic tumours have d < 0 and more hypoxic tumours
have d > 0.

d=

2.6. Statistics

Clinical endpoint was PFS for follow-up until five years, where
time from diagnosis to disease-related death or first event of relapse
was used and patients were censored as described [21]. Kaplan-Meier
survival curves were compared using log-rank test. The univariate
Cox proportional-hazards (PH) model was used to determine hazard
ratios (HR), and Cox uni- and multivariate PH analyses were per-
formed to evaluate prognostic significance. Assumptions of PHs were
confirmed graphically using log-minus-log plots. Nested Cox models
were compared with a likelihood ratio test.

Associations were estimated by Pearson’s or Spearman’s correla-
tion and reported by the correlation coefficients r and rho, respec-
tively. Differences between groups were assessed with Fisher’s exact
test, Wilcoxon rank-sum test or Kruskal-Wallis test, as appropriate.
Significance level was 5%, and all tests were two-sided. All analyses
were performed using R [27], version 3.6.0. HRs are presented with
95% confidence interval (CI).

2.7. Data availability

The gene expression data have been deposited to the NCBI's Gene
Expression Omnibus (GEO) database: GSE146114.

3. Results
3.1. Relationship between imaging- and gene-based classification

Classification by the two biomarkers was compared in correlation
plots of the continuous biomarker values (Fig. 2). Based on the sub-
group of 41 patients used to construct the gene-based biomarker in
previous work [21], we first confirmed a strong correlation between
imaging and genes for our imaging biomarker Ag,ix-hypoxic fraction,
as well as a significant association in classification (P < 0.0001;,Fish-
er’s exact test) (Fig 2a). Totally 80% of the tumours were classified
with the same hypoxia status by imaging and genes in these patients.
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Fig. 2. Comparison of imaging-and gene-based hypoxia classification. Correlation plots of biomarker values, showing gene-defined versus imaging-defined hypoxia for 41 patients
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are indicated. (d) Venn diagram showing the overlap of imaging- and gene-based classification of more and less hypoxic tumours for all 118 patients.

These associations were further validated in the 77 remaining
patients. A positive correlation between the biomarker values was
found (Fig. 2b), and a significant association in classifications
(P =0.01, Fisher's exact test,) with 73% of the tumours classified with
the same hypoxia status.

To compare the two biomarkers in the following analyses of intra-
tumour heterogeneity, the two subgroups of patients were merged
(Fig. 1a). Based on the correlation plot, three classification groups
were defined; group 1 (n = 16, more hypoxic) and 2 (n = 73, less hyp-
oxic) tumours had the same hypoxia status by both biomarkers,
whereas group 3 tumours (n = 29) were classified with different hyp-
oxia status (Fig. 2c-d). Although equal classification by the two bio-
markers was generally achieved (75%), a significant group of tumours
was thus differently classified. Most of these tumours; i.e., 27 out of
29, were more hypoxic by genes (Fig. 2c), and a higher number of
tumours was classified as more hypoxic by genes (n = 43) than by
imaging (n = 18).

3.2. Heterogeneity in hypoxia across the tumour volume

Inconsistent classification by the two biomarkers could be more
common in large than small tumours, since the biopsies include only

a small part of the tumour and may therefore have lower ability to
record the hypoxia status correctly in these cases. In contrast to this
hypothesis, the largest tumours were generally classified equally, as
more hypoxic by both biomarkers (Fig. 3a). However, tumours classi-
fied differently had a higher volume than those defined as less hyp-
oxic by both biomarkers (Fig. 3a). A detailed investigation of regional
differences in hypoxia was therefore performed by first using the
imaging data to assess the heterogeneity across image slices. The
binary images revealed pronounced differences up to 0.54 in hypoxic
fraction between slices of individual tumours, and the hypoxia status
of each slice could differ (Fig. 3b-c; Supplementary Fig. S1). However,
hypoxic fraction per slice showed a small intratumour heterogeneity
with a W/T of 0.16. Moreover, most slices (93%) were classified with
the same hypoxia status as the whole tumour (Fig. 3c).

The image slice covering the biopsy region (i.e., slice 1) was
selected to investigate how well the hypoxia status of this region
reflected the status of the whole tumour. Imaging-defined hypoxia
based on this slice showed a strong correlation with the value based
on all slices (r=0.86, P < 0-0001; Fig. 3d). Moreover, both a significant
correlation between imaging- and gene-defined hypoxia (rho = 0.27,
P =0-0035; Fig. 3e) as well as the similarity in classification by imag-
ing and genes (Fig. 3f) were retained, but not improved, when the
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imaging data were derived from the biopsy region rather than the
whole tumour. These results indicate that discordant hypoxia classifi-
cation by imaging and genes was not related to different hypoxia sta-
tus of the biopsy region compared to the whole tumour. In particular,
the hypoxia status of the biopsy region seemed to be representative
for the whole tumour.

3.3. Heterogeneity in hypoxia within the biopsy region

The heterogeneity in hypoxia was further investigated within the
biopsy region. In a subgroup of nine patients, hypoxia was assessed
by genes for multiple biopsies from each tumour (Fig. 4a). The intra-
tumour heterogeneity in gene-defined hypoxia, determined as a W|T
of 0.33, was smaller than the heterogeneity between tumours. By
using two to four biopsies, the intratumour heterogeneity (W/T)

was reduced to 0.20 (2 biopsies), 0.14 (3 biopsies) and 0.11 (4 biop-
sies). However, the number of biopsies used for patient classification
in Fig. 2 (i.e., 1-4) was not associated with the similarity in imaging-
and gene-based classification (Supplementary Fig. S2). The use of 2 or
more biopsies therefore seemed not to result in more cases of equal
classification. Moreover, for eight of nine tumours in our multiple
biopsy experiment there was a complete concordance in classifica-
tion amongst the biopsies (Fig. 4b). For the remaining tumour (no. 8,
Fig. 4b), one biopsy was classified as more hypoxic and two as less
hypoxic. The binary image of the slice covering the biopsy region
(slice 1) of this tumour showed large spatial variation with clustering
of hypoxic areas (Fig. 4c), which could imply that the biomarker value
strongly depended on the exact location of the biopsy.

To address this hypothesis, we performed a simulation experi-
ment to assess the spatial variation in hypoxia within the biopsy
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Fig. 4. Heterogeneity in hypoxia within biopsy region. (a) Determination of gene-based biomarker for multiple biopsies from 9 tumours. (b) Gene-based biomarker value for 2—4
biopsies from each of 9 tumours (24 samples). Dotted line, classification cutoff. (c) Binary image of the biopsy region for tumour 8 in (b). (d) Illustration of the simulation experiment.
Sagittal T,W-image of the pelvic with indication of selected image slice covering the biopsy region (left), binary image of selected slice showing voxels in hypoxic and non-hypoxic
regions and location of 3 virtual samples, each of 12 voxels (middle), binary image and biomarker value (hypoxic fraction) of the 3 virtual samples (right). (e), Imaging-based bio-
marker value of the virtual samples for each patient sorted according to increasing biomarker value of the biopsy region. The boxes extend from the first to third quartile with the
median value indicated. (f), Standard deviation (SD) of the imaging-based biomarker value of the virtual samples versus biomarker value of the biopsy region. Line, generalized addi-
tive model (GAM) fitted to the data to separate tumours with more (above the line) or less (below the line) clustering of hypoxic regions. Filled circles, tumours displayed in (g). (g)
Binary images showing less or more clustering of hypoxic regions for 8 tumours indicated in (f). (h), Fraction of patients with less or more clustering of hypoxic regions for patients
with same or different hypoxia status by imaging (biopsy region) and genes. Number of patients (n) and P-value from Fisher’s exact test are indicated.

region, using the imaging data of slice 1. We randomly sampled
numerous areas of biopsy size, each of 12 voxels, within the slice and
determined the hypoxic fraction for each of these virtual samples
(Fig. 4d—e). The virtual samples showed a large intratumour hetero-
geneity, with a W/T of 0.50, indicating high spatial variation in imag-
ing-defined hypoxia across the biopsy region. Tumours with less or
more clustering of hypoxic regions were identified by comparing the
variation in the imaging-defined hypoxia of the virtual samples for
each tumour, correcting for the whole-slice hypoxic fraction (Fig. 4f).
Considerable difference in the degree of clustering was found across
the tumours, in agreement with a visual inspection of the image sli-
ces (Fig. 4g; Supplementary Fig. S3-S4). Clustering was, however, not
associated with inconsistent classification by imaging and genes
(Fig. 4h). Overall, the gene-based biomarker seemed to be reproduc-
ible across biopsies, and spatial variation in hypoxia within the
biopsy region could not explain differences in classification by the
two biomarkers.

3.4. Heterogeneity in biopsy composition and gene-based hypoxia

Tumour cell fraction was 50% or higher in most biopsies underly-
ing the gene-based biomarker, but showed a broad range from 10%
to 90% (median of 65%). No correlation between this fraction and
gene-defined hypoxia was found (Fig. 5a). In particular, both more
and less hypoxic tumours were identified at tumour cell fractions up
to 90% and down to 40%. All three tumours with a fraction below 40%
were classified as less hypoxic by genes, but these were also less hyp-
oxic by imaging (Fig. 5a). Moreover, there was no significant differ-
ence in this fraction between any of the classification groups
(Fig. 5b). A more detailed analysis was also performed, using data
from our multiple biopsy experiment (Fig. 4a). Although the fraction
could differ up to 40% for some biopsies from the same tumour
(Fig. 5¢, tumours no. 3 and 8), they were generally classified with the
same hypoxia status. For tumour no. 8, the only biopsy out of three
that was classified as more hypoxic had the lowest tumour cell
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biopsies from 9 tumours presented in Fig. 4b.

fraction of 20%. Altogether, the gene-based classification seemed to
be independent on biopsy composition.

3.5. Construction of a combined imaging- and gene-based biomarker

The above results indicated considerable robustness of the two
biomarkers, where different classification of some tumours seemed
not to be caused by intratumour heterogeneity. It was therefore likely
that the biomarkers provided complementary information that com-
bined could lead to more precise prediction of treatment outcome. To
address this hypothesis, we considered the 77 patients who were
previously not used to construct the gene-based biomarker (Fig. 1a).
Both biomarkers showed prognostic impact in this subgroup of
patients, with a significantly lower PFS probability for patients with a
more hypoxic than a less hypoxic tumour (Fig. 6a-b). Moreover, the
lowest PFS probability of 0.17 was achieved for patients with more
hypoxia by both biomarkers (group 1 tumours) (Fig. 6¢). While
patients with less hypoxia by both biomarkers (group 2) showed the
highest PFS probability of 0.88, those with more hypoxia by one bio-
marker only (group 3) had an intermediate PFS probability of 0.67
(Fig. 6¢). Some of the latter patients thus experienced relapse and
should have been included amongst the high-risk group 1 patients. A
Cox PH model with the two dichotomous biomarkers as covariates
showed a significant contribution of both of them in the model
(P < 0.05). Moreover, this model fitted the PFS data significantly bet-
ter than a model with either imaging or genes only (likelihood ratio
test, P = 0.03 and P = 0.01, respectively). Altogether, this supported
that the two biomarkers combined would yield a better outcome pre-
diction than only one biomarker.

A combined dichotomous biomarker was constructed, aiming to
identify patients with relapse in the intermediate group as high-risk
patients. In the correlation plot of the two continuous biomarker val-
ues, a line was identified that divided the patients into two groups;
one group with more hypoxia and another with less hypoxia, to yield
the strongest association to PFS (Fig. 6d). Numerous lines were tested
by changing the intersections with the two biomarker axes (Supple-
mentary Fig. S5). A 10-fold cross-validation was applied, resulting in
the same optimal line in each of the ten analyses. By using this line as
classification cutoff, some patients originally defined as more hypoxic
by one biomarker only, was moved to the more hypoxic group. This
yielded a large separation in PFS of 0.70 between the more and less
hypoxic group with a 60 months survival probability of 0.20 and
0.90, respectively (Fig 6e). Moreover, HR increased from 6.2 and 4.0
for the imaging- and gene-based biomarkers, respectively, to 14.5 for
the combined biomarker (Fig. 6a, b, e). Our strategy to combine the

two biomarkers therefore further increased the prognostic impact of
hypoxia classification. The optimal line identified for the 77 patients
also separated the 41 remaining patients into two groups with differ-
ent PFS probability (Fig. 6f), demonstrating robustness in this
approach.

3.6. Performance of the combined biomarker

To evaluate the performance of the combined biomarker, the two
subgroups of 41 and 77 patients were merged. A strong prognostic
impact of the biomarker with a HR of 7.3 was found for this large
cohort of 118 patients (Fig. 7a). The biomarker was further compared
with the existing clinical markers pelvic lymph node status, tumour
stage, and tumour volume, where the patients were classified into
groups based on positive or negative lymph node status, median
tumour volume or high (3, 4A) or low (1B, 2) tumour stage according
to FIGO (Supplementary Table S1). In univariate Cox PH analyses,
hypoxia status and tumour stage showed the strongest association to
PFS with HRs above 4.5 (Table 1). Moreover, the significance of hyp-
oxia status was retained in multivariable Cox PH analysis together
with tumour stage (Table 1). Hence, although tumour stage is a
strong prognostic factor in cervical cancer, hypoxia status appeared
to have independent prognostic impact that may be of clinical value.
This is demonstrated by the survival curves in Fig. 7b, showing con-
siderable difference in PFS probability for patients with a more and
less hypoxic tumour both in cases of a high and a low tumour stage.

4. Discussion

The present study addresses an unmet need in the diagnostics of
cancer patients; to better understand how an imaging- and a gene-
based biomarker relate to each other and should be combined in an
extended treatment decision support system. Construction of a
unique, paired data set for a decent number of patients enabled reli-
able comparison of two hypoxia biomarkers and evaluation of their
prognostic potential in a combined setting. Moreover, by utilizing an
imaging biomarker constructed from MR images with high spatial
resolution compared to biopsy size, intratumour heterogeneity in
hypoxia could be assessed on a scale of relevance for the gene-based
biomarker. Although considerable heterogeneity was found, this
seemed to have no major influence on the performance of the two
biomarkers, and a synergy in prediction of treatment resistance was
demonstrated by combining their hypoxia information.

The imaging data suggested large regional differences in hypoxia
both across the entire tumour volume and, at a smaller level, within
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Table 1
Cox PH regression analyses based on 118 patients.

Univariate analyses Multivariate analysis®

p HR  95%Cl p HR  95%Cl
Pelvic lymph node status  0.051 19 1.0-37 NS - -
Tumour stage® <0.001 46 23-89 <0001 34 1.7-6.7
Tumour volume” 0033 21 11-41 NS — -
Hypoxia“ <0.001 73 37-142 <0.001 58 3.0-115

Abbreviations: HR, hazard ratio; ClI, confidence interval; FIGO, Federation Interna-
tional de Gynecologie et d'Obstetrique; N.S., non-significant.

2 Patients were divided into two groups based on a FIGO stage of 1B-2B and 3A-4A.

b Ppatients were divided into two groups based on the median tumour volume of
31.1 cm?.

¢ Patients were classified with a more or less hypoxic tumour by a composite hyp-
oxia measure based on imaging and genes combined.

4" In the multivariate analysis, the same result was obtained for forward and back-
ward selection.

the biopsy region. This is consistent with oxygen tension (pO,) meas-
urements by electrodes, showing broad pO, distributions of individ-
ual cervix tumours and a large variation in pO, along electrode tracks
of 5—-10 mm [28-31]. Although this heterogeneity has caused con-
cern for the application of hypoxia biomarkers derived from only a
limited part of the tumour [32], our study showed good agreement
between the hypoxia status of the biopsy region and the whole
tumour. Moreover, consistent classification by imaging and genes
was found for almost all of the largest tumours, and for tumours with
severe clustering of hypoxic regions. It therefore seems to be a minor
hurdle for the gene-based biomarker that only the lower part of the
tumour is accessible for biopsies and the tumours are large compared
to biopsy size. However, it should be emphasized that heterogeneity
in hypoxia may have led to different classification by the two bio-
markers in a few cases.

The gene-based biomarker showed a low intratumour hetero-
geneity, consistent with studies reporting lower heterogeneity for
most multigene signatures than for the individual signature genes
[33]. When using up to four biopsies, the heterogeneity of the
continuous biomarker value was reduced to around the 0.15 limit
suggested for a biomarker to represent the tumour with satisfac-
tory accuracy [34]. However, for dichotomous hypoxia classifica-
tion, our biomarker seemed to be robust also when based on a
single biopsy. Moreover, the cellular composition of the biopsies
appeared to play no major role for the biomarker output, in
accordance with a previous report on head and neck cancer [35].
It is therefore likely that the biomarker captured a molecular
hypoxia phenotype characteristic of the tumour, independent of
the number or composition of biopsies used. Expression of hyp-
oxia responsive genes, as measured by the gene-based biomarker,
is influenced by persistent genetic alterations such as DNA meth-
ylation, mutations, and copy number changes, in addition to an
instant stimulatory effect on transcription by reduced oxygen
concentration. One could therefore speculate that this biomarker
reflects a phenotype providing tolerance of tumour cells to hyp-
oxic stress, and thereby capability to tackle fluctuations in hyp-
oxia, while the imaging biomarker provides an instant measure of
the balance between oxygen consumption and supply in the tis-
sue.

The use of both biomarkers significantly improved risk classifica-
tion of the patients, probably by reflecting different hypoxia pheno-
types related to tumour aggressiveness, in addition to reducing small
effects of intratumour heterogeneity, technical uncertainties, and
changes in hypoxia status during the time period between MRI and
collection of biopsies [13,26]. Our new classification cutoff included
information from both biomarkers and was directly transferrable to
another subgroup of patients. This approach to combine biomarkers
could therefore be of interest for a clinical implementation, and

might also be exploited for other phenotypes than hypoxia. Our bio-
marker has a considerable potential of being adopted since it meas-
ures an important biological feature, for which several molecular
targeted drugs are available or in pipeline [16]. Moreover, it enabled
improved outcome prediction compared to existing clinical markers.
However, before implementation, the biomarker must fulfil several
criteria for translation [36,37].

To pass the first translational gap, the biomarker needs to be
developed into a robust medical tool [37]. Technical and clinical vali-
dation has already been shown for our gene-based biomarker, by
demonstrating transferability from a microarray assay to a more fea-
sible RT-qPCR assay and prognostic significance in two independent
patient cohorts [21]. Transferability of our imaging biomarker across
MRI machines remains to be demonstrated. A previous study by Lon-
caster and colleagues [23], showing prognostic significance of an
Ag;ix-defined parameter from another MRI machine than ours,
encourages further work to address this challenging step. Moreover,
it is reasonable to believe that an imaging biomarker assessing hyp-
oxic fraction, like ours, would be more robust than the histogram-
based biomarker considered previously [23]. For further assessment
and cutoff validation of the two biomarkers combined, generation of
paired imaging and gene-based data sets for large patient cohorts is
needed and highly warranted. Finally, in an economic perspective,
our combined biomarker is beneficial as the data are based on MRI
and biopsies obtained during state-of-the-art diagnostics. This will
facilitate passage of the second translational gap; to be integrated
into routine patient care [37].

In conclusion, our study encourages implementation of a multifac-
torial biomarker based on imaging and genes to assess tumour hyp-
oxia more precisely and extensively in cervical cancer. Moreover, our
findings motivate for investigating such combination also in other
cancer types, using imaging modalities suitable for the specific cancer
type, e.g. FMISO in head and neck cancer [9] and diffusion weighted
MRI in prostate cancer [38]. The combined biomarker may lead to a
better trial design, both by providing more accurate identification of
patients with treatment resistant disease and by proposing the most
relevant hypoxia targeting drugs for intervention. This might be of
utmost importance in cervical cancer since patients are already on
the toxicity limit with the standard treatment and should not enter
clinical trials without an expected benefit [39,40].
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