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Summary

Using social media data for statistical analysis of general population faces commonly two basic
obstacles: firstly, social media data are collected for different objects than the population units of
interest; secondly, the relevant measures are typically not available directly but need to be extracted
by algorithms or machine learning techniques. In this paper, we examine and summarise two
existing approaches to statistical analysis based on social media data, which can be discerned in
the literature. In the first approach, analysis is applied to the social media data that are organised
around the objects directly observed in the data; in the second one, a different analysis is applied
to a constructed pseudo survey dataset, aimed to transform the observed social media data to
a set of units from the target population. We elaborate systematically the relevant data quality
frameworks, exemplify their applications and highlight some typical challenges associated with
social media data.
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1 INTRODUCTION

There has been a notable increase of interest from researchers, companies and governments to
conduct statistical analysis based on social media data collected from platforms such as Twitter
or Facebook. At the same time, there is also a growing concern about various issues associated
with these new types of data. For instance, Boyd & Crawford (2012) ask whether such data may
alter what ‘research’ means, and they call for the need to question relevant assumptions and
biases. Bright et al. (2014) argue that caution is needed when interpreting social media data, and
major questions remain on how to employ such data properly. Hsieh & Murphy (2017) highlight
what they call coverage error, query error and interpretation error in relation to Twitter data.
Halford et al. (2017) urge to develop better understanding of the construction and circulation
of social media data, to evaluate their appropriate uses and the claims that might be made
from them.

The aim of this paper is to examine and summarise two existing approaches to statistical
analysis based on social media data, when the analysis otherwise would have been possible
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based on the traditional approach of survey sampling. To fix the scope, let UD {1, 2, : : : , N}
be a target population of persons. Let yi be an associated value for each i2U. Let the parameter
of interest be a function of yUD {y1, : : : , yN}, denoted by

� D �.yU /:

For instance, � can be the population total or mean of the y-values. The quality of sample
survey data can generally be examined with respect to two dimensions: representation and
measurement (Groves et al., 2004). The representation dimension concerns the relationship
between U and the observed set of persons, denoted by s. For example, s suffers from under-
coverage if there are persons in U who have no chance of being included in s. The measurement
dimension concerns the potential discrepancy between yi and the obtained measures, denoted
by y�i for i2 s. For instance, y�i may be subjected to various causes of measurement error, such
that y�i ¤ yi for some persons in s.

Thus, when social media data are employed, one needs to address two basic obstacles with
respect to each quality dimension. Firstly, social media data are initially organised around dif-
ferent units than persons; secondly, the relevant measures typically cannot be directly observed
but need to be processed using algorithms or machine learning techniques. For example,
one may like to make use of the relevant tweets to estimate the mean of a value associ-
ated with the resident population of a country. The directly observed unit (or data object) is
then the tweet, whereas the statistical unit of interest is the resident. Next, instead of using
designed survey instruments to measure the value of interest as one could in survey sam-
pling, one will need to process a proxy to the target value from the Twitter texts by means of
text mining.

Two existing approaches can be discerned in the literature. In what we refer to as the one-
phase approach, statistical analysis is directly applied to the observed social media data that are
organised around data objects other than persons. An example is Yan et al. (2019), who doc-
ument statistical association between available drug-related tweets (processed by text mining
techniques) in May–December 2012 and US county crimes rates (calculated against population
size adjusted for non-residents) over 2012–2013. Next, in the two-phase approach, a differ-
ent analysis is applied to a constructed pseudo survey dataset, after transforming the observed
social media data to a set of persons from the target population. An example is Rampazzo
et al. (2018), who document correlation between fertility rate published by the United Nations
and that can be calculated for Facebook users. The pseudo survey dataset is collected directly
from the Facebook Advertising Platform, which is assumed to be cleared of bots or other non-
human accounts. The variable ‘number of children’ is also prepared by Facebook based on the
information the company has about the users.

In this paper, we shall delineate these two approaches more generally and systemati-
cally than they have hitherto been treated in the literature, where the Social Media Index
(SMI) for Dutch Consumer Confidence (Daas & Puts, 2014) serves as a typical case of the
one-phase approach, and the Office for National Statistics study on residency and mobil-
ity data constructed from geolocalised tweets (Swier et al., 2015) is used to illustrate the
construction of pseudo survey dataset under the two-phase approach. We shall elaborate the
relevant data quality frameworks and methodologies and highlight some typical challenges to
statistical analysis.

The rest of the paper is organised as follows. In Section 2, we systematically describe the
general issues of representation and measurement of social media data. In Sections 3 and 4,
we delineate and examine the one-phase and two-phase approaches, respectively. Finally, some
concluding remarks are provided in Section 5.
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2 GENERAL ISSUES OF REPRESENTATION AND MEASUREMENT

2.1 Representation

A major concern about the use of social media for research is the non-representativeness
of data, when the population of interest does not coincide with the social media population
(Boyd & Crawford, 2012; Bright et al., 2014; Halford et al., 2017; Hsieh & Murphy, 2017).
Meanwhile, when investigating the representativeness of a social media population, one often
compares it to the resident population of a country, about which one has high-quality statistics.
For instance, Pew Research Centre publishes every year a report on the use and participation
in social media of the US population. It is shown that US users of Twitter and Facebook tend
to be younger and more educated than the US resident population (Greenwood et al., 2016).
In the UK, Blank & Lutz (2017) find that Facebook users are more likely to be younger and
female, while LinkedIn users are more likely to have a higher income than non-users. Mellon &
Prosser (2016) examine how Twitter and Facebook users differ from the UK resident population
in terms of demographics, political attitudes and political behaviour.

Twitter provides a typical example of online news and social networking site. Communica-
tion occurs through short messages, called tweets; the act of sending tweets is called tweeting.
To be able to tweet, an account needs to be created. To register, a user has to provide an email
address, a username and a password. A user can be a person, a business, a public institution,
even softwares (bots) and so forth. In case of person, the user is not obliged to create an account
reflecting her or his physical persona. Optional fields include a profile picture, a bio and a loca-
tion, which are neither verified nor expected to accurately characterise the user. By default,
tweets are publicly available, although the user may change the privacy setting to make it pri-
vate. Each tweet can be original, a reply to another tweet or a copy of a different tweet, known
as a retweet. It can mention a username account (@) to address a specific user, and it can con-
tain hashtag (#) to declare the topic of the tweet. Hashtags offer a way to categorise tweets into
specific topics (e.g. a tv show, a sport event and a news story). Some events such as football
matches, film festivals or conferences may have an official hashtag under which the relevant
tweets about the event are classified. Hashtags can also be user-specific and not intelligible to
the general public.

As in the Twitter example, one can identify two directly observable units of data on most
social media platforms, which we will refer to as the post and the account:

Post We use the generic term post to refer to the immediate packaging of social media con-
tent, which otherwise has a platform-specific name: Facebook has posts, Twitter
has tweets, Instagram uses picture and so forth.

Account An account is the ostensible generator of a post. As in Twitter, the user(s) operating
a social media account can be different entities including but not limited to per-
sons. Moreover, the same user can have multiple accounts, but the connections
between these accounts and the user are not publicly accessible.

Denote by P and A, respectively, the totality of all the posts and accounts on a given social
media platform. There is a many-one relationship from posts to the active accounts, denoted
by APD a(P), and the inactive accounts A nAP is non-empty in general. Next, there is a many-
one relationship from accounts to the users, denoted by b(A). The observable persons are given
by the joint set of the target population U and uAP D b.AP / D b .a.P //, that is, via the
active accounts. Moreover, U n uAP is non-empty as long as there are persons not engaged with
the given social media platform, and uAP nU is non-empty as long as they are other users than
persons. These relationships are summarised in Table 1.
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Table 1. Many-one relations a from post to account, and b from account to user

Post Account Person

Totality P A U
Observable P APD a(P) U \ uAP ; uAP D b.AP / D b .a.P //

A nAP¤∅ U n uAP¤∅, uAP nU¤∅

Sample i. sP�P i. sAD a(sP) U\ sAP, U n sAP¤∅, sAP nU¤∅

ii. sP� a�1(sA) ii. sA�A i. sAP D b .a.sP //, ii. sAPD b(sA)

Next, a common way of collecting data from a given social platform is via the public APIs,
either directly or indirectly through third-party data brokers; Web scraping provides another
option, albeit with unclear legal implications at this moment. Via the APIs, a sample of posts
or, less commonly, accounts is harvested directly from the social media company, and the
obtainable sample depends on the company's terms and conditions. Depending on the API, the
obtained datasets may differ in terms of being real-time or historical, or the amount of data that
is allowed for.

Gaffney & Puschmann (2013) provide an overview of the tools available to extract Twitter
data. For example, the Streaming API returns two possible samples: a 1% sample of the
total firehose (the firehose is the totality of tweets ever tweeted), without specifying any filter;
or a sample of posts on specific keywords or other metadata associated to the post. However,
if the number of posts matching these filters is greater than 1% of the firehose, the Twitter
API returns at most 1% of the firehose. In addition, historical tweets can be retrieved using the
Search API, which provides tweets published in the previous 7 days, with a selection based
on ‘relevance and not completeness’ (Twitter Inc.). For both APIs, Twitter does not provide
the details of the process involved nor guarantees that the sampling is completely random.
See, for example, studies that have been conducted to understand and describe how the data
generation process works with Twitter (Morstatter et al., 2013; González-Bailón et al., 2014;
Wang et al., 2015).

Sampling of accounts is less common, which is only feasible if the usernames are known in
advance. Consider the case where the interest is on the political candidates during an election. If
a complete list of their usernames is available, sampling can be performed by the analyst; all the
posts generated by the sample accounts on the social media platform can possibly be retrieved.
The approach is only applicable when the group is made of ‘elite’ users (of known people),
rather than ‘ordinary’ users; for instance, it is not always possible to identify all the eligible or
potential voters. Rebecq (2018) and Berzofsky et al. (2018) use the user ID number to randomly
select a set of users from Twitter. Both the authors also use the available connections between
users to propagate the initial sample.

Thus, the actually observed units are generally either a subset of P or A to start with. An
initial observed sample of posts, denoted by sP�P, can lead one to a corresponding sample
of accounts sAD a(sP) and, then, in principle, a sample of users sAP D b .a.sP //. Given a
sample sA directly selected from A, we can possibly acquire a sample of users sAPD b(sA) and a
sample of associated posts, denoted by sPD a�1(sA). The observed sample of persons is given
by the joint set of U and sAP. Again, both U n sAP and sAP nU are non-empty in general. The
relationships are summarised in Table 1 as well.

2.2 Measurement

Unlike in sample surveys, social media data are not generated for the purpose of analysis.
They have been referred to as ‘organic data’ (Groves, 2011) to emphasise their non-designed
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origin. One can only decide what is best to do with the data given the state in which they are
‘found’. In light of the discussion of representation above, the obtained measures from social
media data are associated with either the sample of posts or accounts. These may be based on
the content of a post such as a text or an image, or the metadata of a post or account, such as the
geolocation of a post or the profile of an account. According to Bright et al. (2014) and Japec
et al. (2015), social media data are seen to provide the opportunity to study the following social
aspects: (1) to capture what people are thinking, (2) to analyse public sentiment and opinion and
(3) to understand demographics of a population. To this, one may add that social media data can
obviously provide data about certain network relationships between posts, accounts and users.

Take Twitter, for example, of all the possibilities mentioned above. While Twitter does not
provide the information whether a user is a parent or not, it may sometimes be possible to
infer that the user behind a tweet is a parent based on its content. Similarly, while Twitter does
not provide the location of a user, it is sometimes possible to infer this from the location (or
content) of the relevant tweets. When opinions about a particular topic are of interest, sentiment
analysis can be performed on each tweet. By analysing the frequency of different hashtags,
it could be possible to investigate the major topics that capture people's attention at a given
moment. Finally, retweeting or the inclusion of certain hashtags can reveal particular network
connections between the different users.

Generally, we shall distinguish three types of data extraction from the sample posts and
accounts, while at the same time noting the associated challenges in each respect:

Content Thought, opinion and sentiment provide typical examples of content extraction,
which are the direct interest of study. Sentiment analysis is a common technique for extract-
ing opinion-oriented information in a text. However, social media posts present some distinct
challenges, because the expressions may be exaggerated or too subtle (Pang & Lee, 2008).
Moreover, the posts on social media are public by nature, such that a user may easily be
influenced by other opinions, or she may want to project an image of herself which does not
necessarily represent the truth.
Feature Demographics, location and socio-economic standing are common examples of fea-
ture extraction, when these are not the direct interest of study but may be useful or necessary
for disaggregation and weighting of the results. Various techniques of ‘profiling’ have been
used for feature extraction. For instance, Daas et al. (2016) and Yildiz et al. (2017) consider
the problem of estimating age and gender of Twitter users on the basis of the user's first
name, bio, writing style and profile pictures. Or Swier et al. (2015) derive the likely place
of residence of a user, from all the geo-located tweets that the user has posted. Completely
accurate feature extraction is generally impossible regardless of the techniques.
Network Directional posting, reposting, sharing, following and referencing all provide the
possibility of observing network relationships among the posts, accounts or users. Common
interests regarding the pattern and interaction among social network actors include identify-
ing the most influential actor and discovering network communities. Tabassum et al. (2018)
provide an overview for social network analysis. However, it should be noted that the possi-
bility and ease of network extraction are to a large extent limited by the APIs provided for a
given social media platform.

In light of the above, whether by content, feature or network extraction from available social
media data, one should generally consider the obtained measures as proxy values to the ideal
target values. Of course, measurement errors are equally omnipresent in sample surveys. For
instance, survey responses to questions of opinion may be subjected to mode effects, social
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desirability effects and various other causes of measurement error (e.g. Biemer et al. 2004). So
there is certainly scope for exploring social media data for relevant studies.

There is a noteworthy distinction between measurement errors in survey and social media
data. In sample surveys, a measurement error does not affect the representation of the observed
sample. The matter differs with social media data. For instance, when relevant accounts to
a study are selected based on the metadata of an account, such as place of residence, errors
can arise if the information recorded at the time of registration is not updated despite that
there has actually been a change of the situation. Such an error can then directly affect which
accounts are selected for the study, that is, the representation dimension of data quality. An
initial measurement error in the description of the account can thus result in a coverage error
with respect to the study population. Similarly, one may fail to include a post in a study if it is
classified as not containing the relevant opinion of interest.

It may be envisaged that combining multiple platforms, such as Twitter and LinkedIn, can
be useful for enhancing the accuracy of data extraction, although we have not been able to
find any documented examples. This could be due to ethical reasons or the limitations imposed
by the terms of conditions of the social media companies. An additional concern could be
the ‘interaction’ between representation and measurement just mentioned above, where, for
example, the accounts for which data combination is possible are subjected to an extra step of
selection from the initially observed sample of accounts.

3 ONE-PHASE APPROACH

In the one-phase approach, one needs to estimate the target parameter � D � (yU) directly
from the obtained measures, denote by zj, associated with a different observed set of units sP or
sA, despite the differences to yi and U.

To see why this may be possible at all, consider the following example. Suppose one is
interested in the totality of goods (� ) that have been purchased in a shop over a given time
period. One could survey all the people who have been in the given shop during the period of
interest and ask what they have purchased. The population U then consists of all the relevant
persons, and yi is the number of goods they have purchased (possibly over multiple visits to
the shop). Alternatively, � can be defined based on the transactions registered over the counter.
The population P consists then of all the relevant transactions, and zj is the number of goods
associated with each transaction j2P. Clearly, despite the differences in (yi, U) and (zj, P),
either approach validly aims at the same target parameter � .

Below, we reexamine the SMI (Daas & Puts, 2014) as an application, to formalise this
approach and the relevant quality issues and methodological challenges.

3.1 Case: Social Media Index

Every month, Statistics Netherlands conducts a sample survey to compute the consumer
confidence index (CCI). It is based on a questionnaire of people's assessment of the country
economy and their financial situation. As part of the research on the use of social media data
in official statistics (Daas & Puts, 2014; Daas et al., 2015), the authors collected posts from
different social media platforms and constructed the SMI from these posts. They observed and
compared the CCI and SMI over time and concluded that the two series are highly correlated
(Figure 1).

The SMI is constructed as an index that measures the overall sentiment of social media posts.
The posts were purchased, in the time period between June 2010 and November 2013, from the
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Figure 1. Comparison of Dutch consumer confidence index (CCI) and Social Media Index (SMI) on a monthly basis. A
correlation coefficient of 0.88 is found for the two series (Daas et al., 2015).

Dutch company Coosto, which gathers social media posts written in the Dutch language on the
most popular social media of the country (Facebook, Twitter, LinkedIn, Google+ and Hyves).
Coosto also assigns a sentiment classification—positive, neutral or negative—to each post on
the basis of sentiment analysis (Pang & Lee, 2008), which determines the overall sentiment of
the combination of words included in the text of the post. A neutral label is assigned when the
text does not show apparent sentiment.

Let Pt be the totality of all the observed posts in month t. Let sP,t be a subset of posts that
are selected from Pt. Let mt be the size of sP,t. The posts included in sP,t can have positive,
neutral, or negative sentiment value, respectively denoted by zjD 1,0,� 1, for j2 sP,t. The SMI
is calculated as the percentage difference between the positive and negative posts in sP,t, that is,
a function of ´sP;t D f´j I j 2 sP;tg:

SMIt D SMI.´sP;t / D
100

mt

X
j2sP;t

´j :

Daas & Puts (2014) experimented with different ways of selecting the sample sP,t. The choices
involve a decision about which social media platforms to include, and whether to accept all
the posts from an included platform or only certain groups. The groups can be filtered using
a set of keywords, such as posts containing personal pronouns like ‘I’, ‘me’, ‘you’ and ‘us’,
or words related to the consumer confidence or the economy, or words that are used with high
frequency in the Dutch language. The idea is that selecting only certain groups of posts could
affect the association between the SMI and the CCI. For instance, from a previous study (Daas
et al., 2012), the same authors found that nearly 50% of the tweets produced in the Netherlands
can be considered a ‘pointless bubble’. In the end, sP,t is chosen to include all the Facebook
posts and filtered Twitter posts, for which the resulting SMI achieved the highest correlation
coefficient with the CCI (Figure 1).
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Finally, considering the SMI as an estimator with its own expectation and variance, let

SMIt D �t C dt ; (1)

where � t is the expectation of the SMI and dt has mean 0 and variance �2
t .

3.2 Formal Interpretation

To assess the SMI as a potential replacement of the CCI, let us now formalise the CCI and
its target parameter. Let Ut be the Dutch household population in month t, which is of the size
Nt. Let yi, for i2Ut, be a consumer confidence score for household i based on positive, neutral
or negative responses to five survey questions. The target parameter of the CCI is given by

�t D �.yUt / D
100

Nt

X
i2Ut

yi :

The CCI based on the sample survey is an estimator of � t, which can be given by

CCIt D �t C et ; (2)

where et is the sample survey error of the CCI. For our purpose here, we shall assume that
et � N.0; �2

t /, that is, normally distributed with mean 0 and variance �2
t .

Now that there is a many-one relationship between persons and households, the generic
relationships from posts to persons apply equally from posts to households. The households
corresponding to the SMI sample sP,t can thus formally be given as

st D Ut \ a .b.sP;t // :

Let st be of the size nt. Let the target parameter defined for st be given by

�s;t D �.yst / D
100

nt

X
i2st

yi :

In order to replace the CCI by the SMI, it is clear that one would like to have � tD � t. However,
given the underlying relationship between the social media data posts and the target population,
one can only establish an analytic connection between � t and � s,t, based on the relationship
between (zj, sP,t) and (yi, st). It is therefore clear that the principal difficulty for the one-phase
approach in this case is the lack of an explicit connection between � t and �t D �.yUt /, or
between SMI.´sP;t / and �.yUt /. Moreover, it seems that in such situations, external validation
will be necessary in order to establish the validity of the analysis results on the basis of social
media data, which we consider next.

3.3 Statistical Validation

In the case of the SMI, one does have the possibility of validating its statistical relation-
ship to the CCI, despite the lack of an analytic connection between the two. As can be seen in
Figure 1, the two indices display a high correlation with each other over time: the empirical cor-
relation coefficient is 0.88 over the 27 months displayed. However, a high correlation between
the two indices alone is not enough. Below, we formulate a test to exemplify a possible venue
for statistical validation in similar situations.
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As a conceivable scenario in which the SMI can replace the CCI, we set up the null and
alternative hypotheses below:

H0 W �t � �t D � vs: H1 W �t � �t ¤ �;

that is, whether or not the target parameters of the SMI and CCI differ by a constant over time.
Or one can apply the procedure below on the log-scale to test if � t/� t is a constant.

For our purpose here, we shall make a simplifying assumption that �2
t D 0 and thereby

remove the conceptual distinction between SMI as an estimator and its theoretical target � t.
In light of the large amount of posts in sP,t, the assumption seems plausible. It follows then
from (1) and (2) that, under H0, we have

Xt D CCIt � SMIt D �C et ;

where et � N.0; �2
t /. Thus, one may compare the total deviation of Xt from its mean NX DPT

tD1Xt , over the available T time points, to the variances of the CCI: the larger the total
deviation exceeds that which is allowed for by the CCI variances, the stronger is the evidence
against H0 compared with H1.

Formally, let PD I� 11>/T, where I is the T� T identity matrix and 1 is the T� 1 unity
vector, and the matrix P is idempotent such that PP>DPPDP. We have

E.PX/ D 0 forX D .X1; : : : ; XT /
> ;

V .PX/ D P†P for† D Diag.�2
1 ; : : : ; �

2
T / :

The diagonal matrix† corresponds to the assumption that the CCIs are uncorrelated over time.
If this is not the case, one may specify the true covariance matrix appropriately, without this
affecting the generality of the following development. Now that 1>PX� 0, one of the compo-
nent is redundant. Let X0D (PX)(� t) on deleting the t-th component of PX, for any 1� t�T.
Let Q be the correspond (T� 1)� (T� 1) sub-matrix of P†P, such that X0 has the T� 1-variate
normal distribution

X 0 � N.0;Q/:

Let LL>DQ be the Cholesky decomposition with lower-triangular L, such that

L�1Q.L�1/> D L�1LL>.L�1/> D I.T�1/�.T�1/;

and

R D L�1X 0 � N.0; I / :

A test statistic for H0 can thus given as

D D R>R � �2
T�1 :

Owing to confidentiality restrictions, we can only obtain the CCI (from the homepage of
Statistics Netherlands), but not the actual values of the SMI, nor the variances of the CCI. The
calculations below serve only for the purpose of illustration. Firstly, we eyeball Figure 1 to
obtain the approximate values of the SMI, where the empirical correlation coefficient between
two series is 0.88 over the 27 months. Next, Figure 2 reproduced from Brakel et al. (2017) plots
the 95% confidence interval of CCI over 2000–2014, where the coefficient of variation (CV),
denoted by �tD � t/CCIt, varies approximately between 0.01 and 0.34 over the period relevant
to Figure 1. Based on these approximate �2

t 's, the p-value of the test above is virtually zero, such
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Figure 2. The consumer confidence index (CCI) series with 95% confidence interval, 2000–2014.

Figure 3. p-values of test H0 vs. H1 for varying coefficients of variation (CVs), level 0.05 mark by horizontal line. [Colour
figure can be viewed at wileyonlinelibrary.com]
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that H0 is rejected at the level of 0.05 or much lower. Moreover, for the illustration purpose,
here, we stipulate the values of �2

t in relation to the CCI via a constant CV over time, denoted
by �, such that � tD �CCIt. Figure 3 shows the p-value of the test as � varies from 0.05 to 0.5,
where the p-value exceeds 0.05 for �> 0.367. In other words, unless the CV of the CCI is larger
than 36.7% for all the 27 months, which is of concern here, the null hypothesis is rejected at
the level of 0.05.
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3.4 Discussion

Firstly, in the above, we have considered the validity of the SMI, assuming the aim is to
replace the CCI with it. Of course, even if the SMI cannot do this directly, there is still the
possibility to use it to improve the CCI. Brakel et al. (2017) study the two indices over time
using a bivariate time series model:

�
Yt
Zt

�
D

�
LYt
LZt

�
C

�
SYt
0

�
C

�
ˇ11ı11

t
0

�
C

�
	Yt
	Zt

�
;

where Zt is the SMI that is decomposed into trend LZt and an error term vZt , and Yt is the CCI
that is decomposed into trend LYt , seasonal component SYt , an error term vYt and ˇ11ı11

t that is
an outlier term introduced to accommodate the economic downturn at the corresponding time
point. The authors find that using the SMI series as an auxiliary series slightly improves the
precision of the model based estimates for the CCI, at a time when the SMI for the current
month is available but not the CCI—owing to the longer production lag required for the latter.
Notice that such uses of social media data as the auxiliary information for survey sampling do
not pose any new theoretical challenges.

Next, disregarding the distinction between �s;t D �.yst / and the CCI target �t D .yUt /,
where one faces a difficulty of representation between st and Ut, there is a question whether
the SMI (1) appropriately targets the ‘intermediary’ parameter � s,t. As remarked by Brakel
et al. (2017), the CCI survey questions involve the amount of purchases of expensive goods
during the last 12 months and the tendency of households to buy expensive goods. It seems
relevant to utilise internet search data and actual purchase data of such expensive goods. The
implication is that one needs not to rely exclusively on social media data for content extraction
but could seek to combine them with other non-survey data. On the one hand, combining data to
improve content extraction seems desirable regarding the quality of measurement. On the other
hand, doing so is likely to affect the representation dimension of data quality, as previously
noticed in Section 2.2. But the quality of representation is worth examining in any case. In the
current definition of SMI (1), each post is given the same weight. It is unclear whether this is
the most appropriate treatment, because the number of posts per account or user is likely to
vary in different subsets of st. Indeed, provided a method of differential weighting of the posts
in sP,t can be justified with respect to �.yst /, targeting �.yUt / may no longer be as elusive as it
is currently.

Finally, despite our focus in this paper on target parameter � defined for (yi, U), it is con-
ceivable that one may be interested in target parameter � defined for (zj, P) directly. In such
situations, the quality considerations are analogous to those in the case of targeting � based on
a sample s, for s�U and the associated measures y�s D fy

�
i I i 2 sg. A basic issue regard-

ing representation is the fact that the sample sP is not selected from the totality P according
to a probability sampling design. Inference from non-probability samples has received much
attention. See, for example, Smith (1983), Elliott & Valliant (2017) and Zhang (2019) for infer-
ence approaches assuming non-informative selection of the observed sample; see, for example,
Rubin (1976) and Pfeffermann et al. (1998), of approaches that explicitly adjust for the infor-
mative selection mechanism. When it comes to the measurement dimension of data quality,
the traditional treatment of measurement errors in surveys (e.g. Biemer et al., 2004) may be
less relevant because, as discussed in Section 2.2, content, feature or network extraction from
social media data faces quite different challenges and uses quite different techniques than data
collection via survey instruments.
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12 PATONE AND ZHANG

4 TWO-PHASE APPROACH

In the two-phase approach, one aims to estimate the target parameter � D � (yU) based on a
pseudo survey dataset constructed from the sample of social media data to resemble a survey
dataset from the target population. Denote by sAP the sample of statistical units in the pseudo
survey dataset, and by y�i the constructed proxy to yi for i2 sAP.

The quality of the pseudo survey dataset .y�i ; sAP / with respect to the ideal census data
(yi,U) can be assessed with respect to representation and measurement, under the quality frame-
work of Groves et al. (2004) for traditional sample survey data. The key extra concern is the
necessary transformation from the initial social media data, which is a process that does not
exist for sample survey data. Zhang (2012) outlines a two-phase life-cycle model of statisti-
cal data before and during integration, respectively, which includes the transformation from
multiple first-phase input datasets to the ones to be integrated at the second phase. The total-
error framework of Zhang (2012) is applicable as well to the two-phase approach to statistical
analysis based on social media data.

Below, we examine the study of Swier et al. (2015), which aims to construct pseudo survey
datasets of residence and mobility from geo-located tweets. In particular, this illustrates the
generic transformation process under the two-phase approach: from the first-phase data objects
(posts) to the second-phase statistical units (persons) in terms of representation, and from values
obtained at the first phase (e.g. the geolocation of a post) to the second-phase statistical variable
(e.g. location of residence) in terms of measurement. Moreover, we analyse the quality of the
resulting pseudo survey dataset according to the total-error framework of Zhang (2012), and
we highlight some relevant methodological challenges.

4.1 Case: Residence Location from Tweets

Swier et al. (2015) conducted a pilot study at the Office for National Statistics, on the poten-
tial of Twitter to provide residence and mobility data for official statistics. The main efforts
concerned the construction of relevant pseudo survey datasets, which we summarise below.
In addition, some simple analyses were performed, giving indications of the possible target
parameters envisaged. We do not explicitly discuss these analyses here.

There are two first-phase input datasets. The first one is collected via the Twitter
Streaming API, covering the period 11 April to 14 August 2014. The search criteria involve
a set of bounding rectangles covering the British Isles, for which a tailor-made application is
developed and deployed. The second dataset is purchased from GNIP (a reseller of data, now
owned by Twitter), covering the period 1 to 10 April and 15 August to 31 October 2014. Unlike
the API data, the GNIP data are filtered by tweets with a ‘GB’ country code. The tweets from
the same period, which cannot be geo-located in either way, are excluded.

Next, the two datasets are merged to create a single dataset, during which a number of tweets
are removed. These include the ones that are detected to be generated by bots, or without exact
GPS location, or non-GB tweets in the first dataset (mainly those from the Republic of Ireland).
In particular, for privacy protection reasons, any tweet from the first dataset is removed, unless it
is associated with an account in the purchased GNIP data. All the retained tweets have latitude
and longitude (GPS) coordinates.

The process of merging can therefore equally be represented as in the life-cycle model of
integrated data (Zhang, 2012), where linkage of separate datasets is carried out via the second-
phase units associated each input datasets. In other words, one may first identify the associated
Account IDs (second-phase units here) in the API and GNIP datasets, respectively, and then
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merge the data for the same Account ID, provided it is present in the GNIP dataset. In this
case, one could merge the datasets before transforming the data organised around Tweet ID to
Account ID, because the two first-phase datasets share the same identifiable objects (i.e. tweets
with Tweet ID).

In this way, at the beginning of the second-phase processing, one obtains a single set of
GB-located tweets (81.4 million over 7 months) and the associated accounts. No further second-
phase data processing takes place in the representation dimension. For instance, one does not
attempt to identify and classify the users behind the observed accounts. Second-phase process-
ing in the measurement is primarily concerned with content extraction of residential location
and its classification. This is carried out in the following steps.

� The tweets associated with a given account are clustered, using the density-based spatial
clustering algorithm with noise (DBSCAN). It groups together points that are closer to each
other in terms of spatial density; the cluster formed is regarded valid only if it contains a
specified minimum number of points. The points in clusters below the minimum threshold
are considered as noise. Of the 81.4 million tweets, 67.4 million are included in one or
another cluster that contains three or more tweets. The rest of the clusters with only one or
two tweets are classified as ‘invalid’.
� Next, each valid cluster is classified as ‘residential’, ‘commercial’ or ‘others’ in terms of

address type, using the AddressBase that is the definitive source of address information
for Great Britain. To this end, one calculates a weighted centroid of the cluster and finds
the closest property to it in the AddressBase. The cluster address type is then classified
according to this ‘nearest neighbour’ property.
� Then, for each account with one or several residential clusters, one of them with the most

tweets is classified as the ‘dominant’ residential cluster.
� Finally, additional classification may be attached to each cluster, such as the administrative

geography it belongs to, the number of tweets it contains, the time span of these tweets
(short term if less than 31 days vs. long term otherwise).

4.2 Quality Assessment

Before we assess the quality of the pseudo survey dataset .y�i ; sA/ obtained under the two-
phase approach when targeting � defined for (yi,U), it is helpful to recapitulate some of the
relevant technical issues, even if they do not account for all the sources of errors.

Firstly, some additional API data are actually collected on 10 April and 15 August, which
overlap with the GNIP data on these two days. A small number of API tweets are found not be
included in the GNIP set, all of which are associated with protected accounts—users may opt
to protect their accounts so that their tweets can only be viewed by approved followers. More
generally, retrospective changes made by a user to its account or specific tweets may prevent
them from being included in the historic point-in-time data available from GNIP, despite these
accounts or tweets are accessible via the real-time StreamingAPI. This exemplifies a general
cause for discrepancy between Twitter data collected in different ways. Two other examples of
general causes are as below.

Filter criteria The filter criteria may not be fully compatible between the APIs and the data
brokers. As explained above, in the case here, the geographic filter works differently with
the Streaming API and GNIP.

Missing data Data from APIs may be missing owing to technical problems, such as moving
of IT equipment or broadband router failure.
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14 PATONE AND ZHANG

Next, once the data from the first phase have been merged and transformed, there are gen-
erally technical issues with data extraction and processing that are necessary at the second
phase. In this case, the DBSCAN clustering of tweets is an unsupervised machine learn-
ing technique, for which it is generally difficult to verify the truthfulness of the results. The
address type classification is in principle a supervised learning technique. However, it may be
resource demanding to obtain a training-validation dataset, by which the classification method
can be improved and its accuracy evaluated, similarly for the classification of the dominant
residual cluster.

The quality of the dataset .y�i ; sA/ can be assessed according to the second-phase life-cycle
model (Figure 4), along the two dimensions of representation and measurement. The exact
nature of the potential errors needs to be related to the envisaged analysis. Below, we consider
first representation and then measurement.

In terms of representation, the ‘Linked Sets’ in Figure 4 is given by b(sA), which is subjected
to coverage errors. Over-coverage is the case if b(sA) nU¤∅. This is unavoidable here because
some of the accounts in b(sA) are not persons at all and all the bots are not completely removed.
Moreover, there may be multiple accounts in sA that correspond to the same person; such dupli-
cates are another form of over-coverage error. Whether sA entails under-coverage depends on
the assumption. For instance, let the target population U be the adult residents of England. If
one assumes that in principle there is an unknown but non-zero probability for everyone in U
to have a Twitter account and to have tweeted at least three times from the same location during
the 7 months in 2014, then there would be no under-coverage error of b(sA) for U, but only a
non-probability selection issue. However, insofar as these assumptions are untenable, then there
would be an under-coverage error in addition.

Figure 4. Phase two life-cycle model of Zhang (2012). [Colour figure can be viewed at wileyonlinelibrary.com]
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Next, the identification error may be an issue if domain classification of the target population
needs to be based on feature extraction, which is prone to errors, whereas unit error is potentially
troublesome if additional statistical units (e.g. household) need to constructed. Neither seems
relevant to any of the analyses of Swier et al. (2015).

In terms of measurement, an example of ‘Harmonized Measures’ in Figure 4 is the dominant
residential cluster here. Suppose the ‘Target Concept’ is the de facto place of residence of a
person. Relevance error is mostly like the case, unless everyone sends most tweets from her or
his de facto place of residence. Or suppose the ‘Target Concept’ is whether a person is a tourist,
and short-term versus long-term classification of the dominant residential cluster is used as
a proxy measure of the corresponding person. Again, relevance error is mostly like the case,
unless no tourist stays longer than a month and no usual resident stops tweeting after less than
a month.

Next, the mapping error is, for example, the case when someone does tweet from her or his
de facto place of residence but the clustering-classification algorithm fails to identify it as the
dominant residential cluster. This can happen, for example, if the person tweets more when at
her or his friend's place, or if the person more often than not switches off GPS location when
tweeting at home, or if the person's home is in a dense area and the chosen nearest neighbour
property in the AddressBase happens to be a commercial address. Finally, the comparability
error could arise if, for example, the classified dominant residential cluster is further adjusted in
light of other available measures, although this is not the case in the study of Swier et al. (2015).

In summary, the main errors of the pseudo survey dataset .y�i ; sA/ here are coverage errors
in terms of representation, and relevance and mapping errors in terms of measurement.

4.3 Discussion: Statistical Analysis

In the above, we outlined the data processing required under the two-phase approach to social
media data, using the study of Swier et al. (2015) as the case in point. It is shown that the
life-cycle model of (Zhang, 2012) can be applied as a total-error framework for evaluating the
quality of the resulting pseudo survey dataset .y�i ; sA/, where sAD a(sP). The study of Swier
et al. (2015) does not specify any definitive target of analysis. For a discussion of possible
statistical analysis of the target parameter � defined for (yj,U), let us consider two situations,
depending on whether it involves additional datasets or not.

Consider the situation where only the pseudo survey dataset .y�i ; sA/ is to be used for an
analysis targeted at � (yU). The first key issue regarding representation is over-coverage adjust-
ment, from s0D b(sA) to sDU\ b(sA), because s0 nU¤∅. This could be based on the mapping
either from s0 to s or, provided it can be specified, from t .y�s0/ to t .y�s /, where t(	) denotes the
sufficient statistics for � . Given the over-coverage adjustment, the remaining issues are non-
probability representation of s for U, and measurement discrepancy between y�i and yi caused
by lack of relevance and imperfect data extraction, similarly to what has been discussed earlier
in Section 3.4.

A potentially more promising scenario is to utilise additional datasets, in order to overcome
or reduce the deficiency of each dataset on its own. Integration with other Sign-of-Life data
can possibly improve the quality of the pseudo survey dataset constructed from social media
data. For example, in the case of data for residence and mobility, other Sign-of-Life data on
employment, education, utility services and so forth can probably improve the classification of
the dominant residential cluster, provided these data are available and can be combined with
the tweets data. However, it is also possible that one cannot always overcome the inherent defi-
ciencies of social media data in this way. Making statistics based on multiple sources is a broad
challenging topic. It is currently an area of active research and development. See, for example,
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16 PATONE AND ZHANG

De Waal et al. (2017) and Di Zio et al. (2017) for overviews of related situations and method-
ological issues. See Zhang (2018) for an overview of estimation methods in the presence of
multiple proxy variables.

5 CONCLUDING REMARKS

In the above, we systematically delineated two existing approaches to statistical analysis
based on social media data. The fundamental challenge with the one-phase approach in some
situations is a lack of analytic connection to the target parameter, which is defined for a different
set of units and another associated measure. Nevertheless, external data can in principle be used
to verify the statistical validity of this approach. Compared with observational studies based
on data subjected to non-probability selection and survey measurement errors, the key extra
issues with the two-phase approach revolve around the transformation process from the initial
data objects to the statistical units of interest and the algorithmic data extraction required for
measurement. In addition, an explicit adjustment for the over-coverage error will be needed in
many situations.

For assessment of data quality, we have demonstrated that it is possible to apply relevant total-
error frameworks formulated in terms of representation and measurement of generic statistical
data. In particular, for both approaches, it seems more promising if one does not simply restrict
oneself to the available social media data but seeks to combine them with additional relevant
datasets, in order to overcome or reduce the deficiency of each source, despite data integration
is by no means a straightforward undertaking in general.

We would like to close with a few remarks. Firstly, in the paper, we have focused on tar-
get parameters that are finite-population functions. Such a parameter is often referred to as a
descriptive target, in contrast to analytic target parameters that can never be directly observed,
regardless of how large the observed number of units and how perfect the obtained measure-
ment may be. For example, the ordinary least squares fit of some specified linear regression
coefficients based on a perfect census of the current population is a descriptive target parame-
ter; at the same time, it is an estimate of the theoretical (or super-population) values of these
coefficients of the postulated regression model, that is, the analytic target parameter in this
case. Our focus on descriptive target parameters helps to simplify the exposition, because the
differences between descriptive and analytic inference can be subtle and many but are neverthe-
less not critical to our aim in this paper. See, for example, Skinner et al. (1989), Chambers &
Skinner (2003) and Skinner & Wakefield (2017) for introductions to analytic versus descriptive
inference based on sample surveys.

Next, there are certainly many similarities to statistical analysis based on administrative data.
As we have demonstrated, the total-error framework (Zhang, 2012) for statistical data integra-
tion involving administrative sources is applicable as well to the two-phase approach based on
social media data. It is worth reiterating the two extra difficulties in comparison. The first one
relates to the transformation from the original data objects P to the statistical units U. The
same requirement exists equally for administrative data in general. For instance, exams are part
of the initial education data objects. However, while the transformation from exams (say, P)
to students (say, U) can be carried out unproblematically by the school administration, such
straightforward processing is often impossible from social media data objects to the target pop-
ulation of interest. The second extra difficulty concerns data extraction. The available measures
in the administrative sources do often suffer from relevance error. Nevertheless, the actual map-
ping to the ‘Re-classified Measures’ (Figure 4) seldom requires content or feature extraction
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that are necessary for social media data, which, as has been discussed, is generally an additional
cause of discrepancy between y�i and yi or between zj and yi.

Finally, there seems to be currently an under-explored potential regarding the rich network
relationships that can be extracted from social media data. Such network relationships may
be difficult to obtain via traditional survey methods, both due to the limitations of the usual
survey instruments and the relatively high cognitive and memorial requirements for correct
information retrieval by the respondents. In contrast, for network relationships that are directly
observable on the social media platform, no subjective information processing will be needed,
and the errors associated with such processing are thereby avoided. Making greater use of
the network relationships in social media data and developing suitable sampling and analysis
methods appear fruitful venues forward, in order to harness the opportunities that have emerged
with such big data sources.
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