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Abstract
Dynamic susceptibility contrast (DSC) imaging is a widely used technique for assessment of
cerebral blood volume (CBV). With combined gradient-echo and spin-echo DSC techniques,
measures of the underlying vessel size and vessel architecture can be obtained from the vessel size
index (VSI) and vortex area, respectively. However, how noise, and specifically the
contrast-to-noise ratio (CNR), affect the estimations of these parameters has largely been
overlooked. In order to address this issue, we have performed simulations to generate DSC signals
with varying levels of CNR, defined by the peak of relaxation rate curve divided by the standard
deviation of the baseline. Moreover, DSC data from 59 brain cancer patients were acquired at two
different 3 T-scanners (N= 29 and N= 30, respectively), where CNR and relative parameter maps
were obtained. Our simulations showed that the measured parameters were affected by CNR in
different ways, where low CNR led to overestimations of CBV and underestimations of VSI and
vortex area. In addition, a higher noise-sensitivity was found in vortex area than in CBV and VSI.
Results from clinical data were consistent with simulations, and indicated that CNR < 4 gives
highly unreliable measurements. Moreover, we have shown that the distribution of values in the
tumour regions could change considerably when voxels with CNR below a given cut off are
excluded when generating the relative parameter maps. The widespread use of CBV and attractive
potential of VSI and vortex area, makes the noise-sensitivity of these parameters found in our study
relevant for further use and development of the DSC imaging technique. Our results suggest that
the CNR has considerable impact on the measured parameters, with the potential to affect the
clinical interpretation of DSC-MRI, and should therefore be taken into account in the clinical
decision-making process.

1. Introduction

Dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) is widely used to assess cerebral
perfusion in both clinical settings and research studies, and has proven clinically useful for various brain
pathologies, including brain tumors, stroke and neurodegenerative disorders [1–3].

DSC MRI is usually performed using either gradient-echo (GE) or spin-echo (SE) acquisitions, and
measures of cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) are
typically obtained from the relaxation rate curves. Simultaneous acquisitions of GE and SE enable
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calculation of the relaxation rate curves R2GE(t) and R2SE(t) from a single contrast agent injection. The
different sensitivity to magnetic susceptibility between GE and SE read-outs leads to differences in R2GE(t)
and R2SE(t), enabling the estimation of vascular parameters beyond conventional DSC. This includes the
vessel size index (VSI), a measure of the weighted mean of the vessel sizes [4, 5], and the vortex area, a
parameter that has been associated with the underlying vessel architecture of the tissue [6–8]. Several studies
suggest that these parameters may hold great clinical value regarding stroke [9], tumor grading [10] and
treatment response [7, 11–13].

However, the information—and thus the clinical value—provided by these parameters is limited by the
inherent noise in the signal. The presence of noise in DSC signals has previously been investigated to
determine optimal experimental parameters and the effect on conventional DSC analysis and deconvolution
[14–17]. However, how noise affects the estimated VSI and vortex area have not yet been examined.
Moreover, a simple approach to determine the quality of clinical DSC data based on image noise is still
lacking.

Evaluating noise in the DSC data can be done in several ways. The signal-to-noise ratio (SNR) of the
baseline signal have been used by several studies, defined by the mean divided by the standard deviation of
the baseline signal [17–19]. However, this definition of SNR does not account for the bolus peak and can lead
to a high SNR value if the baseline signal is high, although the corresponding R2-curve is noisy. Other and
more advanced definitions of SNR have been proposed [14, 15], but these definitions are adapted to the
specific aims of the studies and become impractical when it comes to a general noise evaluation of clinical
DSC data. Here, we define the contrast-to-noise ratio (CNR) as the peak of R2-curve divided by the standard
deviation of the R2-baseline, a simple parameter to extract from clinical DSC without any complex analysis
or any knowledge about the experimental setup.

In this study, we have evaluated the CNR in clinical GE and SE DSC from 59 patients with brain
metastases (N= 29) and glioblastoma (N= 30) scanned at two different 3 T scanners, and performed
simulations to investigate the effect of typical CNR levels found in clinical data. Moreover, relative vascular
parameters are often considered in clinical DSC, where the parameters are normalized to a reference value in
normal-appearing brain tissue. We have therefore also examined the effect of CNR on the relative parameters
in tumor regions of the brain cancer patients.

2. Methods andmaterial

2.1. Simulations
Monte Carlo simulations were performed to obtain signal responses from GE and SE DSC acquisitions as
previously described [8, 20]. DSC signal responses were calculated based on the dephasing of proton spins in
a vascular network consisting of arterioles, capillaries and venules with specified vascular characteristics. The
vascular network was modelled by a vessel tree structure where each vessel branches into two smaller vessels
on the arterial side and two vessels merge into one on the venous side. The radius of the vessel generations
decreases with a factor of 21/3, starting with an arteriole with R= 10.0 µm, via the smallest capillary with
R= 3.2 µm, to the last venule with R= 12.6 µm, resulting in a vessel tree with 4, 3 and 5 generations of
arterioles, capillaries and venules, respectively [6, 21]. For each vessel generation, a large number of protons
(N= 10 000) with a given water diffusion constant, D (= 800 µm2 s−1) diffuse in a simulation space filled
with randomly distributed vessels with a given oxygen saturation level, SO2 (100% for arterioles, 50% for
capillaries and venules), blood volume fraction, vf, (2%) and radius, R. The accumulated phase dispersion of
each proton is calculated based on the magnetic field perturbation at the proton’s location and the resulting
signal intensity is given by:

SIk (t) =
1

N

N∑
n=1

eiφn(t)

where k indicates the kth vessel generation, φn(t) is the accumulated phase of the nth proton and N is the
number of protons. The phase dispersion is calculated for both GE and SE acquisitions and for varying
concentrations of a Gadolinium-based contrast agent. The contrast agent was assumed to reside within the
vessels, i.e. leakage effects were not considered.

The kth vessel generation is associated with a concentration-time curve, Ck(t), given by:

Ck (t) = Ck−1 (t)
∗ h(t)

where ∗ denotes convolution, Ck= 0(t) is the arterial input function and h(t) is the transport function of
transit times within the vessels. The MTT of the whole vessel network is given by the sum of MTTs of the
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Figure 1. Schematic illustration of the vascular parameters from combined GE and SE DSC imaging. GE CBV and SE CBV are
derived from the area under R2GE (black line) and R2SE (red line), respectively (a). The slope of a linear regression of the R2GE vs.
R2SE3/2 founds the basis for the VSI and the vortex area is given by the area encircled by the ascending and descending branch of
R2GE vs. R2SE3/2 (b). Abbreviations: GE—gradient-echo; SE—spin-echo; CBV—cerebral blood volume; VSI—vessel size index.

individual vessel generations and was set to 4.5 s. The MTT was assumed constant across the vessel
generations. The signal response from the vessel network is then obtained by a weighted sum of the signal
response from each vessel generation:

SI(t) =

Ngen∑
k=1

wkSIk (t)

where wk is the fraction of the total blood volume made up from vessel generation k.

2.2. Noise and signal processing
Gaussian noise was added to the complex simulated signal (SI(t)) and sampled with a temporal resolution of
1.5 s (typical temporal resolution of DSC). The relaxation rate curve, R2(t), was calculated from the modulus
of the signal with added noise:

∆R2(t) =− 1

TE
ln(|SI(t)|/SI0) ,

where TE is the echo time (100 ms for SE and 30 ms for GE), and SI0 is the mean signal intensity of the
baseline (pre-contrast) signal. Here and in the following, R2(t) denotes the relaxation rate curves from both
GE and SE acquisition, if not explicitly stated otherwise. The CNR was calculated as:

CNR=
∆R2max

σbaseline
,

where R2max denotes the maximum value of the R2(t) and σbaseline denotes the standard deviation of the R2
baseline.

The simulated CNR ranged from 1 to 50, and for VSI and vortex area, the ratio of CNR in SE and GE
data were set to match the median ratio found in clinical data, where GE CNR ranged from 13 to 106 when
SE CNR ranged from 1 to 50.

The CBV values were estimated from the area under the curve (figure 1(a)):

CBVXE =

ˆ
∆R2XE (t)dt

where the subscript XE denotes either GE or SE. The VSI was estimated by [4, 5]:

VSI= 0.867
√
CBVGED×∆R2GE/∆R23/2SE

where CBVGE is the measured CBV from GE acquisition and D is the water diffusion coefficient given by the
input to the simulation model. The ratio between GE and SE∆R2 was found by the slope of a linear

regression of the∆R2(t)GE vs.∆R2(t)3/2SE data-points (figure 1(b)).

3



Phys. Med. Biol. 65 (2020) 225020 I Digernes et al

The vortex area was given by the area encircled by the ascending and descending branch of the∆R2(t)GE
vs.∆R2(t)3/2SE data-points (figure 1(b)) and divided by the measured CBVGE to correct for the blood-volume
dependency [6, 7].

Each CNR level were repeated Nrep = 1000 times, and the mean and standard deviation of the
parameters was calculated relative to the measurement from the corresponding noise-free curves with high
temporal resolution. The variability (%) was defined as the ratio standard deviation/mean of the measured
values.

2.3. MRI acquisitions
The study was approved by our Institutional Review Board and the Regional Committee for Medical and
Health Research Ethics (ref: 2013/1033). Informed consent was obtained from all patients. MRI data was
obtained from 29 patients with brain metastasis from non-small cell lung cancer (N= 24) or malignant
melanoma (N= 5) (17 females, 12 males, median age= 63 years, range 42–78 years; clinicaltrials.gov
identifier: NCT03458455) [22]. In addition, clinical MRI data was acquired from pre-surgical exams of 30
patients later found to have glioblastomas by histopathological analysis (6 females, 24 males, median
age= 59 years, range= 37–77 years) [8].

The exams of patients with brain metastases were performed on a 3 T Skyra (Siemens Healthineers,
Germany) using a 20-element head/neck coil (2x8 elements head+ 4 elements neck) (Scanner A). The
protocol included 3D T1-weighted images, pre- and post-contrast agent injection (Repetition
time= 700 ms, echo time= 12.0 ms, voxel size= 0.9× 0.9× 0.9 mm3); T2-weighted FLAIR images
(Repetition time= 5000 ms, echo time= 387 ms, voxel size= 0.9× 0.9× 0.9 mm3); diffusion weighted
imaging (b-values 0 and 1000 or 1500 s mm−2, voxel size= 1.2× 1.2× 2.0 mm3); and a combined GE and
SE DSC perfusion image series (Repetition time= 1500 ms, echo time= 30 ms (GE)/104 (SE), voxel
size= 2.0× 2.0× 5.0 mm3) where a 0.1 mmol kg−1 dose of contrast (Dotarem, Guerbert, France) was
injected (flow-rate 3 ml s−1, no preload). No preload contrast agent administration was performed as per
recent consensus recommendations [23].

The exams of glioblastoma patients were performed on a 3 T Philips system (Ingenia 3 T, Philips
Healthcare, The Netherlands) using a dedicated 32-element head coil (Scanner B). The protocol included 3D
T1-weighted images, pre- and post-contrast agent injection (Repetition time= 5.2 ms, echo time= 2.3 ms,
voxel size= 1.0× 1.0× 1.0 mm3); T2-weighted fluid attenuated inversion recovery (FLAIR) images
(Repetition time= 4800 ms, echo time= 325 ms, voxel size= 1.0× 1.0× 1.0 mm3); Inversion recovery
Look Locker echo-planar imaging (Echo time= 18.7 ms, inversion time interval= 400 ms, 12 inversion
times, voxel size= 1.8× 1.8× 5.0 mm3); diffusion tensor images (b-values= 0 and 800 s mm−2, 15
directions, TR/TE= 9676/60 ms, voxel size= 2.5× 2.5× 2.5 mm3); and a combined GE and SE DSC
perfusion image series (Repetition time= 1500 ms, echo time= 25 ms (GE)/105 ms (SE), voxel
size= 1.8× 1.8× 5.0 mm3) where a 0.1 mmol kg−1 dose of contrast (Gadovist, Bayer Pharma AG,
Germany) was injected (flow-rate 3 ml s−1, no preload).

2.4. Image analysis
For brain metastasis patients, probability maps of white matter (WM) were obtained from T1 or
FLAIR-images using the segmentation tool in SPM12 (Statistical Parametric Mapping (SPM) toolbox version
12, University College London, England). Binary masks of WM tissue were obtained by including voxels with
probability >0.85 (maximum probability= 1.0) and were co-registered to the DSC space using normalized
mutual information co-registration using nordicICE (NordicNeuroLab AS, Norway). The tumor region of
brain metastases was delineated on contrast enhanced T1-weighted images by a radiologist and subsequently
co-registered to DSC space. For glioblastoma patients, probability maps of normal-appearing WM were
obtained from the Look-Locker acquisition as previously described [8, 24]. The enhancing tumor region was
automatically identified from pre- and post-contrast T1-weighted and FLAIR images, using a deep learning
technique based on Convolutional Neural Network classifiers [25]. The deep learning technique was only
available for the data from the glioblastoma patients, and was therefore not used on the brain metastases data.

Voxel-wise GE and SE CNR, CBVGE, CBVSE, VSI and vortex area were calculated as described above,
using the motion-corrected and leakage-corrected DSC data. Leakage correction was performed using the
method proposed by Boxerman et al, where both T1 and T2 effects are taken into account [26]. Voxel-wise
ADC from diffusion images and CBVGE were used to calculated the VSI, and the vortex area were divided by
CBVGE to correct for the CBV-dependency [7]. The vascular parameters were subsequently normalized
(denoted rCBV, rVSI, rVortex area) to a reference value given by the median value in normal-appearing WM.
The reference tissue was limited to the WM region in order to obtain a homogenous reference tissue value
and to adhere to the recent consensus recommendations [23].
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In the clinical data, the variability of the relative parameters was calculated by the standard deviation
divided by the mean of the subject-wise median, where the subject-wise median for varying levels of CNR
was calculated by selecting voxels with CNR > n and CNR⩽ n+ 1, where n ranged from 0 to 30.

To investigate the effect of CNR on the relative values in tumour regions, the reference value was first
calculated by the median value including all voxels in WM (as above). Then, the reference value was
calculated based on the WM, but excluding voxels with CNR below given cut-off value ranging from 2 to 8.
The relative change vs. cut-off values was then calculated for the resulting median value in tumor region:

Relative change=
Xcut-off − Xall voxels

Xall voxels

where Xcut-off and Xall voxels denote the resulting value when using a cut-off value or all voxels, respectively.

3. Results

In figure 2, typical CNR maps and corresponding histograms of the CNR values from a GE acquisition
(figure 2(a)) and a SE acquisition (figure 2(b)) are shown for a patient with glioblastoma, where the GE data
generally display higher CNR values compared to the SE data. Moreover, voxel-wise curves of∆R2(t) are
displayed for varying levels of CNR, ranging from CNR= 2 to CNR= 50 (figure 2(c)).

Across all patients, median (interquartile range) CNR in WM were 21.3 (14.1–27.3) for GE acquisitions,
and 6.4 (4.6–6.9) for SE acquisitions. For tumour regions, median CNR were 40.8 (20.7–62.8) and 8.9
(4.4–11.6) for GE and SE acquisitions, respectively. Figure 3 shows boxplots of median CNR in WM and
tumour for the two patient groups, where tumour regions display a considerably larger interquartile range of
CNR compared to the WM. No significant difference in CNR was found in between the patient groups,
except for a higher CNR in WM for brain metastasis patients compared to glioblastoma patients (27.2 vs.
17.4, p < 0.05, Mann–Whitney U test).

The simulations showed that, for all parameters, the estimations were highly unreliable for CNR < 4,
with large deviations from the ground truth (i.e. mean values deviating from 1) and large standard
deviations (figure 4). For the CBV measurements from both GE and SE acquisitions, a slight overestimation
(<15%) could be seen for CNR≈ 4–10, (figures 4(a) and (b)). For vessel size measurements, a distinct
underestimation of rVSI was seen for CNR < 10, with an underestimation of 60% for CNR= 4 (figure 4(c)).
A general underestimation was also seen in the measured vortex area, with an underestimation of approx.
20% for CNR≈ 5–10 (figure 4 (d)).

The variability declined for increasing CNR for all parameters in the simulated data (figure 5(a)). The
variability of the rCBV measurements was around 80% for CNR= 4 and decreased to under 20% for
CNR > 15. The variability of rVSI was lower than for the other parameters, with a variability around 30% at
CNR= 4 and under 10% for CNR > 15. The vortex area displayed a higher sensitivity to noise, with large
variability (>40%) for all CNR levels up to CNR= 15.

The variability of the measured parameters in clinical data displayed a similar trend as in simulated data,
with a general decrease in variability for increasing CNR (figure 5(b)). In the clinical data, a rapid decrease in
the variability could be seen for up to CNR= 4, before a stabilization for higher CNR. The variability of
rCBVGE and rVortex area stabilized around 50%, while the variability of rCBVSE and rVSI stabilized around
30%. Larger fluctuations in the variability curves can be seen for higher CNR due to a decrease in the
number for voxels for increasing CNR, which is the underlying cause for the spike seen in the variability for
rVSI at CNR close to 30.

In clinical data, we saw that excluding voxels with low CNR affected the reference value (median value in
WM) and the corresponding relative values in the tumour regions depending on the applied cut-off. In
figure 6 the relative change in median tumour values vs. cut-off values are shown for all four parameters. The
relative change is a result of the combined effects of the change in the reference value and the change in the
distribution of values within the tumor region, but where the former had a larger impact on our data. When
increasing the cut-off value, we saw a general decline in the median rCBV from both GE and SE acquisitions.
The decline was generally larger for SE acquisitions compared with GE (figures 6(a) and (b)). For rVSI, a
general increase in the relative values was seen for higher cut-off values (figure 6(c)), while rVortex area
showed a decline for higher cut-off values (figure 6(d)). For a cut-off value at CNR= 4, the relative change
ranged within [−5%, 4%] for rCBVGE, [−18%, 8%] for rCBVSE, [−25%, 20%] for rVSI, and [−45%, 47%]
for rVortex area. Moreover, the range of the relative change (error bars in the figure), generally increased for
higher cut-off values. This is because the relative change is calculated based on the value for cut-off= 0 (no
voxels are excluded). As the cut-off increases, more voxels are excluded, and the relative change (included the
range across subjects) increases. The median number of voxels excluded for each cut-off value is displayed in
table 1.
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Figure 2. CNR map from a GE acquisition (a) and a SE acquisition (b), and the corresponding CNR values displayed in
normalized histograms (c), (d). CNR from GE acquisitions are generally higher compared to CNR from SE acquisitions.
Moreover, high CNR signal typically coincides with major vessels with higher CBV (a), (b). Typical relaxation rate curves are
shown for CNR ranging from 2 to 50 (e). Abbreviations: CNR—contrast-to-noise ratio; GE—gradient-echo; SE—spin-echo.

In figure 7, an example of how excluding voxels with low CNR (< 4) can affect the relative values in the
tumour region is shown for rCBVSE and rVSI. For this glioblastoma patient, applying the cut-off value at
CNR= 4 led to a decrease in the rCBVSE and an increase in the rVSI in the tumour region.

4. Discussion

In this study, we shed light on how noise affects the estimation of the vascular parameters CBV, VSI and
vortex area from DSC imaging. Our results show that the parameters display different sensitivity to CNR,
and that low CNR can potentially introduce large errors in the interpretation of clinical DSC data.

In our clinical data, the CNR was about a threefold higher in GE acquisition than in SE acquisitions. This
is due to a higher response to the contrast agent bolus in GE acquisition [27]. Moreover, we saw that tumour
regions generally displayed a higher CNR than the WM region, which is likely caused by the inherent
CBV-dependency of the definition of CNR. High CNR may stem from high R2 peak and/or low standard
deviation of the baseline. Tumours often have abnormally high CBV, causing a high R2 peak and thus a high
measured CNR [28]. No difference in CNR between the patient groups was found, except for a higher CNR
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Figure 3. Boxplots of median CNR in white matter (yellow boxes) and tumour regions (red boxes) for GE acquisitions (a) and SE
acquisitions (b). No significant difference in CNR was found in between the patient groups, except for a higher CNR in white
matter for brain metastasis patients compared to glioblastoma patients (p < 0.05, Mann–Whitney U test). Abbreviations:
CNR—contrast-to-noise ratio; GE—gradient-echo; SE—spin-echo; GBM—glioblastoma; MET—metastasis.

Figure 4.Mean and standard deviations of the measured parameters in simulated data for rCBVGE (a), rCBVSE (b), rVSI (c) and
rVortex area (d). All values are relative to measurements from noise-free R2, and x-axis indicates the CNRGE in (A) and CNRSE in
(B)-(D). Abbreviations: CNR—contrast-to-noise ratio; GE—gradient-echo; SE—spin-echo; CBV—cerebral blood volume;
VSI—vessel size index.

in WM for brain metastases compared to glioblastomas in GE acquisitions. This may be due to the different
scanners or contrast agent used.

In the simulated data, a general decrease in the measured VSI was seen for low CNR. This is likely due to
the lower CNR in SE data compared with GE data, which results in a more pronounced overestimation of the
SE data, and thus an underestimation of the slope value used in the VSI measurements. This is in line with a
previous study that reported underestimated VSI in enlarged vessels [29]. For the vortex area, we saw a larger
sensitivity to simulated noise compared with the CBV and VSI measurements. This is probably owing to how
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Figure 5. The variability of the measured parameters from simulated data (a) and clinical data (b). High variability was seen for
CNR < 4 across all parameters, indicating unreliable measures of the parameters for low CNR. Abbreviations:
CNR—contrast-to-noise ratio; GE—gradient-echo; SE—spin-echo; CBV—cerebral blood volume; VSI—vessel size index.

Figure 6. Boxplots of the relative change in the median value in the tumour region of brain metastases (dark red) and
glioblastomas (light red) for rCBVGE (a), rCBVSE (b), rVSI (c) and rVortex area (d). The cut-off value indicates the threshold for
CNR applied on the maps (i.e. excluding voxels with CNR < cut-off value) before normalizing the parameters to the white matter
reference value. The change is calculated relative to the median value for no cut-off, and the number sign next to the box indicates
p < 0.05 (Wilcoxon signed rank test). Abbreviations: CNR—contrast-to-noise ratio; GE—gradient-echo; SE—spin-echo;
CBV—cerebral blood volume; VSI—vessel size index; MET- brain metastases; GBM—glioblastomas.

the vortex area is estimated, where each time-point on the vessel vortex can affect the resulted area
considerably and is thus very sensitive to outliers caused by noise. In contrast, VSI is determined by the slope
of a linear regression of the data-points and is less sensitive to outliers. In addition, VSI is affected by the
noise in GE CBV and ADC as well, whereas the vortex area is affected by the noise in GE CBV. However, our
simulations show that the variability in VSI and vortex area mainly originate from the variability in the
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Table 1. The median number of voxels excluded in the WM and tumour regions for each CNR cut-off. The corresponding percentage of
the total ROI is given in the parenthesis.

Number of voxels excluded in WM regions Number of voxels excluded in tumour regions

Cut-off MET GBM MET GBM

2 71 (0.4%) 25 (0.2%) 0 (0%) 2 (0.2%)
4 2911 (17%) 1323 (14%) 3 (6%) 64 (7%)
6 7563 (44%) 4518 (44%) 4 (26%) 169 (21%)
8 10 684 (63%) 6555 (69%) 10 (43%) 331 (39%)

estimation of the slope value and area, respectively. For CBV measurements, the variability in our simulated
data was of the same order as results from previous studies [14, 17, 18], but a direct comparison could not be
made due to the different study designs and definitions.

The variability in both simulated and clinical data was high (>50%) for CNR < 4, which indicates that
measurements from DSC data with CNR < 4 will be highly unreliable. In clinical data, the variability
displayed a steeper decline compared with simulated data before a stabilization occurred. This may be due to
the different way variability is measured in clinical vs. simulated data. In simulated data, the variability is
given directly by the standard deviation/mean of the estimated parameters, whereas in clinical data, the
variability is given by the standard deviation/mean of the median values across the patients. A direct
comparison between the variability in simulated and clinical data should therefore be performed with care,
yet, the result gives an indication of the general CNR dependency of the variability.

The CNR of the clinical data is measured from the leakage corrected curves. In the normal-appearing
WM, the leakage correction is not likely to affect the result due to the absence of leaky vessels. In the tumor
regions however, the leakage correction may influence both the measured CNR and the measured
parameters. In addition, other leakage correction techniques may cause different effects on the resulting
CNR. This should be investigated further, accompanied by simulations where different leakage effects and
leakage corrections approaches are considered. This also includes assessing scenarios with use of a preload
contrast agent administration.

In clinical data, we have demonstrated how excluding voxels with low CNR can cause changes in the
relative median values in tumour regions. In our data, a higher CNR cut-off resulted in a general decrease in
the median rCBV and rVortex area, and an increase in the rVSI of the tumour regions. These trends are likely
caused by the CBV-dependency of the CNR. In clinical data, low CBV values are associated with low CNR
values, and thus excluding low CNR values will exclude the low CBV values as well. The reference value in
WM will therefore increase, causing a general decrease in the relative CBV values in the tumour regions.
Correspondingly, the CBV-dependency of VSI measurements and vortex area, will cause an increase and a
decrease in the relative values, respectively, when excluding low CNR voxels. Although a measure of CNR
that is not dependent on CBV (or other underlying vascular properties) would be desirable, this is difficult to
obtain in practice. To obtain information from the DSC data, a bolus passage, and thus a CBV > 0, is
necessary.

In addition, in our clinical data, the relative change of the median tumour values was mainly due to a
change in the reference value and not due to exclusion of voxels within the tumour region. However, this
varied across subjects and the subject-wise distribution of CNR within the reference tissue and the tumour
region.

Our study findings indicate that the voxel-wise CNR may have pronounced impact on the estimated
vascular parameters, and the influence of CNR should therefore be taken into consideration when
performing DSC analyses. By applying a reasonable cut-off level for CNR, the noisiest image voxels will be
excluded and is thus likely to give more robust parameter values. However, the chosen cut-off must be
weighed against the probability of discarding relevant information from the images. For example, excluding
low CNR values will also exclude low CBV values, where the latter may hold clinically valuable information.
Moreover, the cut-off level must also be weighed against the number of voxels present in the tissue region, as
the number of voxels will decrease with increasing cut-off value. This is especially relevant for regions of
interest with a low number of voxels, e.g. in small tumours. In our data, the combined results suggest that
voxels should have at least CNR= 4, and the higher CNR, the more reliable the estimated parameter
will be.

There is a large body of work in the literature addressing influence of image noise on the performance of
different deconvolution techniques for estimating CBF and MTT [17, 19, 30, 31]. Because estimation of VSI
metrics is not dependent on CBF/MTT estimations, a more careful analysis on topic is assumed outside the
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Figure 7. A contrast-enhanced T1 image of a glioblastoma patient where the orange box highlights the enhancing tumour region
(a). The relative values of rCBVSE (top row) and rVSI (bottom) in the tumour region is shown where the relative values are
calculated using all voxels, i.e. no cut-off (b) and where the relative values are calculated excluding voxels with CNR < 4 (c). For
this patient, the cut-off value of 4 resulted in a general decrease in rCBVSE and an increase in the rVSI in the tumour region.
Abbreviations: CNR—contrast-to-noise ratio; SE—spin-echo; CBV—cerebral blood volume; VSI—vessel size index.

scope of the current work. However, although a noise threshold usually is applied at some point in the signal
processing of DSC imaging in both research and clinical settings, the noise level itself is seldom reported. We
believe that measuring and reporting the noise, e.g. in terms of CNR, should be a standard practice when
using these techniques to give more insight to how the noise varies across centres, scanners, protocols and
subjects, and also to give an indication of the quality of the data.

Our study has limitations. The simulated data in our study is designed to give an indication of the
CNR-dependency of clinical DSC data. However, a direct comparison between simulations and clinical data
is challenging due to several factors. First, in the simulated data, the underlying vascular characteristics are
kept constant and the variation in the measured values can be attributed directly to the added noise. In
clinical data, however, the vascular characteristics may vary from voxel to voxel and a heterogenous
distribution of tissue properties is unavoidable. Second, the measured CBV or VSI in clinical MRI can vary
even though the underlying blood volume or vessel size is constant. This can be due to differences in the
biophysical properties of the tissue (e.g. vessel size, vessel distribution, diffusion coefficient etc [20, 32, 33].),
or instabilities of the MRI scanner system that does not change the observed CNR. The relation between the
parameter and the underlying vascular properties is even more intricate regarding the vortex areas, as this
parameter is not linked to one main tissue property, as CBV or VSI, but has been shown to be affected by
several vascular properties, including blood volume fractions, MTT and the branching structure of the
vessels [6–8]. Furthermore, in simulations, uncorrelated Gaussian noise was added to the complex MRI
signal. However, in clinical data, noise from different sources can be spatially and/or temporally correlated
and is not necessarily reflected in the CNR as defined here. In addition, leakage effects were not considered in
the simulations. In clinical data, leakage corrections were performed, but may influence both the measured
CNR and the parameters. Finally, a range of tumor related scenarios could produce low CBV and thereby low
CNR, including radio-damaged tissue (pseudoprogression), necrotic regions, oedematous tissue, or tumors
regions with low or no angiogenic activity. Careful assessment of CNR in these regions are therefore
warranted. Nevertheless, while the results from our simulations should be interpreted with care, the findings
can serve as an indication as to how CNR affects the measurement in clinical DSC imaging.

In conclusion, our simulations show that noise has different effects on the vascular parameters from
combined GE-SE DSC imaging. We found that CBV measurements become overestimated when CNR is low,
while VSI and vortex area measurements become underestimated. Moreover, the vortex area generally
displayed a larger sensitivity to noise than the other parameters. Our clinical data suggest that CNR < 4 gives
highly unreliable measurements, and the distribution of relative values in tumour regions can vary
considerably depending on the cut-off value used for CNR.
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