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ABSTRACT

Context. The relative importance of alternating current (AC) and direct current (DC) heating mechanisms in maintaining the temper-
ature of the solar corona is not well constrained.

Aims. We aim to investigate the effects of the characteristic time scales of photospheric driving on the injection and dissipation of
magnetic and kinetic energy within a coronal arcade.

Methods. We conducted three-dimensional magnetohydrodynamic simulations of complex foot point driving imposed on a potential
coronal arcade. We modified the typical time scales associated with the velocity driver to understand the efficiency of heating obtained
using AC and DC drivers. We considered the implications for the injected Poynting flux and the spatial and temporal nature of the
energy release in dissipative regimes.

Results. For the same driver amplitude and complexity, long time scale velocity motions are able to inject a much greater Poynting
flux of energy into the corona. Consequently, in non-ideal regimes, slow stressing motions result in a greater increase in plasma
temperature than for wave-like driving. In dissipative simulations, Ohmic heating is found to be much more significant than viscous
heating. For all drivers in our parameter space, energy dissipation is greatest close to the base of the arcade, where the magnetic field
strength is strongest, and at separatrix surfaces, where the field connectivity changes. Across all simulations, the background field is
stressed with random foot point motions (in a manner more typical of DC heating studies), and, even for short time scale driving, the
injected Poynting flux is large given the small amplitude flows considered. For long time scale driving, the rate of energy injection
was comparable to the expected requirements in active regions. The heating rates were found to scale with the perturbed magnetic
field strength and not the total field strength.

Conclusions. Alongside recent studies that show that power within the corona is dominated by low frequency motions, our results

suggest that, in the closed corona, DC heating is more significant than AC heating.
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1. Introduction

In recent decades, many authors have proposed models to
explain how the high temperatures of the solar corona are main-
tained (for example, see reviews by Klimchuk 2006, 2015;
Erdélyi & Ballai 2007; Parnell & De Moortel 2012; Reale 2014).
It is widely accepted that the source of the required energy is the
convective motions that exist at the solar photosphere. These sur-
face flows are able to drive a flux of energy into the atmosphere,
where ultimately it is converted into heat. However, the exact
nature and location of energy release remains unclear.

For the most part, the proposed mechanisms of energy
release fall into one of two broad categories, namely, alternat-
ing current (AC) and direct current (DC) heating models. This
grouping arises in accordance with the characteristic time scales
associated with the photospheric motions. In particular, if the
time scales are short in comparison to the Alfvén travel time
along a coronal loop, 74, then the heating is considered to be AC
in nature (e.g. review by Arregui 2015). Conversely, if the time
scales are long in comparison to T, then the proposed model is
classified as a DC heating mechanism (e.g. review by Wilmot-
Smith 2015).

* Movies associated to Fig. 3 are available at https://www.
aanda.org

Article published by EDP Sciences

In typical coronal conditions, the magnetic and fluid
Reynolds numbers are expected to be many orders of magnitude
larger than unity, and thus significant energy release requires
the formation of small scales in either the magnetic or velocity
fields, or indeed in both. Generally, DC heating models propose
that the slow stressing of magnetic foot points induces the for-
mation of intricate current sheets within the coronal volume and,
in the case of finite magnetic diffusivity, inevitably leads to the
dissipation of energy (Parker 1972, 1988).

In recent years, increasingly sophisticated numerical mod-
elling has allowed authors to investigate the effects of a vari-
ety of imposed boundary drivers on the release of energy within
the corona. These include sequences of shearing motions (e.g.
van Ballegooijen 1988; Galsgaard & Nordlund 1996; Bowness
et al. 2013), injecting magnetic twist through rotational driving
(e.g. De Moortel & Galsgaard 2006; Rappazzo et al. 2013; Reid
et al. 2018; Knizhnik et al. 2019, and the more realistic exci-
tation of the corona through convective-like flows in the lower
atmosphere (e.g. Peter et al. 2004; Gudiksen & Nordlund 2005;
Bingert & Peter 2013; Kanella & Gudiksen 2017). In many such
simulations, authors have identified the propensity for the sys-
tem to reach a stochastic, but statistically steady, state where
energy is ultimately dissipated at a relatively constant rate (e.g.
Dahlburg et al. 2012). Additionally, Ritchie et al. (2016), find
that coherent motions will lead to large but infrequent heating
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events, whilst more complex motions will lead to low-energy
but frequent heating.

Any AC heating model will also require a cascade of energy
to small length scales in order to generate significant temperature
increases. A variety of models have been proposed to increase
the dissipation rate of wave energy. These include resonant
absorption (Ionson 1978), phase mixing (Heyvaerts & Priest
1983), and the formation of magnetohydrodynamic (MHD) tur-
bulence (e.g. van Ballegooijen et al. 2011; Magyar et al. 2017).
This last phenomemon is able to develop due to the non-linear
interaction of counter-propagating waves or through the devel-
opment of dynamic instabilities (e.g. Browning & Priest 1984;
Terradas et al. 2008).

In general, each of these processes requires the presence of
a non-uniform profile in the local Alfvén speed. This is often
associated with a pre-defined density profile (e.g. Ruderman &
Roberts 2002), which has not been included within the simula-
tions presented in this article. Despite this, resonant absorption
and phase mixing are able to proceed in the absence of den-
sity structuring if the magnetic field strength and/or field line
lengths are non-uniform (e.g. Wright & Thompson 1994; Wright
& Elsden 2016; Howson et al. 2019a). In recent years, large-
scale three-dimensional MHD simulations have allowed increas-
ingly complex AC heating models to be developed. These have
investigated wave energy dissipation in a variety of general
settings, including in multi-threaded coronal loops (e.g. Luna
et al. 2010; Guo et al. 2019), complex magnetic field geome-
tries (Howson et al. 2019b, 2020), and a stratified atmosphere
that considers the connection between the corona and the dense
chromosphere below (Riedl et al. 2019; Van Damme et al. 2020).

Despite significant progress in observing capability over
recent decades, direct observations of either DC or AC heating
remain elusive. In terms of the former mechanism, a significant
limitation is the lack of ability to directly measure the coronal
magnetic field. Whilst some estimates can be obtained using seis-
mological techniques (see review by De Moortel & Nakariakov
2012) or through field extrapolation (see Wiegelmann &
Sakurai 2012, for example) the complexity and spatial struc
ture of the coronal magnetic field remains poorly constrained.
Thus, only indirect evidence for certain heating profiles can be
obtained by comparing observations to synthetic emission data
derived from simulations of energy release (e.g. Lionello et al.
2013; Winebarger et al. 2018).

For AC heating, on the other hand, several studies have
attempted to estimate the energy associated with coronal waves
(e.g. Tomczyk et al. 2007; MclIntosh et al. 2011). In Morton
et al. (2016), the authors established the spectral slope of wave
power in active regions, the Quiet Sun and open field regions.
Each region exhibited enhanced power at approximately 3 mHz,
leading the authors to posit that transverse waves are ultimately
driven throughout the corona by p-modes in the solar interior
(Morton et al. 2019). Additionally, and importantly for the cur-
rent study, in all cases, the oscillatory power in low frequencies
dominates over higher frequency motions. Indeed, most power is
present below the expected natural Alfvén frequency of a typical
coronal loop, suggesting, according to the classical definition,
there is a much greater energy budget available for DC heating
than for AC heating.

In this article, we compare the efficiency of plasma heat-
ing generated by velocity drivers with different characteristic
time scales. We present the results of three-dimensional numeri-
cal MHD simulations of transverse motions imposed at the foot
points of potential magnetic fields. We investigate the flux of
energy through the numerical domain and explore the spatial dis-

AS8S, page 2 of 13

tribution of heating. In Sect. 2, we outline our model and discuss
the nature of the imposed velocity driver. In Sect. 3 we present
our results and in Sect. 4 we discuss the implications of this study
in the context of the coronal heating problem.

2. Numerical method

To obtain the results presented within this article, we used
the Lagrangian-Remap code, Lare3d (Arber et al. 2001). The
scheme advances the full, three-dimensional, MHD equations in
normalised form, given by

V. 1
D pV -0, (1
Dv

— =jXB-VP+Fy, 2
P = + Fuyi 2)
De .

P = il = P(V - 0) + Quise., 3)
DB

Ft=(B-\7)u—(v-v)B—\7><(n\7><B), 4)

where all variables have their usual meanings. We include the
resistivity, 77, and viscosity, v, as non-ideal terms that dissipate
energy from the magnetic and velocity fields, respectively. The
viscosity is a sum of contributions from a background viscosity
and two small shock viscosity terms which are included within
all following simulations to ensure numerical stability. Together,
these contribute a force, Fis.. on the right-hand side of the equa-
tion of motion (2) and a heating term, Qs to the energy Eq. (3).
The scheme employed here does not force energy conservation.
In particular, numerical dissipation will not lead to an increase
in the plasma temperature.

2.1. Initial conditions

We considered a potential coronal arcade with uniform density
and temperature and we neglected the effects of gravity, ther-
mal conduction and radiative losses. We implemented a compu-
tational domain with 2563 grid points and dimensions, —L < x <
L,—L <y < Land 0 < z < 2L, such that the lower z bound-
ary represented the base of the corona. The magnetic field was
invariant in the y direction and was defined as B = (B,,0, B,),
where

B.(x,z) = By cos(’%)exp(%m), (@)
B.(x,2) = —By sin(”—;)exp (_T”Z) 6)

This field is potential and therefore force-free. Additionally,
since VP = 0, the initial conditions were in equilibrium. The
nature of the magnetic field is displayed in Fig. 1. For the follow-
ing simulations, we selected L = 10Mm and By = 100G. The
initial field strength decreases exponentially with height from
this value at the base of the domain to 0.2 G at the upper bound-
ary. The initial temperature was approximately 1 MK and the ini-
tial density was py = 1.67 x 107"2kgm™>. At z = 1 Mm (base
of the resistive volume; see Sect. 3.2), the plasma-g is approxi-

mately 1073 and the Alfvén speed is approximately 5000 kms™.

2.2. Boundary conditions

We seek to mimic the convective flows that exist at the pho-
tosphere by imposing a transverse, space- and time-dependent
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Fig. 1. Magnetic field lines for the coronal arcade. The arcade is invari-
ant in the y direction.

velocity profile at the base of the coronal domain. We note that
our simulations do not include the chromosphere or the tran-
sition region and the precise mechanisms by which energy is
transferred through these complex regions remain unclear. For
the purpose of the current study, we simply assume that some of
the energy from photospheric motions is transmitted to the foot
points of coronal loops and that the spatial and temporal scales
of the flows are similar.

We aim to replicate the turbulent-like nature of the convec-
tive flows by imposing a boundary driver that varies randomly in
both space and time. We define the driver using a sum of many
individual two-dimensional Gaussians, each of which has a par-
ticular amplitude, direction, length scale and switches on and off
in time. In particular, on the lower (z = 0) boundary, we impose
v = (vy, 0y, 0), where

N 2 2
—(r—r; —(r—t
Uy = ;vicosﬂiexp{%}exp{(‘r—?)}, 7
N
. —(r=r)? —(t - 1;)*
= i 91' I e—— —_— 1. 8
vy ; v; sin exp{ 11-2 exp T,-2 ®)

Here, for each i in the summation, v; is the amplitude of each
component, §; defines the direction of the driver, 7; is the centre
of a two-dimensional Gaussian, /; is a parameter which defines
the length scales of the velocity driver, ¢; is the time of peak
amplitude for each component and 7; is used to define the life-
time of each Gaussian.

For each term in the summation, all parameters are randomly
selected from some distribution. In particular, for all i, the v;
are normally distributed with mean v, and variance v%/25, the
6; are uniformly distributed on the interval [0, 27], the r; are uni-
formly distributed over the lower boundary of the domain, the /;
are normally distributed with mean L/4 = 2.5 Mm and variance
L2/400 = 0.25Mm?, the f; are uniformly distributed over the
duration of the simulation, and the 7; are normally distributed
with mean 7,, and variance 7;/16.

For this article, we conducted a parameter study on the char-
acteristic velocity time scale, 7,. We note that smaller values of
7, create shorter time scales for the velocity driver. Therefore,
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Fig. 2. Black line: Alfvén travel time along field lines located on the
line x = y = 0. Red and blue lines: mean velocity driver time scales
(solid lines) for the T1 (red) and T3 (blue) simulations and the location
of two standard deviations from the mean (dashed lines).

in terms of the classical division of coronal heating models, any
resultant energy dissipation will be more similar to that caused
by AC heating mechanisms. Conversely, larger values of 7, will
cause slower stressing of the coronal field and be more compa-
rable to DC heating mechanisms.

We considered simulations with three different characteris-
tic driving time scales defined using 7, =~ 15,30, and 300 s.
Thus, using the definition from the previous section, we imple-
ment variances of 225/16, 900/16, and 90000/16 s2, respectively.
Henceforth, we shall refer to these simulations as 71,72 and 7'3.
In Fig. 2, we display the characteristic time scales for the T1 (red
line) and T3 (blue line) simulations in comparison to the Alfvén
travel time, 75, along magnetic field lines (black line). For clar-
ity, we show the logarithms of these quantities. In order to find
the travel time, we calculated

ds

L VA

&)

TA(2) =

as a function of z along the line x = y = 0. Here, the integral is
evaluated along each magnetic field line, ds is an infinitessimal
length along the field line and v, is the local Alfvén speed. This
produces the black curve in Fig. 2. We note that the Alfvén travel
time quickly converges to O for small values of z because, close
to the lower boundary, the field strength (and local Alfvén speed)
is high and the field lines are very short. The dashed red and
blue lines show the extent of two standard deviations from the
mean for each of the characteristic time scales. As such, since
the values 7; (see Eqgs. (7) and (8)) are randomly sampled from
a Normal distribution, we expect approximately 95% of the 7; to
lie within the dashed lines for the respective simulations.

In Egs. (7) and (8), N, is selected to be a function of the
typical time scale 7, and is chosen such that at any time within
the simulation, a similar number of components in the sum are
active. This ensures that the spatial scales of the velocity driver
are consistent between different simulations in the parameter
space. In Fig. 3, we show an example of the imposed driver
at one instance in time for simulation T3. Movies showing the
evolution of the imposed velocity field are available online.
In Fig. 4, we show the time evolution of the driver in the cen-
tre of the lower z boundary (x = y = z = 0Mm) for the T1 (red)
and T3 (blue) simulations with different driving time scales. In
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Fig. 3. Contour and vector plot of the driving velocity imposed at the
lower driver. We show a time of # ~ 1800 s for the long time scale (T3)
simulation. Movies of the drivers imposed in the T1 and T3 simulations
are available online.

all simulations, we selected v, such that the temporally and spa-
tially averaged mean of the imposed velocity is approximately
1.2kms™".

In all simulations, the x and y boundaries were set to be peri-
odic. With the exception of the imposed velocity driver described
above, a zero-gradient condition is enforced at the lower z bound-
ary for all variables. A damping layer is employed close to the
upper z boundary to ensure any upflows do not reflect back
into the arcade. Within this layer, velocities are damped using

v = a(z)v, (10)

at every time step. Here, a(z) is a damping coefficient that is
equal to 1 if z < 18 Mm and then decreases linearly to a value
of 0.99 at z = 20 Mm. Despite this apparently weak damping,
velocities decrease rapidly as each time step is very short in
comparison to the travel time across this layer. The associated
kinetic energy is simply removed from the domain and is not
dissipated as heat. In reality, it would be lost to the upper corona
and the solar wind which are not included within this model.
At the top of the damping layer, the upper z boundary enforces
a zero gradient condition in all variables with the exception of
velocities which are set to zero. As such, no energy flux is per-
mitted through this boundary and any expansion of the magnetic
arcades is confined to the numerical domain.

3. Results

We begin by considering the results of the T2 simulation. At
this stage, we do not include the effects of resistivity or the
background viscosity (these are considered in Sect. 3.3). How-
ever, as discussed in the previous section, shock viscosities are
included to ensure numerical stability. These inevitably lead to
some weak, irreversible, plasma heating.

Due to the random and complex nature of the imposed veloc-
ity profile, it is impossible to account for all of the dynam-
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Fig. 4. Imposed velocity at the centre (x = 0, y = 0) of the lower bound-
ary for the T1 (red) and T3 (blue) simulations.

ics observed within each simulation. Instead, we will mostly
focus on globally integrated quantities to provide comparisons
between the simulations with different characteristic driving
time scales.

The velocity profile imposed at the lower z boundary acts
to inject energy into the computational volume. The magnetic
field becomes stressed and Lorentz forces drive flows throughout
the domain. Velocities that are generated above z = 0.9 zax =
18 Mm are rapidly reduced by the damping layer.

In Fig. 5, we display isosurfaces of quantities at the end of the
simulation run time. The top left-hand panel shows an isosurface
of the velocity magnitude with a level of 13 kms~'. Grid points
with larger velocities are contained within the closed surfaces.
We note that the largest velocities that form during the simula-
tion are greater than those imposed at the driven boundary (see
Fig. 4). The distribution of the isosurfaces shows that the largest
velocities tend to form along separatrix surfaces at the interfaces
between the two magnetic arcades (x = +£5 Mm). They are accel-
erated by large Lorentz forces that are in turn associated with the
interaction of the two arcade structures. If, for example, the mag-
netic pressure of both arcades is increased along a fixed value of
y, then each will exert an increased expansion force on its neigh-
bour. Ultimately, the plasma and field are compressed, leading to
large forces and the generation of flows at the arcade interface.

The remaining two panels on the top row of Fig. 5 show
isosurfaces of the plasma density (central panel) and temper-
ature (right-hand panel). We show a level of 1.5p9 = 2.5 X
10~12 kg m™ for the density and 1.3 Ty = 1.3 MK for the temper-
ature. Again, larger values of the respective quantities are con-
tained within the two isosurfaces. In this ideal simulation, the
highest values of these two variables form co-spatially and show
the spontaneous formation of a loop-like structure. The random
velocity motions sometimes induce twist within a magnetic flux
tube. This induces a radially inwards tension force which will
reduce the cross-section of the flux tube until it is balanced by
an enhanced magnetic and (to a lesser extent) gas pressure. This
increases the density and, as a result of adiabatic effects, the
temperature of the plasma. Gas pressure forces are also able to
accelerate field-aligned flows to spread the hotter, denser plasma
along the flux tube.

As a result of this process, the form of a magnetic feature
can become identifiable in the temperature and density distribu-
tions, and, if an appropriate emission line was selected, such a
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Fig. 5. Isosurfaces of six variables at the end point of the T2 simulation. Clockwise from top-left are: magnitude of the velocity, [v] = 13kms™;
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density, p = 1.5p = 2.5kgm™; temperature, T = 1.3 T, = 1.3 MK; magnitude of vorticity, |w| = 7.6 x 1072 s~!; magnitude of the current density,
jl=80x10*Am?; magnitude of perturbed magnetic field, |B;| = 20 G.

structure would certainly be apparent in synthetic observables
generated using the simulation data. However, in reality, with a
full thermodynamic treatment of the entire solar atmosphere, the
density enhancement could not be sustained against the effects
of gravity, unless it was supported by an increased heating rate.

In the lower left-hand panel of Fig. 5, we show an isosur-
face of the perturbed magnetic field strength. This is calculated
by subtracting the initial magnetic field from the final state. We
choose only to show the perturbed field as, at all times during
the simulation, the total field strength is dominated by the ini-
tial field. This means that throughout the experiments, field lines
retain the approximate form of the initial arcade. We see that the
largest values of the perturbed magnetic field strength are located
close to the lower z boundary. However, we note that this is not
simply due to the proximity of the imposed driver. Instead, to
understand this behaviour, we can consider the magnetic induc-
tion Eq. (4) with = 0. Since B is dominated by the background
field (By), the size of the perturbed field is governed by gradi-
ents in v and By. These tend to be largest where [v| and |By| are
greatest. As the magnitude of the time-averaged velocity does
not strongly depend on height (see Sect. 3.4), the z-dependence
of the perturbed field strength is related to |By|. As such, the per-
turbed field strength is greatest close to the lower boundary as
this is the region of largest initial field strength.

In the central panel of the second row of Fig. 5, we show an
isosurface of the magnitude of the current density. We show a
value of 8.0x 107* A m~2. Since, the initial field is potential, and
therefore current-free, the current density is only associated with
gradients in the perturbed field. It is therefore intuitive that the
largest currents form co-spatially with the highest values of the

perturbed field, close to the foot points of magnetic field lines.
In a resistive regime, Ohmic heating is proportional to the square
of this variable and thus we would expect energy dissipation to
occur most readily at low altitudes within the arcade. Whilst ||
decreases rapidly with height, at a given value of z, the largest
currents form preferentially at the separatrix surfaces between
the coronal arcades. A similar effect is observed in the magnitude
of the vorticity (next paragraph).

In the final panel of Fig. 5, we show an isosurface of the mag-
nitude of the vorticity, a measure of small scales in the velocity
field. We show a level of 7.6 x 1072 s~! and note that the largest
vorticities are contained within these surfaces. We see that the
largest velocity gradients form along separatrix surfaces between
the coronal arcades. As with the spatial correlation between the
perturbed magnetic field and the current density, this is largely
due to the largest velocities forming here (see top-left panel
of Fig. 5). Additionally, the change in connectivity across the
magnetic boundary plays a role in the large gradients that form.
Flows excited on a field line on one side of the separatrix surface
may not be present on the other side as the field line foot points
may not be close together. In any regime where energy dissipa-
tion is dominated by viscous effects, we would expect plasma
heating to be greatest in the regions of greatest vorticity.

3.1. Energy flux

With the exception of the damping layer near the top of the
domain, flows into and out of the numerical grid are not per-
mitted, Since the damping layer reduces flows, the only energy
injection is associated with a Poynting flux through the lower
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Fig. 6. Mean Poynting flux through each point on the driven boundary
during the ideal T2 simulation.

z boundary. In an ideal regime, the change in the volume inte-
grated energy can be expressed as

/llexB~dS=/llf{(B~v)B—(B-B)v}-dS, an

where E is the electric field and the integral is computed over
the lower boundary. Since v;, is set to 0 on this plane, the second
term in the integrand provides no contribution and the energy
flux reduces to

1 -1
;fExB - dS:;ff(vax+vyBy)Bz dxdy.

In Fig. 6, we show the time-averaged Poynting flux through
the lower boundary of the ideal T2 simulation. Red colours iden-
tify locations where the net flux of energy is into the domain
and blue colours show points where energy is, on average,
lost from the domain. The peak energy inflows (approximately
4 x 10*W m™2) are in excess of the requirements for heating
active regions (10* W m~2; Withbroe & Noyes 1977), however,
significant energy is also lost through the boundary. In particu-
lar, the driver is able to remove energy from both the initial and
perturbed magnetic fields. Although the initial field is potential
(and therefore representative of the minimum magnetic energy
state for a given set of boundary conditions), magnetic energy
can still be removed from the domain by modifying the distribu-
tion of magnetic flux through the boundary. Further, the driver is
also able to interact with the perturbed magnetic field to remove
energy from the domain. Thus, although it is still positive over
the course of the simulation, the net Poynting flux (see below) is
actually much smaller than the maximum values in Fig. 6.

Returning to Eq. (12), we see that under the assumption that
the field does not evolve from the initial state, the v, B,B, term
will dominate as B, is initially zero. Whilst this assumption is not

12)
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Fig. 7. Red line: magnitude of the time-averaged Poynting flux through
the driven boundary as a function of x for the ideal T2 simulation. Black
line: initial value of B,B,(x). For both lines, we have normalised by the
maximum values.

completely valid throughout the simulation, it does suggest (par-
ticularly for early times) that the magnitude of the Poynting flux
will be greatest in locations where the product BB, is largest
in the initial conditions. Of course, the energy flux is also heav-
ily dependent on the random spatial distribution of the imposed
velocity. However, since this is distributed uniformly in space,
there is no systematic preference for energy flux that arises from
the v, and v, terms in Eq. (12).

In Fig. 7, we show the magnitude of the time-averaged
Poynting flux (red line) for # < 500 s. To reduce the effects of
random variance, we integrated along the length of the coronal
arcade (—10 Mm < y < 10 Mm). For comparison, we also show
the initial profile of |B,B,|. By comparing the two lines, we see
that, as expected, the Poynting flux is small where |B, B;| is close
to 0.

Over long time periods (reducing the effects of variance in
the velocity profiles), the action of the imposed velocity driver on
the equilibrium field profile will not directly lead to a net change
in the total energy within the domain. This is because initially,
the integral of B, B, over the lower boundary is zero, and the v,
and v, terms in Eq. (12) will also have a mean contribution of
zero. Instead, the energy injection arises from the effects of the
velocity profile on the perturbed magnetic field. For example,
a positive v, component, will induce a negative component in
the perturbed B, and thus, assuming that the velocity does not
instantaneously change direction, will lead to a net flux of energy
into the domain.

Although the injected Poynting flux is spatially non-uniform,
this does not lead (directly) to some field lines becoming con-
sistently more energetic. This is because energy is continuously
redistributed throughout the domain during the simulation. In
order to track this redistribution, we calculate the energy flux
vector, F, defined by

2 Pv EXB
F=M+7v+ .
2 y—-1 U

(13)

Here, the first term is the kinetic energy flux, the second term is
the enthalpy flux and the final term is the Poynting flux. We then
average this quantity in time over the duration of the simulation
and spatially along the y axis (the length of the arcade).
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Fig. 8. Vectors: energy flux averaged over the length of the arcade and
the duration of the ideal T2 simulation. Contours: magnitude of the
energy flux. For clarity, we show the logarithm of this quantity.

The resultant vector field is displayed in Fig. 8. The contours
show the magnitude of the energy flux and the vectors show its
projection onto the x-z-plane. The magnitude of the vector field
is much larger close to z = 0 Mm than at higher altitudes. Hence,
for clarity, we show the logarithm of the averaged energy flux in
the contour plot. The length of the arrows also reflects the log-
arithm of the magnitude of the projected vectors. Everywhere
within the domain, the flux of energy is dominated by the Poynt-
ing flux. The enthalpy flux is non-neglibigble (but still smaller
than the Poynting flux) at large z, where the plasma-g is higher.
The kinetic energy flux is very small in comparison throughout
the arcade.

Since the source of additional energy is the lower z bound-
ary, the rapid decrease in the magnitude of the energy flux with
height indicates that most of the additional energy is confined to
low altitudes within the arcade. Indeed, it is stored almost exclu-
sively in the perturbed field close to z = 0 Mm (see Fig. 5) in all
simulations. As we shall see (Sect. 3.3), this will ensure that the
majority of irreversible plasma heating occurs close to magnetic
foot points.

Whilst we forced the mean kinetic energy of the driver to be
approximately constant across the T1, T2 and T3 simulations,
the Poynting flux need not be the same. In particular, since flows
are more long-lasting in the T3 simulations, larger deviations
from the initial magnetic field are able to form. As the injected
energy arises from the effect of the velocity profile on these devi-
ations, a greater Poynting flux into the domain is obtained for the
longer time scale cases.

In Fig. 9, we show the total, cumulative Poynting flux as a
function of time for the ideal T1 (red), T2 (green), and T3 (blue)
simulations. As expected, there is an increase in Poynting flux
for longer driving time scales. We note that due to the random
nature of the driver, the energy within the domain does not nec-
essarily increase monotonically. Indeed, for 7 < 250 s, the driver

Total Poynting Flux (10%' J)

1000
Time (s)

Fig. 9. Total energy injected by driver for T1 (red), T2 (green), and T3
(blue) simulations). For comparison, we also show approximate energy
requirements in an active region (solid black), Quiet Sun (dashed black),
and coronal hole (dot-dashed black).

actively removes energy from the domain in the T2 simulation
(green curve). As a result of the general behaviour observed in
Fig. 9, more energy is available to be dissipated for the long time
scale drivers. As such, if the heating efficiency is constant across
resistive versions of the simulations, then higher plasma temper-
atures will form in the T3 simulation.

In Fig. 9, we also include approximate energy requirements
for typical active region (solid black line) and Quiet Sun (dashed
black line) conditions (Withbroe & Noyes 1977). Although not
directly applicable to this closed field topology, we also show
the required energy budget for coronal holes (dot-dashed line).
We note that the magnetic field strength at the base of our sim-
ulations is most relevant to active region environments. Whilst
slightly below the requirements for active region heating, the
long time scale driver (blue line) injects energy at a rate that is
comparable to the solid black line. This is despite the relatively
low velocities imposed at the lower boundary. On the other hand,
the short time scale driving observed in the T1 and T2 simula-
tions, does not provide sufficient energy to balance active region
losses. However, even in these two cases, the injected energy
could heat the Quiet Sun if the dissipation rate was sufficiently
large. This is in contrast to results investigating sinusoidal wave
drivers (such as Prokopyszyn & Hood 2019; Howson et al. 2020)
which show that only high amplitude wave drivers will inject
enough energy in low-dissipation regimes. The key difference in
these simulations is that the driver will introduce complex tan-
gling into the field. This is not the case with a simple, periodic
wave driver, which will remove energy from the perturbed field
for approximately half of the driving time (with the exception of
resonant field lines).

3.2. Currents and vorticities

In this section, we investigate the rate of small-scale formation
in the magnetic and velocity fields. For the former, we use the
current density. The square of this quantity is proportional to
the Ohmic heating in a resistive regime. For the latter, we use
the vorticity. This is not directly related to the complex viscous
heating terms but is generally a good proxy for the magnitude of
heating observed in a viscous regime.
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Fig. 10. Left: volume integral of the square of the current density throughout the T1 (red), T2 (green), and T3 (blue) simulations. We show results
for ideal (solid lines) and resistive (dashed) experiments. Right: volume integral of the square of the vorticity for the T1 (red), T2 (green), and T3
(blue) simulation. We show results for ideal (solid lines) and viscous (dashed) experiments. In each panel, we have normalised the curves using

the maximum values obtained during the simulations.

In the following, we consider a set of resistive simulations
with magnetic Reynolds numbers of approximately 10* and
viscous simulations with fluid Reynolds number of approxi-
mately 10°. Although these values are much larger than might
be expected within the solar corona, they ensure that energy is
dissipated by the user-imposed resistivity and viscosity and not
by numerical effects. Substantially larger Reynolds numbers are
difficult to obtain in these large-scale three-dimensional MHD
simulations due to computational constraints.

For the resistive simulations we implement a resistivity, 77, that
is uniform everywhere apart from close to the z = 0 boundary,
where it is set to zero. In particular, it is zero for z < 1 Mm
and a constant value, 779 (to give the required magnetic Reynolds
number), otherwise. This profile reduces the slippage of magnetic
field lines through the velocity field imposed at the lower z bound-
ary. It also means that there is no Ohmic heating for z < 1 Mm.
The viscous simulations, on the other hand, use a uniform vis-
cosity profile. The driving imposed in the resistive, viscous and
ideal forms of each simulation (T1, T2 and T3) were identical. We
also note that these simulations do not consider the loss of energy
through thermal conduction or optically thin radiation or by the
exchange of mass between the corona and lower layers of the
solar atmosphere. As a result, the plasma temperatures obtained
(see Sect. 3.3) are higher than would be expected for comparable
energy release in the real corona.

In Fig. 10, we display the time evolution of the current den-
sity (left panel) and vorticity (right panel). In order to reduce
the effects of the random variance associated with the velocity
drivers, we display the volume integral of the magnitude of these
vector quantities. In both panels, we show the time evolution for
the T1 (red), T2 (green), and T3 (blue) simulations. The solid
lines represent ideal experiments and the dashed lines show the
resistive (left panel) and viscous (right panel) simulations. In the
case of the current density (left panel), we also show the results
for resistive simulations (dashed lines) and for the vorticity (right
panel), we show the results of viscous simulations (dashed lines).

Beginning with the left-hand panel, we see that the currents
are larger in the simulations with longer time scale driving (blue
lines). This is largely due to the increased energy input in these
simulations, and in particular, the increased magnetic energy.
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Since the perturbed magnetic field is not potential, it is asso-
ciated with currents and, in general, the larger the field strength,
the larger the currents. Meanwhile, the reduction of the currents
in the resistive simulations are simply a result of the diffusion of
strong gradients in the field by the magnetic diffusivity.

For the vorticity, on the other hand, we see the opposite
behaviour. In the right-hand panel of Fig. 10, we observe that
the short time scale drivers (red and green lines) induce larger
vorticities. This can be understood by considering the manner in
which driving time scales map to velocity length scales within
the coronal plasma. A high frequency, horizontal, sinusoidal
driver imposed on a magnetic foot point will excite a transverse
wave that can propagate along field lines. The frequency of the
driver will correspond to the wave length of the excited wave.
High frequencies will produce short wavelengths and therefore
large velocity gradients and, conversely, low frequencies will
produce long wavelengths and consequently, small velocity gra-
dients. Of course, in this case, the velocity driving is random,
but the same principle applies. The shorter time scale, higher
frequency drivers induce large gradients in the velocity field and
therefore increase the volume integrated vorticity.

As with the current densities, we note a drop in the vortici-
ties for the dissipative simulations (dashed lines). Relative to the
magnitude of the volume integrated gradients, this drop is more
significant in the case of the vorticities (compared to the cur-
rent densities). This behaviour can be understood by considering
the relative Reynolds numbers in the dissipative experiments. In
particular, the fluid Reynolds number is an order of magnitude
lower in the viscous cases than the magnetic Reynolds number is
in the resistive simulations. This means that the relatively larger
viscosity is more effective at suppressing gradients in the veloc-
ity field, and hence, vorticities are reduced by a greater fraction.
Despite this, we note that in all simulations there is significantly
more magnetic energy than kinetic energy. This is still the case
when only the energy in the perturbed (not background) mag-
netic field is considered. Consequently, unless viscous effects
are many orders of magnitude greater than resistive effects, we
expect Ohmic heating to dominate over viscous heating. As such,
it will be the size of the currents, and not the vorticities, that is
important for energy dissipation and plasma heating.
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Fig. 11. Upper left: energy increase in the T1, ideal simulation. We show each component of the energy: magnetic (purple), thermal (orange), and
kinetic (grey). In order to make the last two lines visible, we have multiplied by factors of 50 and 500, respectively. The total energy change is
shown in black and is almost identical to the purple line. Upper right: increase in volume integrated magnetic energy for resistive T1 (red), T2
(green), and T3 (blue) simulations. Lower left: increase in volume integrated thermal energy for resistive T1 (solid red), T2 (solid green), and T3
(solid blue) simulations. Lower right: heating efficiency for resistive T1 (red), T2 (green), and T3 (blue) simulations. This is calculated as the ratio

between the increase in thermal energy and the total energy increase.

3.3. Energy dissipation

The gradients in the magnetic and velocity fields discussed in
the previous section are susceptible to dissipation in the non-
ideal simulations. In the upper left-hand panel of Fig. 11, we
show the change in components of the volume integrated energy
during the ideal T1 simulation. We show the change in mag-
netic (purple), internal (orange) and kinetic (grey) energies. In
order to make the last two curves visible, the internal energy
has been multiplied by a factor of 50 and the kinetic energy by
a factor of 500. It is clear that the change in energy is domi-
nated by the increase in magnetic energy. This is true across all
ideal, resistive and viscous simulations. We also show the total
energy change (black) but this is largely obscured by the pur-
ple curve. Although we have labelled this simulation as ideal,
shock viscosities are included and these contribute small dissi-
pative effects which heat the plasma. Of course, in the equivalent
resistive and viscous simulations, the increase in internal energy
is larger, however it is still much smaller than the change in mag-
netic energy.

In the upper right-hand panel of Fig. 11, we show the change
in magnetic energy for the resistive T1 (red), T2 (green), and T3
(blue) simulations. This perturbed magnetic energy is the source
for the majority of the thermal energy release in all experiments.
As the change in magnetic energy is almost identical to the total
energy change, it is not surprising that the differences between
the simulations mirror those observed in the cumulative Poynt-

ing flux (Fig. 9). Again, we see larger energy increases for sim-
ulations with longer driving time scales.

In the lower left-hand panel of Fig. 11, we show the change
in thermal energy for the resistive T1 (red), T2 (green), and T3
(blue) simulations. In each case, this reflects the irreversible dis-
sipation of energy that occurs during the simulation and is dom-
inated by Ohmic heating. We note that for the longest time scale
driving (blue), the volume and time integrated heating is almost
an order of magnitude larger than for the shortest time scale driv-
ing (red). This is despite the imposed drivers having approxi-
mately the same kinetic energy.

We note that, since there are no energy loss mechanisms
included in these simulations, in a statistically steady state,
the volume integrated thermal energy should increase approx-
imately linearly. We see that by the simulation end-time, this
is the case for the T1 (red) and T2 (green) simulations but
not in the T3 (blue) case. Indeed, in this last simulation, the
rate of energy release is still increasing rapidly at t = 2000 s.
Unfortunately, computational constraints prevent this numerical
experiment running for sufficient time to reach a statistically
steady state. Despite this, we note that the long-term energy
release will be even larger for the T3 simulation and thus the
heating rate will dominate over the shorter time scale driving by
an even greater amount.

In the lower right-hand panel of Fig. 11, we show the heat-
ing efficiency for the resistive (solid lines) and viscous (dashed
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Fig. 12. Mean of j* as a function of height at the end of the T1 (solid
red), T2 (solid green) and T3 (solid blue) simulations. We also show the
mean of the perturbed magnetic field strength for the T1 (dashed red),
T2 (dashed green) and T3 (dashed blue) simulations. The solid black
line shows the mean of the initial magnetic field strength as a function of
height. For all variables we have normalised by their respective maxima
and taken logarithms.

lines) forms of the T1 (red), T2 (green), and T3 (blue) simu-
lations. This is calculated as the ratio between the change in
internal energy and the change in total energy. In other words,
we determine how much of the injected energy is dissipated as
heat. We note that there is a small amount of energy lost through
the damping layer and this is not accounted for in this calcula-
tion. However, since most of the injected energy is confined to
low values of z, this has little effect on the calculated efficien-
cies. Further, we highlight that the first 900 s of the simulation
have been omitted to exclude times when the energy has been
removed by the driver in the T2 simulation. As expected, due
to the relative sizes of the injected magnetic and kinetic ener-
gies, the heating efficiency is larger in the resistive simulations
than in the viscous cases. However, even in the simulation with
the greatest heating efficiency (resistive T3), the amount of heat-
ing is relatively low (<5% of energy is converted to heat). We
note that such a low efficiency could not be maintained over
much longer time periods. As such, if the energy injection rate
does not decrease, additional energy must be released through
an increased heating rate or via larger scale events such as flares
and/or coronal mass ejections.

In Fig. 12, we show the mean of ;> (solid curves) at dif-
ferent heights within the domain at the end of the T1 (red), T2
(green), and T3 (blue) resistive simulations. To allow for com-
parison of the profiles between experiments, in each case, we
have normalised to the maximum value in the respective sim-
ulation. We also plot the mean of the perturbed magnetic field
strength (dashed line) at different heights within the same sim-
ulations. We have normalised this quantity in the same way as
the j% curves. The solid black line shows the mean strength of
the initial magnetic field as a function of height. Again, this is
normalised to the maximum value which is obtained at the base
of the domain. In this figure, all quantities are plotted logarith-
mically.

In these resistive simulations, j* is proportional to the Ohmic
heating rate, except for z < 1 Mm, where the resistivity is set to
0. We see that in all cases, the heating is much larger at low
altitudes within the domain (akin to foot point heating) and also
scales with height in a similar manner in all three simulations.
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Further, this scaling in the heating rate corresponds to the fall-
off in the perturbed magnetic field strength (dashed lines). It
does not scale directly with the equilibrium magnetic field (black
line). This is understandable as the background field is current-
free and thus will not contribute to heating the plasma. However,
since the total field strength is dominated by the initial field, it
is actually a poor predictor of the local heating rate. This will
always be the case if the coronal field is composed of a domi-
nant potential field and only a weak non-potential component.

In Fig. 13, we investigate the heating rate and temperature
increase on field lines of different lengths. At the end of the three
resistive simulations, we traced 10 000 magnetic field lines with
foot points uniformly distributed on the lower z boundary. Along
each field line, we calculated the median value of ;> and of the
temperature. The field lines were then binned according to their
length and the median value of j (left panel) and the tempera-
ture (right panel) in each bin are displayed in Fig. 13.

Beginning with the left-hand panel, we see that the short-
est field lines have much larger average values of j> (we note the
logarithmic scale). This is simply because the entire length of the
field line is at low altitudes and thus confined within the high cur-
rent region. As such, short field lines can be heated much more
efficiently than long field lines. This is borne out in the right hand
panel of Fig. 13 which shows that, in general, the median temper-
ature decreases as the field line length increases. Of course, this
is not the case for the shortest field lines as these have a large
proportion of their length within the zero resistivity volume at
the base of the domain. In agreement with our previous analysis,
we see that the shorter time scale driving simulations (red and
green curves) exhibit lower currents and therefore temperatures,
on all field line lengths compared to the long time scale driving
case (blue curve).

In Fig. 14, we display the resultant temperature profile at
t = 2000 s in the resistive T2 simulation. Specifically, in order to
reduce the effects of the random variance in the imposed driver,
we show the temperature averaged (median) along the length of
the coronal arcade. Whilst the magnitude of the heating is dif-
ferent in the T1 and T3 simulations, the locations of the high-
est temperature regions are (approximately) the same. We also
note that the values of the temperature displayed in Fig. 14 are
somewhat arbitrary due to the lack of energy loss mechanisms
considered in these simulations.

We immediately notice the effects of the zero resistivity
region close to the lower boundary which prohibits Ohmic heat-
ing for z < 1 Mm. The largest increase in temperature occurs just
above this region, where the currents are still large and n # 0.
High temperatures form in low lying coronal loops and also near
the base of the separatrix surfaces between the arcades (see dis-
cussion of Fig. 5). From here, gas pressure forces are able to
redistribute some high temperature plasma along magnetic struc-
tures. This can be seen by the presence of moderately high tem-
perature material at z < 1 Mm. This hotter plasma is only located
at the base of arcades connected to the resistive volume and is
absent from field lines that are contained solely within the n = 0
region (e.g. —1 Mm < x < 1 Mm). We note that if conduction
was to be included in these simulations, we would expect the
thermal energy to spread along magnetic field lines more effi-
ciently and thus reveal more of the arcade structure in the tem-
perature profile.

3.4. Velocity and kinetic energy

A key difference between the T1, T2, and T3 simulations is
apparent in the velocity fields generated by the imposed driving.
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Fig. 14. Median temperature along the arcade at r = 2000 in the resis-
tive T2 simulation.

Although these are energetically insignificant in comparison to
the magnetic fields, they are much more easily observed in the
corona. The driving in the T1 simulation is associated with short
time scales throughout the simulation domain (and not only at
the lower boundary). In particular, wave-like behaviour is appar-
ent in the T1 velocity field whereas, only slow, gradual evolution
is observed in the T3 case.

In Fig. 15, we show the evolution of |v,| along the line
x = y = 0 for the ideal T1 (upper panel) and T3 (lower panel)
simulations. This corresponds to a vertical line through the cen-
tre of the arcade. The corresponding figures for the resistive and
viscous simulations are very similar. When observing along the
line of sight parallel to the (initially) invariant direction of the

magnetic arcade, this component of the velocity would be identi-
fied as transverse motions in the plane of the sky. In both panels,
the region of low velocity above z = 18 Mm, corresponds to the
imposed damping layer at the top of the simulation domain. With
the exception of this region, the distribution of kinetic energy
throughout the domain is much more uniform than the distribu-
tion of magnetic (both total and perturbed) energy.

We can immediately observe shorter temporal scales in the
T1 simulation when compared to the T3 case. Velocity features
have much shorter lifetimes and occur much more frequently.
This behaviour generates the enhanced vorticity for the short
time scale driving simulations discussed previously. In both pan-
els of Fig. 15, features can be seen to propagate from low heights
upwards through the domain. This phenomenon is generated by
a combination of fast waves propagating across the magnetic
field and as a result of phase mixing; perturbations excited at
the magnetic foot points take longer to propagate to the apex of
longer field lines. The reduction in the Alfvén and fast speeds at
high altitudes causes the decrease in gradient observed near the
top of both plots.

Whilst the largest velocities are greater in the T1 simula-
tion, the mean magnitude of flows throughout the computational
volume does not change drastically for different characteristic
driving time scales. To show this, in Fig. 16, we show the time-
evolution of the volume integrated kinetic energy for the ideal
T1 (red), T2 (green), and T3 (blue) simulations. Whilst the T1
simulation does show slightly higher kinetic energies than the
T3 case, the difference is not large, and indeed, this behaviour
reverses near the end of the simulation run time. It is certainly
possible that this difference can simply be explained by the ran-
dom nature of the drivers and need not be associated with the
time scale of the driving. Without conducting a much larger
parameter study, the existence of any genuine difference remains
unclear. Regardless, the kinetic energy is so small in comparison
to the magnetic energy (both initial and perturbed), that any dif-
ference here is energetically irrelevant.

We note that the characteristic driving time scale is once
again apparent in the volume integrated kinetic energies. In par-
ticular, the red and green curves in Fig. 16 show much greater
variation than the long time scale blue curve. However, whilst
this quantity may be estimated from observations (for example
using Doppler velocities along an appropriate line of sight), it
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Fig. 15. Evolution of |v,| along the line x = y = O for the ideal T1
(upper) and T3 (lower) simulations. We note that the colour bar for each
panel is different.

drastically underestimates the total energy in the domain. Addi-
tionally, it is not even a good proxy of the energy available for
heating as it does not increase with the energy in the perturbed
magnetic field (compare with top-right hand panel of Fig. 11).

4. Discussion and conclusions

In this article, we have investigated the effects of driving time
scales on energy injection and dissipation within a coronal
arcade. Whilst we forced the driver power (in terms of its kinetic
energy) to be independent of the characteristic time scale, sim-
ulations with longer time scale driving were found to have
increased energy fluxes into the domain. Larger perturbations to
the initial potential field were attained for long time scale driving
and, consequently, the average Poynting flux was greater in these
cases. The increased energy injection ensured that, in resistive
regimes, plasma heating was greater for long time scale driv-
ing. In all simulations, the vast majority of injected energy is
stored in the perturbed magnetic field, which is largest close to
the driven boundary. Only a small fraction of the injected energy
is transmitted to high altitudes, and thus, most heating is con-
fined to the magnetic foot points. Additionally, since the per-
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Fig. 16. Volume integrated kinetic energy as a function of time for the
ideal T1 (red), T2 (green), and T3 (blue) simulations.

turbed magnetic energy is orders of magnitude larger than the
kinetic energy, in dissipative regimes, Ohmic heating will gener-
ally be much greater than viscous heating.

In order to examine the general properties of the system,
throughout this article, we have selected to focus on volume
averaged quantities rather than specific energy release events.
The location, magnitude and timing of individual events will be
sensitive to the specific velocity profile imposed and may not be
generalisable to other similar drivers. Whilst we have not investi-
gated particular instances of energy release, we note that the lim-
ited spatial resolution will have an impact on the exact nature of
localised heating and on the evolution of the system as a whole.
In particular, we do not accurately reproduce the process of mag-
netic reconnection in intricate current sheets. In higher resolution
simulations that are closer to the very low dissipation regime of
the solar corona, we may expect heating to be more localised
and bursty in nature with an increased contribution from vis-
cous heating due to large reconnection outflows. The relatively
small (magnetic) Reynolds numbers we are forced to consider
will ensure that magnetic energy is released at early times and
in less stressed fields than would be the case for the Sun. This
will, initially at least, artificially enhance the observed heating
rates and reduce the amount of stress that can build up within
the magnetic field. As a result, the time-averaged Poynting flux
will decrease and, ultimately, less energy will be available for
heating the plasma (e.g. Klimchuk 2015). This is likely to be
more significant in the T3 simulations, in which large currents
form most readily.

It is important to note that our driver is imposed at the base of
the corona and therefore should not be compared directly to pho-
tospheric flows. As the transmission of power through the lower
layers of the solar atmosphere is so complicated, it is unclear
how flows at the solar surface map to driving at the base of the
corona. Instead, it may be more reasonable to construct coronal
drivers such that they generate dynamics that reflect observations
of coronal waves. For example, by imposing velocity profiles
that reproduce observed power spectra and/or the amplitudes
of oscillations. Indeed in the T1 simulation (AC driving), the
current construction generates flows within the domain that are
comparable to coronal observations of the order 30 km s~!. Addi-
tionally, in previous studies (e.g. Morton et al. 2016), authors
have identified increased oscillatory power at low frequencies
within the corona. This result is applicable across the parame-
ter space investigated within this article. As such, contrary to
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the argument above, the driving power should potentially be
higher for the long time scale (T3) simulations or lower for the
short time scale (T1) simulations. This would further enhance
the heating in the T3 simulation above the level generated in the
T1 simulation. In other words, the dissipation rates presented
here may be too generous to the AC heating simulations and, in
reality, we would expect the DC heating to dominate by an even
greater extent.

In the literature, many proposed wave heating models rely
on a pre-defined density profile that generates gradients in the
Alfvén speed/frequency and allows phase mixing and mode cou-
pling to develop. Whilst no such density variation is included
in the initial conditions considered here, variations in the field
line length and magnetic field strength still allow phase mix-
ing to proceed. Despite this, it is likely that wave heating is less
efficient in the absence of a non-uniform density profile. Fur-
thermore, in reality, enhanced wave heating may develop if heat-
ing events lead to the localised evaporation of dense plasma into
the corona. As such, without a full thermodynamic and gravi-
tational treatment of the coupled solar atmosphere, it remains
possible that we underestimate the potential for wave heating in
this study.

The potential for the driver to add complexity to the back-
ground magnetic field regardless of the characteristic time scale
of the driver is a departure from many AC heating studies. Fre-
quently, a sinusoidal driver is imposed at the foot points of mag-
netic field lines and, in such cases, only periodic fluctuations
about the background field are induced. In the current study,
however, even for short time scale driving, the field is stressed
in a manner that is more typical of DC studies. On account
of this, the injected Poynting flux is relatively large given the
small amplitude flows considered. In comparison, previous stud-
ies (e.g. Howson et al. 2020) have found wave drivers to inject
insufficient Poynting flux despite much larger amplitude oscilla-
tions. As such, regardless of the relevant time scale of the veloc-
ity driving, the injection of magnetic field complexity into the
corona is an important consideration for all heating studies.
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