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We derive the equations of motion of dyonic black hole binaries with electric and magnetic charges and
explore features of static orbits. By using a Newtonian method with the inclusion of radiation reaction, we
calculate the total emission rate of energy and angular momentum due to gravitational radiation and
electromagnetic radiation for circular orbits. Moreover, we obtain the evolutions of orbits and calculate
merger times of dyonic binaries. We show that electric and magnetic charges significantly suppress the
merger times of dyonic binaries. Our results provide rich information about dyonic binaries and can be used
to test black holes with magnetic charges.

DOI: 10.1103/PhysRevD.102.103520

I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
from a binary black hole coalescence [1] has opened a new
window of physics and astronomy. Ten merger events of
binary black holes have been reported by LIGO/Virgo
during the O1 and O2 observing runs over the past few
years [1–7]. The progenitors of these binaries are under
intensive investigation but still unknown [8–12]. These
LIGO/Virgo black holes show a much heavier mass dis-
tribution than the mass distribution inferred from x-ray
observations [13–15], which presents a gigantic challenge to
the formation and evolution mechanisms of astrophysical
black holes. One possible explanation for LIGO/Virgo black
holes is that they are primordial black holes (PBHs)
[8,9,11,16–19] formed in the radiation-dominated era of
the early universe due to the collapse of large energy density
fluctuations [20,21]. Besides being the sources of LIGO/
Virgo detection, PBHs can also be a candidate for dark
matter or the seeds for galaxy formation [22–24].
Black holes can have additional hairs of electric and

magnetic charges besides the mass and angular momentum.
These charged black holes have rich phenomena compared

to uncharged black holes. In recent years, charged black
holes have attracted a lot of attention and have been studied
extensively [25–31]. For GW150914, the first merger event
of binary black holes reported by LIGO/Virgo, it is shown in
Refs. [30,31] that these black holes can have some electric
charge, while Ref. [26] argues that the magnetic charged
black holes have to be small. A binary of black holes with
charges emits not onlyGWsbut also electromagneticwaves.
For a binary of black holes with electric charges, the
Coulomb force gives an additional central force to the
gravitational force and thus modifies the Keplerian orbit
by the relative ratio of the Coulomb force to the gravitational
force. This ratio affects the power distribution of GWs and
leads to a different power-law of the merger rate [28].
Compared to electric black holes, magnetic black holes can
be relatively long-lived and a possible candidate for dark
matter. Very recently, Maldacena has argued that the
extremely strong magnetic field near the event horizon of
a magnetic black hole may restore the electroweak sym-
metry and affect the phase-transition scenario in the early
universe [32]. Magnetic black holes, which can have
electroweak-symmetric coronas outside of the event hori-
zon, are studied as PBHs [33].
While purely electric (or magnetic) binary black holes

have been studied comprehensively, few works have
focused on gravitational and electromagnetic radiation from
binary black holeswith electric andmagnetic charges. In this
paper, we investigate binaries of black holes with electric
and magnetic charges in the Einstein-Maxwell theory.
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A nonrotating black hole with an electric charge q and a
magnetic charge g, the so-called dyonic black hole, has the
same metric as the Reissner-Nordström black hole with q2

replaced by q2 þ g2, and a rotating dyonic black hole has a
similar structure [34]. A binary of dyonic black holes has a
generalized angular momentum, which is a conserved
Laplace-Runge-Lenz vector [35], around which the orbital
plane precesses, and which confines the orbit to a cone [36].
The binary follows the Keplerian orbits with the conserved
energyand the square of angularmomentum that aremodified
bymagnetic charges. The emission power of electromagnetic
waves andGWs thus drastically changes, which may provide
a new window to identify primordial magnetic charges.
The primary aim of this paper is to investigate gravita-

tional and electromagnetic radiations from binary black
holes with electric and magnetic charges in circular orbits.
Compared to purely magnetic (or electric) black holes, we
show that dyonic black hole inspirals have richer features.
For dyonic binaries, in the 0th order post-Newtonian (PN)
expansion, a noncentral and angular-momentum-dependent
force causes the orbits to display complex and three-
dimensional trajectories. We calculate the total emission
rate of energy and angular momentum due to gravitational
radiation and electromagnetic radiation within the 0th order
post-Newtonian (PN) expansion, particularly, in circular
orbits (the case of e ¼ 0). Moreover, we obtain the
evolutions of orbits, calculate merger times of dyonic
binaries and show that electric and magnetic charges
significantly suppress merger times of dyonic binaries.
Our methods can be applied to the early inspirals of low-
mass binaries in LIGO/Virgo which have a longer signal in
the detector-band. Of course, when black holes approach to
the merger stage, a higher-order PN expansion or numeri-
cal-relativity simulation is needed. The main region of
applicability of our results is the long inspirals that space-
based GW detectors, such as LISA [37] and Taiji [38], will
detect.
The organization of this paper as follows. In Sec. II, we

derive the equations of motion of dyonic binaries and
investigate characteristics of the static orbits. In Sec. III, we
calculate the total emission rate of angular momentum and
energy due to gravitational radiation and electromagnetic
radiation, derive the evolution of a and θ, and find the
merger time. The Sec. IV is devoted to conclusions and
discussions. In the Appendix, we show the chaotic orbits in
general for dynonic binaries.

II. SOLUTIONS WITHOUT RADIATION

Using a Newtonian method, we study the orbital motion
of a binary of black holes with electric and magnetic
charges. Maxwell’s equations with magnetic monopoles
are given by1

8>>><
>>>:

∇ · E ¼ 4πρe;

∇ × E ¼ −4πjm − ∂B=∂t;
∇ · B ¼ 4πρm;

∇ × B ¼ 4πje þ ∂E=∂t;
ð1Þ

where ρm is a magnetic charge density and jm is a magnetic
current. The Lorentz force on a dyon with an electric charge
q and a magnetic charge g is

F ¼ qðEþ v ×BÞ þ gðB − v ×EÞ: ð2Þ

A point dyon generates the electric and magnetic fields

E ¼ q
r
r3

; B ¼ g
r
r3

: ð3Þ

In this paper we consider a black hole binary with
electric and magnetic charges (q1, g1) and (q2, g2). For
a nonrotating dyonic black hole, its metric can be
described by

ds2 ¼ −fiðrÞdt2 þ
dr2

fiðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ; ð4Þ

where

fiðrÞ ¼ 1 −
2mi

r
þ q2i þ g2i

r2
; ði ¼ 1; 2Þ; ð5Þ

where mi is the mass of the black hole.
The nonrelativistic interaction of two dyons in the

Minkowski spacetime was studied in classical theory
[39] and in a quantum theory [40]. We will study the
bounded motion of two dyonic black holes as a binary
system. The Keplerian motions with or without an angular
momentum-dependent force term are classified [35].
For a binary of dynonic black holes, we choose the

center of mass system at the origin

ri1 ¼ −
m2

M
Ri; ri2 ¼

m1

M
Ri; ð6Þ

where

Ri ¼ ri2 − ri1; M ¼ m1 þm2: ð7Þ

Considering the Lorentz force and gravitational force, the
equation of motion is given by

m2 ̈ri2 ¼ μR̈i ¼ C
Ri

R3
−Dϵijk

Rj

R3
vk; ð8Þ

where

μ ¼ m1m2

M
; vi ¼ _Ri; ð9Þ1In this paper, we use units of G ¼ c ¼ 4πε0 ¼ μ0

4π ¼ 1.
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and

C¼ ð−μMþ q1q2 þ g1g2Þ; D¼ ðq2g1 − g2q1Þ: ð10Þ

Note that the case of D ¼ 0, which corresponds to purely
electric or magnetic charges or q2=q1 ¼ g2=g1 of balancing
out the velocity-dependent Lorentz forces, yields the same
orbital motion as that of purely electric charges. Here, we
rewrite Eq. (8) as

μR̈ ¼ C
R
R3

−D
R
R3

× v; ð11Þ

and take a cross-product on both sides with R. Then we get

μϵijkR
jR̈k ¼ d

dt
ðμϵijkRj _RkÞ ¼ d

dt
L̃i; ð12Þ

where L̃≡ μR × v is the real angular momentum of the
binary system. Writing the right-hand side as

_̃L
i ¼ −DϵijkRjϵklm

Rl

R3
_Rm

¼ −
D
R3

ðδilδjm − δimδ
j
lÞRjRl _Rm

¼ D
R
ð _Ri − Ri _R=RÞ; ð13Þ

and using the relation

_̂r ¼ d
dt

�
Ri

R

�
x̂i ¼

1

R
ð _Ri − Ri _R=RÞx̂i; ð14Þ

where r̂ is the unit vector along R and x̂i is the unit vector
along xi axis, we find a conserved quantity

_L ¼ 0; L≡ L̃ −Dr̂: ð15Þ

Note that L is a Laplace-Runge-Lenz vector [35] and has a
meaning of the generalized angular momentum of the
binary system. From the definition (15) and the fact that
L̃ is perpendicular to r̂, we can obtain

ðLÞ2 ¼ ðL̃Þ2 þD2: ð16Þ

Since L is conserved and D is a constant, we arrive at a
conclusion that the magnitude of the real angular momen-
tum L̃ is conserved even though the direction of L̃ changes.
Now, we derive the orbit equation of the binary system.

Because L is conserved, we can pick our coordinate system
such that it points along the z-axis, that is,L coincides with
the polar axis. Some conventions in a spherical coordinate
system are shown in Fig. 1. Using ẑ ¼ r̂ cos θ − θ̂ sin θ in
the spherical coordinate ðr;ϕ; θÞ, we have

L ¼ Lẑ ¼ L

0
B@

cos θ

0

− sin θ

1
CA ¼ L̃ −Dr̂ ¼

0
B@

−D
L̃ϕ

L̃θ

1
CA; ð17Þ

and

cos θ ¼ −D=L: ð18Þ

Due to bothD and L being constants for the binary system,
it means that θ associated with the mass center of the
system keeps as a constant. The special case ofD ¼ 0 gives
an orbit on the equatorial plane. Thus, the orbital equation
is given by

R ¼ R

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA: ð19Þ

For the energy of the system, we have

E ¼ 1

2
μv2 þ C

R
¼ 1

2
μðv2k þ v2⊥Þ þ

C
R

¼ 1

2
μ _R2 þ L̃2

2μR2
þ C

R
; ð20Þ

where vk ≡ _R r̂ is the velocity along R and

v⊥ ≡ R _ϕ sin θϕ̂þ R_θ θ̂ ¼ R _ϕ sin θϕ̂ ð21Þ

is the velocity that is perpendicular to R. To start with, we
can solve Eq. (20) for _R and obtain

_R ¼
ffiffiffi
2

μ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −

L̃2

2μR2
−
C
R

s
: ð22Þ

FIG. 1. Some conventions in a spherical coordinate system.
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From the definition, the conserved module of the real
angular momentum can be expressed by

L̃≡ μjR × vj ¼ μRv⊥ ¼ μR2 sin θ _ϕ; ð23Þ

while the conserved module of the generalized angular
momentum is given by

L ¼ L̃
sin θ

¼ μR2 _ϕ: ð24Þ

For the equation of the orbit, we need the relationship of R
and ϕ by eliminating the parameter t. From Eqs. (22) and
(24), we get

_ϕ
_R
¼ dϕ

dR
¼

�
2μE
L2

R4 −
2μC
L2

R3 − sin2 θR2

�
−1
2

: ð25Þ

Setting x ¼ 1=R and integrating by quadrature, we
finally obtain the Keplerian orbit on the cone with half-
aperture angle θ

R ¼
L̃2

μjCj

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2L̃2

μC2 E
q

cosðϕ sin θÞ

≡ að1 − e2Þ
1þ e cosðϕ sin θÞ ; ð26Þ

while the conserved energy and the magnitude of angular
momentum are, respectively,

E ¼ C
2a

; ð27Þ

and

L̃2 ¼ μjCjað1 − e2Þ: ð28Þ

Note that by introducing the conic section parameters
ða; eÞ, we have expressed the radius on a conic section
in the standard Keplerian form. The bounded motion of our
binary system requires E < 0, which means C < 0. From
Eqs. (23) and (28), we obtain the evolution of the azimuthal
angle

_ϕ ¼ ð−CÞ12 cscðθÞðe cosðϕ sinðθÞÞ þ 1Þ2
a

3
2ð1 − e2Þ32μ1

2

: ð29Þ

Further, by choosing z-axis along L, the orbit is explicitly
given by

R ¼ að1 − e2Þ
1þ e cosðϕ sin θÞ

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA: ð30Þ

Note that θ is a constant, we are able to interpret Eq. (30)
as a conic-shaped orbit of the binary which is confined to
the surface of a cone with half-aperture angle θ, as shown
in Fig. 2. In Fig. 2, we plot the orbit by choosing a ¼ 1,
θ ¼ π=2 × 0.6 and e ¼ 0.5. Now that we have orbits of
dyonic binaries, we have explored the features in general
and chaotic behaviors of orbits in the Appendix A.
First, let us consider the case e ¼ 0 for our binary

system. From Eqs. (29) and (30), the three-dimensional
trajectory

R ¼ a

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA; ð31Þ

is effectively a two-dimensional circular orbit with
z ¼ cos θ, as illustrated in Fig. 3, and the orbital rate

_ϕ ¼ ð−CÞ12
μ

1
2a

3
2 sin θ

; ð32Þ

has a finite period

T1 ¼
Z

2π

0

dϕ _ϕ−1 ¼ 2πa3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
−μ=C

p
sin θ: ð33Þ

Next, we consider a conical elliptical orbit of e ≠ 0 for
our binary system. To get a closed orbit, we need to analyze
Eq. (30). If and only if sin θ is a rational number

sin θ ¼ l
n

ð34Þ

FIG. 2. A conic-shaped orbit of the binary which is confined to
the surface of a cone is plotted in the range of ϕ from 0 to
40π= sin θ and the parameters a ¼ 1, e ¼ 0.5, and θ ¼ π=2 × 0.6
according to (30). Though the orbit is bounded, it is not closed
and has an infinite period in three dimensions since sinð3π=10Þ ¼
ð1þ ffiffiffi

5
p Þ=4 is an irrational number.
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with l and n relatively positive prime numbers and l < n,
the orbit will be closed after n revolutions, the system will
complete one exact ellipse and return to the initial position.
In such a case, one period is given by

T2 ¼
Z

2nπ

0

dϕ _ϕ−1 ¼ 2πa3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
−μ=C

p
l: ð35Þ

Moreover, the different numbers l and n will determine the
different topology of the orbit, as shown in Fig. 4.
For e ≠ 0, no matter how rational or irrational sin θ is, R

is a periodic function of ϕðtÞ with the period

T3 ¼
Z

2π= sinðθÞ

0

dϕ _ϕ−1 ¼ 2πa3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
−μ=C

p
; ð36Þ

as shown in Fig. 5. When e ≠ 0 and sin θ is irrational, the
orbit is not closed and shows a chaotic behavior of a
conserved autonomous system [41]; for instance, in Fig. 2,
we plot the orbit of the binary by choosing a ¼ 1,
θ ¼ π=2 × 0.6, and e ¼ 0.5.
Particularly when jDj ≪ L, we have

cos θ ¼ jDj=L ¼
�
1þ jCj

D2
μað1 − e2Þ

�
−1=2

; ð37Þ

sin θ ≃ 1; ð38Þ

and the orbit is approximately given by

R ≃
að1 − e2Þ

1þ e cosðϕÞ

0
B@

cosϕ

sinϕ

ð1þ jCj
D2 μað1 − e2ÞÞ−1=2

1
CA: ð39Þ

In the limiting case of D ¼ 0, the orbit becomes the
Keplerian on the equatorial plane ðθ ¼ π=2Þ.
Now that we have a description for orbits, we will

calculate the emissions of energy and angular momentum
for the e ¼ 0 case in the next section.

III. SOLUTIONS WITH RADIATION

In this section, we will consider the case of e ¼ 0
only, i.e., the circular orbits and leave the case of e ≠ 0

FIG. 3. A circle-shaped orbit of the binary is plotted for the
parameters a ¼ 1, θ ¼ π=2 × 0.6, and e ¼ 0, according to
Eq. (31). Though sinð3π=10Þ is an irrational number, the orbit
is closed, has a Keplerian form and has a finite period in three
dimensions.

FIG. 4. Two different closed orbits of the binary with the
parameters a ¼ 1 and e ¼ 0.5 are illustrated for the rational
values of sin θ ¼ 3=4 (top) and sin θ ¼ 2=3 (bottom).
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for future work. By using the quasistatic approximation,2

we will calculate the total emission rate of energy and
angular momentum due to gravitational and electromag-
netic radiations.

A. Electromagnetic radiation

We first calculate the emission of electromagnetic
radiation from electric charges on the orbit (31), averaged
over an orbital period. Then we consider the emission from
magnetic charges in the same orbit and finally superimpose
their fields. This derivation follows the same procedure as
that in Refs. [28,29].
Following [28,29], the vector potential A at r (r ≫ a) is

given by

Ai ≃
Pijffiffiffiffiffiffi
4π

p
r
_Qj; ð40Þ

where

Qi ¼ q1xi1 þ q2xi2 ¼ μΔσqRi; ð41Þ

is the electric dipole, Pij ¼ δij − ninj is the transverse
projection, and

Δσq ¼ q2=m2 − q1=m1: ð42Þ

The energy emission due to electric charges is given by

Pe ¼
2μ2ðΔσqÞ2

3
R̈iR̈i; ð43Þ

and the average energy loss over an orbital period T is

P̄e ¼
1

T1

Z
2π

0

dϕPe
_ϕ−1

¼ 2C2ðΔσqÞ2 csc2ðθÞ
3a4

: ð44Þ

The angular momentum emission due to electric charges is
given by

_Jie ¼ −ϵijk
2

3
_QjQ̈k ¼ −

2μ2ðΔσqÞ2
3

ϵijk _R
jR̈k: ð45Þ

For the angular momentum loss due to electromagnetic
radiation averaged one orbital period T, we have

�
dJie
dt

�
≡ 1

T1

Z
T1

0

dt _Jie: ð46Þ

For e ¼ 0, we can get

_J1e ¼ _J2e ¼ h_J1ei ¼ h _J2ei ¼ 0; ð47Þ

h _J3ei ¼ _J3e ¼ −
2ð−CÞ3=2 ffiffiffi

μ
p ðΔσqÞ2 cscðθÞ
3a5=2

: ð48Þ

A great consequence of the enhanced symmetry due to
the existence of magnetic monopoles is that Maxwell’s
equations and thus the classical dynamics of all the fields
and charges remain invariant under the dual transformation

E0 ¼ E cos α − B sin α;

B0 ¼ E sin αþ B cos α;

q0 ¼ q cos αþ g sin α;

g0 ¼ g cos α − g sin α: ð49Þ

By choosing α ¼ π=2, pure electric charges transform to
pure magnetic charges. This allows us to immediately find
the fields emanating from magnetic charges on the orbit
from our results for pure electric charges so far. We may
then superimpose them to find the total emission. For
α ¼ π=2, we see

E2 ¼ −
�
Δσg
Δσe

�
B1;

B2 ¼ þ
�
Δσg
Δσe

�
E1; ð50Þ

where Δσg determines the magnetic dipole:

Δσg ¼ g2=m2 − g1=m1: ð51Þ

Here, we have used the transformation between the electric
and magnetic fields and the vector potential (40) to infer
their proportionality with the charges.

FIG. 5. The plot of R as a function of ϕ by choosing a ¼ 1,
θ ¼ π=2 × 0.6, and e ¼ 0.5, according to (30).

2The quasistatic approximation is that the emission is assumed
constant during one averaging period.
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In fact, we need not superimpose the fields; instead we
may superimpose their emissions. This does not hold true
in general since the superposition principle of the Maxwell
theory applies only to the fields. However, we show in the
following that the addition of emissions applies for this
specific situation of adding dual fields together. A way to
immediately and conceptually show that this is correct, is to
notice that, far away on a shell where we calculate the
emissions, the electric and magnetic fields from the electric
charges are perpendicular to those from the magnetic
charges, while the electric (magnetic) fields from the
electric charges are parallel with the magnetic (electric)
fields from the magnetic charges, and so, all the cross-terms
vanish while superimposing the fields.
We explicitly show this by considering the integrated

energy- and angular momentum-density on a shell for
electric and magnetic fields, labeling the fields from the
electric charge configuration E1, B1, and those from the
dual transformation E2, B2. Notice that the electric dipole
has the same direction as the magnetic dipole. So, we have
E1 ⊥ E2, B1 ⊥ B2, E1jjB2, E2jjB1. Now we look at the
result for the energy density and momentum density:

u ¼ 1

2
ðE2 þ B2Þ ¼ 1

2
ðE2

1 þ B2
1

þ E2
2 þ B2

2 þ 2ðE1 · E2 þ B1 · B2ÞÞ ¼ u1 þ u2: ð52Þ

P ¼ E × B ¼ E1 × B1 þ E2 × B2

þ E1 × B2 þ E2 ×B1 ¼ P1 þP2: ð53Þ

Noting that

P ¼ −r2
Z

dΩr̂ ·P; ð54Þ

_J ¼ −r2
Z

dΩr ×P; ð55Þ

we have

P̄EM ¼
�
1þ

�
Δσg
Δσe

�
2
�
P̄1; ð56Þ

_JEM ¼
�
1þ

�
Δσg
Δσe

�
2
�
_J1: ð57Þ

This means that our final results for the energy and angular
momentum emissions from our binary system are

P̄EM ¼ 2C2ððΔσqÞ2 þ ðΔσgÞ2Þcsc2ðθÞ
3a4

; ð58Þ

h_JEMi ¼ −
2ð−CÞ3=2 ffiffiffi

μ
p ððΔσqÞ2 þ ðΔσgÞ2Þ cscðθÞ

3a5=2
: ð59Þ

Following [28], the gravitational field or electromagnetic
field carries away a total angular momentum J, which
consists of an orbital angular momentum contribution and a
spin contribution. This total angular momentum is drained
from the total angular momentum of the source, which, for
our binary system has the origin of a pure orbital motion.
So, the loss rates of the energy and angular momentum in
our binary system due to electromagnetic radiation are
given by

�
dEEM

dt

�
¼ −

2C2ððΔσqÞ2 þ ðΔσgÞ2Þcsc2ðθÞ
3a4

; ð60Þ

�
dLEM

dt

�
¼ −

2ð−CÞ3=2 ffiffiffi
μ

p ððΔσqÞ2 þ ðΔσgÞ2Þ cscðθÞ
3a5=2

;

ð61Þ

from which we find the relation

hdLEM
dt i

hdEEM
dt i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−CÞ−1μa3

q
sinðθÞ ¼ μa2=L: ð62Þ

B. Gravitational radiation

Now, we compute the total radiated power in GWs. In
our reference frame where L is along z axis, the second
mass moment can be written as

Mij ¼ μRiRj: ð63Þ

Following [42], the radiated power of GWs is
expressed as

PGW ¼ 1

5

D
M̈ijM̈ij −

1

3
ðM̈kkÞ2

E
ð64Þ

Using Eqs. (32) and (63), one has

⃛M11 ¼
4ð−CÞ3=2 cscðθÞ sinð2ϕÞ

a5=2
ffiffiffi
μ

p ;

⃛M12 ¼ −
4ð−CÞ3=2 cscðθÞ cosð2ϕÞ

a5=2
ffiffiffi
μ

p ;

⃛M13 ¼
ð−CÞ3=2 cotðθÞ cscðθÞ sinðϕÞ

a5=2
ffiffiffi
μ

p ;

⃛M22 ¼ −
8ð−CÞ3=2 cscðθÞ sinðϕÞ cosðϕÞ

a5=2
ffiffiffi
μ

p ;

⃛M23 ¼ −
ð−CÞ3=2 cotðθÞ cscðθÞ cosðϕÞ

a5=2
ffiffiffi
μ

p ;

⃛M33 ¼ 0: ð65Þ
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Therefore, we obtain

PGW ¼ −
ð−CÞ3ð15 cosð2θÞ − 17Þcsc4ðθÞ

5a5μ
; ð66Þ

which is independent of ϕ. The energy of GWs is only well
defined by taking an average over one period. In our case, a
well-defined quantity is the average of PGW over one period
T1. Thus we perform the time average to get the total
radiated power

P̄GW ≡ 1

T1

Z
T1

0

dtPGW ¼ PGW; ð67Þ

and the averaged energy loss over an orbital period T1 is
given by�
dEGW

dt

�
¼ −P̄GW ¼ ð−CÞ3ð15 cosð2θÞ − 17Þcsc4ðθÞ

5a5μ
:

ð68Þ
Similarly, following [43], the rate of angular momentum

emission due to GWs is given by

dLi
GW

dt
¼ −

2

5
ϵiklhM̈kaM̈lai: ð69Þ

We have the angular momentum loss due to gravitational
radiation averaged one orbital period T1:�

dLi
GW

dt

�
≡ 1

T1

Z
T1

0

dt _Li
GW: ð70Þ

For the case of e ¼ 0, i.e., circular orbits, we get

_L1
GW ¼ 12ð−CÞ5=2 cotðθÞ cscðθÞ cosðϕÞ

5a7=2
ffiffiffi
μ

p ; ð71Þ

_L2
GW ¼ 12ð−CÞ5=2 cotðθÞ cscðθÞ sinðϕÞ

5a7=2
ffiffiffi
μ

p ; ð72Þ

from which it follows

h _L1
GWi ¼ h _L2

GWi ¼ 0; ð73Þ
and the nonvanished average

h _L3
GWi ¼ _L3

GW ¼ ð−CÞ5=2ð15 cosð2θÞ − 17Þcsc3ðθÞ
5a7=2

ffiffiffi
μ

p : ð74Þ

Because L is along z axis, we thus conclude that the loss
rates of the energy and angular momentum in our binary
system due to gravitational radiation are

�
dEGW

dt

�
¼ ð−CÞ3ð15 cosð2θÞ − 17Þcsc4ðθÞ

5a5μ
; ð75Þ

�
dLGW

dt

�
¼ ð−CÞ5=2ð15 cosð2θÞ − 17Þcsc3ðθÞ

5a7=2
ffiffiffi
μ

p ; ð76Þ

the ratio

hdLGW
dt i

hdEGW
dt i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−CÞ−1μa3

q
sinðθÞ ¼ μa2=L: ð77Þ

From the results for electromagnetic and gravitational
radiations, we can show, for any θ and a, a universal relation

hdEGW
dt i

hdEEM
dt i ¼

hdLGW
dt i

hdLEM
dt i : ð78Þ

C. Evolutions of a and θ

For the static orbit, θ and a are constants. However, when
the emissions of energy and angular momentum due to
gravitational and electromagnetic radiations are included, θ
and a become functions of time t. In this subsection, we
will explore the evolutions of a and θ.
The total emission rates of energy and angular momen-

tum due to gravitational and electromagnetic radiations are
given, respectively, by

�
dE
dt

�
¼

�
dEEM

dt

�
þ
�
dEGW

dt

�
; ð79Þ

�
dL
dt

�
¼

�
dLEM

dt

�
þ
�
dLGW

dt

�
: ð80Þ

From the definitions

E ¼ C
2a

; ð81Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−μCa

p
sinðθÞ ; ð82Þ

we find the evolution of the semimajor axis and the conic
angle

da
dt

¼ 4CððΔσqÞ2 þ ðΔσgÞ2Þ csc2ðθÞ
3a2

þ 2C2ð15 cosð2θÞ − 17Þ csc4ðθÞ
5a3μ

; ð83Þ

dθ
dt

¼ 2CðΔσqÞ2 þ ðΔσgÞ2Þ cotðθÞ
3a3

þ C2ð15 cosð2θÞ − 17Þ cotðθÞ csc2ðθÞ
5a4μ

: ð84Þ

Note that these two expressions have a similar form. Using
the chain rule for differentiation, we can find
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da
dθ

¼ 2a cscðθÞ secðθÞ; ð85Þ

a ¼ c0 tan2ðθÞ; ð86Þ

where c0 is determined by the initial condition a ¼ a0
when θ ¼ θ0. From Eq. (82) and

cosðθÞ ¼ jDj=L; ð87Þ

we have

c0 ¼
D2

−μC
: ð88Þ

Now we get the evolutions of orbits by using dL=dt. When
we consider gravitational radiation and electromagnetic
radiation, we find only _L3 ≠ 0, which implies that the
direction of L does not change and the magnitude of L
decreases while the direction and magnitude of L̃ both
change. We show how to use dL̃=dt to get the same results
of da=dt and dθ=dt in Appendix B. Next, we calculate
merger times of dyonic binaries. For arbitrary θ and a,
Eq. (78) is explicitly given by

hdEGW
dt i

hdEEM
dt i ¼

hdLGW
dt i

hdLEM
dt i ¼

3Cð15 cosð2θÞ − 17Þcsc2ðθÞ
10aððΔσqÞ2 þ ðΔσgÞ2Þμ

: ð89Þ

From Eq. (B2) in the Appendix, we find that the rates of the
semimajor axis increase quickly when semimajor axis
decreases no matter what the first term or the second term
dominates. So, the binary system spends most of the decay
time in the part of orbit where a ≈ a0. For a given a0, the
total rate of energy and angular momentum emission is
dominated by gravitational radiation or electromagnetic
radiation which depends on m1, m2, q1, q2, g1, and g2.
First, we consider the case where electromagnetic

radiation dominates over the gravitational radiation around
a ≈ a0. When D ¼ 0 or θ ¼ π=2, we have the rates

da
dt

¼ 4CððΔσqÞ2 þ ðΔσgÞ2Þ
3a2

; ð90Þ

dθ
dt

¼ 0; ð91Þ

which gives the coalescence time

τEM

�
a0;θ¼

π

2

�
¼
Z

0

a0

da
�
da
dt

�
−1

¼ −a30
4CððΔσqÞ2þðΔσgÞ2Þ

:

ð92Þ

On the other hand, when D ≠ 0 or θ ≠ π=2, Eqs. (B2)
and (84) become

da
dt

¼ 4CððΔσqÞ2 þ ðΔσgÞ2Þ csc2ðθÞ
3a2

; ð93Þ

dθ
dt

¼ 2CððΔσqÞ2 þ ðΔσgÞ2Þ cotðθÞ
3a3

: ð94Þ

So, we similarly have

da
dθ

¼ 2a cscðθÞ secðθÞ ð95Þ

a ¼ c0 tan2ðθÞ: ð96Þ

Then we can have

�
dθ
dt

�
−1

¼ 3c03tan7ðθÞ
2CððΔσqÞ2 þ ðΔσgÞ2Þ

: ð97Þ

For the orbit, we can integrate Eq. (93) by requiring
aðtÞ ¼ 0 at t ¼ τEMða0; θ0Þ or, equivalently, we can inte-
grate Eq. (94) by requiring θðtÞ ¼ 0 at t ¼ τEMða0; θ0Þ,
since we can see that at the coalescence θ goes to zero.
Because the analytic expression for aðθÞ is simpler than the
form of the inverse function θðaÞ, it is much better to use
Eq. (95) and to get

Z
τEMða0;θ0Þ

0

dt ¼
Z

0

θ0

dθ

�
dθ
dt

�
−1
; ð98Þ

τEMða0; θ0Þ ¼ −
a30F1ðθ0Þ

4CððΔσqÞ2 þ ðΔσgÞ2Þ
; ð99Þ

where

F1ðθ0Þ ¼
1

2 tan6ðθ0Þ
ð2 sec6ðθ0Þ − 9 sec4ðθ0Þ

þ 18 sec2ðθ0Þ þ 12 logðcosðθ0ÞÞ − 11Þ; ð100Þ

tanðθ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μCa0

p
jDj : ð101Þ

We plot F1ðθ0Þ as a function of θ0 in Fig. 6. When θ0 → 0,
F1ðθ0Þ → 0 while θ0 → π=2, F1ðθ0Þ → 1, which is con-
sistent with Eq. (92) and that obtained in [28].
Next, we consider the case where gravitational radiation

dominates over the electromagnetic radiation around
a ≈ a0. When D ¼ 0 or θ ¼ π=2, we have

da
dt

¼ −64C2

5a3μ
; ð102Þ

dθ
dt

¼ 0; ð103Þ
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which gives the merger time

τGW

�
a0; θ ¼ π

2

�
¼

Z
0

a0

da

�
da
dt

�
−1

¼ 5a4μ
256C2

: ð104Þ

In the other case where D ≠ 0 or θ ≠ π=2, Eqs. (B2) and
(84) become

da
dt

¼ 2C2ð15 cosð2θÞ − 17Þ csc4ðθÞ
5a3μ

; ð105Þ

dθ
dt

¼ C2ð15 cosð2θÞ − 17Þ cotðθÞ csc2ðθÞ
5a4μ

: ð106Þ

The functional dependence of da=dθ has the same form as
Eq. (95). Similarly, the coalescence time for the gravita-
tional-radiation dominated merger is given by

τGWða0; θ0Þ ¼
5a40μF2ðθ0Þ

256C2
; ð107Þ

where

F2ðθ0Þ ¼
1

245760tan8ðθ0Þ
ð245760 sec8ðθ0Þ

− 1331200 sec6ðθ0Þ þ 3043200 sec4ðθ0Þ
− 4124400 sec2ðθ0Þ − log ð15sin2ðθ0Þ þ 1Þ
− 2097150 log ðcosðθ0ÞÞ þ 2166640Þ: ð108Þ

WeplotF2ðθ0Þ as a function of θ0 in Fig. 6.When θ0 → 0,
F2ðθ0Þ → 0 while θ0 → π=2, F2ðθ0Þ → 1, which is again
consistent with Eq. (92) and that found in [28]. From
Eqs. (100) and (108), when θ0 goes near zero, F1ðθ0Þ
and F2ðθ0Þ become much smaller than unit (e.g.,
F1ðπ=20Þ ¼ 0.018, F2ðπ=20Þ ¼ 0.005), which implies
the electric and magnetic charges or θ0 can significantly
suppress merger times of the dyonic binaries. As θ0
approaches to zero, the binary coalesces immediately and
τEM and τGW vanish, as expected. But this case corresponds
to the general relativistic regime, which requires methods
beyond the Newtonian method. In this paper, we have only
considered the leading orders of orbits and radiations,
namely, the 0-PN corrections. Some aspects of the higher
PN corrections in the context of dyonic black holes will be
discussed in the future.

IV. CONCLUSIONS AND DISCUSSIONS

Dyonic black holes have attracted much attention not
only in theoretical study but also in recent observations of
GWs. In this paper, we have derived the equations of
motion of dyonic binaries and explored features of the
static orbit including the chaotic behavior. By using a
Newtonian method with radiation reactions included, we
have calculated the total emission rate of energy and
angular momentum due to gravitational and electromag-
netic radiations for circular orbits. Moreover, we have
found the evolution of a, θ and calculated merger times of
dyonic binaries. It has been shown that the electric and
magnetic charges can significantly suppress merger times
of dyonic binaries no matter what gravitational radiation or
electromagnetic radiation dominates. The results of this
paper provide rich information about dyonic binaries and
may be used to test black holes with magnetic charges.
Finally, we would like to discuss the potential implica-

tions of our formulas. So far, many merger events of binary
black holes have been reported by LIGO/Virgo. Our
methods can be applied to the early inspiral of low-mass
binaries in LIGO (like GW151226), which have a long
signal in the detector-band. However, when LIGO/Virgo
black holes nearly merge, our methods are not valid and a
higher-order PN expansion or numerical-relativity simu-
lations are needed. In the future, many merger events are
expected to be detected by space-based GW detectors, such
as LISA and Taiji. Space-based GW detectors might be able
to detect massive black hole binaries in the inspiral phase.
The inspiral of such massive black hole binaries can last

FIG. 6. Upper panel: the plot of F1ðθ0Þ as a function of θ0.
Bottom panel: the plot of F2ðθ0Þ as a function of θ0.
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several days, months or even years in the frequency band of
space-based GW detectors. Obviously, our formulas are
applicable to those inspirals of massive black hole binaries.
Such merger events will provide a good chance for our
formulas to investigate whether these black holes indeed
have electric and magnetic charges by using inspiral wave-
forms, which provides an unexplored arena to probe
fundamental physics in the standard model of particle
physics and beyond. We leave these topics for future studies.
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APPENDIX A: CHAOTIC ORBITS

Here we will explore chaotic behaviors of orbits by
observing how two neighboring orbits deviate from each
other during their evolutions. For this, we choose two
neighboring orbits RðϕÞ and R1ðϕÞ. At time t ¼ 0 (assum-
ing ϕi ¼ 0), we set the initial separation as

R1ð0Þ − Rð0Þ ¼ ðdx; dy; dzÞ: ðA1Þ
Notice that we just change the initial positions but the
generalized angular momentum and the charges C and D
are fixed. And then we introduce a new parameter dl which
corresponds to the distance of two cones as shown in Fig. 7.
The orbit of R1ðϕÞ can be expressed as

R1 ¼
a1ð1 − e21Þ

1þ e1 cosððϕþ dϕÞ sin θÞ

0
B@

sin θ cosðϕþ dϕÞ
sin θ sinðϕþ dϕÞ

cos θ

1
CA

− dl

0
B@

0

0

1

1
CA; ðA2Þ

where

a1 ¼ aþ da; e1 ¼ eþ de: ðA3Þ
From the conserved magnitude of the real angular momen-
tum,

L̃2 ¼ μjCjað1 − e2Þ ¼ μjCja1ð1 − e21Þ; ðA4Þ

we obtain the change of eccentricity,

de ¼ ð1 − e2Þda
2ae

: ðA5Þ

To proceed further, we solve the vector equation

∂R
∂ϕ

����
ϕ¼0

dϕþ ∂R
∂a

����
ϕ¼0

daþ ∂R
∂e

����
ϕ¼0

de− dl

0
B@

0

0

1

1
CA¼

0
B@

dx

dy

dz

1
CA:

ðA6Þ

Solving Eq. (A6), we have

da ¼ −
2e cscðθÞ
ð1 − eÞ2 dx; ðA7Þ

dϕ ¼ cscðθÞ
að1 − eÞ dy; ðA8Þ

dl ¼ dx cotðθÞ − dz: ðA9Þ

Now, we introduce a new function λðϕÞ defined as

λðϕÞ≡ ðR1ðϕÞ − RðϕÞÞ2
ðR1ð0Þ − Rð0ÞÞ2 ; ðA10Þ

which describes the ratio of the evolution of the distance
between two neighboring orbits RðϕÞ and R1ðϕÞ.

FIG. 7. Schematic illustration on two neighboring orbits RðϕÞ
and R1ðϕÞ.
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For the case, dx ≠ 0, we can set

R1ð0Þ − Rð0Þ ¼ ðdx; dy; dzÞ ¼ ð1; ky; kzÞ
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2y þ k2z
q ;

ðA11Þ

where ky ¼ dy=dx and kz ¼ dz=dx. Using Eq. (A2) and
the definition (A10), we obtain

λðϕÞ ¼ ðk2y þ k2z þ 1Þ−1A−4ððeþ 1Þ2ðA2k2y þ B2Þ
þ ðA2ðkz − cotðθÞÞ þ Bðeþ 1Þ cotðθÞÞ2Þ: ðA12Þ

which is independent of a, where we have used the
short-hand notations A ¼ e cosðϕ sinðθÞÞ þ 1 and B ¼
ðeþ 1Þ cosðϕ sinðθÞÞ þ eky sinðθÞ sinðϕ sinðθÞÞ. The func-
tion λðϕÞ is periodic with the same period T3 as R, as
shown in Fig. 8. The ratio of the distance to the initial one
decreases and increases periodically for some ranges of ϕ.
For dl ≠ 0, or kz ≠ 0, two orbits RðϕÞ and R1ðϕÞ are
confined to different cones. When dl ¼ 0 which corre-
sponds to two orbits RðϕÞ and R1ðϕÞ confined to the same
cone, λðϕÞ is given by

λðϕÞ ¼ ðcot2ðθÞ þ k2y þ 1Þ−1A−4ðeþ 1Þ2
× ðA2k2y þ B2 csc2ðθÞÞ: ðA13Þ

When ky ¼ 0, kz ¼ cotðθÞ, we have

dl ¼ dϕ ¼ 0; ðA14Þ

λðϕÞ ¼ ðeþ 1Þ4 cos2ðϕ sinðθÞÞ
ðe cosðϕ sinðθÞÞ þ 1Þ4 ; ðA15Þ

which means that two orbits are confined to the same cone,
and when R1 ¼ R, two orbits intersect, that is, λ ¼ 0. By
analyzing Eq. (A13), we conclude that only when ky ¼ 0,

kz ¼ cotðθÞ, ϕ ¼ ð1
2
þlÞπ
sin θ , where l is an integer, we have

λ ¼ 0. For other cases, λ > 0. By using Eqs. (29) and
(A13), we plot λðϕðtÞÞ as function of t by choosing
θ ¼ π=2 × 0.3, e ¼ 0.5 in Fig. 8. Dashed lines represent
the case dl ¼ 0 while solid lines represent the case dl ≠ 0.
For the case with dx ¼ 0 and dy ≠ 0, we can set

R1ð0Þ−Rð0Þ¼ðdx;dy;dzÞ¼ð0;1;kzÞ
drffiffiffiffiffiffiffiffiffiffiffiffi
1þk2z

p : ðA16Þ

By using Eq. (A2), λ can be expressed as

λðϕÞ¼ ðk2z þ1Þ−1A−4

× ððeþ1Þ2ðe2 sin2ðθÞsin2ðϕsinðθÞÞþA2Þ
þðeðeþ1ÞcosðθÞsinðϕsinðθÞÞþkzA2Þ2Þ: ðA17Þ

For the case with dx ¼ 0, dy ¼ 0, dz ≠ 0, we have

da ¼ de ¼ 0; dl ¼ −dz; ðA18Þ

R1ðϕÞ − RðϕÞ ¼ ð0; 0; dzÞ; ðA19Þ

which means that λðϕÞ ¼ 1 is a constant. We have
observed, as expected for the conserved autonomous
systems, that the relative ratio of two neighboring orbits
during their evolutions is periodic as a function of ϕ and
also as a function of time. For each period, there are
exponential growths (decreases) in time.

APPENDIX B: THE LOSS RATE OF L̃

When we consider gravitational and electromagnetic
radiations, we find only _L3 ≠ 0, which implies that the
direction of L does not change and the magnitude of L
decreases, while the direction and magnitude of L̃ both
change. Here, we show how to use dL̃=dt to get the same
results of da=dt and dθ=dt. From Eq. (16), we obtain

�
dL̃
dt

�
¼

�
dL
dt

�
1

sin θ
: ðB1Þ

From L̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−μCa

p
, we have the time revolution of the

semimajor axis

FIG. 8. Upper panel: the plot of λðϕÞ as a function of ϕ by
choosing θ ¼ π=2 × 0.3 and e ¼ 0.5, according to (A13). Bot-
tom panel: the plot of λðϕðtÞÞ as a function of t by choosing
θ ¼ π=2 × 0.3 and e ¼ 0.5. Dashed lines represent the case dl ¼
0 while solid lines represent the case dl ≠ 0. For each period,
there are growths (decreases) in time.
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da
dt

¼ 4CððΔσqÞ2 þ ðΔσgÞ2Þ csc2ðθÞ
3a2

þ 2C2ð15 cosð2θÞ − 17Þ csc4ðθÞ
5a3μ

: ðB2Þ

According to L̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−μCa

p
, tanðθÞ ¼

ffiffiffiffiffiffiffiffiffi
−μCa

p
jDj , we have

a ¼ D2

−μC
tan2ðθÞ; ðB3Þ

da
dt

¼ 2a cscðθÞ secðθÞ dθ
dt

: ðB4Þ

Thus we can find the time evolution of the conic angle:

dθ
dt

¼ 2CðΔσqÞ2 þ ðΔσgÞ2Þ cotðθÞ
3a3

þ C2ð15 cosð2θÞ − 17Þ cotðθÞ csc2ðθÞ
5a4μ

: ðB5Þ
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