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abstract: Signal detection theory (SDT) has been used to model
optimal stimulus discrimination for more than four decades in evo-
lutionary ecology. A popular standard model that maximizes payoff
per encounter was recently criticized for being too simplistic, lead-
ing to erroneous predictions. We review a number of SDT models
that have received less attention but have explicitly taken repeated
encounters into account, focusing on prey choice, mate search, ag-
gressive mimicry, and the aiding of kin. We show how these models
can be seen as variants of a second standard model that can be an-
alyzed in a unified framework. In contrast to the simpler model, in
this second model a higher probability of an undesirable or danger-
ous event occurring may either decrease or increase the receiver’s
acceptance rates. In each instance, the latter outcome requires un-
desirable events to be undesirable in a relative rather than an abso-
lute sense. Increasing the abundance of desirable signalers or the
payoff from accepting them may also either raise or reduce accep-
tance rates. Our synthesis highlights fundamental similarities among
models previously studied on a case-by-case basis and challenges
some long-held beliefs. For example, some classic predictions of
Batesian mimicry can be reversed when model prey are protected
by low profitability rather than harmful defense.

Keywords: signal detection theory, sequential encounters, mate
search, optimal foraging, Batesian mimicry, aggressive mimicry.

Introduction

Signal detection theory (SDT) is a widely used framework
for analyzing stimulus discrimination tasks (Egan 1975;
Green and Swets 1988) that has served as a modeling tool
in behavioral ecology and evolutionary ecology for more
than 40 years (Oaten et al. 1975; Treisman 1975). Appli-

cations of SDT in these fields include the modeling of
Batesianmimicry (e.g., Oaten et al. 1975; Getty 1985; John-
stone 2002; Sherratt 2002; Holen and Johnstone 2004,
2018; McGuire et al. 2006; Speed and Ruxton 2010), ag-
gressive mimicry (Holen and Johnstone 2004, 2006; Kloock
and Getty 2019), mate search (Reeve 1989; Wiley 1994;
Getty 1995, 1996b; Shizuka and Hudson 2020), honest sig-
naling (Johnstone 1998b; Getty 2002; Holen and Sven-
nungsen 2012), and many other phenomena (e.g., Staddon
and Gendron 1983; Getty 1987, 1996a; Johnstone 1998a;
Sherratt 2001; Trimmer et al. 2008; Abbott 2010; Abbott
and Sherratt 2013; Bogaardt and Johnstone 2016; Metcalf
et al. 2017; Trimmer et al. 2017a, 2017b; Sherratt andHolen
2018; Ehlman et al. 2019; McNamara and Trimmer 2019).
SDT has also long motivated empirical studies and pro-
vided conceptual insights (e.g., Davies et al. 1996; Dor et al.
2007; Laubach et al. 2018).
At its simplest, SDT involves an individual that faces

the task of discriminating between two types of circum-
stances or events, each characterized by different stimuli,
and must choose between two different actions. We refer
to this individual as the signal receiver (or “receiver” for
short). The receiver benefits from accepting desirable
events (“hits,” or correct acceptances) and rejecting unde-
sirable events (correct rejections). The receivermay, for ex-
ample, be a predator thatmust discriminate between unde-
fended prey, which it should accept, and defended prey,
which it should reject. Because of noise and inherent vari-
ation in stimuli, the receiver cannot with certainty know
which situation it faces when choosing the action, and it
may therefore make two types of decision error: it may
reject desirable events (“misses”) or accept undesirable
events (“false alarms,” or incorrect acceptances). The four
outcomes are summarized in table 1, using the convention
that the desirable event is denoted A and the less desirable
one B. The probabilities of making the two errors are in-
versely related, so that a reduced rejection rate of desirable
events comes at the cost of an increased acceptance rate
of undesirable events (Egan 1975; Green and Swets 1988).
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The defining feature of SDT is the receiver operating
characteristic (ROC), which gives the maximum “hit rate”
(the probability of making correct acceptances in cir-
cumstance A) that the receiver is able to obtain for a given
“false alarm rate” (the probability of making incorrect ac-
ceptances in circumstance B). In the prey example, for
instance, the ROC gives the maximum probability of at-
tacking undefended prey that is achievable by the predator
as a function of the probability by which it (erroneously)
will attack the defended prey type. The exact shape of the
ROC depends on the discrimination task and can be re-
corded empirically by varying the receiver’s motivation
to accept (Blough 2001; Macmillan and Creelman 2005;
Sumner and Sumner 2020). In a model, the ROC is typi-
cally derived from assumptions about the probability dis-
tributions of the observations associated with desirable
and undesirable events (appendix A; appendixes A–E are
available online). An SDT model also describes what the
receiver attempts to achieve by discriminating—that is, a
decision goal that defines a function to be maximized—
and the ROC simply acts as a constraint on the maximiza-
tion problem. Inmathematical psychology, the functions to
be maximized are usually quite simple, such as maximizing
the fraction of correct responses or maximizing expected
payoff per encounter (Egan 1975). In evolutionary ecology,
we are interested in fitness consequences, and the payoff
function to bemaximizedmay bemore complex (e.g., Getty
1985; Holen 2013; Trimmer et al. 2017a). Nevertheless,
the most commonly used economic formulation simply
maximizes the receiver’s expected payoff per encounter.
This single-encounter formulation has been applied to a
wide range of ecological scenarios and is mathematically
convenient, since the optimal strategy can be determined
from the shape of the ROC and a single aggregated param-
eter (see below). Moreover, each of the four outcomes (ta-
ble 1) have fixed payoffs, so that the optimal decision in an
encounter can be determined without taking other encoun-
ters into account.
Despite its popularity and versatility, SDT has recently

come in for stark criticism (Trimmer et al. 2017a; Mc-
Namara and Trimmer 2019). The focus for criticism in
these articles was the single-encounter formulation, re-
ferred to as “standard” (Trimmer et al. 2017a) or “classi-
cal” (McNamara and Trimmer 2019) SDT. The single-
encounter formulation makes the reasonable prediction

that as the probability of a given event increases, individ-
uals should be more likely to make the decision that is
appropriate for that event. For example, if the underlying
probability of danger or harm increases, individuals should
be more cautious and likely to take steps to avoid that
danger. However, despite its intuitive appeal, this insight
is described as “thoroughly misleading” when applied to
ecological scenarios that involve sequential encounters
(Trimmer et al. 2017a). By modeling the building up of
energy reserves under risk of predation, Trimmer et al.
(2017a) and McNamara and Trimmer (2019) have shown
(somewhat counterintuitively) that it can be optimal to re-
spond to a higher overall probability of danger by being less
cautious. They attribute this finding to the incorporation of
sequential encounters in their models and question the
soundness of results obtained using the single-encounter
formulation. Contrasting their approach to the latter, Trim-
mer et al. (2017a, p. 5) “see the sequential approach as the
more useful route ahead in behavioural ecology,”whileMc-
Namara and Trimmer (2019, p. 19) conclude that the be-
havioral sciences may “benefit from taking a fresh look at
the predictions of models that have simplified scenarios
down to a single decision.”
Here, we take a fresh look at the use of SDT in evolution-

ary ecology. We concentrate on economic formulations
and contrast the predictions of the single-encounter formu-
lation with previously published models that involve re-
peated encounters. To this end, we have analyzed signal de-
tection models originally developed to study prey choice
(Getty 1985; Stephens and Krebs 1986, pp. 66–72; Holen
2013), the aiding of kin (Reeve 1989), the search for mates
and other objects (Reeve 1989; Wiley 1994; Getty 1995,
1996b; Shizuka andHudson 2020), and aggressive mimicry
(Kloock and Getty 2019). In addition, we consider a simple
model of repeated search under mortality risk. These seven
models share enough mathematical similarities to be ana-
lyzed in a unified framework, and we see them as variants
of a second “standard” model that we have called the
“repeated-encounter” (REP) formulation. We characterize
the rich behavior of these models and identify broad condi-
tions under which the predicted response to increased
danger qualitatively matches that of the novel models
(Trimmer et al. 2017a; McNamara and Trimmer 2019)
but also broad conditions under which it matches that of
the single-encounter formulation, suggesting that there

Table 1: The four outcomes of the binary decision

Event A: desirable Event B: harmful/dangerous or undesirable

Accept Correct acceptance (CA) or hit False alarm (FA) or incorrect acceptance
Reject Miss (MI) or incorrect rejection Correct rejection (CR)

Note: The receiver experiences an event that may be of type A or B and in response decides between the actions accept and reject,
leading to four possible outcomes.
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are circumstances under which the latter may be a reason-
able approach. The analysis not only brings together several
disparate applications under one roof but also provides
novel insights into how organisms should respond to in-
creased risk.

The ROC

Let R be the hit rate (the probability of accepting a desir-
able event A) and y be the false alarm rate (the probability
of accepting an undesirable event B). We use the functioneR(y), defined on the unit interval, to depict the relation-
ship between the receiver’s hit and false alarm rate, that
is, its ROC. The ROC graph is always nondecreasing from
the point (0, 0) to (1, 1) in the (y,R) plane. The discrimina-
bility of two stimuli is a measure of the ability of a receiver
to distinguish between them. The measure of discrimi-
nability depends on the type of ROC assumed, but the fol-
lowing holds generally: when discrimination is not possi-
ble, the ROC is the diagonal line connecting (0, 0) and
(1, 1). As discriminability increases, the signal receiver will
typically achieve a higher hit rate for a given false alarm
rate, and a high-discriminability ROC will therefore lie
above a low-discriminability ROC except at its end points
(fig. 1). Unless otherwise stated, in our analysis we will
make only three assumptions about the ROC, namely, thateR(y) is strictly increasing from (0, 0) to (1, 1), is everywhere
differentiable on (0, 1), and is strictly concave (except when
discriminability is zero, in which case eR(y) is linear). These
three assumptions hold formany ROC types, including the
normal-normal equal variance ROC (the standard choice
for evolutionary ecology models and for many empirical

applications) and the power law ROC (also common in
models). We refer to a short introduction in appendix A
and the standard literature (Egan 1975) for the derivation
of these and other ROCs. Unless otherwise stated, we use
normal-normal equal variance ROCs when illustrating re-
sults in figures, meaning that observations drawn from de-
sirable and undesirable signalers are assumed to follow two
normal distributions with different means but the same
variance.

The Single-Encounter Formulation

The single-encounter formulation assumes that the signal
receiver maximizes expected payoff per encounter. Let
VCA, VMI, VFA, and VCR be the payoffs associated with a cor-
rect acceptance (hit), a miss, a false alarm, and a correct
rejection, respectively. By definition, correct responses
generate higher payoff than errors, so we have VCA 1 VMI

and VCR 1 VFA. Let Pr(A) p p and Pr(B) p (12 p) be
the probabilities of events A and B, respectively, assuming
0 ! p ! 1.
Indifference curves are isocontours of the payoff func-

tion to the receiver and show equally profitable combi-
nations of the hit rate R and the false alarm rate y treated
as free variables. Our analysis here and henceforth relies
on the shape of these indifference curves and how these
intersect with the ROC (Sperling 1984; Wiley 1994; Lynn
and Barrett 2014), an approach that allows many results
to be derived using only general assumptions about ROC
shape. The single-encounter formulation has been ana-
lyzed in this way (Sperling 1984; Wiley 1994; Lynn and
Barrett 2014), and we follow the same standard approach.
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Figure 1: Normal-normal equal variance receiver operating characteristics (ROCs) that differ in discriminability are shown (solid lines;
bottom: d0 p 0; middle: d0 p 1; top: d0 p 2). In the single-encounter formulation, the indifference curves (dotted lines) are linear and par-
allel, with slopes equal to the aggregated parameter K. The optimal receiver strategy (black circle) is the point on the ROC that is intersected
by the indifference curve with the highest intercept. The gray curves show how the optimal receiver strategy changes if discriminability d0

changes continuously. See the main text for further explanation.
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We begin by identifying the expected payoff for the single-
encounter formulation, namely,

U(y,R) p pRVCA 1 (12 p)yVFA 1 p(12 R)VMI

1 (12 p)(12 y)VCR:
ð1Þ

Maximization of this function is subject to the constraints
R p eR(y) and 0 ≤ y ≤ 1. Letting U(y,R) equal the payoff
u and solving for R, we obtain a set of indifference curves
that are linear in the (y,R) plane:

R p
(12 p)(VCR 2 VFA)

p(VCA 2 VMI)
y1

u2 (12 p)VCR 2 pVMI

p(VCA 2 VMI)
:

These indifference curves all have the positive slope K p
(12 p)(VCR 2 VFA)=[p(VCA 2 VMI)]. In SDT terminol-
ogy, K is also known as the “cutoff” or threshold value
of likelihood ratio above which a receiver that maximizes
payoff per encounter should accept (e.g., Egan 1975,
pp. 18–19; see also appendix B). The higher the payoff
u, the higher the intercept of the corresponding indiffer-
ence curve. The optimal receiver strategy is the point on
the ROC that is intersected by the uppermost indifference
curve (fig. 1), that is, the one with the highest u. The opti-
mal strategy can be found using this graphical method for
any ROC. Let y* denote an optimal level of false alarm. If
0 ! y* ! 1, then a ROC that is differentiable at y* will also
be tangential to the indifference curve at that point, andwe
obtain the standard result (e.g., Egan 1975) that the slope
of the ROC at the optimal solution equals K.
The classic predictions of the single-encounter model

can be inferred from the above expression for K. The re-
ceiver will be more likely to accept when the cutoff K is
lower (fig. 1), as when the net benefit of accepting in the
desirable circumstance A (i.e., VCA 2 VMI) is high relative
to the net benefit of rejecting in the undesirable circum-
stance B (i.e., VCR 2 VFA) or when event A is more com-
mon (i.e., p is high). Let ni represent the (absolute) abun-
dance of a signaler of type i. Assuming equal detection
rates, we can reparameterize so that p p nA=(nA 1 nB),
and we see that increasing nA must change acceptance
rates in the same direction as increasing p, while increas-
ing nB has the opposite effect.

The REP Formulation

Although the single-encounter formulation is a conve-
nient model, it is not always reasonable to focus on one
encounter at a time. Models that involve sequential en-
counters often feature payoffs that cannot be specified
in advance but “emerge from the analysis” (Trimmer
et al. 2017a). In a search context, for instance, an encoun-
tered mate (or prey item) should be accepted only if this
leads to higher fitness than would rejection followed by

continued search, but the value of the latter course of ac-
tion typically depends on the discrimination strategy to
be used. We consider sequential models that have payoff
functions of the general form

U(y,R) p
aR1 by1 c
dR1 ey1 f

, ð2Þ

where a, b, c, d, e, and f are constants or composite pa-
rameters that are independent of R and y and that have eco-
logical interpretations that vary greatly between the ap-
plications we will explore later. As in the single-encounter
formulation, the payoff function (2) is maximized with
respect to R and y, subject to the constraints R p eR(y) and
0 ≤ y ≤ 1. Whenever the receiver encounters both de-
sirable and undesirable events with positive probability (i.e.,
0 ! p ! 1), we assume that the following two criteria will
be satisfied:

ae 1 bd,
af 1 cd:

ð3Þ

These two inequalities are sufficient conditions for the
payoff to increase with the hit rate when the false alarm
rate is kept constant (i.e., for ∂U=∂R 1 0). A model of
form (2) with parameters that satisfy (3) is an example
of the REP formulation. Setting U(y,R) p u and rear-
ranging, we see that the indifference curves of (2) are lin-
ear in the (y,R) plane:

R p
eu2 b
a2 du

y1
fu2 c
a2 du

: ð4Þ

If we extend the indifference curves outside the unit
square, it is readily shown that they will all meet at the
same point (k1, k2) in the (y,R) plane (appendix C):

(k1, k2) p
cd 2 af
ae2 bd

,
bf 2 ce
ae2 bd

� �
: ð5Þ

The first inequality of (3) ensures that the slope of the in-
difference curves (4) increases with u (appendix C). To-
gether, the two inequalities of (3) ensure that k1 is negative.
REP models therefore have the following graphical solu-
tion: the optimal strategy is found at the point on the
ROC that is touched by the uppermost straight line that
can be drawn from the point (k1, k2) to the ROC (fig. 2;
see also Holen [2013, fig. S1] and Kloock and Getty [2019,
fig. 2]). The optimal strategy can be found using this graph-
ical method for any ROC. If the optimal strategy is in the
interior of the unit interval (i.e., 0 ! y* ! 1) and the ROC
is differentiable at that point, the line will also be tangential
to the ROC (fig. 2).
Note that the single-encounter formulation (1) can be

put in the general form U(y,R) p aR1 by1 c, with a,
b, and c being composite parameters. We therefore ex-
pect the REP formulation to more closely approximate
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the single-encounter formulation when the magnitude of
f is large relative to d and e (see eq. [2]).
We will now analyze how the optimal solution to the

general REP model changes with parameters before mov-
ing on to consider specific applications.

The Effect of Small Changes in k1 and k2 on Acceptance
Rates. Each model application (to be discussed below)
contains a number of ecological parameters that each
are part of at least one of the composite parameters a to
f. A change in one of these ecological parameters may po-
tentially change both k1 and k2 and thus the optimal accep-
tance rates (hit rate and false alarm rate). We study this
using graphical arguments. Suppose the optimal strategy
y* satisfies 0 ! y* ! 1, and consider the straight line drawn
through the point (k1, k2) and the point (y*, ~R(y*)) (fig. 2a):
if a change in an ecological parameter moves the point
(k1, k2) above the original line, the receiver will as a result
become less restrictive and accept more often (it moves to-
ward “adaptive gullibility”; Wiley 1994), but if the param-
eter change moves (k1, k2) below this line, the receiver will
becomemore restrictive and accept less often (it moves to-
ward “adaptive fastidiousness”; Wiley 1994).
The signs of the partial derivatives of k1 and k2 with re-

spect to the parameter in question often suffice to decide
whether (k1, k2) moves above or below the original line.
Either sign can be positive, zero, or negative. If the signs
differ and either k1 increases with the parameter change

or k2 decreases, the receiver will accept less often (fig. 2a).
If the signs differ and either k1 decreases with the parameter
change or k2 increases, the receiver will accept more often
(fig. 2a). If the partial derivatives have the same (nonzero)
sign, however, further exploration will be necessary (some
examples are given in appendixes D and E).
For ROCs that satisfy our three assumptions, the opti-

mal solution y* will change gradually with changes in
(k1, k2). However, for some other types of ROCs, the solu-
tion may instead “jump” discontinuously in the predicted
direction. A notable example is that of ROCs based on
discrete-valued random variables (Egan 1975; Getty 1995,
1996a, 1996b). Such “discrete” ROCs consist of connected
line segments, and the optimal solution of the REP model
will be on a vertex where the ROC is not differentiable. A
sufficiently small change in (k1, k2) will not change the op-
timal solution, while a larger change may move the opti-
mal solution to another vertex. Another example is that
of ROCs that are “improper” sensu Egan (1975), which
may have convex sections (see appendix A). The optimal
solution of the REPmodel can never be in a convex section
in the interior of the ROC, and a gradual change in (k1, k2)
may therefore in some cases cause the optimal solution to
“jump” discontinuously over an interval that contains a
convex section (see some results of Reeve 1989, which im-
plicitly featured improper ROCs). In the remainder of
the article, we restrict ourselves to discussing ROCs that
are everywhere differentiable and strictly concave.
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Figure 2: Normal-normal equal variance receiver operating characteristics (ROCs) are shown (solid lines), with R denoting the hit rate and
y denoting the false alarm rate. The indifference curves of the repeated-encounter (REP) formulation are linear, and when extended outside
the unit square (dotted lines) they meet at the point (k1, k2), with k1 and k2 being aggregated parameters. The optimal receiver strategy (small
circles on ROCs) is the point on the ROC that is intersected by the indifference curve with the highest intercept. a, Increasing k1 moves the
point (k1, k2) to the right and moves the optimal receiver strategy downward on the ROC, decreasing acceptance rates. Increasing k2 moves
the point (k1, k2) upward and the optimal receiver strategy upward on the ROC, increasing acceptance rates. b, c, Optimal receiver strategies
(small circles on ROCs) are shown for different (k1, k2), in each case using three different normal-normal equal variance ROCs (solid lines;
bottom: d0 p 0; middle: d0 p 1:5; top: d0 p 3). The gray curves show how the optimal receiver strategy changes if discriminability d0

changes continuously. See the main text for further explanation.
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Finally, if the optimal strategy y* is found at one of the
end points of the ROC, a small change in k1 and k2 may
not affect the receiver strategy.

The Effect of Changes in Ecological Parameters on Accep-
tance Rates. Following this elucidation of the effects of
changing (k1, k2) on acceptance rates, we can explore the
effect of small changes in ecological parameters that affect
one or more of the composite parameters a to f. It is be-
yond the scope of our article to make an exhaustive anal-
ysis of all ecological parameters in all applications; we
focus on those that allow us to compare the REP appli-
cations to the single-encounter model. In each of the seven
applications we consider, all parameters a to f are positive
or zero except b and c, which can be negative.
We first consider the effects of base rate p on accep-

tance rates, which played such a central role in recent
SDTmodels (Trimmer et al. 2017a; McNamara and Trim-
mer 2019). All seven model applications are formulated ei-
ther in terms of p or in terms of absolute abundances nA

and nB, in which case p may enter via the substitutions
nA p np and nB p n(12 p) (see below). In most of the
applications, p is a factor in a and d, while (12 p) is a fac-
tor in b and e; and in all of the applications, the de-
nominators of k1 and k2 are proportional to (12 p) and
p, respectively (after canceling terms). The partial deriv-
atives of k1 and k2 with respect to p sometimes have the
same sign, andwe therefore study the shape of the paramet-
ric curve (k1(p), k2(p)) (appendix D). In every application,
the parametric curve is the left branch of a hyperbolawith ver-
tical and horizontal asymptotes. Let Q p [bf 2 ce]pp0 p
[bf 2 ce]nAp0,nBpn. In the limit where p tends to zero from
above, k2 tends to positive infinity if Q 1 0 and toward
negative infinity if Q ! 0 (we ignore the knife-edge case
Q p 0). In the first case (Q 1 0) we say that the less desir-
able event B is undesirable only in a relative sense (it is
always accepted in the absence of A events), and in the sec-
ond case (Q ! 0) we say that event B is undesirable in an
absolute sense (it is never acceptable). We obtain the
following results (appendix D). When event B is undesir-
able in a relative sense, there is a trivial case in which accep-
tance rates are constant and equal to 1 on the unit interval
p ∈ [0, 1]. There is also a nontrivial case inwhich acceptance
rates as a function of p have a U-shaped dip over a subin-
terval of the unit interval and are constant and equal to 1
elsewhere. In contrast, when event B is undesirable in an
absolute sense (Q ! 0), acceptance rates will either increase
strictly from 0 to 1 over the entire unit interval (e.g., typical
for the normal-normal equal variance ROC) or increase
strictly from 0 to 1 on a subinterval of the unit interval and
remain constant outside this (see appendix D for details).
In addition to p, we have explored the effect on accep-

tance rates of small changes in ecological parameters

that affect one (or two) of the composite parameters a
to f (appendix E). The analysis is restricted to strategies
satisfying 0 ! y* ! 1. We summarize our findings in table 2;
further discussion is given under the various applications.
A change in an ecological parameter that is only part of a,
is only part of d, or is a factor in both a and d but not part
of other composite parameters will have an effect that
depends on the sign of k2 (table 2). In every application
except 3, the sign of k2 is always the same as the sign of
Q (appendix D).
We also characterize the effect of changing discrimi-

nability on optimal receiver strategies. Since different
ROC types have different measures of discriminability,
we restrict ourselves to the most common ROC type, the
normal-normal equal variance ROC, which has the best-
known measure of discriminability, d0 (see appendix A
and Egan 1975 for details). We ignore the trivial case
k2 ≥ 1, in which rejection is never optimal. Changes in d0

affect the ROC shape but not k1 or k2, and so its effects
are independent of the specific application. Suppose that
k1 ! k2, in which case “always accept” (y* p 1) is the op-
timal strategy when discriminability is zero: numerical
explorations show that as discriminability d0 increases from
zero toward infinity (perfect discriminability), the false
alarm rate decreases from 1 to 0 while the hit rate first
decreases and then increases again (see the example in
fig. 2b). In contrast, suppose k1 1 k2, in which case “always
reject” is the optimal strategy when discriminability is
zero: numerical explorations show that as discriminability
d0 increases from zero toward infinity (perfect discrimina-
tion), the hit rate increases from 0 to 1 while the false alarm
rate first increases and then decreases (see the example in
fig. 2c).

Table 2: Effect of parameter changes on acceptance rates

Small increase
in parameter Assumptions

Effect on
acceptance rates

k2 1 0 k2 ! 0

a 2 1
b 1 1
c 2 2
d c ≥ 0 1 2
e c ≥ 0 2 2
f c ≥ 0 1 1
d a p âd, d p d̂d 2 1
d b p b̂d, e p êd 2 2
d c p ĉd, f p f̂ d 1 1

Note: The effects of small increases in parameters of the repeated-
encounter model on the acceptance rates of the receiver are listed. These
results are derived in appendix E and apply when 0 ! y* ! 1. The positive
parameter d is used to represent changes in pairs of parameters. In addition
to the assumptions listed in the second column, it is assumed that a 1 0,
e 1 0, f ≥ 0, and d ≥ 0.
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Applications of the REP Formulations

We proceed to review the seven REP applications. To fa-
cilitate presentation, we keep the same notation for eco-
logical parameters across these models. Each model has
the form (2). We interpret the parameters and explain
why the two criteria given by (3) hold (given that desir-
able and undesirable events both occur with positive
probability). We determine the sign of Q and explore
model behavior by focusing on how an optimal strategy
0 ! y* ! 1 will be affected by small changes in param-
eters. Examples of how acceptance rates change with p
are shown in figure 3 (all applications); a more system-
atic exploration is shown for the false alarm rate in fig-
ure 4 (all applications except 3).

Application 1: Batesian Mimicry—A Two-Species Model.
When modeling prey choice, a drawback with the single
encounter model is that it does not take handling time

into account. The disk equation does this (Holling 1959;
Stephens and Krebs 1986). A model combining SDT with
a two-species disk equation was discussed in Stephens and
Krebs (1986, pp. 66–72) in connection to the marginal
value theorem, and a very similar model was presented
by Reeve (1989) in the context of aiding relatives (the
“repeated-search” model).
A predator forages on a Batesian mimic (prey type A)

and its model (prey type B). Let s denote area searched per
unit time. Using subscripts A and B to refer to prey type,
let n denote the number of prey per unit area, h the ex-
pected handling time, and E the expected energy intake
per attacked prey. All are positive constants except EB,
which we (following Getty 1985; Holen 2013) allow to
be positive or negative, the latter reflecting the possibility
that net energy is spent repairing damage after handling
defended prey. Handling time for model prey may in-
clude the time needed to recover from ingesting toxins
or from being stung by the prey before search can resume
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Figure 3: Acceptance rates (hit rate and false alarm rate) are shown as a function of p, the probability that an event is desirable. Each panel
shows possible outcomes for one of the seven model applications in the main text (see the main text for the exact parameter values used).
When parameters are chosen so that Q 1 0, the acceptance rates as a function of p are either constant and equal to 1 (trivial case, not shown)
or have a U-shaped dip (shown). In contrast, when parameters are chosen so that Q ! 0, the two acceptance rates increase with p from 0 to
1. Model applications: a, two-species disk equation/Reeve (1989) repeated-search model; b, Getty (1985) model; c, Holen (2013) taste re-
jection model (the acceptance rates are not plotted in the low range of p, in which the mimicry complex drops out of the optimal diet);
d, Reeve (1989) search-and-settle model (in this application, Q cannot be negative); e, Wiley (1994) search model; f, repeated search under
mortality risk; g, Kloock and Getty (2019) model of aggressive mimicry (in this application, Q cannot be positive). In each panel, we use the
normal-normal equal variance receiver operating characteristic (ROC) with discriminability d0 p 2. See the main text and appendix D for a
discussion of other ROC types.
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(Holen 2013). The payoff function (representing energy
intake rate) is

s nAEAR1 s nBEBy
11 s nAhAR1 s nBhBy

: ð6Þ

Note how this function has the general form (2), with
(composite) parameters a p s nAEA, b p s nBEB, c p 0,
d p s nAhA, e p s nBhB, and f p 1. We assume EA=hA 1

EB=hB (so that a Batesian mimic provides more energy
per unit time than a model). Using this fact, it is straight-
forward to check that inequalities (3) hold. From (5) we
obtain

(k1, k2) p
2EA

s nB(EAhB 2 EBhA)
,

EB

s nA(EAhB 2 EBhA)

� �
:

ð7Þ
The signs of k2 andQ (psnEB) are here the same as the sign
of EB. Note that if model prey are undesirable in a relative
sense (Q 1 0), decreasing nA will increase k2, and there will
be a threshold value of nA below which it will be beneficial
to attack both mimics and models indiscriminately.
Table 2 lists the effects of small changes in parameters

on acceptance rates, given that it is optimal to discrim-

inate (i.e., 0 ! y* ! 1). As one might expect, an increase
in the abundance of model prey (nB), a decrease in their
energy content (EB), or an increase in their handling
time (hB) will favor reduced acceptance rates in receiv-
ers. The results for the mimic parameters depend on
the sign of k2: if k2 1 0, an increase in the abundance of
mimics (nA), an increase in their energy content (EA), or
a reduction in their handling time (hA) will counterintu-
itively favor reduced acceptance rates. In contrast, if
k2 ! 0, these changes to the mimic parameters have the
opposite effect and will favor increased acceptance rates.
We can explore the effect of increasing the fraction p

of prey in the mimicry complex that are mimics while
keeping overall abundance n constant by making the
substitutions nA p np and nB p n(12 p) in (6). An ex-
ample is shown in figure 3a. Parameters sn p 1, EA p
1, hA p 1, EB p 0:25, and hB p 2 are used to illustrate
the case Q 1 0. Parameters used to illustrate Q ! 0 are
the same except EB p 2 0:25.
Reeve (1989) focused on recognition within animal so-

cieties, and one of the explored scenarios (the repeated-
search model) involved a receiver searching for and pro-
viding aid to colony members/kin. It was beneficial to
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Figure 4: In all model applications except (3), k1 and k2 have the forms k1 p k̂1=(12 p) and k2 p k̂2=p, with k̂1 and k̂2 being (aggregated)
parameters that do not depend on p. Each panel shows false alarm as a function of p for (from top to bottom) k̂2 p 0:6 (solid line), k̂2 p 0:2
(solid line), k̂2 p 0 (dotted line), k̂2 p 21 (solid line), and k̂2 p 25 (solid line). The U shape becomes deeper when d0 is high, when k̂1 is
close to zero, and when k̂2 is close to zero (but positive). For the normal-normal equal variance receiver operating characteristic used here,
acceptance rates will be constant and equal to 1 when k̂2 ≥ 1.
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help one type of recipient (e.g., kin) but not so much an-
other type (e.g., more distant kin or intruders). The fitness
expression of Reeve (1989) is essentially a rescaled and
simplified version of (6) times a constant (the total time
devoted to search and aid), obtained by setting s p 1,
hA p hB p h, nA p np, nB p n(12 p) and then divid-
ing every term in the numerator and denominator by n,
so that f is the expected waiting time before encountering
a signaler. The payoffs EA and EB are interpreted as the
benefits of aiding recipients rather than the benefits of
consuming them. The general predictions are the same
as in the prey model even if interpretations differ. The re-
lationship between false alarm rate and p shown in fig-
ure 6b in Reeve (1989) has a U shape similar to the one
in figure 3a for Q 1 0 (this article), even if the choice of
parameters and ROC type differs.

Application 2: Batesian Mimicry with Alternative Prey.
Getty (1985) analyzed a more complex scenario than the
one described above, in which the forager has additional
prey types that it may incorporate into its diet. These ad-
ditional prey can be easily discriminated, and gi denotes
the probability of attacking alternative prey type i ∈
(1, ::: , k) on encounter. The payoff function representing
the long-term energy intake rate is (in our notation)

s nAEAR1 s nBEBy1
Pk

ip1s niEigi
11 s nAhAR1 s nBhBy1

Pk
ip1s nihigi

: ð8Þ

There is no coefficient g for the mimicry complex, since
decisions about whether to attack mimics and models
are based on appearance and thus controlled by the ac-
ceptance rates. Using the shorthand notation Ealt pPk

ip1s niEigi and halt p
Pk

ip1s nihigi, this model differs
from (6) in that we have c p Ealt and f p 11 halt. As be-
fore, all constants are positive except EB, which may be
positive or negative.
We consider a forager that adopts an optimal strategy

(i.e., that subject to the constraint R p eR(y) maximizes
[8] over y and coefficients gi) that satisfies 0 ! y* ! 1,
and with E*

alt and h*
alt referring to the values of Ealt and halt

for the optimal set of alternative prey determined by the
gi coefficients. We ignore the case in which parameters
balance on a knife edge so that the predator would be
indifferent about whether to include a given alternative
prey type in the diet. Thus, the gi coefficients are all 0
or 1 (the zero-one rule; Stephens and Krebs 1986) and
associated with strictly higher payoff than any alterna-
tive value. For mimics to be attacked, the profitability
of a single mimic must be greater than the energy intake
rate from the optimal set of alternative prey. Thus, the
inequality EA=hA 1 E*

alt=(11 h*
alt) holds, which together

with EA=hA 1 EB=hB ensure that inequalities (3) hold.

From (5) we obtain

(k1, k2) p 2
EA(11 h*

alt)2 E*
althA

s nB(EAhB 2 EBhA)
,
EB(11 h*

alt)2 E*
althB

s nA(EAhB 2 EBhA)

� �
:

ð9Þ
The signs of k2 and Q are the same as the sign of EB=hB 2
E*
alt=(11 h*

alt). Note that when model prey are undesirable
in a relative sense (Q 1 0), they have higher profitability
than the energy intake rate for the optimal set of alterna-
tive prey and are profitable in the absence of mimics.
What are the effects of small changes in parameters,

given that it is optimal to discriminate (i.e., 0 ! y* ! 1)?
We can consider changes in parameters that are small
enough that they change y* (which is in the interior of
the unit interval) but not the optimal gi coefficients
(which remain on the boundary of the unit interval at 0
or 1). Referring to table 2, a small change in nA, nB, EA,
hA , EB, or hB changes receiver acceptance rates in the same
direction as in the two-species scenario (application 1),
with effects of a change in the mimic parameters de-
pending on the sign of k2 in exactly the same way (al-
though the expression for k2 is now given by [9]).
Predictions obtained for k2 ! 0 are consistent with those
reported in the numerical explorations of Getty (1985).
As in the two-species model, we may make the substi-

tutions nA p np and nB p n(12 p) and explore the ef-
fect of increasing the fraction of prey in the mimicry
complex that are mimics. We illustrate changes in p in
the example in figure 3b, under the assumption that
there is only one type of alternative prey. For the case
Q 1 0 we used parameters sn p 0:5, EA p 1, hA p 2,
EB p 0:4, hB p 2, E*

alt p 0:333, and h*
alt p 1. The same

parameters were used for Q ! 0 except EB p 0:3 and
hB p 3. In both examples, it is optimal for the forager
to include the alternative prey in the diet (not shown).
We refer to Getty (1985) for explorations of how differ-
ent alternative prey types may fall out of the diet.

Application 3: Taste Rejection of Prey. Holen (2013)
studied prey choice, assuming that mimics and models
were of identical appearance but could be discriminated
against on the basis of taste after capture, leading to con-
sumption or rejection. A disk equation model was used
with the handling times of mimics and models split into
two components: the expected time spent on pursuit
and (if the prey is accepted on the basis of its taste) the
expected time from start of consumption until search
could be resumed (notation below). The payoff function is

(s nAEAR1 s nBEBy)gAB 1 s nCECgC
11 (s nA(hAp 1 hAR)1 s nB(hBp 1 hBy))gAB 1 s nChCgC

:

ð10Þ
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Here, there is a single alternative prey with subscript C;
coefficients gAB and gC are the respective probabilities of
keeping the mimicry complex and the alternative prey in
the diet; parameters hAp and hBp are the expected time
spent pursuing a mimic and model, respectively; and hA

and hB are the expected time spent consuming them on
capture, including recovery time. We will use the nota-
tional shorthand Ealt p s nCECgC and halt p s nChCgC. In
addition, the model by Holen (2013) had capture rates q
specific to mimics and models (which can be absorbed
into EA, hA, EB, and hB) and prey-specific search efficiencies
reflecting, for example, prey conspicuousness (which can
be absorbed into the prey abundances).
We consider a forager that adopts an optimal strategy

satisfying gC p gAB p 1 (meaning that all prey are at-
tacked, although some may be subsequently rejected)
and 0 ! y* ! 1 (meaning that a fraction of mimics and
models are consumed). The model thus differs from ap-
plication 1 in that c p E*

alt and f p 11 s nAhAp 1
s nBhBp 1 h*

alt, with E*
alt and h

*
alt referring to the values of Ealt

and halt for the optimal strategy. Analogous to applica-
tion 2, we assume that EA=hA 1 E*

alt=(11 h*
alt) holds (or

it would be unprofitable to consume mimics when having
alternative prey in the diet), which implies EA=hA 1

E*
alt=(11 s nAhAp 1 s nBhBp 1 h*

alt). This together with EA=
hA 1 EB=hB ensures that inequalities (3) hold. From (5)
we obtain

(k1, k2) p

 
2

EA(11 h*
alt 1 s nAhAp 1 s nBhBp)2 E*

althA

s nB(EAhB 2 EBhA)
,

EB(11 h*
alt 1 s nAhAp 1 s nBhBp)2 E*

althB

s nA(EAhB 2 EBhA)

!
ð11Þ

(see Holen 2013, appendix).
From table 2, we see that the effect of changing EA, hA,

EB, or hB on acceptance rates is as in the two previous
applications, with the effect of changing EA and hA as be-
fore depending on the sign of k2 (appendix E). However,
results regarding how acceptance rates are affected by
changes in parameters nA and nB may differ. This is be-
cause parameters reflecting abundance/frequency now
also appear in f because of time costs of pursuit. A full
analysis of the model is beyond the scope of the current
article, but making substitutions nA p np and nB p
n(12 p) we have analyzed the application regarding p (ap-
pendix D) and have found that it behaves similarly to the
others. Note that Q p ns(EB(11 snhBp 1 h*

alt) 2 E*
althB).

We thus have Q 1 0 if EB=hB 1 E*
alt=(1 1 snhBp 1 h*

alt).
The latter inequality means that a forager that attacks al-
ternative prey and models but consumes only the former
would increase the intake rate if consuming a captured

model. We illustrate changes in p in the example in fig-
ure 3c. Parameters corresponding to Q 1 0 are sn p 0:5,
EA p 1, hA p 2, EB p 0:35, hB p 2, E*

alt p 0:333, h*
alt p

1, hAp p 0:5, and hBp p 1. Parameters corresponding to
Q ! 0 are the same except EB p 0:1. Note that at low p,
the mimicry complex drops out of the diet since it incurs
costs of pursuit for all mimics and models regardless of
taste discrimination strategy; acceptance rate curves are
not shown in this region (fig. 3c). Explorations of how
prey types may fall out of the optimal diet is outside the
scope of this article.

Application 4: Search Terminated by Acceptance, with
Additive Costs. For other types of behavior that involve
sequential encounters, the appropriate fitness measure to
be maximized may not be a rate. For instance, sequential
search is sometimes terminated as soon as the first accep-
tance occurs, with the final choice determining the benefit
to be obtained. In the “search-and-settle” model (Reeve
1989; Getty 1995, 1996b; Shizuka and Hudson 2020), the
receiver seeks to identify a desirable signaler (e.g., a mate,
a colony to rob) among many and then settles with that
choice. The receiver encounters the candidates sequen-
tially and has two actions at its disposal: it can accept
and terminate the search or reject and continue the search.
For each candidate explored, an additive cost C (10) is
paid. Settling for a candidate yields the payoff VCA (10)
if the candidate is of the desirable type and VFA (!VCA) if
it is of the less desirable type. In our notation, the payoff
function is (Reeve 1989; Getty 1996b)

pVCAR1 (12 p)VFAy2 C
pR1 (12 p)y

: ð12Þ

We note that the pair of inequalities in (3) hold, given that
VCA 1 VFA and 2Cp ! 0. We proceed to obtain

(k1, k2) p
2C

(12 p)(VCA 2 VFA)
,

C
p(VCA 2 VFA)

� �
:

ð13Þ
When search becomesmore costly (C increases) or the rel-
ative benefit of mating with an optimal candidate (i.e.,
VCA 2 VFA) decreases, then k1 decreases while k2 increases,
and the receiver becomes less restrictive and accepts any
given mate with a higher probability.
The effect of changing p on acceptance rates (appen-

dix D) is shown in figure 3d. Parameters are VCA p 1,
VFA p 0:5, and C p 0:1. Note that this model has the
peculiar feature that Q and k2 are necessarily positive:
even if VFA is negative, the sign of the numerator of k2
(i.e., bf 2 ce) is nevertheless positive, since c ! 0 and
f p 0. The less desirable mates cannot be undesirable
in an absolute sense, since it is not possible to do worse
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than by always rejecting, which leads to an infinite num-
ber of additive costs. Because of this, the payoff function
(12) is not defined at the origin in the (y,R) plane.

Application 5: Search Terminated by Acceptance, with
Multiplicative Costs/Discounting. Wiley (1994) discusses
a model of search similar to the search-and-settle model
of Reeve (1989) but with multiplicative instead of addi-
tive costs. As before, the receiver can accept and termi-
nate the search or reject and continue the search, and set-
tling for a desirable candidate yields the payoff VCA (10)
and an undesirable candidate the payoff VFA (!VCA). For
each rejection, future payoffs are discounted by a multipli-
cative factor 0 ! l ! 1, which could, for example, represent
the probability of finding another candidate if rejecting
the current one or the devalued expected payoff for each
choice at the next opportunity (since, e.g., mating early
often is more valuable than mating late). Wiley’s model is
derived from the equation U p pRVCA 1 (12 p)yVFA 1
(p(12 R)1 (12 p)(12 y))lU, which solving for U and
rearranging yields

U p
pVCAR1 (12 p)VFAy

12 l 1 plR1 (12 p)ly
: ð14Þ

This is formally similar to the disk equation with two prey
(6). Wiley (1994) does not state the full model (14) but
states the expression for the slope of the payoff isocon-
tours, which is readily calculated using (4). We note that
inequalities (3) hold for 0 ! p ! 1, since VCA 1 VFA. We
obtain

(k1, k2) p

 
2

(12 l)
l

VCA

(12 p)(VCA 2 VFA)
,

(12 l)
l

VFA

p(VCA 2 VFA)

!
:

ð15Þ

Here, k2 (and Q) has the sign of VFA. If VFA is positive, the
less desirable candidate is undesirable only in a relative
sense; it is a better choice than not accepting any candidate
at all. If VFA is negative, accepting the less desirable candi-
date is worse than not accepting. Pairing up with, say, a
heterospecific mate could easily be worse than not pairing
up at all, since it may lead to zero offspring and carry costs
in terms of reduced future reproductive value. Regard-
ing l, from (15) we can infer that k1 p (2pVCA=[(12
p)VFA])k2 and thus that k1 stays proportional to k2 as l
is changed. The point (k1, k2) moves in a straight line from
the origin and into the second or third quadrant of the
(y,R) plane as l tends from 1 to 0. The receiver therefore
becomes less restrictive as search becomes more costly,
that is, as l is decreased (fig. E1 provides a graphical argu-
ment; figs. A1, D1–D3, E1 are available online).

The effect of changing p on acceptance rates (appen-
dix D) depends on the sign of k2 and is shown in figure 3e.
Parameters corresponding to Q 1 0 are VCA p 1, VFA p
0:5, and l p 0:9. Parameters corresponding to Q ! 0
are the same except VFA p 20:167. Other results are
given in appendix E and summarized in table 2.

Application 6: Repeated Search under Mortality Risk
(Worked Example). In some forms of search, benefits
are accrued each time a correct acceptance is made, but
a search may be terminated when a false alarm occurs. Us-
ing multiplicative costs (i.e., discounting the future), we
can construct a simple model of repeated search under
mortality risk. The receiver does not settle with its choice
but continues searching for new benefits until killed or
otherwise incapacitated. Examples might include males
searching to obtain (multiple) matings, females searching
to find (multiple) resources in which to lay eggs, and so on.
Accepting yields payoffs VA (10) and VB in circumstances
A and B, respectively, but in circumstance B there is also a
probabilistic risk z 1 0 of dying (e.g., because of preda-
tion) before the benefit is obtained. If event B represents
an aggressive mimic, it could be reasonable to assume
VB ≤ 0, with negative values reflecting possible fitness loss
even if surviving, but if event B is the same kind of event as
A except that it is associated with mortality risk, then it
could be reasonable to assume VB 1 0. The payoff U satis-
fies the equation

U p pR(VA 1 lU)1 (12 p)y(12 z)(VB 1 lU)

1 p(12 R)lU 1 (12 p)(12 y)lU ,

which solved for U yields

U p
pVAR1 (12 p)VB(12 z)y

12 l 1 z(12 p)yl
: ð16Þ

Assuming a nonzero risk of dying (z 1 0) and noting the
fact that d p 0, conditions (3) hold for 0 ! p ! 1. We
obtain

(k1, k2) p 2
12 l

l

1
z(12 p)

,
(12 l)

l

(12 z)VB

zpVA

� �
:

ð17Þ
The sign of k2 (and Q) is the same as the sign of VB. We
illustrate changes in p in the example in figure 3f. Pa-
rameters corresponding toQ 1 0 areVA p VB p 1, l p
0:9, and z p 0:30. Parameters corresponding toQ ! 0 are
the same except VB p 2 0:1. Other results are given in
appendix E and summarized in table 2.

Application 7: A model of Aggressive Mimicry. Kloock and
Getty (2019) considered a forager that must discriminate
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between food items (models) and aggressive mimics that
resemble the food items and can kill the predator. It is as-
sumed that the forager maximizes the ratio of feeding rate
to mortality rate. The feeding rate (our notation) is F p
npqVCAR1 A, with n being the combined encounter rate
for mimics and models, q the probability of capturing a
model given correct classification, and A the feeding rate
from alternative prey. Note that here the models are desir-
able and the mimics harmful; thus, p denotes the fraction
of models andVCA the value of ingesting a desirable model.
The mortality rate is m p n(12 p)zy1m, where z (10) is
the probability of being killed when attacking a mimic and
m (10) is backgroundmortality. Assuming that natural se-
lection maximizes F=m (Kloock and Getty 2019), this leads
to the fitness formulation

F
m
p

npqVCAR1 A
n(12 p)zy1m

: ð18Þ

To see that inequalities (3) hold for 0 ! p ! 1, note that
ae 1 bd is equivalent to n2p(12 p)qz 1 0, which holds,
and that cd ! af is equivalent to 0 ! npqm, which holds.
We obtain

(k1, k2) p 2
m

n(12 p)z
,2

A
npqVCA

� �
ð19Þ

This result is also given in Kloock and Getty (2019). Note
that in this model, k2 and Q are necessarily negative, re-
flecting that the aggressive mimic is undesirable in an ab-
solute sense. In this way it resembles our model of repeated
search under mortality risk when this was applied to ag-
gressivemimicry.We illustrate changes in p in the example
in figure 3g. Parameters are VCA p 1, A p 1, z p 0:30,
m p 0:10, q p 0:5, and n p 1. Other results are given
in appendix E and summarized in table 2.

Discussion

We have contrasted the predictions of the standard
single-encounter formulation with seven models that in-
volve repeated encounters, all of which can be considered
variants of the same general SDT model (which we have
called the REP formulation). The REP models were orig-
inally developed to study prey choice, aggressive mimicry,
mate search, and the aiding of kin, and we have included
one novel application (repeated search under mortality
risk). The REP models feature a richer set of predictions
for optimal discrimination than the single-encounter for-
mulation does. We have shown that with one exception
(Kloock and Getty 2019), optimal receivers can in the
REP models respond to the increased probability of an
undesirable or dangerous event not only by being more

cautious but also (counterintuitively) by being less cau-
tious, depending on conditions. Moreover, they can under
some conditions respond to an increased payoff from
accepting desirable signalers by reducing their acceptance
rates. These two counterintuitive findings have been re-
ported previously for two REP models (application 4
and a model formally similar to application 1) featured
in Reeve (1989). The first finding was also reported in re-
cent signal detection models on the building up of energy
reserves under predation risk (Trimmer et al. 2017a;
McNamara and Trimmer 2019). Here, we show that these
counterintuitive outcomes not only are very common in
models of repeated encounters but are often driven by
the same simple and intuitive mechanism, which we de-
scribe below. In addition, we have shown that an increase
in the absolute abundance of desirable events can either
decrease or increase acceptance rates.
The relationship between acceptance rates (hit rate and

false alarm rate) and the fraction of signalers that are de-
sirable (p) takes two nontrivial forms in the REP models,
depending on whether undesirable events are undesirable
in the relative or the absolute sense. First, a signaler or
event that is associated with harm will in many situations
be undesirable, but if one were to change conditions by
reducing the availability or profitability of the better al-
ternatives, it may now become desirable, warranting a dif-
ferent response. Examples may include prey of low profit-
ability or mates of low quality. Such relative undesirability
can lead to a U-shaped relationship between the accep-
tance rates and p: if all events are desirable (p p 1), there
is no scope for discrimination and the receiver should al-
ways accept. However, if some events are less desirable
than others (0 ! p ! 1), receivers will often benefit from
exercising discrimination. Finally, if all events are undesir-
able (i.e., p p 0), there is again no scope for discrimination
but the receiver may accept given that there are no better
alternatives. The result is a U-shaped relationship between
acceptance rates and p and consequently a range of p in
which the receiver responds to the increased probability
of undesirable events by being less cautious and accepting
more often. The effect is more pronounced for undesirable
events (false alarm rate) than for desirable ones (hit rate;
fig. 3). Such U-shaped relationships were shown in Reeve
(1989, figs. 5c and 6b). They were also featured in the mod-
els of Trimmer et al. (2017a) andMcNamara and Trimmer
(2019), although driven by a slightly different mechanism
(see below). All else being equal, the U-shaped dip in the
false alarm rate tends to be deeper when discriminability
d0 is high (fig. 4). The second nontrivial relationship of
acceptance rates with p arises when undesirable events
are always undesirable, such as encounters with preda-
tors or deadly toxic prey that provide no possible benefit.
Such absolute undesirability causes acceptance rates to
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increase with p in the REP models, in qualitative agreement
with the single-encounter formulation (figs. 3, 4; see also
fig. D3).
We welcome the novel state-dependent detection the-

ory (SDDT) as a useful addition to the toolbox of evolu-
tionary ecology (Trimmer et al. 2017a, 2017b). It extends
SDT to optimality problems that require an explicit con-
sideration of state, as has been showcased for the building
up of energy reserves under risk of predation (Trimmer
et al. 2017a, 2017b). The potential areas of application
of SDDT are many. Yet its heralded signature counterin-
tuitive result that receivers may take more risk when the
proportion of dangerous events increases (Trimmer et al.
2017a) is found in simpler, previously published signal
detection models that focus on repeated encounters, as
also pointed out by McNamara and Trimmer (2019).
Note, however, that the conditions under which the coun-
terintuitive prediction applies differ between the REP ap-
plications considered here and the energy reserve models:
in particular, Trimmer et al. (2017a) and McNamara and
Trimmer (2019) showed that the acceptance rates of
foragers (“boldness”) can increase with the proportion
of dangerous foraging opportunities even when the latter
is undesirable in the absolute sense (i.e., when false alarm
leads to certain death). This is possible because every re-
jection in these models reduces reserves by one level and
thus increases the future number of correct acceptances
needed to reach the target reserve level (McNamara and
Trimmer 2019). Increasing reserves by two levels requires
two consecutive correct acceptances, which becomes ex-
ceedingly unlikely as safe foraging opportunities become
infrequent, making accepting immediately to try to gain
one reserve level a better option. In the REP applications,
in contrast, acceptance rates may increase with the pro-
portion of undesirable events only if these are undesirable
in the relative sense.
Intriguingly, McNamara and Trimmer (2019) also

emphasized that the false alarm rate in some cases could
increase monotonically with the proportion of danger-
ous events, a prediction at odds both with the single-
encounter formulation and with each of the seven REP
models that we have explored here. This paradoxical pat-
tern implies that receivers must forego some opportuni-
ties to accept even when 100% of events are desirable.
Indeed, when both background mortality and predator
presence are set to zero in their model, individual prey
can live forever, and it does not matter how many time
steps are spent raising reserves as long as it happens often
enough to ultimately raise them. Introducing an infinites-
imally small background mortality forces a U-shaped re-
lationship between danger and acceptance rates. It is
therefore unclear whether the predicted monotonic rela-
tionship can fit biological reality.

In most REP models, the conditions under which in-
creasing the payoff from accepting desirable signalers
may reduce receiver acceptance rates (i.e., k2 1 0) coin-
cide fully with relative undesirability (i.e., Q 1 0). This
makes perfect intuitive sense: when the undesirability of
event B is dependent on event A being a better option,
then increasing the desirability of A will make B even less
desirable, while reducing the desirability of event A down
to that of event B will make them both acceptable. In
application 3 (Holen 2013), however, we are guaranteed
only that k2 and Q have the same sign when p is suffi-
ciently low. Application 3 differs from the others in that
measures of abundance (i.e., p or nA and nB) occur in
the parameter f, and a full in-depth analysis is beyond
the scope of the current article.
For the normal-normal equal variance ROC, changes in

discriminability d0 have similar effects on acceptance rates
in the REP formulation and the single-encounter formula-
tion in the following qualitative sense: if the always-accept
strategy is optimal when d0 p 0, the false alarm rate will
strictly decrease as d0 increases, while the hit rate will first
decrease and then increase (figs. 1b, 2b). Likewise, if the
always-reject strategy is optimal when d0 p 0, the hit rate
will strictly increase as d0 increases, while the false alarm
rate will first increase and then decrease (figs. 1a, 2c). This
similarity between the REP formulation and the single-
encounter formulation has been pointed out by Kloock
and Getty (2019) for their aggressive mimicry model, but
it holds for every REP model. This is reassuring and sug-
gests a certain robustness to predictions made about mi-
metic accuracy and the direction of mimicry evolution
(Johnstone 2002; Holen and Johnstone 2004, 2006, 2018)
that rely on the qualitative relationship between accep-
tance rates and discriminability.
One of the most common applications of the single-

encounter SDT formulation in evolutionary ecology is prey
choice, in particular in the context of Batesian mimicry
(e.g., Oaten et al. 1975; Johnstone 2002; Sherratt 2002;
Holen and Johnstone 2004, 2006, 2018; Reinhold and
Engqvist 2004; Lynn 2005; McGuire et al. 2006; Speed
and Ruxton 2010; Polnaszek et al. 2017). Classical mim-
icry theory focuses on visual warning signals and deci-
sions to attack. The single-encounter model predicts that
defended model prey and their mimics should be attacked
less often on encounter when the benefit of attacking
mimics is low, when the cost of attacking models is high,
when the fraction of mimics (p) is low, and (if parameter-
izing the model for absolute abundances) when mimics
are rare and models abundant. These results are consis-
tent with classical mimicry theory (e.g., Sheppard 1959a;
Turner 1987; Huheey 1988; Ruxton et al. 2018), with ex-
periments designed to test theory (e.g., Brower 1960;
O’Donald and Pilecki 1970; Pilecki and O’Donald 1971;
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Nonacs 1985; Lindström et al. 1997) and with the predic-
tions of REP application 1 and 2 when model prey are un-
desirable in an absolute sense (see Getty 1985).
Applications 1 and 2 in addition allow the undesirability

of model prey to be relative and dependent on the abun-
dance of more profitable alternatives. Prey may have low
but positive profitability if attacks rarely lead to capture
(leading to evasive mimicry; Ruxton et al. 2004) or if post-
capture handling time is very high. Even toxic prey could
be undesirable in the relative sense if the alternative for
the predator is starvation (e.g., Sheppard 1959b; Speed
1999; Sherratt 2003). Model prey that are undesirable only
in the relative sense reverse classic predictions of mimicry
theory: the probability of attack can be a U-shaped func-
tion of the proportion of prey that aremimics, as explained
above, which means that the probability of attack may
sometimes increase with the proportion of prey that are
models. Moreover, if the absolute abundance of mimics
is below someminimum thresholdmimics andmodels will
always be attacked, but above the threshold the probability
of attack will decrease with (absolute) mimic abundance,
other parameters kept constant. Likewise, the probability
of attack will decrease if mimics become more profitable.
The disk equation models therefore suggest that a form
of Batesian mimicry is possible in which predators are
less willing to attack models when mimics are more abun-
dant or profitable. Yet the predicted directions of mimicry
evolution are likely to remain as predicted by the single-
encounter formulation. To understand the fate of a mutant
signaler, we must consider the range of accepted stimuli,
and for anyROC generated by the use of a single acceptance
threshold (see fig. A1), mimics will be selected to resemble
models more closely while models will be selected to be-
come more dissimilar from the mimics.
Two of the REP models consider sequential search in

which the receiver makes a final choice and settles with
it. Application 4 (Reeve 1989; Getty 1996b; Shizuka and
Hudson 2020) assumes additive search costs, while appli-
cation 5 (Wiley 1994) assumes multiplicative search costs.
Both models predict that acceptance rates increase with
search costs, consistent with models of mate search (Real
1990;Wiegmann et al. 1996). The additive model has been
applied to mate search in female pied flycatchers (Ficedula
hypoleuca; Getty 1996b). These females choose between
unmated males on a primary territory and mated males
that have already paired up but defend a second territory;
the latter will provide less parental investment if chosen
(Alatalo and Lundberg 1990; Slagsvold and Lifjeld 1994).
The deception hypothesis holds that females that mate
with already-mated males are deceived and would have
benefitted by not initiating mating (Alatalo et al. 1981),
while the main competing hypothesis holds that such fe-
males strategically make the best of a bad situation (Meier

1983; Dale et al. 1992; Slagsvold and Dale 1994). The latter
hypothesis was bolstered by the observation that male
mating status could be inferred from territorial presence
(Dale and Slagsvold 1994). Naturally, there is no logical
contradiction between males sometimes being able to de-
ceive females regarding their mating status and females
being able to discriminate somewhat between already-
mated and unmated males; deception may after all only
work sometimes. In the perspective of SDT, being deceived
can partly be seen as an outcome of receiver strategy
(see “adaptive gullibility”; Wiley 1994). A more useful dis-
tinction between the two hypotheses is therefore that
already-mated males are undesirable in an absolute sense
under the deception hypothesis but undesirable in a rel-
ative sense under the best-of-a-bad-situation hypothesis.
The multiplicative search cost model (Wiley 1994) is flexi-
ble enough to represent both absolute and relative undesir-
ability and thus both hypotheses. In contrast, the additive
cost model (Reeve 1989; Getty 1996b; Shizuka andHudson
2020) cannot represent absolute undesirability. This is an
artifact arising from the fact that the strategy of rejecting
all males carries infinite cost, which forces females to settle
with choices that yield negative payoff.
Some of the applications presented here pertain to ag-

gressive mimics, which take advantage of a receiver by
eliciting behavior in the receiver that is usually directed to-
ward amodel organism.Many orchid species, for instance,
attract pollinators by mimicking the floral signals of food-
rewarding plants (i.e., food deception) but provide no ben-
efit to the pollinators (reviewed in Schiestl 2005). The disk
equation with alternative prey (application 2) serves as a
reasonable model of how receivers should optimally re-
spond to food deception, with the desirable flowers now
being the models and the undesirable, nonrewarding flow-
ers the mimics. Nonrewarding flowers are less rewarding
than any diet of alternative food sources and are therefore
likely to be undesirable in an absolute sense. Kloock and
Getty’s (2019) model (application 7) focuses on a specific
form of aggressive mimicry in which a predator poses as
a food item and the undesirable event (the aggressive
mimic) provides no benefit and is always undesirable.
The model of repeated search under mortality risk (appli-
cation 6) also serves as a reasonable model of aggressive
mimicry when undesirability is absolute (i.e., VB ! 0). In
applications 2, 6, and 7, the absolute undesirability implies
k2 ! 0, and the acceptance rates of a predator that dis-
criminates should increase with the frequency of the desir-
able models, increase with the payoff from accepting desir-
able models and the payoff from accepting undesirable
mimics, and (in application 2) increase with the absolute
abundance of the desirable models and decrease with the
absolute abundance of undesirable mimics. Thus, the pre-
dictions of the REP applications that are relevant for
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aggressive mimicry are consistent with those of the single-
encounter formulation when applied to aggressive mim-
icry (e.g., Holen 2004, 2006).
In conclusion, we have shown that a number of superfi-

cially different signal detection models involving sequen-
tial choice can be analyzed and understood as specific cases
of the same general framework (the REP formulation). The
seven applications we have investigated are not exhaustive,
and we hope that the solution techniques presented here
will make it easier to analyze and compare future signal de-
tection models involving repeated encounters that fall into
the same general framework. We have shown how (and
why) these models exhibit many properties that single-
encounter models do not, properties that were not always
recognized at the time of publication. The counterintuitive
nature of the predictions of these more complex models
makes them excellent candidates for experimental testing.
We agree with recent critics (Trimmer et al. 2017a; Mc-
Namara andTrimmer 2019) that it often is necessary to ex-
plicitly incorporate sequential encounters into models, but
we point out that there are already a number of published
signal detection models of this kind. SDDT allows SDT to
be applied to problems that require a state-dependent
approach but does not invalidate the use of SDT in other
settings. Our comparison of REP models to the single-
encounter formulation revealedwell-defined circumstances
under which they make similar qualitative predictions. This
strongly suggests that the single-encounter formulation re-
mains a reasonable approach for many scenarios, includ-
ing classic Batesianmimicry and aggressive mimicry. That
different signal detection models make different predictions
depending on their economic assumptions is not a reason
for concern but a testament to the versatility of SDT.
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