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ABSTRACT
Current atmospheric CO2 concentration is known to be higher than it has been during the past 

∼800 k.y. of Earth history, based on direct measurement of CO2 within ice cores. A comparison 
to the more ancient past is complicated by a deficit of CO2 proxies that may be applied across 
very long spans of geologic time. Here, we present a new CO2 record across the past 23 m.y. of 
Earth history based on the δ13C value of terrestrial C3 plant remains, using a method applicable 
to the entire ∼400 m.y. history of C3 photosynthesis on land. Across the past 23 m.y., CO2 likely 
ranged between ∼230 ppmv and 350 ppmv (68% confidence interval: ∼170–540 ppm). CO2 was 
found to be highest during the early and middle Miocene and likely below present-day levels 
during the middle Pliocene (84th percentile: ∼400 ppmv). These data suggest present-day CO2 
(412 ppmv) exceeds the highest levels that Earth experienced at least since the Miocene, further 
highlighting the present-day disruption of long-established CO2 trends within Earth’s atmosphere.

INTRODUCTION
Knowledge of atmospheric CO2 concentra-

tion is vital for understanding Earth’s climate 
system because it imparts a controlling effect 
on global temperatures across recent (Hegerl 
et al., 2006) and geologic (Foster et al., 2017) 
time scales. Proxies (Breecker et al., 2010) and 
models (Royer et al., 2014) indicate that CO2 has 
varied widely during the geologic past. Direct 
measurement of CO2 has been performed at the 
Mauna Loa Observatory (Hawaii, USA) for the 
past 60+ yr, and historical CO2 has been sampled 
continuously from ice-core bubbles recording 
the past 800 k.y. (Petit et al., 1999; Lüthi et al., 
2008), allowing for trends in CO2 during the lat-
ter portion of the Quaternary to be evaluated in 
detail. Direct observations of atmospheric green-
house gases are also now available from discon-
tinuous ice up to 2 m.y. old from East Antarctica 
(Higgins et al., 2015; Yan et al., 2019).

For time periods older than the Pleistocene, 
many CO2 proxies have been applied, including 
the proportion of epidermal cells that are stoma-
tal pores (Kürschner et al., 1996, 2008; Beerling 
et al., 2009; Grein et al., 2013; Wang et al., 2015; 
Reichgelt et al., 2016); the stable carbon isotope 
composition of paleosol carbonate (Breecker 

and Cerling, 1992; Ekart et al., 1999; Retallack, 
2014; Da et al., 2015, 2019); alkenones derived 
from marine phytoplankton (Seki et al., 2010; 
Badger et al., 2013a, 2013b; Zhang et al., 2013); 
and the pH of ocean water as derived from bo-
ron isotopes (Bartoli et al., 2011; Foster et al., 
2012; Greenop et al., 2014; Martinez-Boti et al., 
2015; Stap et al., 2016). Each of these proxies 
provides robust results for specific time periods 
(Foster et al., 2017; Hollis et al., 2019); however, 
a CO2 proxy for use across the entire history of 
vascular land plants (i.e., the past ∼400 m.y.) 
is lacking.

Here, we present a method for calculating 
CO2 that is based on a ubiquitous substrate, is 
sensitive across a wide range of CO2, and is root-
ed in a fully understood mechanism of response 
to changing CO2. We illustrate its efficacy by 
presenting a novel, high-resolution record of 
CO2 for the Neogene through the Quaternary 
(i.e., the past 23 m.y.), a period that lacks a con-
tinuous record of CO2 from any single proxy.

Our approach is centered upon the δ13C val-
ue of C3 vascular land plants (hereafter δ13Cp), 
which is available from terrestrial sediments for 
most of the Phanerozoic (Nordt et al., 2016). 
Our calculations of CO2 assumed that global 
changes in atmospheric composition affect the 
plant tissues of all terrestrial C3 plants via the 

universally shared mechanism of photorespi-
ration. Because CO2 is well mixed in Earth’s 
atmosphere, and diminished photorespiration 
with increasing CO2 is fundamental to the bio-
chemistry of photosynthesis, this mechanism 
is recorded globally (Keeling et al., 2017). Our 
previous growth chamber experiments, in com-
bination with meta-analyses, established that 
the effect of CO2 on δ13Cp value is consistent 
across a wide range of species and environ-
ments (Schubert and Jahren, 2012, 2018). Re-
cent works have also shown that the influence 
of CO2 on δ13Cp value is not affected by water 
availability (Lomax et al., 2019) or atmospheric 
O2 levels (Porter et al., 2017), and it is recorded 
within multiple organic substrates (e.g., cellu-
lose and collagen [Hare et al., 2018], hair [Zhao 
et al., 2019], and n-alkanes [Wu et al., 2017]) 
and inorganic substrates (e.g., speleothems 
[Breecker, 2017] and cave air [Bergel et al., 
2017]). Consequently, researchers now correct 
δ13C values for changes in CO2 across a myriad 
of fossil (e.g., ungulate teeth [Luyt et al., 2019; 
Sealy et al., 2019], soil-respired carbon [Caves 
Rugenstein and Page Chamberlain, 2018], soil 
carbonate [Basu et al., 2019], pyrogenic car-
bon and n-alkanes [Zhou et al., 2017], and pol-
len [Bell et al., 2019]), and modern (e.g., fungi 
[Hobbie et al., 2017] and leaves [Tibby et al., 
2016]) substrates, and recent experiments have 
shown that the δ13Cp value can produce accurate 
estimates of paleo-CO2 concentration (Porter 
et al., 2019).

METHODS
We reconstructed CO2 across the past 23 m.y. 

using a compilation of 700 δ13C measurements 
gathered from 12 previously published studies 
of terrestrial organic matter (TOM; n = 441) 
and plant lipids (n = 259) that spanned at least 
1 m.y. of the Neogene (Table S1 in the Supple-
mental Material1). We chose these substrates *E-mail: schubert@louisiana.edu

1Supplemental Material. Description of the inputs used to calculate atmospheric CO2 concentration, uncertainty in CO2(t), Figure S1, and Tables S1 and S2. Please 
visit https://doi​.org/10.1130/GEOL.S.12307451 to access the supplemental material, and contact editing@geosociety.org with any questions.
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because both TOM and plant lipid δ13C values 
have been shown to respond similarly to changes 
in CO2 (Schubert and Jahren, 2012; Wu et al., 
2017; Chapman et al., 2019); these substrates 
also represent an integrated signal with multiple 
photosynthetic inputs, which has been shown to 
improve the accuracy of the proxy (Porter et al., 
2019). For studies that reported δ13Cp data for 
multiple n-alkanes (e.g., n-C27, n-C29, n-C31), we 
selected only one record, or the weighted mean 
values (if reported), thus avoiding redundancy in 
our compiled data set. The δ13Cp data set used 
for input exhibited a large range in δ13Cp values 
(∼8‰), sampled from a wide range of environ-
ments; plant lipids generally exhibited lower 
δ13Cp values than TOM of the same age, as is 
commonly observed (e.g., Chikaraishi and Nara-
oka, 2003). We limited our literature compilation 
to records with δ13Cp values of TOM ≤ −22.0‰ 
and plant lipids ≤ −27.0‰, thus avoiding δ13Cp 
values that reflected C4 ecosystems (O’Leary, 
1988). Less than 2% of all compiled δ13Cp val-
ues fell above these thresholds, and these were 
determined to be statistical outliers (all values are 
reported in Figure 1 and in Table S1).

The approach used here to reconstruct at-
mospheric CO2 concentration based on changes 
in δ13Cp value was first described by Schubert 
and Jahren (2012) and then demonstrated by 
Schubert and Jahren (2015). This approach cal-
culates CO2 based on changes in δ13Cp value 

(i.e., δ13Canomaly) between two points in time, time 
t = 0 (for which CO2 is known) and time t (for 
which CO2 is not known):
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where A, B, and C are curve-fitting parameters 
(A = 28.26, B = 0.22, C = 23.9; Schubert and 
Jahren, 2012, 2015; Cui and Schubert, 2016). 
When calculating δ13Canomaly, it is necessary to 
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mospheric CO2 between time t [δ13Catm(t)] and 
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We can then rewrite Equation 1 in order to 
solve for CO2 at any time t (CO2(t)), as a function 
of δ13Cp and δ13Catm:
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Descriptions of the inputs are provided in the 
Supplemental Material.

RESULTS
Figure 1 shows a continuous record of CO2 

across the past 23 m.y. based on changes in δ13Cp 
value (i.e., δ13Canomaly). We calculated that the 
median CO2 value was lower than that of today 
across the entirety of the past 23 m.y., and it 
likely never fell below levels experienced during 
Pleistocene glacial advances (∼170 ppm; Petit 
et al., 1999; Kawamura et al., 2007).

Our record commences at the start of the 
Neogene, when CO2 was at a local high for 
the entire record (∼350 ppmv; 23.0–22.4 Ma; 
Fig. 1C). During the middle Miocene (i.e., 17.1–
15.4 Ma), CO2 reached a maximum and then 
steadily decreased to below the threshold for 
Northern Hemisphere glaciation (∼280 ppmv; 
DeConto et al., 2008) at the end of the Miocene. 
The middle Pliocene (ca. 5–3 Ma) experienced 
CO2 levels that might have approached early 
21st century levels (∼400 ppmv; 84th percen-
tile). This time period corresponds with elevated 
global temperatures as inferred from multiple 
models (Haywood et al., 2013), and sea lev-
els up to 25 m higher than today (Miller et al., 
2012; Grant et al., 2019). CO2 declined to near 
or just-below pre-industrial levels during the late 
Pliocene, while Northern Hemisphere glacia-
tion increased (Balco and Rovey, 2010; Bailey 
et al., 2013). Low CO2 continued across the Qua-
ternary glacial-interglacial cycles (Fig. 2) until 
the anthropogenic disruption in carbon cycling 
via the widespread use of fossil fuels (Keel-
ing et al., 2001). Our overall record of the past 
23 m.y. reveals a significant linear CO2 decline 
equal to an average of 5 ppmv per million years 
(p < 0.0001). This contrasts with an average in-
crease of 5 ppmv per decade experienced across 
the past 270 yr that has more than offset the CO2 
decline of the past 23 m.y.

DISCUSSION
The changes in CO2 that we have constructed 

are corroborated by contemporaneous changes 
in various Earth cycles at the sub-epoch scale. 
The most important change is the long-term 
global cooling in progress across the Neogene, 
as determined by Zachos et al. (2001) based on 
the δ18O value of foraminifera, that coincides 
with increased reactivity of the land surface 

Figure 1.  Reconstruction 
of late Cenozoic (23–0 Ma) 
CO2 using C3 plant 
remains. (A) Raw δ13Cp 
values compiled from bulk 
terrestrial organic matter 
(TOM; brown; Δ) and 
plant lipids (orange; ∇). 
(B) Changes in δ13Cp (i.e., 
δ13Canomaly; see Equation 2). 
(C) CO2 calculated using 
Equation 3. Present-day 
CO2 (red star) and range 
of Intergovernmental 
Panel on Climate Change 
(IPCC) projections for 
the years 2050 and 2100 
CE are shown for refer-
ence. Data in B and C are 
presented with locally 
weighted (LOWESS, 
α = 0.15) fit through indi-
vidual data points (Table 
S2 [see footnote 1]); 
shaded regions represent 
84th (upper error) and 16th 
(low error) percentiles 
(see the Supplemental 
Material [see footnote 1]). 
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(Caves Rugenstein et al., 2019), and our long-
term decrease in CO2.

In comparing our record to the sparse data 
available from other proxies (Fig. 3), we see that 

alkenone- and stomata-based reconstructions 
generally estimate higher CO2 across much of 
the past 23 m.y., although with overlapping un-
certainties, while the δ11B- and paleosol-based 

reconstructions do not show any consistent bias-
es relative to our data set. In addition, the lack of 
continuous proxy data precludes identification 
of unequivocal, long-term changes in CO2 over 
the past 23 m.y. (Figs. 3A–3C), except perhaps 
for a downward trend within the data set gener-
ated using stomatal indices (Fig. 3D).

Two key intervals of the past 23 m.y. have 
been cited as potential analogs for anthropo-
genic climate change (IPCC, 2013): the middle 
Miocene and Pliocene. A corresponding CO2 
increase across these two warm intervals, how-
ever, remains enigmatic (Fig. 3). For example, 
stomatal indices suggest CO2 above pre-indus-
trial levels during much of the middle Mio-
cene (Fig. 3D), while paleosol carbonate data 
indicate very low CO2 and no apparent trends 
(Fig. 3C). The δ11B-based reconstructions do not 
show any clear trends during the middle Mio-
cene, with estimates ranging from ∼200 to 600 
ppmv (Fig. 3B). High-resolution CO2 data are 
generally lacking for the late Miocene, which 
makes inference of CO2 trends during global 
cooling difficult to establish. In contrast, our 
reconstruction allows for a nearly continuous 
record of CO2 that links the mid-Miocene and 
Pliocene warm intervals by a long-term CO2 
decline (Fig. 1C). Finally, our record reveals a 
CO2 increase within the early Pliocene that is 
not evident when examining any single proxy, 
but that corresponds with mid-Pliocene warming 
and an inferred CO2 increase (e.g., IPCC, 2013, 
their figure 5.2).

CONCLUSIONS
One of the most pressing messages that cli-

mate scientists attempt to convey to the public is 
that current CO2 (2019 CE = 412 ppmv; Keeling 
et al., 2001) is elevated compared to the geo-
logic past. The fact that current CO2 is higher 
than it was at any time during the past ∼800 
k.y. is a straightforward claim based upon direct 
CO2 measurements from ice cores (Petit et al., 
1999; Kawamura et al., 2007) and the Mauna 
Loa Observatory (Keeling et al., 2001); claims 
associated with the more distant geologic past 
have been variable, partially based on a lack 
of consensus within the paleoclimate commu-
nity. Statements addressing values from 3 m.y. 
ago (Willeit et al., 2019) to 15 m.y. ago (Tripati 
et al., 2009) can be found, contributing to public 
confusion and skepticism.

Our results support the claim that CO2 has 
been lower than present-day values at least 
across the past 7 m.y., and potentially during 
the entirety of the past 23 m.y.; however, CO2 
likely never fell below levels experienced during 
the greatest ice-sheet advances of the Pleisto-
cene (∼170 ppm; Petit et al., 1999). Our results 
also indirectly imply that the major reorgani-
zations of plant (e.g., Salzmann et al., 2008), 
animal (e.g., Stebbins, 1981), and hominid 
(e.g., White et al., 2009) ecosystems were not 

Figure 2.  Reconstruc-
tion of Quaternary CO2 
using C3 plant remains 
(data from Fig. 1). Paleo-
sol data from the Chinese 
Loess Plateau (Da et al., 
2019), low-resolution ice-
core data (Allan Hills, 
Antarctica, blue ice area; 
Higgins et al., 2015; Yan 
et  al., 2019), and high-
resolution ice-core data 
(Petit et al., 1999; Monnin 
et  al., 2001; Lüthi et  al., 
2008) are shown for com-
parison. CO2 in 2019 CE 
(dashed line) is shown 
for reference.
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Figure 3.  Late Cenozoic 
(23–0 Ma) CO2 determined 
from (A) alkenone (Seki 
et al., 2010; Badger et al., 
2013a, 2013b; Zhang et al., 
2013), (B) boron isotope 
(Seki et al., 2010; Bartoli 
et al., 2011; Foster et al., 
2012; Badger et al., 2013a; 
Greenop et al., 2014; Marti-
nez-Boti et al., 2015; Stap 
et  al., 2016), (C) paleo-
sol (Cerling, 1992; Ekart 
et al., 1999; Breecker and 
Retallack, 2014; Da et al., 
2015), and (D) stomata 
(Kürschner et  al., 1996, 
2008; Beerling et al., 2009; 
Grein et  al., 2013; Wang 
et  al., 2015; Reichgelt 
et  al., 2016) proxies (as 
compiled within Foster 
et  al., 2017). Our new 
reconstruction based on 
C3 plant remains (green) 
is shown for reference 
in each panel. Note that 
our new record (n = 700; 
Table S2 [see footnote 
1]) represents a 1.5× 
increase over the total 
number of CO2 estimates 
compiled here (n = 461). 
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driven by large-amplitude changes in CO2. More 
meaningful, perhaps, is the inference that these 
reorganizations could have impelled, or been 
impelled by, relatively small-amplitude changes 
in CO2.

Our CO2 record differs from that gained 
by prior proxies in that it was produced from 
substrates that span 23 m.y. of uninterrupted Earth 
history. Our results also show good agreement 
with discontinuous marine and terrestrial CO2 
proxies, suggesting that the validity of the 
proposed mechanism underlying the effect of 
CO2 on δ13Cp values (Schubert and Jahren, 2018) 
may be comparable to those of these previously 
confirmed CO2 proxies. Compared to these 
methods, however, our proxy has the advantage of 
relying upon a substrate (terrestrial fossil organic 
carbon) that is widely available both spatially and 
temporally (Strauss and Peters-Kottig, 2003; 
Nordt et al., 2016), allowing the possibility for 
a near-continuous reconstruction of CO2 across 
the entire evolution of C3 land plants.
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