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 10 

Abstract Hydrological models have been widely used to predict runoff in regions with observed 11 

discharge data, and regionalization methods have been extensively discussed for providing runoff 12 

predictions in ungauged basins (PUB), especially during the PUB decade (2003-2012). Great progress 13 

has been achieved in the field of regionalization in previous studies, in which different hydrological 14 

models have been coupled with various regionalization methods. However, different conclusions have 15 

been drawn due to the use of different hydrological models, regionalization methods, and study 16 

regions. In this study, we assessed the performance of the five most widely used regionalization 17 

methods (spatial proximity with parameter averaging option (SP-par), spatial proximity with output 18 

averaging option (SP-out), physical similarity with parameter averaging option (Phy-par), physical 19 

similarity with output averaging option (Phy-out), and regression methods (PCR)) and four daily 20 

rainfall-runoff models (GR4J, WASMOD, HBV and XAJ, with 6, 8, 13, and 19 parameters, 21 

respectively) at the same time. Our aim was to evaluate how the performance of the regionalization 22 

methods depends on (a) the selection of hydrological models, (b) nonstationary climate conditions, 23 

and (c) different climate regions. This investigation used data from 86 independent catchments evenly 24 

distributed throughout Norway, covering three different climate zones (oceanic, continental and polar 25 

tundra) according to the Köppen-Geiger classification. The results showed that (a) the SP-out and Phy-26 
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out methods performed better than the SP-par and Phy-par for all the hydrological models, and the 27 

regression method performed worst in most cases; (b) the difference between the parameter averaging 28 

option and the output averaging option is positively related to the number of hydrological model 29 

parameters, i.e. the greater the number of parameters, the larger the difference between the two options; 30 

(c) the XAJ model with the greatest number of parameters produced the best results in most cases, and 31 

models with fewer parameters tend to produce similar performance for the different regionalization 32 

methods; (d) models with more parameters displayed larger declines in performance than those with 33 

fewer parameters for nonstationary conditions; and (e) clear differences in the performance of the 34 

regionalization methods exist among the three climate regions. This study provides insight into the 35 

relationship between the complexity of hydrological models and regionalization methods in cold and 36 

seasonally snow-covered regions. 37 

Keywords: Regionalization methods; hydrological models; climate zones; ungauged catchments 38 
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1. Introduction 34 

 35 

Runoff prediction plays a significant and essential role in water resources management, the assessment 36 

of the impact of environmental change (e.g., climate and land use), and hydrological design (e.g., 37 

Blöschl and Montanari, 2010; Parajka et al., 2013). During the last several decades, hydrological 38 

models have become the most popular and common solution for runoff predictions. However, the 39 

models have free parameters to be calibrated by using the observed discharge data before predicting 40 

the runoff hydrographs, which are not available in many catchments of interest (e.g., He et al., 2011; 41 

Parajka et al., 2013). This fact made the topic ‘predictions in basins without observed discharge data 42 

(ungauged basins)’ attractive and challenging for hydrologists (e.g., Parajka et al., 2007; Sivapalan et 43 

al., 2003; Xu, 2003). As a result, the International Association of Hydrological Sciences (IAHS) 44 

established a “Decade on Predictions in Ungauged Basins (PUB): 2003–2012”, and great progress has 45 

been achieved during this period (Hrachowitz et al., 2013). 46 

 47 

Regionalization is defined as the method for predicting runoff in ungauged basins by transferring 48 

information from gauged (donor) to ungauged (target) catchments (e.g., Rojas‐ Serna et al., 2016; 49 

Razavi and Coulibaly, 2013). In general, regionalization methods are classified into three categories: 50 

(a) spatial proximity methods assume that geographically close catchments have similar hydrological 51 

behaviors (e.g., Egbuniwe and Todd, 1976; Vandewiele et al., 1991); (b) physical similarity 52 

methods assume that catchments with similar physical characteristics have the same hydrological 53 



response (e.g., Burn and Boorman, 1993; McIntyre et al., 2005), thus, the parameter values are 54 

transferred to ungauged basins from either geographically close or physically similar gauged basins; 55 

and (c) the regression method, which is one of the most popular and oldest regionalization approaches 56 

(Oudin et al., 2008), links model parameters to physical and climatic catchment characteristics by 57 

regression functions and assumes that the relationship is transferable from gauged to ungauged basins 58 

(e.g., Magette et al., 1976; Young, 2006). 59 

 60 

Many studies have applied and compared regionalization methods for various regions in combination 61 

with a wide range of hydrological models. However, in many cases, the conclusion about which 62 

method performed best differs largely among the studies. For example, Merz and Blöschl (2004) 63 

concluded that the spatial proximity method performed better than the regression method for 64 

catchments in Austria using the HBV model. On the other hand, Young (2006) found that the 65 

regression method gave better results than the spatial proximity method in the UK. Bao et al. (2012) 66 

concluded that the physical similarity method was best by using the Akaike information criterion (AIC) 67 

on 55 catchments in China. Different models were applied for different regions in these studies, and 68 

therefore many hydrologists claim that the performance of regionalization methods depends on the 69 

study area and the choice of hydrological model (e.g., Parajka et al., 2013; Reichl et al., 2009; Salinas 70 

et al., 2013; Samuel et al., 2011; Viglione et al., 2013). Most of the above-mentioned studies only used 71 

one hydrological model in a specific region, and conclusions cannot be drawn on how the model 72 

selection or study region affects the performance of the regionalization methods. 73 

 74 

Few studies have assessed the performance of regionalization methods using multiple models. Li et al. 75 

(2017) used SIMHYD (10 model parameters) and XAJ (12 model parameters) in Australia and found 76 

consistent regionalization results for both models. The same conclusion was drawn by Li et al. (2014), 77 

where GR4J (7 model parameters) and SIMHYD (12 model parameters) were applied in the southeast 78 

Tibetan Plateau. Furthermore, Petheram et al. (2012) conducted a comparison by using five rainfall-79 

runoff models and concluded that the difference between hydrological models was negligible for 80 

runoff prediction in ungauged basins. This conclusion was consistent with two other studies (Chiew, 81 



2010; Viney et al., 2009b), which also included five hydrological models. However, none of these 82 

studies included a regression approach, which provided very different results when used with either 83 

the GR4J (4 model parameters) or TOPMO (6 model parameters) model in the study of Oudin et al. 84 

(2008), who tested three kinds of regionalization methods using two hydrological models for 913 85 

catchments in France. Either the number of regionalization methods or the number of models used in 86 

previous studies is still too small to draw a general conclusion. In addition, all these evaluations have 87 

been performed for relatively warm climate regions, where the snow process is of limited importance. 88 

Thus, a more comprehensive study is needed to investigate how regionalization performance differs 89 

with multiple hydrological models of different complexity for runoff prediction in ungauged basins, 90 

especially for cold and seasonally snow-covered regions. 91 

 92 

Furthermore, climate is changing (IPCC, 2014), resulting in nonstationary relationships between 93 

rainfall and runoff (Zhang et al., 2011a), which makes the reliability of applying the conclusions made 94 

in a historical period into future application questionable. Thus, for future runoff prediction in 95 

ungauged basins, it is essential to investigate the transferability of the regionalization methods under 96 

changing climatic conditions (e.g., Broderick et al., 2016; Yang et al., 2019). Finally, regionalization 97 

performances also vary between regions, according to Parajka et al. (2013), who statistically 98 

summarized this conclusion from 34 regionalization studies. However, it cannot explicitly present the 99 

performance difference between regions for specifically selected regionalization methods because 100 

different hydrological models and regionalization methods were applied in the studies cited and 101 

summarized by Parajka et al. (2013). 102 

 103 

 In this study, we perform a comprehensive evaluation of the performance of five widely used 104 

regionalization methods (see section 3.2) combined with four frequently used hydrological models 105 

(GR4J–6 parameters, WASMOD–8 parameters, HBV–13 parameters and XAJ–19 parameters) in 106 

regions with highly contrasting physiographic and climatic settings. The evaluation is based on 86 107 

catchments in Norway, belonging to three different climatic regions according to the Köppen-Geiger 108 

classification (Kottek et al. 2006) and under different climate conditions. This is the first study that 109 



specifically addresses how the performance of the regionalization methods (a) depends on the 110 

selection of hydrological models, (b) changes in different climate conditions, i.e., when air 111 

temperature increases, and (c) varies between different climate regions as defined by the Köppen-112 

Geiger classification. 113 

 114 

2. Study area and data 115 

2.1 Study area 116 

Our study catchments are located in Norway, which is situated in northern Europe in the western and 117 

northern part of the Scandinavian Peninsula. Norway has a long and rugged coastline, elevation 118 

spanning from sea level to 2469 m.a.sl., and latitudes ranging from 58° to 71°N. This results in highly 119 

variable hydroclimatological conditions across the study domain (Vormoor et al., 2016; Yang et al., 120 

2018, 2019). In this study, we used data from 86 nonoverlapping catchments distributed evenly 121 

throughout our study domain (Figure 1). These stations have continuous meteorological data and 122 

discharge data records with less than 40% missing values during the periods from 1980 to 1989 as 123 

well as 2006 to 2015. These two periods are used in this study. The left panel map in Figure. 1 also 124 

displays the Köppen-Geiger climate classification, which is based on data from 1976 to 2000 (Kottek 125 

et al. 2006; Peel et al., 2007; Beck et al., 2018). Note that the original classification divided Norway 126 

into five different climate groups. However, in two of these groups, less than 10 catchments were 127 

located. We therefore merged some of the groups, resulting in the following three regions: (a) oceanic 128 

climate containing 19 catchments, (b) continental climate containing 52 catchments and (c) polar 129 

tundra climate containing 15 catchments. 130 

 131 

Fig 1. Insert here 132 

 133 



2.2 Data 134 

For the hydrological simulations, we used daily precipitation and temperature data acquired from the 135 

gridded seNorge dataset with a resolution of 1 km produced by the Norwegian Meteorological 136 

Institute (Tveito et al., 2005; Mohr, 2009; Jansson et al., 2007). Daily discharge data were obtained 137 

from the hydrometric observation network of the Norwegian Water Resources and Energy Directorate 138 

(NVE). To test the performance of the regionalization methods under varying climate conditions, we 139 

analyzed the precipitation and temperature records for the period from 1980 to 2015 (Figure 2). For 140 

precipitation, there is no clear trend, whereas temperature increases throughout the study period. For 141 

model calibration and verification, we selected ten years at the start (1980 to 1989) and the end (2006 142 

to 2015) of the whole period since these two periods show the largest difference in air temperature. 143 

For the first period, the average precipitation is 1932 mm/year, and the air temperature is 1.2°C. For 144 

the second period, the average precipitation is 2027 mm/year, and the air temperature is 2.6°C. The 145 

right panels in Figure 2 show the average monthly precipitation, temperature and Pardé coefficient 146 

(ratio between the average monthly discharge and the mean annual runoff) for the catchments in each 147 

climate group. The oceanic climate group is characterized by higher precipitation during autumn and 148 

winter and higher air temperature than that of the two remaining groups. The watersheds in the oceanic 149 

climate group also show two peaks in runoff (compare the Pardé coefficient between the groups) 150 

resulting from spring snowmelt and strong rainfall during autumn. The continental climate group 151 

displays low seasonality for precipitation but high seasonal variations in temperature, resulting in one 152 

peak runoff caused by snowmelt. The climate characteristics for the polar tundra climate group are 153 

similar to those of the continental group, but with lower temperature, and the snowmelt-induced peak 154 

in runoff occurs later. 155 

 156 

Fig 2.  Insert here. 157 

 158 

Table 1 shows the average annual and seasonal precipitation, temperature and runoff for the three 159 

climate classes. Precipitation in the oceanic climate group is substantially larger than that in the other 160 

two groups, which show rather similar precipitation amounts. For temperature, the oceanic climate 161 



group shows the highest values, whereas the coldest temperatures are recorded in the polar tundra 162 

climate group. In particular, for the oceanic group, precipitation increases from the calibration to 163 

verification period for the winter season, but for the summer season, the difference is small between 164 

the two periods. For temperature, the increase from the calibration to verification period is smallest in 165 

the oceanic region compared to the other regions. The seasonal characteristics in runoff are similar to 166 

those of precipitation. Note that summer runoff decreases from the calibration to the verification 167 

period for all groups. 168 

 169 

Table 1 Insert here. 170 

 171 

Since there is no potential evapotranspiration (Ep) data available in our study area, which are needed 172 

as the input data for the hydrological models, we applied the Hargreaves equation (Hargreaves, 1975) 173 

to calculate Ep (mm/day), which is recommended by Shuttleworth (1993) and Xu et al. (2002): 174 

                              (1) 175 

where    is the extraterrestrial radiation for the location in mm/day evaporation equivalent (Allen et 176 

al., 1998), TC is the temperature (°C), and TR is the daily temperature range (°C). 177 

 178 

A set of catchment descriptors is needed for two of the regionalization methods, namely, the physical 179 

similarity and regression methods (see Table 2). These catchment descriptors were used in Yang et al. 180 

(2018, 2019). Similar catchment descriptors have been used in several studies for evaluating 181 

regionalization methods (e.g., He et al., 2011; McIntyre et al., 2005; Merz and Blöschl, 2004). 182 

  183 

Table 2 Insert here. 184 

 185 



3. Methods 186 

3.1 Hydrological models 187 

Four widely used conceptual rainfall-runoff models running at a daily time step were selected for the 188 

analysis in this study, and a snow module was included in the models since runoff in many of the 189 

catchments is strongly affected by the accumulation and melting of snow. The number of model 190 

parameters varies from 6 to 17 between the models after adding the snow routine. Figure 3 shows the 191 

model structures, and a description of the parameters is available in Table 3. 192 

 193 

GR4J (Génie Rural à 4 paramètres Journalier) is a model based on unit hydrograph principles with 194 

four free parameters (Perrin et al., 2003). It has been widely used in regionalization studies worldwide, 195 

such as in France (Oudin et al., 2008), China (Li et al., 2014) and Australia (Zhang et al., 2014, 2016). 196 

We coupled the GR4J model with a degree-day type snow module called CemaNeige that was 197 

developed by Valéry (2010). This snow module allows us to estimate snowmelt and simulate 198 

snowpack evolution using 2 additional parameters, and the coupling of GR4J and CemaNeige has 199 

been tested in other studies (e.g., Coron et al., 2014; Hublart et al., 2015). 200 

 201 

WASMOD (The Water And Snow balance modelling system) is a model with simple structure and has 202 

been validated in many different climate regions (e.g., Xu and Singh, 2002; Li et al., 2013, 2015; 203 

Widén-Nilsson et al., 2007; Xu and Halldin, 1997). For regionalization studies, it has been applied in 204 

Sweden (Xu, 2003), Denmark (Muller-Wohlfeil et al., 2003) and Norway (Yang et al., 2018; 2019). 205 

The version of WASMOD used in this study has eight free parameters. 206 

 207 

HBV (Hydrologiska Byråns Vattenbalansavdelning) is a popular model used for runoff simulation in 208 

both gauged and ungauged basins. For regionalization studies, it has been applied in different climate 209 

regions, such as Austria (e.g., Merz and Blöschl, 2004; Parajka et al., 2005), Sweden (Seibert and 210 

Beven, 2009), China (Jin et al., 2009), Canada (Samuel et al., 2011) and the US (Pool et al., 2017). In 211 

our study, we followed the structure and formulas in the HBV-light version (Seibert and Vis, 2012), 212 



which includes a snow routine, soil moisture routine, response function and routing routine. In total, 213 

this model has 13 calibration parameters. 214 

 215 

The XAJ (Xin An Jiang) model was developed for humid regions in China by Zhao et al. (1980, 1992) 216 

and has since become a widely used model in flood forecasting, water resources assessment, and 217 

climate change assessments. The original model consists of modules for computing evapotranspiration, 218 

runoff production, runoff separation, and flow routing. It has also been applied in many 219 

regionalization studies (e.g., Zhang and Chiew, 2009; Li et al., 2009, 2017). We implemented the 220 

structure shown in Lin et al. (2014) without the Muskingum routing module because our catchments 221 

are rather small in size with steep slopes, and therefore, river flow routing is not an important process 222 

(Li et al., 2014). However, there is no snow module in XAJ, and therefore, we coupled it with the 223 

CemaNeige snow module (see description of the GR4J model above). This model system contains 17 224 

parameters in total. 225 

 226 

Fig 3. Insert here 227 

 228 

Table 3 Insert here. 229 

 230 

3.2 Regionalization methods 231 

Spatial proximity, physical similarity and regression methods are commonly used in regionalization 232 

studies (e.g., Oudin et al., 2008; Petheram et al., 2012; Hrachowitz et al., 2013). For spatial proximity 233 

and physical similarity methods, which are classified as distance-based regionalization methods 234 

according to He et al. (2011), the model parameter values in ungauged catchments are transferred from 235 

gauged donor catchments. For the regression method, the model parameter values in ungauged 236 

catchments are determined by regression functions established using data from gauged basins. The 237 

regression method in this study is principal component regression (PCR), which couples principal 238 

component analysis (PCA) with the multiple linear regression method. Using PCA, a set of 239 

observations of possibly correlated catchment descriptors is converted into a set of linearly 240 

uncorrelated variables called principal components. Then, the relationships among model parameters 241 



and selected catchment descriptors are established using multiple linear regression. Finally, the 242 

functions are used for estimating model parameters in the ungauged catchments. Table 4 describes the 243 

equations and assumptions for the regionalization methods applied in this study. 244 

 245 

Table 4 Insert here. 246 
 247 

For distance-based regionalization methods, i.e., spatial proximity and physical similarity, two 248 

approaches are often used for transferring the model parameters from the gauged donor to the 249 

ungauged target catchments (e.g., McIntyre et al., 2005; Oudin et al., 2008): (a) for the so-called 250 

parameter averaging option, the model parameters from the donor catchments are first averaged and 251 

then used to run the model for the target catchment, and (b) for the so-called output averaging option, 252 

the model is first run using the parameter sets from the donor catchments (i.e., basins with runoff 253 

where model calibration is possible) on the target catchment and the outputs from the model are then 254 

averaged. As a result, there are five regionalization approaches used in this study, as shown in Table 5. 255 

For a more detailed description and similarity index introduction, please see Yang et al. (2018, 2019). 256 

 257 

Table 5 Insert here. 258 

 259 

3.3 Performance evaluation 260 

3.3.1 Model calibration and verification 261 

In this study, we applied a widely used objective function proposed by Viney et al. (2009a) when 262 

calibrating the models. This objective function is a weighted combination of the Nash and Sutcliffe 263 

efficiency (Nash and Sutcliffe, 1970) and a logarithmic penalty function based on the bias as follows: 264 

                                (2) 265 

where: 266 

       
             

 

                     
        (3) 267 

       
                         

           
         (4) 268 



Qobs represents the observed runoff, and Qsim represents the simulated runoff. F values can vary from 269 

−∞ to the optimal value of 1. This objective function can come close to maximizing Nash and Sutcliffe 270 

efficiency (NSE) and minimizing the bias at the same time (Vaze et al., 2010). For the calibration 271 

process, we used a standard gradient-based automatic optimization method (Lagarias et al., 1998) 272 

implemented in the MATLAB software package (“fmincon” function; MATLAB R2016b, The 273 

MathWorks, Inc., Natick, Massachusetts, United States). 274 

 275 

The split-sample test is commonly used for model verification, aiming to show the model validity in 276 

different climate conditions (e.g., Coron et al., 2012; Xu, 1999; Klemeš, 1986). In the current study, 277 

we evaluate the model performance for 1980-1989 and 2006-2015, and the temperature and 278 

precipitation in the latter period are approximately 1.4°C and 5% higher than that in the first period. 279 

 280 

3.3.2 Evaluation of regionalization methods 281 

 282 

We performed three different evaluations of the regionalization methods. In the first evaluation, the 283 

performance of the regionalization methods was tested for all models using data from the calibration 284 

period, aiming to show the differences among the models. In this step, we applied a leave-one-out 285 

cross verification method as in many other studies (e.g., Yang et al., 2018; McIntyre et al., 2005). In 286 

the second analysis, we repeated the same evaluation but for the warmer and wetter verification period. 287 

This analysis thus tests the transferability of both the regionalization methods and hydrological models 288 

under climate change conditions (e.g., Broderick et al., 2016; Li et al., 2012). In the final evaluation, 289 

we summarize and discuss the performance of the regionalization methods for the three different 290 

climatic regions (see section 2.1). Since the climate is changing to be warmer in the future (IPCC, 291 

2014), the following regionalization performance for different climate conditions is investigated from 292 

1980-1989 (calibration) to 2006-2015 (verification). 293 

 294 



3.3.3 Evaluation criteria 295 

To investigate the performance from different aspects, we applied four different criteria in this study. 296 

The calibration function F (Equation 2) is the first selection since it considers both the goodness of fit 297 

and the water balance aspects between the simulated and observed runoff. NSE (Equation 3) is the most 298 

commonly used criterion in hydrology to measure the fit of the hydrographs between the observed and 299 

simulated runoff, which is relatively sensitive to high flow (e.g., Oudin et al., 2008; Pushpalatha et al., 300 

2012; Zhang and Chiew, 2009). Similarly, we included another criterion, NSElog, which is based on 301 

the same formulation as NSE but computed on logarithmic transformed flows and with more emphasis 302 

on low flow (e.g., Oudin et al., 2008; Pushpalatha et al., 2012). Finally, the percentage of bias (Pbias) 303 

(Equation 4) is applied to measure the average tendency of the simulation to be larger or smaller than 304 

the observed counterparts. 305 

 306 

The range for F, NSE and NSElog is (-   1), where 1 means the simulated runoff perfectly fits the 307 

observed runoff and less than 0 suggests that the model is no better than the observed mean value. For 308 

Pbias, it varies between (-    ) with the optimal value equal to 0 and worse performance for water 309 

balance simulation if the absolute Pbias is larger.  310 

4. Results 311 

4.1 Hydrological model performance in cross verification 312 

Before evaluating both the hydrological models and the regionalization methods, we first assessed the 313 

performance of the models by a split-sample test. Figure 4 presents the cumulative density function 314 

(CDF) curves for all hydrological models over 86 catchments, measured by F value during 1980-1989 315 

and 2006-2015. 316 

 317 

For the first calibration period 1980 – 1989 (the left panel in Fig. 4), the CDF curves from all the 318 

hydrological models stay close, and XAJ appears to be slightly better. The average F value is 319 

approximately 0.75 for XAJ, 0.73 for WASMOD, 0.72 for HBV and 0.69 for GR4J. In the verification 320 



period 2006 - 2015, the models perform differently, meaning the temporal transferability varies 321 

between the hydrological models. However, the best performance is still produced by XAJ, whose 322 

mean F value is approximately 0.68, followed by WASMOD (0.64). The HBV model shows the worst 323 

performance, with a mean F value of approximately 0.61 and the highest degradation of performance 324 

between the calibration and verification periods. 325 

 326 

The results in the right panel (calibration in 2006-2015 and verification in 1980-1989) shows very 327 

similar characteristics to those in the left panel. XAJ produced the best performance for both the 328 

calibration and the verification periods. Following the rating classification from Moriasi et al. (2007), 329 

who labeled the performance as ‘good’ if NSE is larger than 0.65 and |Pbias| is less than 15%, the F 330 

values larger than 0.61 are considered “good” model performance. Considering the average aspect, all 331 

mean F values for our split-sample test are higher than 0.61. Thus, all hydrological models applied in 332 

the current study are classified as ‘good’ performing models for runoff simulation for both calibration 333 

and verification periods. 334 

 335 

Fig 4. Insert here. 336 

 337 

Table 6 gives the average model performance corresponding to the split-sample test by using other 338 

assessment criteria. First, regarding the water balance aspect, all models yield similarly ‘good’ 339 

performance for both subperiods with |Pbias| values smaller than 5%. Second, the model performance 340 

measured by NSE shows consistent findings with the results from the F value, i.e., (a) the models 341 

show similar performance in the calibration period but perform differently in the verification period; 342 

(b) XAJ is considered the best-performing model for both the calibration and the verification cases; 343 

and (c) HBV shows the largest decline in performance from the calibration to the verification period. 344 

This similarity between the results from the F value and NSE can be explained by the small Pbias for 345 

all the simulation results. Finally, according to the results of NSElog, which is more sensitive to low 346 

flow, the simple models (GR4J and WASMOD) display higher values in the calibration period, while 347 

WASMOD and XAJ show better performance in the verification period. Considering the performance 348 



loss from calibration to verification, relatively larger degradation appears for the NSElog than for the 349 

NSE and Pbias, especially for the GR4J model. 350 

 351 

Table 6 Insert here. 352 

 353 

4.2 Evaluation of regionalization methods 354 

4.2.1 Influence of the number of donor catchments on performance under stationary 355 

conditions 356 

Figure 5 shows that the output averaging option gives better average performance than the parameter 357 

averaging option in both spatial proximity and physical similarity methods and for all the models, 358 

except for the case of one donor catchment, where both options provided the identical results as 359 

expected. When considering the number of donor catchments, the largest increase in performance 360 

typically occurs when changing from using one donor catchment to using two donor catchments, with 361 

the parameter option for XAJ as the only exception. This is in line with earlier studies that the number 362 

of donor catchments typically affects the performance of distance-based regionalization methods (e.g., 363 

Oudin et al., 2008; Yang et al., 2018). However, the number of donor catchments providing the best 364 

performance differs among the hydrological models and regionalization methods. For instance, for 365 

XAJ, two donor catchments give the best results for SP-out, whereas 8 donor catchments are needed 366 

for HBV to achieve the optimal performance. Finally, the difference in performance between the 367 

output and parameter averaging options increases with the number of model parameters. For example, 368 

the difference in the average F value between the two options for the GR4J model was approximately 369 

0.025 and increased to 0.075 for XAJ. Thus, when using a model with many parameters, it is more 370 

important to use the output averaging option to achieve optimal performance for runoff simulations in 371 

ungauged basins. 372 

 373 

Fig 5. Insert here. 374 

 375 



The physical similarity methods require fewer donor catchments to achieve optimal performance for 376 

runoff simulations in ungauged basins compared to that for the spatial proximity methods (Table 7). 377 

On average, the best performance by the physical similarity methods was produced by 3 donor 378 

catchments, whereas the corresponding number for the spatial proximity methods was 8. It is also 379 

noteworthy that the parameter averaging option requires fewer donor catchments than the output 380 

averaging option for both the physical similarity and the spatial proximity methods. Therefore, for 381 

practical applications, it is highly recommended to analyze the relationship between the 382 

regionalization performance and the number of donor catchments to choose the best configuration to 383 

obtain the optimal results for each case. 384 

 385 

Table 7. Insert here. 386 

 387 

4.2.2 Regionalization performance assessment for all catchments 388 

As discussed in section 2.2 (Figure 2 and Table 1), the climate conditions, especially air temperature, 389 

differed between 1980-1989 and 2006-2015. This section presents the influence of climate conditions 390 

on regionalization performance when the models are calibrated in 1980-1989. The evaluation results 391 

presented here applied the optimized number of donor catchments for each method and model, as 392 

shown in Table 7. 393 

 394 

Comparison of regionalization performance between hydrological models 395 

 396 

Figure 6 shows the distribution of F values as split violin plots for the five regionalization methods 397 

and four hydrological models for both the calibration and verification periods. Foremost, for all the 398 

hydrological models, the regionalization methods applying the output averaging option (SP-out and 399 

Phy-out) showed better performance than the parameter averaging option (SP-par and Phy-par), and 400 

the regression method is the worst (compare black dots with circles). This ranking applies for both the 401 

calibration and the verification periods, where the methods with output averaging options presented 402 

more negative skewed distributions and higher mode values than those of the other methods. On the 403 



other hand, for both periods, the difference in the average performance between the regionalization 404 

methods is smaller for GR4J than for the other models. This difference seems to increase with the 405 

number of model parameters and is thus largest for XAJ. For instance, in the calibration period, the 406 

range in the average F values between the regionalization methods equals 0.04 for GR4J and 0.09 for 407 

XAJ. Finally, from the calibration to verification period, performances decreased for all the 408 

hydrological models and regionalization methods but to various extents. Measured by the decrease in 409 

the overall mean F values from the calibration (solid line) to verification (dashed line) period, HBV 410 

and XAJ displayed larger declines in performance than those of GR4J and WASMOD. 411 

 412 

Fig 6. Insert here. 413 

 414 

Figure 7 compares the regionalization performance in terms of the average values of Pbias, NSE and 415 

NSElog for all catchments using four hydrological models in the calibration and verification periods. 416 

Appendix A presents the violin plot for all the evaluation criteria over all the tested catchments. 417 

 418 

Regarding the water balance simulation, all average values of Pbias vary within (-10%, 10%). The 419 

smallest water balance error for regionalized runoff simulation varies with the hydrological models 420 

and regionalization methods. In general, SP-out and Phy-out tend to yield smaller errors for water 421 

balance simulation than those of the other methods. 422 

 423 

The NSE results give similar findings as the F value. First, SP-out and Phy-out methods perform best 424 

for all the hydrological models, with all average NSE values larger than 0.6, and PCR performs worst. 425 

Second, the difference in NSE between the regionalization methods increases with the growing 426 

number of parameters for the hydrological models. For example, the regionalization performance in 427 

the calibration period ranges within (0.57, 0.61) for GR4J and (0.57, 0.67) for XAJ. Third, relatively 428 

larger degradation of the average regionalization performance is found using the HBV and XAJ 429 

models from the calibration to the verification period. 430 

 431 



For the low-flow evaluation, the regionalization methods with the output average option (SP-out and 432 

Phy-out) substantially outperform the other methods, and the performance differences between the 433 

regionalization methods are more distinct for HBV and XAJ. Furthermore, the average performance of 434 

the regionalization methods is highly influenced by the hydrological models. In this study, WASMOD 435 

and HBV produced the highest and lowest average NSElog values for the regionalization methods, 436 

respectively. Compared with the results from the NSE and F values, the evaluation by NSElog 437 

presents a more recognizable performance difference between the regionalization methods and 438 

hydrological models, as well as the difference between the two subperiods. 439 

 440 

Fig 7. Insert here. 441 

 442 

Comparison of performance between regionalization methods 443 

 444 

Figure 8 compares the performance difference in terms of NSE and NSElog between the hydrological 445 

models for each regionalization method during the calibration and verification periods. We omit the 446 

results of the F value and Pbias in the following analysis due to high similarity between the results 447 

from the F value and NSE (see Figure 6 and Appendix A) and small average |Pbias| values (see Figure 448 

7). 449 

 450 

According to the average NSE values, XAJ is considered the best hydrological model for all the 451 

distance-based regionalization methods and the second best model for PCR. GR4J shows the best 452 

results for PCR, but the difference in performance between the models (the gray bars for PCR) is 453 

smallest among the regionalization methods, indicating that the hydrological models have relatively 454 

smaller influence on the regression method than on the distance-based methods. However, this 455 

difference is enhanced from the calibration to the verification period, indicating a larger influence of 456 

the hydrological model on future runoff predictions. According to NSElog, WASMOD shows the best 457 

performance for all the regionalization methods and for both periods. In general, a larger difference 458 

between the hydrological models appears for low flows (indicated by NSElog) than for high flows 459 

(indicated by NSE). 460 



 461 

Fig 8. Insert here. 462 

 463 

4.2.3 Assessment of regionalization performance for different climatic regions 464 

The three climate regions shown in Figure 1 display very different runoff regimes, particularly 465 

between the oceanic and the two remaining groups (Figure 2). For illustration purposes, the 466 

dependence of the performance of the regionalization methods on the geographical regions as 467 

measured by NSE is shown in Figure 9. It is seen that the oceanic region presented generally better 468 

regionalization performance than that of the other two regions, whose performance variation was 469 

smaller as well (only four performance classes shown on the figure). Then, some common 470 

characteristics are presented in all the regions. First, when considering the regionalization methods, the 471 

output averaging option tended to give higher performance than all the other methods. When focusing 472 

on the hydrological models, XAJ showed the best performance in most cases for both the calibration 473 

and verification periods. Otherwise, none of the remaining models consistently showed better results 474 

than the other models for all climate regions and regionalization methods. Finally, GR4J produced the 475 

lowest variation in performance within the climate regions between the regionalization methods in 476 

almost all cases. From the calibration to verification period, the highest ranking for XAJ with SP-out 477 

and Phy-out methods did not change. 478 

 479 

Fig 9. Insert here. 480 
 481 

5. Discussion 482 

5.1 Hydrological model performance 483 

According to the performance classification presented by Moriasi et al. (2007), the split-sample test 484 

result in our study indicated that all the hydrological models were able to provide ‘good’ simulations 485 

of runoff for both the calibration and the verification periods. Especially for the water balance 486 

simulation, the mean values of |Pbias| for all the studied models are smaller than 5%. 487 



 488 

According to the evaluations in the calibration period based on the F value and NSE in our study area, 489 

XAJ is the best-performing model, and the performance tends to decrease with a decrease in the 490 

number of parameters for the hydrological models. This finding is in line with the statement that 491 

increasing the number of model parameters can lead to better performance during the calibration 492 

period (e.g., Perrin et al., 2001; Petheram et al., 2012; Parajka et al., 2013). However, the result in 493 

terms of low flow simulation (evaluations by NSElog) did not support that statement. For example, 494 

WASMOD outperformed XAJ and HBV for both subperiods. Therefore, further study is needed to 495 

assess the relationship between hydrological model complexity and performance in terms of low flow. 496 

Furthermore, for the verification results, the performances among the models varied substantially. The 497 

degradation of performance is quite similar between the hydrological models evaluating by the F value 498 

and NSE, but distinct differences are shown in the NSElog results. It reminds us that specific criteria 499 

are needed for evaluation of hydrological models when the emphasis stands on low flow or draughts. 500 

Regarding the model performance change from the calibration to the verification period, the model 501 

performance of the XAJ model did not vary substantially. This is incompatible with earlier findings, 502 

which suggest that a complex model tends to have less stable performance than simple models in the 503 

verification period (e.g., Perrin et al., 2001; Holländer, 2009). This phenomenon might relate to the 504 

model structure; for instance, the runoff concentration in the XAJ model includes surface runoff, 505 

interflow runoff and groundwater runoff with three parameters that may better represent the processes 506 

in our study catchments. 507 

 508 

5.2 Evaluation of regionalization methods 509 

5.2.1 Influence of the number of donor catchments on performance 510 

 511 

To test the influence of the number of donor catchments on model performance, we examined the 512 

relationship between regionalization performance and the number of donor catchments for all the 513 

models with distance-based methods. The results indicate that using one donor catchment, which 514 



might be either the spatially nearest or physically most similar watershed, gives worse results than 515 

using a set of donor catchments. This conclusion is supported by all the tested models in our study, 516 

which is in line with previous findings (e.g., Arsenault and Brissette, 2014; Oudin et al., 2008). 517 

Multiple donor catchments typically provide more information than single donor catchments, which 518 

may explain the behavior described above (e.g., Viney et al., 2009b). However, the output averaging 519 

option might tend to smooth the flow variability as the number of donor catchments increases. This is 520 

especially the case if the donors give models with different time lags between rainfall and peak flow. 521 

Therefore, the smoothing effect and trade-off between the benefits of gains in performance with "more 522 

information" and loss of performance due to this possible smoothing is worth further investigation in 523 

future studies. Our results additionally confirmed that the output averaging option provided better 524 

performance than the parameter averaging option in all the model and method combinations (e.g., 525 

Oudin et al., 2008, Bao et al., 2012; Yang et al., 2018). Since we applied hydrological models with 526 

different complexities and number of parameters, a promising and new finding is presented in this 527 

study: the difference in performance between the parameter averaging and output averaging options 528 

increases with the number of model parameters (see Figure 5). First, this result can be explained by the 529 

‘nonlinear independence’ influence between model parameters; thus, transferring the linearly 530 

interpolated individual model parameter value (the parameter averaging option) will lead to 531 

unreasonable model parameters and results (Bárdossy, 2007). Second, hydrological models with more 532 

parameters tend to increase the interaction between their parameters (e.g., Perrin et al., 2003; Poissant 533 

et al., 2017). Hence, we should consider the model parameters as a whole set rather than individual 534 

values for regionalization research as suggested by Bárdossy (2007) and Oudin et al. (2008). 535 

 536 

Some previous studies used one donor catchment for regionalization evaluation according to spatial or 537 

physical similarity and concluded that the difference in performance between hydrological models is 538 

negligible (e.g., Viney et al., 2009b; Chiew, 2010; Petheram et al., 2012). However, in the current 539 

study, XAJ produced distinct results from the other models (see Figure 5 results with 1 donor 540 

catchment), which suggests that the performance of regionalization methods is affected by the choice 541 

of hydrological models even with one donor catchment. 542 



 543 

5.2.2 Assessment over hydrological models 544 

 545 

Although we claimed that the methods with the output averaging option (SP-out and Phy-out) 546 

produced better performance than the other methods, it is difficult to determine the most appropriate 547 

method between the spatial proximity (SP-out) and physical similarity (Phy-out) methods (also valid 548 

for excluding the influence on the hydrological model performance of calibration and verification, see 549 

Appendix B). This is consistent with the evaluation by using one hydrological model (monthly 550 

WASMOD) in the same area by Yang et al. (2018). According to the explanation from Oudin et al. 551 

(2008), it is not possible to decide which approach (SP-out or Phy-out) is the most appropriate one 552 

when the streaming network density is lower than 60 stations per 100,000 km
2
. As we used four 553 

hydrological models at different complexity levels, this result additionally confirmed that this 554 

assertion is independent of the selection of hydrological models. 555 

 556 

Investigating the model preference for regionalization methods from different aspects, XAJ should be 557 

preferred when the evaluation is more focused on high flow, while WASMOD should be considered 558 

for low-flow analysis. This result is consistent with the model performance for gauged catchments (see 559 

Figure 4 and Table 6). This result tends to support the claim that there is no incentive to prefer a 560 

parsimonious hydrological model for regionalization studies rather than a model with adequate 561 

complexity (Arsenault et al., 2015; Poissant et al., 2017). However, hydrological models with fewer 562 

parameters are recommended when no preknowledge about the regionalization performance is 563 

available since the performance difference between the regionalization methods is relatively smaller. 564 

For the regression method, the model with more parameters works worse, probably due to the stronger 565 

interaction influence when increasing the number of parameters (e.g., Perrin et al., 2003; Poissant et al., 566 

2017). Another limitation of the regression method is that not all the functions for the model 567 

parameters follow the linear assumption (e.g., Blöschl, 2005) and poor performance results from the 568 

accumulated errors. 569 



 570 

5.2.3 Assessment in different climate regions 571 

According to both the NSE and NSElog results, SP-out and Phy-out perform best for all the climate 572 

regions. Therefore, it seems reasonable to conclude that the selection of the climatic region has no 573 

large effect on the ranking of regionalization methods. However, the average regionalization 574 

performance in the oceanic climate region is substantially better and varies within a smaller range than 575 

in the other two cold regions. This indicates that the uncertainty in the selection of regionalization 576 

methods is larger in cold and dry regions than in warm and wet regions (see Figure 2). Due to the 577 

limited number of catchments in the oceanic climate and polar tundra climate regions, further 578 

comprehensive studies are needed to conclude the preferences of hydrological models and 579 

regionalization methods over various regions. 580 

 581 

6. Conclusions 582 

The main aim of this study was to investigate how different combinations of regionalization methods, 583 

hydrological models and climate conditions will influence the overall performance of hydrological 584 

simulations in ungauged basins. We assessed the performance of four hydrological models and five 585 

regionalization schemes (a) under stationary climate conditions to test how the performance of the 586 

regionalization methods depends on the choice of hydrological models, (b) under different climate 587 

conditions to assess the stability in performance of the hydrological models and regionalization 588 

methods as climate changes, and (c) in different climate regions to test how the performances of the 589 

simulations vary between these regions. The study was performed using data from 86 catchments in 590 

Norway, covering three climatic groups according to the Köppen-Geiger classification. 591 

 592 

In this study, we found that for all the hydrological models, the distance-based approaches with the 593 

output averaging option (SP-out and Phy-out) always outperformed the other tested methods, 594 

especially for the low-flow estimation. Second, the difference in performance between the output and 595 



parameter averaging options is not stable and positively increases with the number of parameters for 596 

the hydrological models. From our study, the performance difference between these options is the 597 

largest for XAJ and the smallest for GR4J. Third, the performance difference among the 598 

regionalization methods was smaller for models with fewer parameters (GR4J and WASMOD) 599 

compared to that of the models with more tunable parameters (HBV and XAJ). Regarding the model 600 

influence on regionalization performance, XAJ is recommended as the best-performing model 601 

according to the evaluations by NSE and F values, whereas NSElog recommends WASMOD as the 602 

best through the evaluation. Furthermore, clear differences in general were displayed for three climatic 603 

regions, and oceanic climatic regions provided the best performance and smallest variance over the 604 

regionalization methods and hydrological models. Moreover, the difference in hydrological model 605 

performance seems smaller among the regionalization methods than among the climate regions. From 606 

calibration to verification periods, the general performance for the regionalization methods did not 607 

show large degradations. 608 

 609 

Although this study produced some solid conclusions that were not available before, there are some 610 

limitations of the current study. Compared with the general evaluation of hydrograph fit and water 611 

balance, assessment with emphasis on low flow showed more contrasting results, which requires 612 

closer attention in future work. In addition, studies with more different hydrological models are 613 

needed to show the influence of hydrological model selection on regionalization performance. 614 

Moreover, studies with more contrast in climate conditions are recommended to investigate the 615 

transferability of conclusions across climate regions and climate changing conditions, which is 616 

essential for future prediction. 617 
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Figure captions： 

Fig.1 The location of the study catchments and the modified Köppen-Geiger climate classification. 

Fig.2 The left panel shows yearly mean precipitation and temperature for the available data period, 

including a moving average with a sample window covering 10 years of data. The right panel shows 

the climatological distribution of precipitation, temperature and Pardé coefficient (i.e.,  ratio of the 

average monthly discharge to the mean annual runoff) using monthly data for the three climatological 

regions. 

Fig.3 The structure of hydrological models tested in this study. The circles show the input variables, 

the ellipses present the process/output variable and the model parameters are marked with bold text. 

For detailed model equations, please refer to the references for the (a) GR4J model (Perrin et al., 2003; 

Valéry, 2010), (b) WASMOD model (Xu, 2003), (c) HBV model (Seibert and Vis, 2012), and (d) XAJ 

model (Lin et al., 2014). 

Fig.4 The performance of hydrological models by split-sample test evaluated by the F value over 86 

catchments. The left panel shows the results for calibration in 1980-1989 and verification in 2006-

2015; the right panel displays the results of calibration in 2006-2015 and verification in 1980-1989. 

Fig.5 Model performance versus number of donor catchments for the distance-based regionalization 

methods and four different models. The number of model parameters is given in the parenthesis next 

to the model name. 

Fig.6 Split violin plots showing the distributions of F values for the five regionalization methods by 

each hydrological model during the calibration (gray color) and verification (blue color) periods. For 

each model and regionalization method, the solid black dots show the average performance for the 

calibration period, whereas the black circle shows the corresponding value for the verification period. 

The average performance of all regionalization methods for each hydrological model is shown as a 

solid line for the calibration period and as a dashed line for the verification period. The plot displays 

results from the 86 study catchments. The ‘model’ in the x-axis label shows the hydrological model 

performance in the calibration (gray color) and validation (blue color) periods. 

Fig.7 Average performance for the different hydrological models and regionalization methods, given 

by Pbias, NSE and NSElog. Model* is the result of model simulation performance in the calibration 

(‘calib’) and verification (‘valid’) periods. 

Fig.8 Comparison of hydrological model performance over five regionalization methods in the 

calibration and verification periods. The bar shows the maximum difference between the hydrological 

models evaluated by the average NSE and NSElog values over 86 catchments. 

Fig.9 The performance of the regionalization methods and hydrological models in different climatic 

regions. The size of the boxes is proportional to the average NSE value of the catchments within each 

climate group. The upper panel shows the results from the calibration period, and the lower panel 

shows the verification period. The number of catchments in each group is given in the title of each 

column. The ‘Model’ in the x-axis label shows the hydrological model performance for runoff 

simulation without regionalization. 

Figure captions



Table 1. The average precipitation, temperature and runoff information for all climate groups 

    Precipitation (mm/period) Temperature (
o
C) Runoff (mm/period) 

    calibration validation calibration validation calibration validation 

        

Oceanic 

climate 

Year 2949 3211 4.1 5.2 2158 2342 

summer* 1411 1412 9.0 9.8 1197 1128 

winter  1508 1800 -0.7 0.5 961 1214 

        

Continental 

climate 

Year 1686 1750 0.8 2.3 1213 1250 

summer* 867 873 7.0 8.0 898 835 

winter  819 878 -5.3 -3.4 315 415 

        

Polar 

tundra 

climate 

Year 1633 1688 0.0 1.4 1187 1236 

summer* 817 819 6.1 7.1 942 908 

winter  816 869 -6.1 -4.3 245 328 

*Summer is from 1st of May to 31
st
 of October.   
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Table 2. The statistical information about catchment descriptors used in regionalization methods 

 

  Mean Median Minimum Maximum 

Area (km2) 340 145 3 5621 

Climate index 
    

Mean annual precipitation 

(mm) 2255 1922 601 6008 

Precipitation seasonality 

indices
(1)

 3.1 2.9 1.7 7.0 

Mean annual temperature 

(°C) 2.7 2.5 -2.2 7.3 

Temperature seasonality 

indices
(2)

 15.5 15.4 7.5 24.2 

Aridity index
(3)

 0.1 0.1 0.0 0.4 

Terrain characteristics 
    

Mean slope (°) 11 9 2 26 

Mean elevation (m) 666 590 157 1472 

Land use 
    

Artificial (%) 0.5 0.0 0.0 8.0 

Agriculture (%) 4.1 1.1 0.0 57.6 

Forest (%) 84.7 87.8 34.8 100.0 

Wetland (%) 7.0 2.2 0.0 41.6 

Waterbody (%) 3.7 2.9 0.0 15.1 

(1) Precipitation seasonality indices: the ratio between the three consecutive 

wettest and driest months for each watershed. 

(2) Temperature seasonality indices: the mean temperature of the hottest month 

minus the mean temperature of the coldest month in °C. 

(3) Aridity index: the ratio between annual mean precipitation and potential 

evapotranspiration. 



Table 3 Description of the calibrated model parameters in this study. 

 

Parameter Explanation Reference 

CemaNeige  

Valéry (2010) CTG Ponderation coefficient 

Kf Degree-day factor 

GR4J  

Perrin et al. 

(2003) 

X1 Production store maximal capacity  

X2 Catchment water exchange coefficient 

X3 One-day maximal capacity of the routing reservoir 

X4 HU1 unit hydrograph time base 

WASMOD  

Xu, (2003) 

a1 Threshold temperature for rainfall and snowfall 

a2 Threshold temperature for snowpack and snowmelt 

a3 Proportion parameter in potential evapotranspiration 

a4 Exponent parameter in  actual  evapotranspiration    

a5 Proportion coefficient of  base flow  

a6 Proportion coefficient of  fast flow 

a7 Coefficient for snowpack 

a8 Coefficient for snowmelt 

HBV  

Seibert and Vis, 

(2012) 

TT Threshold temperature  

CFMAX Degree-day factor 

SFCF Snowfall correction factor 

CFR Refreezing coefficient 

FC Field capacity 

LP Threshold for reduction of evaporation 

Beta Shape coefficient 

UZL Threshold parameter for upper zone 

K0 Recession coefficient in upper zone 

K1 Recession coefficient in upper zone 

K2 Recession coefficient in lower zone 

Perc Maximal flow from upper to lower box 

MAXBAS Routing, length of weighting function 

XAJ  

Lin et al. (2014) 

WM Areal soil moisture storage capacity 

B The exponent of the soil moisture storage capacity curve 

KE Ratio of potential evapotranspiration to pan evaporation 

IMP Ratio of the impervious to the total area of the basin 

X Proportion of soil moisture storage capacity of the upper layer to WM 

Y Proportion of soil moisture storage capacity of the lower layer to WM 

C Coefficient of deep evapotranspiration 

SM Areal mean free water capacity of the surface soil layer 

EX Exponent of the free water capacity curve 

KI Coefficient of the free water storage to interflow  

KG Coefficient of the free water storage to ground flow 

N Number of reservoirs in the instantaneous unit hydrograph 

NK Common storage coefficient in the instantaneous unit hydrograph 

CI Recession constant of the lower interflow storage 

CG Recession constant of the groundwater storage 

 

 



 

Table 4. Assumptions and descriptions of regionalization methods used in this study. 

Method Equation Assumption and Description Application 

examples 

Spatial 

proximity 
              

          
  

Closer basins show similar hydrological 

characteristics. 

 

The donor catchments are determined by 

the distance    .  ,   shows the location 

information, which uses the Universal 

Transverse Mercator (UTM) coordinate 

system. 

 

Merz and Blöschl 

(2004), Oudin et al. 

(2008), Yang et al. 

(2018, 2019) 

Physical 

similarity 
       

             

    

 

   

 

Similar attributes show similarly in terms 

of hydrological processes. 

 

The donor catchments are decided by the 

similarity index     .    is the catchment 

descriptor, shown in Table 2 in this study. 

 

Burn and Boorman 

(1993), Poissant et 

al. (2017), Yang et 

al. (2018, 2019) 

Regression             

A well-behaved relationship exists 

between the observable   s and model 

parameters (  ), and the   s used in 

regression provide information relevant to 

hydrological behavior at ungauged sites. 

 

The relationship (linear regression 

function), which is built on gauged basins, 

will be transferred to ungauged 

catchments.  

Young (2006), 

Oudin et al. (2008), 

Merz et al. (2006), 

Yang et al. (2018, 

2019) 

 

 : target catchment  

 : donor catchment 

 :  th catchment descriptors 

 : total number of catchment descriptors 

 :  th model parameter 

    catchment descriptor. The climate indices in   s varied from the calibration to verification period, others are 

assumed as constant. 

 

  



Table 5 The tested regionalization methods in this study 

Regionalization methods Abbreviation 

Spatial proximity methods with parameter average option SP-par 

Spatial proximity methods with output average option SP-out 

Physical similarity methods with parameter average option Phy-par 

Physical similarity methods with output average option Phy-out 

Principal Component Regression method PCR 

 

  



Table 6. Average model performance in terms of Pbias, NSE and NSElog over the tested catchments in the split-

sample test. 

    calibration   verification 

    1980-1989 2006-2015   2006-2015 1980-1989 

Pbias 

GR4J -0.81 -0.49 

 

-4.37 -2.32 

WASMOD 2.61 3.15 

 

-0.54 3.26 

HBV -1.62 -1.49 

 

-3.69 -3.90 

XAJ -2.34 -1.69 

 

-3.48 -1.80 

  
     

NSE 

GR4J 0.76 0.76 

 

0.67 0.66 

WASMOD 0.77 0.76 

 

0.68 0.67 

HBV 0.77 0.76 

 

0.65 0.65 

XAJ 0.79 0.78 

 

0.72 0.71 

       

NSElog 

GR4J 0.74 0.75 

 

0.39 0.37 

WASMOD 0.67 0.71 

 

0.58 0.55 

HBV 0.37 0.51 

 

0.28 0.33 

XAJ 0.51 0.65   0.52 0.55 

 

 

 

  



Table 7. The number of donor catchments providing the best performance for each regionalization method and 

hydrological model in the leave-one-out cross validation. 

 

  GR4J WASMOD HBV XAJ 

SP-par 7 4 8 2 

SP-out 10 9 8 9 

Phy-par 3 2 2 3 

Phy-out 3 5 5 3 

 

 


