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Abstract 

We demonstrate how a probabilistic population forecast can be evaluated, when observations for the 

predicted variables become available. Statisticians have developed various scoring rules for that 

purpose, but there are hardly any applications in population forecasting literature. A scoring rule 

measures the distance between the probability distribution of the predicted variable, and the actual 

outcome. We use scoring rules that reward accuracy (the outcome is close to the expected value of the 

prediction) and sharpness (the predictive distribution has low variance, which makes it difficult to hit 

the target). 

We evaluate probabilistic population forecasts for France, the Netherlands, and Norway. For all three 

countries, we use results from the UPE-project ("Uncertain Population of Europe"). We inspect 

prediction intervals for population size in the period 2004-2019 and 3000 sample paths for population 

pyramids for the year 2010. For the Netherlands and for Norway, we compare the UPE-results with 

findings from the official probabilistic population forecast by Statistics Netherlands (2001-2019) and 

from a probabilistic forecast for Norway (1997-2019). All forecasts were computed using the cohort-

component method and stochastically varying parameters for fertility, mortality and migration.   

We show that the UPE-forecasts for the Netherlands and for Norway performed better than the other 

forecasts for these two countries. The error in the jump-off population caused a bad score for the 

French forecast. 

We evaluate the 3000 UPE-simulations of the age and sex composition predicted for the year 2010. 

When normalized for population numbers in each age-sex category, the predictions for the 

Netherlands received the best scores, except for the oldest old. The age pattern for the Norwegian 

score reflects the under-prediction of immigration after the enlargement of the European Union in 

2005. 
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1. Introduction 
Most statistical agencies in the world, who compute population forecasts, do so using a deterministic 

approach (NRC 2000). They analyse historical trends in fertility, mortality, and migration, and 

extrapolate those trends into the future, using expert opinion and statistical techniques. These 

extrapolations reflect their best guesses. In addition to computing a likely development of population 

size and structure, many agencies also compute a high and a low variant of future population growth, 

in order to tell forecast users that future demographic developments are uncertain. For example, the 

previous official population forecast for France indicates 76.5 million inhabitants in 2070, if current 

trends continue (Blanpain and Buisson 2016). However, population growth to 2070 might be weaker 

or stronger than what current trends suggest, leading to population sizes between 66.1 and 87.6 million 

persons. The forecasters assumed high and low trajectories for future fertility (1.8 or 2.1 children per 

woman on average after 2020), life expectancy of men (between 87.1 and 93.1 years in 2070) and 

women (between 90 and 96 years), and international migration (a migration surplus between 20 000 

and 120 000 persons annually).     

One important drawback of such a deterministic approach is that it fails to quantify uncertainty. We do 

not know if chances are 30, 60, or 90 per cent that France in 2070 will have between 66.1 and 87.6 

inhabitants. Yet in many planning situations, it is important for the users to know how much 

confidence they should have in the predicted numbers. How robust should the pension system be with 

respect to fast or slow increases in life expectancies? Should we plan for extra capacity in primary 

schools, in case future births turn out to be much higher than expected? Indeed, as Keyfitz (1981) 

wrote almost 40 years ago: "Demographers can no more be held responsible for inaccuracy in 

forecasting population 20 years ahead, than geologists, meteorologists, or economists when they fail to 

announce earthquakes, cold winters, or depressions 20 years ahead. What we can be held responsible 

for is warning one another and our public what the error of our estimates is likely to be”.  

This is why the statistical agencies of some countries have started to publish their forecasts in the form 

of probability distributions, following common practice in, for example, meteorology and economics. 

Statistics Netherlands pioneered the field; see Alders and De Beer (1998). Statistics New Zealand 

(2011) and Statistics Italy (ISTAT, 2018) are the other two known examples. In this connection, one 

should also mention the Population Division of the United Nations, which is responsible for regular 

updates of population forecasts for all countries of the world. In 2014, the Population Division issued 

the first official probabilistic population forecasts for all countries, using the methodology developed 

by Raftery et al. (2012); see also http://esa.un.org/unpd/wpp/Graphs/Probabilistic/POP/TOT/. The aim 

of a probabilistic forecast is not to present estimates of future trends that are more accurate than a 

deterministic forecast, but rather to give the user a more complete picture of prediction uncertainty.  

Demographers in these statistical agencies could build on work and methods developed by 

demographers and statisticians since the 1980s. Two developments are noteworthy. First, early 

contributions applied an analytical approach, assuming a stochastic cohort component model, in which 

the statistical distributions for fertility, mortality, and migration parameters were transformed into 

statistical distributions for the size of the population and its age-sex structure. One needed strong 

assumptions, or derived only approximate expressions for the second moments of the age-sex 

distributions. Nowadays, a simulation approach is common. It avoids the simplifying assumptions and 

the approximations of the analytical approach. The idea is to compute several hundreds or thousands 

of forecast variants (“sample paths”) based on random draws for the input parameter values of fertility, 

mortality, and migration. The simulation results are stored in a database. Keilman (2009) gives an 

example for France. A second methodological change is that from a predominantly frequentist 

http://esa.un.org/unpd/wpp/Graphs/Probabilistic/POP/TOT/
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approach to a Bayesian view of probability. In the frequentist tradition, the probability of an event is 

linked to its relative frequency of occurrence. In contrast, in the Bayesian approach a probability is 

interpreted as a person’s subjective belief. It is particularly useful when models rely on expert 

opinions, and when one combines this kind of information with data. The change from a frequentist to 

a Bayesian approach in population forecasting was part of a more general trend towards “Bayesian 

demography”, which started to gain popularity about 10 years ago (Bijak and Bryant 2016). The 

probabilistic UN forecasts mentioned earlier provide important examples of the Bayesian approach. 

Costemalle (this issue) applies this approach to the case of France. 

Once a probabilistic forecast has been published, some 10-20 years later its accuracy can be evaluated, 

when ex-post facto observed data for population size and age structure have become available. 

However, accuracy assessment is difficult to carry out directly because it requires comparing a 

forecaster’s predicted probabilities with the actual but unknown probabilities of the events under 

study. For that reason, statisticians have developed “scoring rules”, also called “scoring functions”. 

These are empirical distance measures between the predicted distribution of the demographic variable 

in question, and the empirical value it actually turns out to have. Gneiting and Raftery (2007) and 

Gneiting and Katzfuss (2014) review the field. The score that one finds for a certain variable has no 

intrinsic meaning. Only in a comparative perspective, one can interpret the scores in a useful manner. 

This explains why scoring functions are frequently used in comparing two competing probabilistic 

forecasts.  

Although the methodology around evaluation of probabilistic forecasts and scoring rules has been 

known for some time, there are very few applications of scoring rules to population forecasting. Shang 

et al. (2016) evaluated the accuracy of probabilistic cohort-component forecasts for the UK, and 

compared two forecasting methods. They used a scoring rule for prediction intervals. Shang (2015) 

and Shang and Hyndman (2017) evaluated interval forecasts for age-specific mortality rates of various 

countries, and used interval scores to select the best among several methods of mortality forecasting. 

Alexopoulos et al. (2018) employed interval scores to prediction intervals of age-specific mortality of 

England & Wales and New Zealand, and evaluated the predictive performance of five different 

mortality prediction models. All four papers use holdout samples to evaluate the probabilistic 

demographic forecasts. Genuine out-of-sample evaluation of probabilistic demographic forecasts has 

not been attempted before, to the best of our knowledge. 

The aim of this paper is to show how methods for evaluating probabilistic forecasts developed 

elsewhere can be applied to probabilistic population forecasts.  We present and apply scoring rules for 

prediction intervals, and for simulated samples of future population size and age structures. We 

illustrate the scoring rules using data for France, the Netherlands, and Norway, and compare 

probabilistic forecasts computed by different researchers. The comparisons serve three purposes. First, 

we investigate how fast the accuracy of a given probabilistic forecast changes with lead-time, i.e. 

when it looks further into the future. Second, we compare the accuracy of two (“competing”) 

probabilistic forecasts for the same country. Finally, the relative performance of forecasts across 

countries is analysed.  

Section 2 discusses the way the results of a probabilistic forecast are made available: as prediction 

intervals, or by means of a database. Section 3 presents a number of scoring rules and their 

characteristics. Empirical illustrations are given in Section 4. We evaluate various probabilistic 

predictions for total population size and the population pyramid of the three countries. Section 5 

concludes the paper. 
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2. Publishing a probabilistic population forecast 
The methods one uses to evaluate a probabilistic forecast depend strongly on the way the forecast 

results are made available. There are two main methods. One is to publish prediction intervals for 

population variables. Alternatively, one may give the users access to a database with sample paths.  

Costemalle (this issue) presents prediction intervals for the population of France, computed by a 

Bayesian approach. For instance, his Figure 16 shows that there is an 80 per cent probability that total 

population size in 2070 will be between 68.1 million and 75.0 million persons. The graph also shows 

95 per cent prediction intervals. These are much wider, because they cover more extreme situations. 

Other scholars (see Section 4 for examples) present their probabilistic forecasts in terms of 67 per cent 

prediction intervals.  

Figure 1 plots 80 per cent prediction intervals for the population of France taken from the so-called 

UPE-project, to be discussed below. The jump-off year of this probabilistic forecast was 2003. Thus in 

2050, 47 years into the future, the 80 per cent prediction interval is 82.2 – 56.5 = 25.7 million persons 

wide. This is much wider than Costemalles 80 per cent interval of 75.0 – 68.1 = 6.9 million persons 

(after 46 years). Different perceptions of prediction uncertainty for future fertility, mortality, and 

international migration lead to sharper (optimistic) or wider (pessimistic) prediction intervals.  

 

Figure 1. Median values (black line) and 80 per cent prediction intervals (red lines) for total population of 

Metropolitan France. Chances are 50 per cent that population size in 2050 will be less than 67.7 million; a 

population larger than 67.7 million is equally likely. There is an 80 per cent probability that total population in 

2050 will be between 56.5 and 82.2 million. Source: Keilman (2009). 

 

These examples illustrate a more common finding, namely that different authors use different 

coverage probabilities for their prediction intervals. Selecting a coverage probability of 67 or 80 per 

cent covers the majority of forecasts but excludes the more volatile tail of the error distribution. Those 

who use a coverage probability of 95 per cent do so, probably, because they have in mind a tradition in 

social science that implies constructing 95 per cent confidence intervals or performing hypothesis tests 

with a low probability (5 per cent) for type I errors (i.e. that one rejects a null hypothesis whereas in 
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fact it is true). On the other hand, a prediction interval with coverage probability of 67 or 80 per cent 

gives the user of the forecast an idea of how things might deviate from the point forecast. This is very 

different from constructing confidence intervals and from hypothesis testing. We will use both 67 and 

80 per cent prediction intervals in the empirical examples of Section 4. 

Prediction intervals present only a summary of the complete probability distribution for the variable in 

question. Sometimes one can assume that the underlying distribution is approximately normal. In such 

cases, one can infer the parameters of the distribution from the upper and lower bounds of the interval. 

However, some population variables are restricted to a certain part of the real line, such as the share of 

the elderly in the population (between zero and one), and a normal distribution is not appropriate. In 

such cases one loses much information by publishing prediction intervals only, and not the underlying 

distributions.   

The most of information becomes available when all simulated trajectories are stored in a database, to 

which the user has access (Alho and Spencer 2005). A prominent example is the set of probabilistic 

population forecasts for 18 European countries, commonly known as the UPE-forecasts (“Uncertain 

Population of Europe”). The cohort-component model was applied 3000 times for each country, with a 

deterministic jump-off population (as of 1 January 2003) and probabilistically varying values for age-

specific fertility, mortality, and net migration. The forecast horizon was 2050. The UPE-forecasts have 

two attractive features. First, an explicit aim was to quantify uncertainty in such a way that it would 

reflect historical volatility in fertility, mortality, and international migration. Second, the project 

provided the first comprehensive look at empirical correlatedness of forecast errors in fertility, 

mortality, and migration across countries. More information, including a number of published and 

unpublished papers, is available at the UPE website at http://www.stat.fi/tup/euupe/index_en.html.   

The website contains a databank with simulation results (N=3000) for men and women in five-year 

age groups in each country at ten-year (2010(10)2050) time intervals. This means that the user can 

build his or her histogram(s) for the variable(s) of interest. In Section 4, we will use the forecasts of 

the population pyramids for 2010 for France, the Netherlands, and Norway to illustrate the scoring 

rules discussed in Section 3.   

 

 

3. Evaluation 
Write the variable for which one computes a forecast as X, with cumulative distribution function 

(CDF) defined as F(x) = P(X ≤ x). The probability density function (PDF) of X is f(x) = 
dF(x)

dx
. We 

assume throughout the existence of the integrals and various moments of the probability distributions. 

More fundamental treatments based on probability-theoretic considerations can be found in, for 

instance, Gneiting and Katzfuss (2014), and Gneiting and Raftery (2007). Write y for the observed 

value of X. A scoring function S(F(x),y) assigns a numerical value (a “score”) to the forecast F(x), 

given the observation y. S(F(x),y) takes values in the real line ℝ (including, possibly, plus and minus 

infinity).  

A natural starting point for defining a scoring function is the following: a forecast that predicts the 

actual outcome with high probability should receive a good score. This works well for categorical 

forecasts, when X is a discrete random variable. However, we are dealing with forecasts for the 

number of persons (by age, sex, and forecast year), and X is closer to a continuous than a discrete 

random variable (unless the forecast is for a very small population). Henceforth we shall assume that 

http://www.stat.fi/tup/euupe/index_en.html
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the forecast and the scoring function are based on a continuous random variable. Many of the scoring 

functions start from the following two principles. First, an observation close to the median or the 

expected value of the predictive distribution gives a good score – the closer the better. In that case, the 

scoring rule is sensitive to distance (Staël von Holstein 1970, Murphy 1970). Second, given an 

observation, a narrow (“sharp”) predictive distribution gives a good score – the narrower the better. 

For example, an 80 per cent prediction interval that covers a certain observation represents a better 

forecast than an equally wide 67 per cent interval that covers the same observation, because it is 

relatively difficult to hit the target when the PDF has low variance. However, the two principles are 

not equally important. One may argue that when the observation is “too far” from the median or 

expected value, one should no longer reward a narrow PDF. In other words, if the forecaster is “takes a 

chance” (i.e. predicts a narrow PDF), the forecast should have a good score when the forecast is close 

to the median or expected value, but not when it is too far away. What one means by “too far away” is 

unclear, and it differs between scoring rules. The example above puts it as “the observation falls 

outside the prediction interval”. This choice may be criticized: it rests on an extremely sharp 

dichotomy. In a very small interval around the upper or the lower bound of the prediction interval, the 

forecast changes very abruptly from having a good score to being punished for having an observation 

just outside the interval. To put it differently, given the predictive distribution and the observation, a 

prediction interval with the lower bound slightly lower than the observation gives a good score, 

whereas a bad score arises when the lower bound is slightly higher than the observed value. Coverage 

probabilities are arbitrary (80 % is often used, but 81% or 79% work equally well). Therefore, one 

should be careful when  defining the notion of “too far away”.   

Some of the scoring rules that we will discuss below indeed follow the idea that closeness is more 

important than sharpness. However, as we shall see, what we mean by “too far” is different for 

different scoring rules. Other scoring rules treat the two principles as independent.     

We say that a scoring function is negatively oriented when a lower score implies a better forecast, and 

the other way round for a positively oriented scoring function. Hence, a negatively oriented scoring 

function may be interpreted as a cost function, whereas a positively oriented scoring function reflects 

rewards. 

Many different scoring rules have been proposed, depending on the nature of the forecast. Gneiting 

and Raftery (2007) and Jordan et al. (2019) give extensive overviews of the field. We will restrict 

ourselves to scoring rules for continuous random variables. One class of scoring rules applies to 

density forecasts based on closed-form expressions of the CDF or the PDF. An example is the 

logarithmic score LogS(F(x),y) = - log(f(y)). A different class of scoring rules, more appropriate for 

the subject of this paper, evaluates simulated samples – in that case, the predictive distribution is not 

available analytically. A second distinction is that between univariate forecasts and multivariate 

forecasts. In the latter case, both the predicted variable X and the observation y consist of a vector. 

Jordan et al. (2019) developed the scoringRules package for R, which covers a wide range of 

situations in applied work.  

Below we will introduce three types of scoring rules: those based on the first two moments of the 

predictive distribution only (Section 3.1), those stemming from the simulated complete predictive 

distribution, available as a sample (Section 3.2), and finally those for which one only has prediction 

intervals (Section 3.3). 
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3.1 A variance-based scoring function 

Assume a unimodal PDF of the forecast. When the actual outcome is close to the centre of the 

predicted density (as characterized by the mean, the mode, or the median), this forecast is better than 

one for which the outcome is far away from the centre. Stated differently, when there is little variation 

in X around y, the forecast scores better than when there is much variation. This leads to a variance-

based scoring function, written as VS henceforth, and defined as follows. 

Let VS be the variance of X around the observed value y, or  

     𝑉𝑆 = ∫(𝑥 − 𝑦)2𝑓(𝑥)𝑑𝑥 .    (1) 

For y equal to the expectation of X (written as μ), VS reduces to the variance of X, written as σ2. 

Expression (1) leads to  

     VS = σ2 + (μ – y)2.     (2) 

This defines a simple variance-based scoring function, which one could use to assess the quality of a 

unimodal predictive PDF. Gneiting and Raftery (2007) list it as a scoring function that corresponds to 

the so-called predictive model choice criterion or PMCC. One may apply it for analytical density 

functions as well as simulated samples. In the latter case, one uses estimates of σ2 and μ from the 

sample. This scoring function is negatively oriented: a lower score indicates a better forecast. It 

rewards both accuracy - when y coincides with μ, the forecast is of optimal quality - and sharpness - a 

small variance gives a good score, irrespective of how far off the forecast was.   

For a deterministic (point) forecast, σ2 is zero and the forecast is μ. In that case, VS reduces to the 

squared error of the forecast. Errors of this kind form the basis of the Mean Squared Error frequently 

used in evaluations of deterministic population forecasts (Alho and Spencer 2005; Smith et al. 2001; 

Keilman 1990). 

An alternative scoring function, also based on the first two moments of the predictive distribution, is 

the Dawid-Sebastiani score (e.g. Gneiting and Katzfuss 2014) 

    DSS = ln(σ2) + (μ – y)2/σ2.      (3) 

This scoring function is similar to the variance-based score VS in expression (2), but it gives different 

weight to the forecast variance σ2. A low variance leads to a good (low) score as long as 
𝑑𝐷𝑆

𝑑σ2
 =

 
1

σ2 −
(μ−𝑦)2

σ4  > 0, or σ > |μ – y |. Whereas VS always rewards predictive distributions with low 

variance, DSS does so if the observation y is less than one standard deviation away from the 

expectation of the predictive distribution.     

Imagine a forecaster, who knows that her probabilistic forecast in due time will be evaluated by the 

scoring rules (2) or (3). Assume that at a certain stage of the production process of the forecast, the 

issue is to calibrate the forecast model. Use of scoring rule (2) or (3) implies that this calibration 

should focus on selecting an appropriate value for the mean μ of the predictive distribution – not the 

median or any other parameter of location. Indeed, there is a close relationship between model 

calibration and forecast evaluation. The situation is clear when there is only one user. However, things 

become more complicated when there are many users with different scoring rules (or with unknown 

scoring rules).  
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3.2 The continuous ranked probability score CRPS 

The continuous ranked probability score might serve as a standard score in evaluating probabilistic 

forecasts of real-valued variables (Gneiting and Raftery 2007). It is defined in terms of the predictive 

CDF F(x) as 

  𝐶𝑅𝑃𝑆(𝐹, 𝑦)  =  ∫(𝐹(𝑧)  −  𝕀{𝑦 ≤ 𝑧})2𝑑𝑧,   (4) 

where 𝕀{y ≤ z} denotes the indicator function which is one if y ≤ z and zero otherwise. The particular 

form of the CRPS originates from the Brier score (Brier 1950). The Brier score or probability score 

(PS) is a mean squared error of a categorical probability forecast. Murphy (1970) adapted it to the case 

of ordered categories for X, which led to the Ranked Probability Score or RPS. Matheson and Winkler 

(1976) proposed a RPS for the case of a continuous random variable, the CRPS.   

Readily computable solutions to the integral above are few. Jordan et al. (2019) list the known cases. 

For instance, when F(z) is the standard normal distribution Φ(.) with density φ(.), CRPS(Φ,y) equals 

y(2Φ(y) – 1) + 2φ(y) – 1/√π. The normal distribution with general expectation μ and standard deviation 

σ gives σCRPS(Φ,(y – μ)/σ).  

It is worth to analyse a few concrete cases of the CRPS. We take the example of a normal distribution 

and assume, without loss of generality, that μ equals zero. Figure 2 plots this CRPS as a function of y, 

in other words, its sensitivity to distance. We show three cases, namely standard deviations of ½, 1, 

and 2. By construction (μ = 0), the curves are symmetric around zero. As we might expect, the best 

score arises when y equals zero. The score becomes worse when y increases in absolute value, in other 

words, when y is far from μ. Sharpness of the predictive PDF (a low standard deviation) is only 

rewarded within a certain y-interval around zero. For instance, a perfect forecast (y equal to zero) 

scores better for σ = ½ (CRPS = 0.1168) than for σ = 2 (CRPS = 0.4674). However, the PDF with σ = 

2 scores better than the one with σ = ½ for observations y larger than approximately 0.9 in absolute 

value. For low σ-values, the interval where sharpness is rewarded is shorter than for high values. 

 

Figure 2. Continuous ranked probability scores (CRPS) for a normal distribution with expected value μ equal to 

zero and observations y ranging from -3 to +3. Standard deviations σ of ½, 1, and 2. 
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Probabilistic population forecasts are commonly computed as simulated distributions, and one cannot 

compute the integral in (4). In that case, a useful starting point is the fact that (4) can be written as  

 CRPS(𝐹, 𝑦)  =  E𝐹|𝑋1 − 𝑦|  −  ½E𝐹,𝐹|𝑋1 − 𝑋2|,    (5) 

where X1 and X2 are independent random variables with distribution F (Gneiting and Raftery 2007). 

The CRPS measures how close the observation y one can expect to be to the predicted variable X, 

corrected for the expected distance between all possible pairs of values of X. The latter expected 

distance is small when the standard deviation of F is small. Other things being the same, an increase in 

the standard deviation leads to a better score. However, when the standard deviation changes also the 

first expectation EF|X1 – y| changes. Whether this score rule always rewards sharpness, or only on a 

certain interval, remains an empirical issue.  

The CRPS reduces to the absolute error if F is a deterministic forecast. 

Assume that we have a forecast available in terms of a simulated distribution. Then the CDF is 

�̂�𝑚(𝑥)  =  
1

𝑚
∑ 𝕀{𝑋𝑖 ≤ 𝑥}𝑚

𝑖=1 , where m is the size of the sample, and (5) becomes 

𝐶𝑅𝑃𝑆(�̂�𝑚, 𝑦)  =  
1

𝑚
∑ |𝑋𝑖 − 𝑦|  − 

1

2𝑚2
∑ ∑ |𝑋𝑖

𝑚
𝑗=1

𝑚
𝑖=1 − 𝑋𝑗|𝑚

𝑖=1 . 

Implementation of this expression is inefficient, because it is of computational order o(m2). A more 

efficient and algebraically equivalent representation is (Jordan et al. 2019, p. 6)  

  𝐶𝑅𝑃𝑆(�̂�𝑚, 𝑦)  =  
2

𝑚2
∑ (𝑋(𝑖) − 𝑦)(𝑚𝕀{𝑦 < 𝑋(𝑖)}  −  𝑖 +  ½),𝑚

𝑖=1     (6) 

where X(1), X(2), X(3), …, X(m), is the sorted simulated sample. The CRPS as defined in (6) is always 

positive, because each term in the sum is positive.   

 

 

3.3 Interval scores 

Many probabilistic population forecasts are presented as interval forecasts, not as (simulated) 

probability distributions; see Section 2. Consider a central (1 - α) prediction interval, with lower and 

upper endpoints that are the predictive quantiles at levels α/2 and (1 - α/2), respectively.1 Write l and u 

for the lower and upper quantiles. Gneiting and Raftery (2007) define the following score function 

 

(𝑢 − 𝑙) +
2

𝛼
 [(𝑙 − 𝑦)𝕀{𝑦 < 𝑙} + (𝑦 − 𝑢)𝕀{𝑦 > 𝑢}].  (7) 

 

Given α, the Gneiting-Raftery interval score (written as GRIS henceforth) rewards forecasts for narrow 

prediction intervals that capture the observation y: when two competing forecasts have different 

prediction intervals for a given α, the forecast with shortest prediction interval gets the best (lowest) 

score. However, a value of y outside the prediction interval gives a bad (higher) score. The penalty for 

missing the prediction interval is larger for small than for large α. GRIS can be readily applied to the 

 
1 Note that we assume that the two quantiles are known. In case we want to evaluate interval forecasts when the 

nominal coverage level is specified, but the quantiles on which intervals are based are not specified, one cannot 

employ the approach outlined here (Askanazi et al. 2018).  
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prediction interval of a variable for different lead times: 1 year ahead, 2 years ahead, 3 years ahead … 

etc.  

 

There are situations in which GRIS does not reward sharpness, even when the interval captures the 

realization. Assume two competing forecasts with the same prediction interval [l,u] that have different 

coverage probabilities. For instance, one forecast attaches 67 per cent probability to the prediction 

interval [l,u], whereas the other one has a coverage probability of 80 per cent for the same interval. 

The second forecast is sharper and should receive a better score when the observation y falls inside 

[l,u]. However, this is not the case, as GRIS is independent of α in this situation. To solve the issue, 

one may use a slightly modified version of GRIS, namely 

 

  𝐺𝑅𝐼𝑆𝑚𝑜𝑑 = 𝛼(𝑢 − 𝑙) + 𝛽[(𝑙 − 𝑦)𝕀{𝑦 < 𝑙} + (𝑦 − 𝑢)𝕀{𝑦 > 𝑢}],   (8) 

where β > 0 is a parameter that determines how fast the score deteriorates when the observation is 

further away from either the upper or the lower bound of the prediction interval. A high β-value incurs 

a larger penalty than a low value. GRISmod rewards sharpness both for fixed α and different prediction 

intervals, and for the situation where one has a fixed prediction interval but different values of α. 

When β equals two, GRISmod equals α.GRIS. In case one uses a β-value equal to the probability α, 

GRISmod reduces to α(u – y) for y < l and to α(y – l) when y > u.   

As an alternative to using scoring functions for prediction intervals, one could check how often actual 

data fall within the intervals. For instance, Raftery et al. (2012) validated their Bayesian method of 

forecasting populations for 159 countries by estimating the model based on data for the 40-year period 

1950–1990 to generate a predictive distribution of the full age- and sex-structured population for the 

20-year period 1990–2010. They compared the resulting 80 per cent and 95 per cent prediction 

interval distributions with the actual observations, and checked the proportion of the validation sample 

that fell within their intervals. These proportions were close to the nominal values of 80 and 95 per 

cent; therefore, the authors concluded that their approach was satisfactory. One important drawback of 

this method is that one compares data and prediction intervals for many variables, for instance the 

population size for all 56 countries in Africa at a certain date. However, regional correlations for 

fertility, mortality, and/or migration imply that the 56 population sizes are not independent. One has 

less data than originally thought and observed proportions cannot be compared directly with nominal 

values (Alho and Spencer 2005, 248). 

 

 

3.4 Scoring functions used in the empirical applications 
In Section 4, we use the CRPS in expression (6) to evaluate forecasts for which detailed simulation 

results are available. In case we only have prediction intervals, we use the variance-based score VS of 

expression (2), the Dawid-Sebastiani score (DSS) of expression (3), and the interval scores (GRIS and 

GRISmod) of expressions (7) and (8). For GRISmod we assume a value for the parameter β equal to 

the probability α that was used to define the interval. VS and DSS use the expectation and the standard 

deviation of the predictive distribution. Since only upper and lower interval bounds are available, we 

assume normality and take the expectation as the mean of the two bounds, while we estimate the 

standard deviation as half the width of the interval for 67 per cent intervals, and as the interval width 

divided by 2.564 for 80 per cent intervals.    
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Note that the scores depend on the scale of the variable X for which we have a predictive distribution 

(which is the same scale as that of the observation y). Hence, when we compare the scores of two 

population forecasts for countries with very different population sizes, the smaller population will 

receive the best score, irrespective of its accuracy. For a fair comparison, we need to account for 

population size. We have normalized VS, DSS, CRPS, GRIS, and GRISmod as follows: 

- we divided VS by μ2, i.e. the square of the expected value of the predictive distribution; 

- we normalized DSS by subtracting 2ln(µ) from the original DSS-value;2 

- we divided CRPS, GRIS, and GRISmod by μ. 

 

 

4. Findings 
Below we illustrate the scoring rules mentioned in Section 3.4 by evaluating probabilistic population 

forecasts for three countries: France, the Netherlands, and Norway. We focus on total population size 

(Section 4.1) and on the population pyramid (Section 4.2) of the three countries. The data stem from 

various sources.  

1. At the UPE-website (see Section 2), samples (N = 3000) for the forecasts of the population pyramid 

for the three countries are available for the years 2010, 2020, …, 2050. We use results for 2010.   

2. Alho and Nikander (2004) report 80 per cent prediction intervals and medians for total population 

size, amongst others, for each year in the period 2004-2050 for all UPE-countries. We use results for 

2004 – 2019.  

3. For the Netherlands, we have information about the official probabilistic population forecast with 

jump-off year 2000; see Statistics Netherlands (2001). The tables give 67 per cent prediction intervals 

and expected values for total population for each year during the period 2000 – 2050, and for five-year 

age groups of men and women at five-year intervals.   

3. For Norway, we use results of the so-called StocProj (“Stochastic Projections”) project (Keilman et 

al. 2002). The purpose was to compute a probabilistic population forecast with jump-off year 1996. 

Detailed simulation results are no longer available, but we use instead 80 per cent prediction intervals 

for total population size for the years 1997-2019.  

 

4.1 Population size 

Figure 3 gives our findings for Norway. There are four graphs, two for the StocProj forecast (left), and 

two for the UPE-forecast (right). The upper two graphs plot 80 per cent prediction intervals and 

observed values for total population sizes, while the lower two graphs show the scores of the two 

forecasts. 

Both forecasts underpredicted total population from around 2005 onwards. The most important 

explanation is that after the enlargement of the European Union, labour immigration to Norway from 

 
2 The interest is in the DSS-value for a scaled random variable X/N and scaled value y/N of y (N non-random and 

positive), written as DSS(y/N). Then DSS(y/N) = 2ln(σ/N) + [(µ/N – y/N)/(σ/N)]2 = DSS(y) – 2ln(N). For N we 

select expected population size µ. 
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Baltic and East-European countries was much higher than expected. Note that at each forecast lead-

time, the prediction intervals for StocProj are wider than the UPE-intervals. The modified interval 

score GRISmod rewards sharpness, and hence it is lower and thus better for UPE than for StocProj, 

although the difference is small; cf. the green lines. The modified interval score GRISmod and the 

variance-based score VS show the same trend: both forecasts become gradually worse for longer lead 

times. The blue curves show the Dawid-Sebastiani score DSS divided by ten, so that we could plot it in 

the same graph as the other three scores. DSS starts at negative values in both cases, because the 

standard deviations σ of both forecasts are small (measured in millions) in the first few years. For 

instance, for StocProj in 1997, σ = 0,0039, which gives ln(σ2) = -11,1162. Since ((µ-y)/σ)2 = 0,0309, 

DSS equals -11,0853, plotted as -1,1085 in Figure 3. DSS increases steeply for UPE, because it does 

not reward sharpness anymore as soon as the standard deviation of the predictive distribution is 

smaller than the absolute error |μ – y |; cf. Section 3.1. This occurs in all years for which we have 

UPE-data, i.e. from 2004 onwards. On the other hand, for StocProj the situation with too small 

standard deviation to reward sharpness does not occur until 2008, 12 years into the future. On the 

other hand, score functions GRISmod and VS do not punish “over-optimistic” forecasts (i.e. forecasts 

for which the variance of the predictive distribution is too small). Note that for StocProj, DSS 

stabilizes from around 2016, 20 years into the future.   

 

Figure 3. Total population size, Norway. Prediction intervals and observed values in the upper panels, interval 

scores (GRIS and GRISmod), Dawid-Sebastiani (DSS), and variance-based (VS) scores in the lower panels. 

StocProj forecasts 1997-2019 (left) and UPE forecasts 2004-2019 (right). Prediction intervals, observed values, 

GRIS, GRISmod, and VS are in millions. Dawid-Sebastiani score is divided by ten. 

  

  

 

 

Similar to the case of Norway, the UPE prediction intervals (80 per cent) for the Netherlands reflect a 

sharper forecast than the intervals of Statistics Netherlands’ forecast (67 per cent); see Figure 4. In 
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both cases, the prediction intervals capture observed population size after 2011, which means that the 

modified interval score for the UPE forecast is much better than that of Statistics Netherlands’ 

forecast. Interval scores miss the fact that observed values come closer to the centre of the intervals, 

because these scores do not include information about the mean, the median, or the mode of the 

predictive distribution. Judged by the Dawid-Sebastiani scores, the two forecasts are of equal quality. 

In both cases, DSS stabilizes from 2010 onwards. The reason is that the forecast error |μ – y| 

diminishes slowly over time, because observed population size approaches expected population size; 

this compensates the increase in the standard deviations of predicted population size in the two 

forecasts; cf. expression (3).  

GRIS shows the same, rather irregular, time pattern as DSS, qualitatively speaking. This is very clear 

in Figure 4 for the Netherlands, but it is also visible in Figure 3 for Norway. In addition, GRISmod and 

VS develop very smoothly for the Netherlands, as we saw already for Norway. 

 

Figure 4. Total population size, Netherlands. Prediction intervals and observed values in the upper panels, 

interval scores (GRIS and GRISmod), Dawid-Sebastiani (DSS), and variance-based (VS) scores in the lower 

panels. Statistics Netherlands forecasts 2000-2019 (left) and UPE forecasts 2004-2019 (right). Prediction 

intervals, observed values, GRIS, GRISmod, and VS are in millions. Dawid-Sebastiani score is divided by ten. 

  

  
 

 

Figure 5 gives UPE scores for total population size of Metropolitan France. A striking feature is that 

the forecast jump-off population in 2003 is almost 500 000 persons lower than the current estimate for 

population size that year. Data from Eurostat, available in 2004, provided the basis for the UPE-

simulations. Observed numbers in Figure 5 are from INSEE (2019). Obviously, the 2003 population 

number as reported by Eurostat in 2004 has been revised in later years.  
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Figure 5. Total population size, Metropolitan France. Prediction intervals and observed values in the upper panel, 

interval scores (GRIS and GRISmod), Dawid-Sebastiani (DSS), and variance-based (VS) scores in the lower 

panel. UPE forecasts 2004-2019. Prediction intervals, observed values, GRIS, GRISmod, and VS are in millions. 

Dawid-Sebastiani score is divided by ten. 

 

 
 

 

The jump-off error results in extremely bad values for the Gneiting-Raftery and the Dawid-Sebastiani 

score functions. What would these scores have been, in case the UPE-forecast would have started from 

the current estimate of total population size in 2003 (60.102 mln) rather than the number that was 

actually used (59.635 mln)? We can give an approximate3 answer by lifting the 80 per cent prediction 

interval up by 467 000 persons. Figure 6 shows the results, with the same vertical scales as in Figure 5. 

DSS improves dramatically, to 5.2 and 5.6 in 2005 and 2006, respectively (instead of 49.6 and 28.6 for 

these years), while it stabilizes at a level around 1.6 – 1.7 after 2015 (rather than falling slowly to 2.0 

in 2019). The interval scores and the variance-based score become slightly lower. These findings 

illustrate the importance of starting from the right jump-off population. At the same time, revision of 

population numbers occurs frequently, in particular in countries without a population register. In such 

cases, one should treat the jump-off population as stochastic, in addition to parameters for fertility, 

mortality and migration. Alho and Spencer (2005) give an example of random jump-off values for a 

probabilistic population forecast for Lithuania. 

 

 

 

 

 
3 Approximate, because we ignore the consequences for fertility and mortality of a higher jump-off population.  
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Figure 6. Total population size, Metropolitan France. Prediction intervals and observed values in the upper panel, 

interval scores (GRIS and GRISmod), Dawid-Sebastiani (DSS), and variance-based (VS) scores in the lower 

panel. Prediction intervals from UPE forecasts 2004-2019 are adjusted for jump-off error. Prediction intervals, 

observed values, GRIS, GRISmod, and VS are in millions. Dawid-Sebastiani score is divided by ten. 

 

 

A common finding so far is that when we look further into the future, GRISmod and VS get worse over 

time, because prediction intervals become wider, and variances of predictive distributions increase. 

This, of course, reflects the fact that population forecasting is more difficult in the long-term than in 

the short-term. In contrast to GRISmod and VS, DSS stabilizes when forecast lead-times increase. The 

explanation lies in the definition of this particular scoring function. It is the sum of two terms; one 

term increases while the other one decreases when prediction variance goes up; see expression (3). 

Thus, one view is that DSS is not an appropriate measure for analysing how fast forecast quality 

deteriorates with increasing lead-time. However, a different view is that, exactly because DSS hardly 

changes over time, it controls for forecast lead-time. Still another possibility is to inspect the slopes in 

GRISmod and VS, since these two score functions increase quite smoothly with time. Further research 

into this issue, drawing upon data from many other forecasts (and controlling for different population 

sizes; see below) is clearly needed. 

As mentioned earlier, one explanation for the relatively bad scores for France is the fact that the score 

functions depend of population size. For a comparison across countries, normalized scores are useful. 

We normalized the scores the way explained in Section 3.4. Table 1 gives results for the five forecasts 

in 2018. 

After normalization, the scores for the French forecast and the two Dutch forecasts in the year 2018 

become very similar; see the upper panel of Table 1. In many cases, the scores for these two countries 

are one order of magnitude better than those for Norway. For many years, observed population size in 

France and the Netherlands fell within the prediction intervals (cf. upper panels of Figures 4 and 6; the 

French intervals corrected for jump-off error). This contributes to the good scores for the two 

countries.  
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Table 1. Normalized interval, variance-based, and Dawid-Sebastiani scores for the year 2018 (upper panel) and 

for a lead-time of 15 years (lower panel). 

 Norway Netherlands France1 

 StocProj UPE StatNeth UPE UPE 

  

 year 2018 

GRIS/µ 0,564 0,513 0,062 0,053 0,069 

GRISmod/μ  0,038 0,022  0,021  0,011  0,014 

VS/μ2 (x 1000) 17,552 6,569  1,108  0,781  1,154 

DSS – 2ln(µ) -1,525 2,073 -6,797 -7,149 -6,639 

  

 15 years ahead 

GRIS/µ 0,231 0,513 0,049 0,053 0,069 

GRISmod/μ  0,021 0,022  0,016  0,011  0,014 

VS/μ2 (x 1000)  4,870 6,569  0,906  0,781  1,154 

DSS – 2ln(µ) -3,752 2,073 -6,903 -7,149 -6,639 
Note 1. Adjusted for error in jump-off population. 

 

The two forecasts for Norway still receive bad scores because of the under-prediction of net 

immigration mentioned above. For the high StocProj scores in 2018 there is an additional reason: the 

jump-off year of this forecast is 1996, and hence the forecast lead time in 2018 is 22 years – much 

longer than the UPE lead time in 2018 (15 years). The lower panel of Table 1 shows the normalized 

scores for StocProj after a forecast duration of 15 years (in 2011). Compared to the scores for the other 

two countries after 15 years, the situation has improved quite much, but StocProj-scores are still much 

higher than those for StatNeth and for UPE in France and the Netherlands.  

The final evaluation of total population size forecasts is by means of the Continuous Ranked 

Probability Score (CRPS). We computed this score function using 3000 UPE-simulations for 2010. 

The CRPS depends of population size; see expression (6). To enhance comparison between the three 

countries, Table 2 gives normalized scores, defined as the CRPS divided by the mean of the 3000 

simulations. The results confirm the good quality of the UPE-forecast for the Netherlands that we 

found earlier. 

Table 2. Normalized CRPS-scores for total population size, UPE forecasts for 2010.    

Norway Netherlands France 

0,0249 0,0075 0,0492 

 

 

4.2 Age and sex structures 

Figures 7-9 plot normalized CRPS-scores for simulated populations broken down by sex and five-year 

age group on 1 January 2010 according to the UPE forecasts. The horizontal dotted lines represent 

CRPS-values for total population sizes from Table 2. The age patterns of the scores differ strongly 

between the three countries. The findings for Norway in Figure 7 are easy to interpret. High scores, i.e. 

low-quality forecasts, apply to young children, young adults, and the elderly. Scores are much better 

for ages 10-19 and 55-74. This age pattern reflects the under-prediction of immigration after 2005, 

already noted in Section 4.1. However, prediction errors for births and deaths may have contributed, 
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too. Indeed, the age pattern of the scores is qualitatively similar to the pattern found for absolute errors 

in point forecasts of age and sex structures (e.g. Keilman 2009). This reflects the fact that births, 

migration flows, and deaths are difficult to predict. The lead-time of the UPE-forecasts is only seven 

years. At such a short horizon, fertility has no impact on the age group 10-19. International migration 

and mortality influence these age groups only very little. The same holds for age group 55-74. Clearly, 

had the evaluation taken place after a lead-time of twenty years or more, the normalized CRPS-values 

for age groups 10-19 and 55-74 would have been much worse. Finally, note that the scores for men in 

ages 19-54 and 75+ are somewhat higher than those of women in these age groups. The reason is that 

men are more prone to migrate (19-54) or to die (75+) than women. 

 

Figure 7. Normalized CRPS-scores for population by age and sex, Norway, UPE forecast 2010.  

 

Whereas the Norwegian score agrees with what one might expect, the scores for the other two 

countries are more difficult to interpret. Normalized scores indicate that the Dutch forecast is of better 

quality than the other two, except for old ages. The French scores tend to decline with age. The pattern 

suggests that fertility was more difficult to predict accurately, than international migration or 

mortality. One may also think of several other explanations. First, the revision of the population 

numbers discussed above may have been stronger in some age groups than in others. We found 

(numbers not shown here) that revised numbers for men and women by five-year age group are 

approximately one per cent higher than those used in UPE. However, there are a few exceptions. 

Revisions were less than half a per cent in age groups 0-4 and 80+, while for men aged 20-24 the 

revised number was one per cent lower than the number used in UPE. This pattern caused by revisions 

between 2003 and 2010 is not reflected in Figure 9. A second explanation is that under- or over-

prediction of net migration flows to France during the years 2003-2009 may also differ across age 

groups. Finally, our empirical data on age-sex distributions as of 2010 include the effects of so-called 

administrative corrections. Such corrections are necessary in case registration of births and deaths is 

incomplete. For register countries Norway and the Netherlands, errors in registered immigration and 

emigration are included as well in the administrative corrections. For Norway, the effect of these 

corrections is likely small, but the situation is worse for the Netherlands and France. For instance, data 

from Statistics Netherlands and INSEE show that total net-migration for the years 2003-2009 without 
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administrative corrections amounts to 214 000 and 601 000 persons respectively. Eurostat provides net 

migration data including such corrections. Using those data we find that the totals for net-migration 

during 2003-2009 are very different, namely 17 000 (the Netherlands) and 884 000 (France).4 Because 

of the lack of reliable data on net migration and administrative corrections broken down by age for the 

Netherlands and France, we have not analysed this issue further. Note also that the UPE-forecasts do 

not include a separate variable that deals with administrative corrections (as is common practice for 

population forecasting). 

Figure 8. Normalized CRPS-scores for population by age and sex, Netherlands, UPE forecast 2010.  

 

Figure 9. Normalized CRPS-scores for population by age and sex, Metropolitan France, UPE forecast 2010. 

 

 

 
4 For Norway, the numbers are 188 300 (without administrative corrections) and 187 800 (with corrections). 
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The general conclusion from this evaluation is that the UPE-forecast of the Dutch population pyramid 

for 2010, as measured by the normalized CRPS score, is better than the UPE-forecasts of Norway and 

France, except for the oldest-old. The age pattern for the Norwegian CRPS score is similar to that of 

absolute errors in point forecasts. It is difficult to indicate why the age patterns differ strongly between 

the three countries, due to data problems for international migration in particular. 

 

5. Summary and conclusions 
The purpose of this paper is to demonstrate how a probabilistic population forecast can be evaluated, 

when observations for the predicted variables become available. Statisticians have developed various 

scoring rules for that purpose, but there are hardly any applications in population forecasting literature. 

A scoring rule measures the distance between the probability distribution of the predicted variable, and 

the actual outcome. A score as such has no intrinsic meaning – we can only interpret it by comparing it 

to the score of another forecast. We have used scoring rules that reward accuracy (the outcome is close 

to the expected value of the prediction) and sharpness (the predictive distribution has low variance, 

which makes it difficult to hit the target). One may argue that accuracy is more important than 

sharpness: sharpness ought to be rewarded only when the outcome is not too far away from the central 

tendency of the predictive distribution. We discussed the notion of “too far away”. 

A forecaster can make the probabilistic forecast available to the user in three different ways. The first 

is by publishing a prediction interval for the variable of interest. Coverage probabilities of 67 and 80 

per cent are rather common. Some population forecasters present 95 per cent prediction intervals. We 

do not recommend this practice, because 95 per cent intervals are very wide as they stretch to quantiles 

where extreme events start to happen. The second method is to give the user access to a database that 

contains sample paths for the stochastically simulated development in population size and other 

forecast results. Sometimes, only the first moment (expectation) and the second moment (variance) of 

the prediction interval are available. We presented scoring rules that one may use for either type of 

forecast results. The scoring rules are negatively oriented: a lower score implies a better forecast.  

We have evaluated probabilistic population forecasts for France, the Netherlands, and Norway. For all 

three countries, we have used results from the UPE-project. Since many scoring rules apply the same 

scale as population size, we proposed using normalized scoring rules when the interest is in comparing 

forecasts for different countries. We inspected prediction intervals for population size in the period 

2004-2019 and 3000 sample paths for population pyramids for the year 2010. For the Netherlands and 

for Norway, we compared the UPE-results with findings from the official probabilistic population 

forecast by Statistics Netherlands (2001-2019) and from a probabilistic forecast for Norway (1997-

2019). All forecasts were computed using the cohort-component method and stochastically varying 

parameters for fertility, mortality and migration.    

Our evaluations show that the UPE-forecasts for the Netherlands and for Norway performed better 

than the other forecasts for these two countries, because the UPE-predictions were relatively sharp, 

with narrow prediction intervals. The UPE-forecast for France started from a jump-off population in 

2003 that was estimated at 60.1 million persons at the time the forecast was computed. This number is 

almost 500 000 persons higher than the current estimate of the population in 2003 (59.6 million). The 

error in the jump-off population caused a bad score for the French forecast. To revise population 

statistics for inter-census years when data from a new population census become available, is common 

practice. In case one cannot be certain about the size and structure of a population during an inter-

censal period, the correct approach is to treat the jump-off population of the forecast as stochastic. 
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We evaluated the 3000 UPE-simulations of the age and sex composition predicted for the year 2010. 

When normalized for population numbers in each age-sex category, the predictions for the 

Netherlands received the best scores, except for the oldest old. The age pattern for the Norwegian 

score reflects the under-prediction of immigration after the enlargement of the European Union in 

2005. However, prediction errors for fertility and mortality may have played a role as well. The age-

specific scores for France are difficult to interpret. They do not reflect the age pattern of the revision of 

the population data for 2003 mentioned above. Over- or under-prediction of fertility, mortality and 

migration may have played a role. In the cohort-component model, the age- and sex-composition of 

the population of 2010 is a complicated non-linear function of model parameters for mortality, 

fertility, and migration prior to 2010. Therefore, one cannot identify the contribution of these three 

components of change to the scores.  

In addition to the issue of data revision, we were also confronted with the problem of “administrative 

corrections”. This is a notion that statistical agencies sometimes use as a distinct component of change 

of population size and structure. When there are errors in the registration of births, deaths, and 

migrations, administrative corrections are necessary to obtain a correct set of bookkeeping statistics 

for population. Empirical population numbers for the Netherlands and France are strongly influenced 

by administrative corrections. 

There is a rich literature that evaluates probability forecasts and that discusses a large number of 

scoring rules. Many apply to predictive distributions of a discrete random variable, and are of little 

interest for evaluating demographic forecasts. In case we limit ourselves to scoring rules for 

continuous random variables, the literature still proposes many scoring rules, of which we selected just 

a few. As we have shown in Sections 3 and 4, these scoring rules are very different, giving different 

weight to distance or to sharpness. Some rules give a bad score as soon as observed numbers fall 

outside the prediction interval. Others develop more smoothly when the observation is further and 

further away from the central tendency and from the interval bounds. Further work applied to scoring 

rules for probabilistic demographic forecasts is necessary, hopefully leading to guidelines for the 

selection of such rules in various situations.  

Scoring rules are useful in ex-post facto evaluations of two or more probabilistic forecasts. Once we 

have concluded that, judged by a number of score functions, one forecast was better than another one, 

we have to ask ourselves why this was the case. To answer that question, one needs to analyse very 

carefully the many steps in the production process of the two probabilistic forecasts. This poses a new 

challenge, in particular when different scholars or different agencies computed the two forecasts.    
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