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Abstract: Knowledge of vegetation dynamics in relation to climatic changes and human activities is
essential for addressing the terrestrial carbon cycle in the context of global warming. Scientific detection
and quantitative attribution of vegetation dynamic changes in different climatic zones and human
activities are the focus and challenge of the relevant research. Taking the Poyang Lake basin
as the research area, this study aimed to reveal how climate and land use drive changes in net
primary productivity (NPP) in the subtropical humid basin. Change patterns of vegetation NPP
and their relationships with meteorological factors across the basin were first investigated based on
the estimation of 18 year (2000–2017 year) NPP by using a typical light energy utilization model,
the Carnegie-Ames-Stanford Approach (CASA) model. Quantitative analysis was then conducted to
explicitly distinguish the driving effects of climate change and land-use change on NPP dynamics in
two different periods. Results show that annual NPP and total production (TP) of the Poyang Lake
basin increased significantly from 2000 to 2017. During this period, land-use change in the basin was
driven by the process of urbanization expansion and the efforts of ecological protection. Climatically,
the temperature is the major influencing climatic factor in determining vegetation productivity in the
subtropical humid basin, followed by precipitation and solar radiation. In addition, our investigation
also revealed that with comparison to the period of 2000s, the increased TP of the Poyang Lake
basin due to climate change in 2010s was much bigger than the decreased TP due to land-use
change. However, in the areas where the land-use change occurred, the decreased TP was mainly
attributed to the impact of land-use change, even though climate change showed a positive effect of
increasing productivity.

Keywords: net primary productivity; climate change; land-use change; CASA model; the Poyang
Lake basin

1. Introduction

The terrestrial ecosystem, which links the land and atmosphere, can well reflect and elaborate the
energy exchange, carbon cycle, and the effect of human activities on the earth’s surface [1–3]. The net
primary productivity (NPP) of the terrestrial ecosystem refers to the remaining fraction of absorbed
carbon by vegetation through photosynthesis in unit time after the carbon loss of plant respiration.
It is a fundamental indicator of ecosystem health and productivity, which is of great significance in
determining the carbon source/sink function of the ecosystem and regulating the ecological process [4].
Studies on NPP variation of the terrestrial ecosystem is critical to the acknowledgment of carbon
balance [5,6]. However, at present, there is still a lack of clear understanding of the driving factors
on NPP change in different regions [7]. As a key link of the biogeochemical carbon cycle, the spatial
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and temporal variations of NPP are determined by the complex interactions among vegetation, soil,
and atmosphere, and strongly influenced by human activities and global environmental changes [8–10].
In the context of global change, estimation of NPP and in-depth understanding of the relationship
between NPP and various control factors are of great significance to acknowledge the temporal and
spatial pattern of carbon source/sink in the terrestrial ecosystem, and to correctly predict future climate
change. In recent years, research on the dynamics of the terrestrial ecosystem represented by NPP has
received increasing attention from the scientific community [11–13].

Because of the importance of vegetation NPP in the terrestrial carbon cycle, an accurate estimation
of vegetation NPP is essential. Because it is impossible to measure the regional NPP comprehensively
on a large scale, the indirect estimation of vegetation NPP based on relevant models has been widely
used in regional or global studies. In recent years, a series of remote-sensing-based NPP estimation
models have emerged, which brought new vitality for regional and global scale NPP estimation and
related applied research. Generally, the NPP estimation models can be categorized into four types [14]:
climate-related statistical models (e.g., Miami, Thornthwaite Memorial, and Chikugo), ecosystem
process models (e.g., BIOME-BGC, BEPS, etc.), light energy utilization models (e.g., GLO-PEM,
Carnegie-Ames-Stanford Approach (CASA), etc.) and ecological and remote sensing coupling models
(e.g., GLOPEM-CEVSA). Among them, the CASA (Carnegie-Ames-Stanford Approach) model was
considered to be one of the most recognized mature models for NPP estimation. The model is easy
to master and requires few parameters. Because most of the parameters can be obtained by remote
sensing technology, the model can achieve continuous simulation of vegetation NPP in time and
space [15–17]. Up to now, the CASA model has been widely applied in NPP estimation in different
regions and scales due to its convenient application and high accuracy [17–20].

The process of vegetation dynamics is quite complicated due to the interaction of various
influencing factors, such as the changes of climatic variables and underlying land use/cover,
the construction of ecological engineering, the expansion of urbanization, and so on [10,21–23].
DeJong et al. [24] pointed out that climate change can only explain about 54% of the changes in
vegetation activity in recent decades, and the rest may be attributed to human activities. How climate
change and land use/cover change affect the carbon cycle of the terrestrial ecosystem has become one of
the core issues in the research of global change [21,25–27]. Meteorological factors determine the regional
hydrothermal conditions, which directly affect vegetation growth [28]. Previous studies revealed that
temperature shows a positive correlation with vegetation growth [29], while the effect of precipitation
varies with the wetness of the area [30]. In arid and semi-arid regions, vegetation growth is mainly
controlled by precipitation, and the influence of temperature and radiation is relatively weak [10,31,32].
The effects of climatic factors on the NPP of different vegetation types varied significantly in time
and space [10,20,33]. In terms of mechanism, the effect of climate change on ecosystem productivity
is mainly realized by affecting the processes of photosynthesis, respiration, and decomposition of
soil organic carbon [34,35]. On the other hand, land use/cover of the earth’s surface changed a lot
in some places due to the rapid growth of population and urbanization process, especially in those
developing countries. The change of land use/cover will alter the type and structure of the ecosystem,
thus affect vegetation productivity significantly. Over the past two centuries, a study revealed that the
potential photosynthetic capacity of the earth’s ecosystems has decreased by 5% due to the changes in
land use/cover [36]. In the United States, land-use change in the process of urbanization has caused a
carbon loss of 0.04 Pg C·a−1 [37]. In the urban areas of the Yangtze River Delta, China, the urbanization
process has caused a −4.7 gC·m−2

·a−1 decrease during 1999−2010 [38]. In addition, Jiang et al. [39]
revealed that the NPP of the Guangdong Province, one of the most developed provinces in China,
has lost 1.05 Tg C during 2000−2010 due to land use transformation. Xu et al. [40] showed that NPP in
the resettlement area of the Three Gorges project decreased by 8% in 2000−2010, and the main driving
mechanism was land-use change.

The change in vegetation NPP is mainly driven by climate and human activities. Scientific
assessment of the relative impacts of the two forces is helpful to the understanding of the human
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influence on ecosystems [38,41,42]. However, due to the complexity of potential interactions,
the estimation and separation of the relative contributions of the driving factors in NPP variation are
quite difficult [38,43]. In addition, land vegetation and meteorological variables vary greatly in different
years and the indicators used for the contribution separation are various and uneven, which also
leads to the lack of well-established procedures for the quantitative analysis [44,45]. In general,
three methods can achieve the quantified attribution analysis on NPP variation: the regression model,
the residual trend analysis, and the biophysical model. In the first method, the quantified attribution
analysis was mainly based on the establishment of the regression model between vegetation NPP and
the potential driving factors [46,47]. The second method indirectly estimates the impact of human
activities (normally land-use change) by simulating NPP differences under the scenarios with and
without human interference [48]. The third method is usually based on the estimated potential NPP
and the actual NPP by biophysical models to determine the relative impacts of climate change and
human activities [10,38]. Recently, Jiang et al. [39] adopted the threshold segmentation method to
evaluate the relative contribution of climate change and ecological programs on NPP changes in the
agro-pastoral transitional zone of northern China. The threshold segmentation method is based on
the statistical correlation analysis. Although it can distinguish the main factors affecting NPP change,
it cannot reveal the quantitative result of the contribution rate of climate change and human activities.
It is worth noting that each method has its advantages and disadvantages, which need to be carefully
considered in practical application. In addition, climate change may also have a certain impact on NPP
dynamics in those areas where land-use change occurs. However, there are still many deficiencies in
relevant methods in quantifying the impact of climate change and human activities on NPP dynamics
in those land-use change areas.

Knowledge of vegetation dynamics related to climatic changes and human activities is very
important for developing adaptation strategies to cope with the challenges posed by climatic changes
and human activities on ecosystems. Previously, much research has been performed to investigate
vegetation dynamics and its driving mechanism in those arid and semi-arid areas, as well as in
those ecologically fragile areas [10,31,48,49]; however, studies on elucidating climate-oriented and
human-oriented NPP variations in typical humid areas were rare. Furthermore, land-use change is quite
common in those developing countries due to rapid urbanization and population growth. Attribution
analysis of vegetation dynamic change will promote the management of local landscape under the
changing environment. Associated with this background, this study focuses on the vegetation NPP
dynamics and responses to climatic factors and human activities in a subtropical basin. Specifically,
the objectives of this study were: (1) to estimate vegetation NPP by using the CASA model and analyze
its spatiotemporal variations in recent two decades in a large lake basin, (2) to examine land-use change
and its link with NPP variation under the background of urbanization, (3) to explore the correlations
between vegetation NPP and meteorological factors in the subtropical humid area, and (4) to quantify
the relative impacts of climate and land-use changes on NPP variation at the basin scale. We believe
that this study will improve the understanding of the driving mechanism of the terrestrial ecosystem
carbon cycle in subtropical humid areas, and promote the management of local landscape under the
changing environment.

2. Material and Methods

2.1. Study Area

In this study, the Poyang Lake basin was selected as the research area. The lake basin, located in
the southeast of the Yangtze River basin (Figure 1a), is very representative in China’s humid region
due to the “mountain–river–lake” integrated watershed system and special climate, geomorphology,
and hydrological characteristics [50]. In addition, the lake basin is one of the 17 global key research
transects of the Global Change and Terrestrial Ecosystem program (GCTE) of the International
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Geosphere Biosphere Program (IGBP), which has special significance to the study of terrestrial
ecosystem dynamics associated with global change [51].
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Figure 1. Geographical environment of the Poyang Lake basin: (a) location of the basin in China;
(b) monthly precipitation and temperature of the basin; (c) topography and water system of the basin
with meteorological stations marked.

The Poyang Lake basin is surrounded by middle and low mountains in the south, east, and west,
and tilts northward [52]. The drainage area of the basin is about 162,225 km2. The water system of the
basin is mainly composed by five tributary sub-basins of Xiushui, Raohe, Xinjiang, Fuhe, and Ganjiang
(Figure 1b). Poyang Lake in the north is the largest freshwater lake in China. The “Five Rivers”
gather precipitation of the surrounding mountains from the east, south, and west to the relatively
low-lying Poyang Lake area in the north, and finally discharges into the Yangtze River at the north
end of the basin after being regulated and stored by the lake, forming an integrated basin system of
“mountain–river–lake”. Climatically, the Poyang Lake basin is located in the subtropical monsoon
climate zone. The average annual precipitation of the basin is about 1680 mm and the average annual
temperature is about 17.6 ◦C (Figure 1c). Benefitting from good hydrothermal conditions, the Poyang
Lake basin is rich in natural resources and with a diverse ecosystem (including farmland, forest,
wetland, and other ecosystems) [50,53].

2.2. Available Data

The MODIS (Moderate-resolution Imaging Spectroradiometer) normalized difference vegetation
index (NDVI) remote sensing data covering the study area during 2000–2017 were collected from NASA
(https://modis.gsfc.nasa.gov/data/dataprod). The spatial resolution of the data is 1 km, and the time
resolution is 16 days. All the NDVI data were preprocessed by geometric correction, radiation correction,
and cloud removal before delivery. Before application, we applied the ENVI (The Environment for
Visualizing Images) software to synthesize the NDVI data and the changing-weight filter method to
reduce noise [54]. In addition, we used MRT (MODIS Reprojection Tool) to convert the image format
and projection.

Meteorological datasets (including daily precipitation, temperature, and solar radiation) during
2000–2017 from 25 weather stations around the Poyang Lake basin were obtained from the National
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Climate Centre of China Meteorological Administration (CMA) (https://cmdp.ncc-cma.net/cn/index.
htm). All the datasets have undergone strict quality control, and the time series are complete without
any missing data. To match the spatial resolution of the NDVI data, we used the Kriging method to
interpolate meteorological variables.

Two scenarios of land use data of the basin in 2005 and 2015 with a spatial resolution of 1 km were
downloaded from the Resource and Environment Science and Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/). The accuracy of the data was well examined by on-site verification
before delivery [55]. According to the secondary classification criteria of LUCC (Land use/cover
change), surface vegetation in the Poyang Lake basin was divided into seven categories: paddy field
(PF), dry farmland (DF), forest (FT), shrub (SB), sparse forest (SF), grassland (GL), and water and
construction land (WC) (see Figure 1).

2.3. Methodology

2.3.1. CASA Model

The CASA model, a typical light energy utilization model, was applied to estimate vegetation
NPP in the Poyang Lake basin. The establishment of the model is based on the resource balance theory
and is driven by meteorological, vegetation, and soil data [56]. In this model, vegetation NPP is mainly
determined by two factors of absorbed photosynthetic active radiation (APAR) and actual light use
efficiency (ε):

NPP(i, t) = APAR(i, t) × ε(i, t) (1)

where i is spatial location and t is time.
In the above equation, APAR(i, t) and ε(i, t) are further estimated by the following equations:

APAR(i, t) = Sr(i, t) × FPAR(i, t) × 0.5 (2)

ε(i, t) = Tε1(i, t) × Tε2(i, t) ×Wε(i, t) × εmax (3)

In Equation (2), Sr is the total solar radiation (MJ/m2) and FPAR is the fraction of photosynthetically
active radiation which depends on land use type and coverage. Because NDVI can well reflect the
vegetation coverage, the CASA model uses NDVI instead of FPAR in NPP estimation. Tε1 and Tε2

in Equation (3) represent the effect of temperature on (ε), Wε represents the effect of water stress on
(ε), and εmax is the maximum light use efficiency. The constant 0.5 represents the proportion of solar
radiation utilized by vegetation to total solar radiation. More details about the principle, structure,
and calculation process of the CASA model can be found in Potter et al. [56].

In the CASA model, εmax is the most critical parameter affecting the estimation accuracy. A previous
study from Potter et al. [54] demonstrated that average εmax of global vegetation is 0.389; however,
εmax varies significantly in different vegetation types across the world. Based on measured vegetation
NPP data and the CASA model, Zhu et al. [20] conducted a systematical analysis on εmax of different
vegetation types (such as forest, shrub, meadow, cultivated land, swamp, etc.), and finally obtained
the εmax of typical vegetation types in China. Due to the lack of measured biomass data, in this study,
we directly followed the εmax values of different land-use types in Zhu et al. [20]: 0.542 for paddy field
and dry farmland, 0.985 for forest land, 0.429 for shrubland, 0.475 for sparse forest land, and 0.542
for grassland.

Changes in land use are a continuous event in space and time; however, due to limited two
scenarios of land use data, the following hypothesis was made: the calculated NPP of the Poyang Lake
basin during 2000–2009 (2000s) was based on the land-use scenario in 2005, whereas the calculated
NPP during 2010–2017 (2010s) was based on the land-use scenario in 2015.

https://cmdp.ncc-cma.net/cn/index.htm
https://cmdp.ncc-cma.net/cn/index.htm
http://www.resdc.cn/


Remote Sens. 2020, 12, 3525 6 of 20

2.3.2. Linear Regression Analysis

A simple linear regression model was used to detect the change rate of annual NPP during
2000–2017. The form of the linear regression equation is given as follows:

y = αt + b (4)

where α is the slope of the line which estimates the change rate of annual NPP, b represents the intercept,
t is the time and y is annual NPP from 2000 to 2017. In the above equation, the slope of α was obtained
by the least-squares fitting. The change rate can be positive (α > 0) or negative (α < 0) to indicate
increasing or decreasing linear trends of NPP. The significance of the trend was further evaluated by
the Mann–Kendall test [57,58].

2.3.3. Correlation Analysis

Pearson correlation coefficient (R) was used to measure the degree of correlation between the two
variables. The calculation formula of R is as follows:

RXY =

∑n
i=1

[(
Xi −X

)
×

(
Yi −Y

)]
√∑n

i=1

(
Xi −X

)2
√∑n

i=1

(
Yi −Y

)2
(5)

where n is the number of years (in this study, n = 18); RXY is the Pearson correlation coefficient of the
two variables X and Y; Xi and Yi are the values of X, Y series in the i-year. X and Y are the mean value
of the two variables during the study period.

The value of Rxy is between −1 and 1 The greater the absolute value of Rxy, the stronger the
correlation. The significance of the correlation was evaluated by the critical values of α = 0.468 (p < 0.05)
and α = 0.590 (p < 0.01) based on t-test. That is, the correlation is significant at the 0.05 significance level
if |Rxy| ≥ 0.468 and at the 0.01 significance level if |Rxy| ≥ 0.590. A meteorological factor is considered to
be the limiting factor for the NPP variation if the correlation between NPP and the meteorological
factor is significant. In this study, the Pearson correlation coefficient (R) and significance level (p < 0.05)
between NPP and the three meteorological factors were estimated on annual and pixel scales with the
Matlab software.

2.3.4. Estimation of the Impacts of Climate and Land Use Changes

Vegetation NPP is the production per unit of the terrestrial area. Therefore, total production (TP)
can be calculated as:

TP = A×NPP (6)

where A is area.
The change of TP in two different periods can be considered as:

∆TP = TP2 − TP1 = A2 ×NPP2 −A1 ×NPP1 (7)

Because A2 = A1 + ∆A and NPP2 = NPP1 + ∆NPP, then the above equation becomes

∆TP = (A1 + ∆A) × (NPP1 + ∆NPP) −A1 ×NPP1

= A1 × ∆NPP + ∆A×NPP1 + ∆A× ∆NPP
(8)

The subscripts in the above equations mean corresponding values in two different periods.
It is obvious that the right side of the above equation consists of three terms: A1 × ∆NPP,

∆A×NPP1 and ∆A× ∆NPP. Regarding the first period, ∆TP is the sum of the NPP change-induced
term plus the area change-induced term plus an interaction term. In the perspective of driving factors,
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the first term refers to climate change, the second term refers to land-use change, and the third one
refers to the interaction between climate change and land use.

According to the above analysis, the relative contribution of the three terms to the change of TP
(i.e., ∆TP) can be calculated as:

ηclim =
A1 × ∆NPP
|∆TP|

× 100% (9)

ηland =
∆A×NPP1

|∆TP|
× 100% (10)

ηinteract =
∆A× ∆NPP
|∆TP|

× 100% (11)

where ηclim, ηland and ηinteract are the contribution rates of climate change, land-use change, and the
interaction term, respectively; |∆TP| expresses the absolute value of ∆TP.

3. Results

3.1. Changes of NPP

Figure 2 presents the spatial distribution and linear trend of vegetation NPP across the Poyang
Lake basin during 2000–2017. Spatially, NPP is high in the surrounding mountains, such as the
southern of the Ganjing sub-basin, the eastern of the Raohe sub-basin, and the south of the Xinjiang
sub-basin (Figure 2a). Low NPP areas are mainly distributed in those river alluvial plains. Especially,
NPP is commonly low in the areas centered by the lakeside floodplain of the Poyang Lake (Figure 2a).
Statistical results indicate that the average NPP of vegetated land in the Poyang Lake basin was 741.10
gC·m−2 with a maximum value of 1249 gC·m−2. Vegetation NPP in 35% area of the basin was ranged
in 400–600 gC·m−2, and 28% area was ranged in 1100–1200 gC·m−2.
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The results seen in Figure 2b indicates that the linear change rate of NPP across the Poyang
Lake basin was ranged from −53.83 to 41.09 gC·m−2

·a−1. The areas with increasing NPP were mainly
distributed in the center and south of the Ganjiang sub-basin and north of the Xiushui sub-basin.
In contrast, the areas with decreasing NPP were scattered in the lower alluvial plains of main tributary
rivers, especially in the Ganjiang and Fuhe sub-basins. The statistical result indicates that NPP in 92%
of the basin showed an increasing trend (slope > 0), while only 8% of the basin showed a decreasing
trend (slope < 0). This result demonstrates that the overall status of land vegetation in the Poyang Lake
basin is getting better over the past two decades.

For the whole basin, the average annual total production was 109.43 T gC. Over the past 18 years,
both NPP and TP of the basin increased significantly (p < 0.05) (Figure 3). The linear change rate was
about 5.49 gC·m−2

·a−1 for NPP, and 0.85 T gC·a−1 for TP. The results in Figure 3 also indicate that both
NPP and TP showed an obvious inter-annual fluctuation before 2012 and then turned to a monotonous
increase after that year.
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Figure 3. Variations of annual net primary productivity (NPP) and total production (TP) of the Poyang
Lake basin during 2000–2017.

3.2. Changes of Land Use and Npp in Two Different Periods

Figure 4 displays the spatial distribution and changes of the two land-use scenarios in 2005 and
2015 across the Poyang Lake basin. The figure shows that land-use change in the basin mainly occurred
in the area around the floodplain of Poyang Lake and the mountainous area in the south of the Ganjiang
sub-basin (Figure 4c). The total land-use change area was about 4800 km2, accounting for 3% of the
whole Poyang Lake basin. Specific land use transfer matrix from 2005 to 2015 was listed in Table 1.
From which, complex mutual transformation among land-use types can be observed. Land use types
with decreased area mainly include the cultivated land (PF and DF), shrub (SB), and sparse forest
(SF). The area of construction land (WC), forest land (FT), and grassland (GL) has increased. All the
land use types have been transformed into construction land in a certain area. Particularly, the area of
cultivated land transferred to construction land is very obvious. In addition, the mutual transformation
between forest (FT) and sparse forest (SF) was relatively prominent. In general, the characteristics of
land-use change in the Poyang Lake basin during the past two decades are the remarkable increase of
construction land (WC) and forest (FT), and the decrease of other land-use types.

Compared with the land-use change that only occurred in certain areas, vegetation NPP has
changed with varying degrees across the entire basin during the past two decades. The results in
Figure 5 indicate that an increasing trend of vegetation NPP can be observed in most areas of the basin.
The areas where NPP declined were sparsely distributed in the middle-lower alluvial plains of the five
tributaries and around the major cities across the lake basin (Figure 5c).
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Table 1. Transfer matrix of land-use change from 2005 to 2015 (unit: km2).

Land Use Type PF DF FT SB SF GL WC

PF 30,463 27 54 3 36 5 588
DF 13 10,954 19 0 21 4 226
FT 56 63 67,235 25 544 331 200
SB 3 9 445 9043 25 18 38
SF 27 37 1110 1 19,255 51 207
GL 38 6 178 9 103 6467 57
WC 156 32 7 0 5 16 10,646
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3.3. Correlations between NPP and Meteorological Factors

The calculation results show that the three major meteorological factors of temperature,
precipitation, and total solar radiation showed different trends from 2000 to 2017, with linear change
rates of 0.03 ◦C·a−1 (p < 0.05), 14.43 mm·a−1, and –8.23 MJ/m2

·a−1, respectively. At the basin scale,
NPP in the Poyang Lake basin was positively correlated with all three meteorological factors, and the
correlation coefficients were 0.472 (p < 0.05), 0.221, and 0.084, respectively (Figure 6). However, only the
correlation between NPP and temperature is significant.
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Figure 6. Scatters and fitted linear correlations between annual NPP and (a) temperature,
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Figure 7 shows the spatial distribution and statistical results of the correlation coefficients between
NPP and major meteorological factors. It can be seen from the figure that the spatial distribution
characteristics of correlation coefficients between NPP and the three meteorological factors across
the basin are quite different. The correlation coefficient between NPP and temperature is higher
in the center and south parts of the basin (Figure 7a). However, the opposite distribution can be
observed for the correlation coefficient between NPP and precipitation (Figure 7b). For solar radiation,
higher correlation coefficients are sparsely distributed in the middle strip of the basin (Figure 7c).
The proportion of the area with positive correlations for annual temperature was 97.1% of the whole
region, and for annual precipitation accounted for 96.3%, and annual solar radiation accounted
for 76.3%. Statistical results further indicate that the area where NPP showed significant positive
correlations with temperature, precipitation, and solar radiation accounts for 26.8%, 10.8%, and 2.6%
of the whole basin, respectively (Figure 7d–f).

To better reflect the impacts of climatic changes on vegetation NPP, we used Maxwell color triangles
to synthesize a map about significant correlations between NPP and the three meteorological factors
(Figure 8). From visual inspection, the annual temperature had the widest effect on the vegetation NPP
in the Poyang Lake basin. In addition, the figure indicates that NPP in some areas was significantly
correlated with more than two meteorological factors simultaneously (Figure 8b–d), and the area
accounts for about 1.8% of the basin. Considering the superposition of the three meteorological factors,
the area where NPP has the strongest significant correlation with temperature accounts for 26.1% of
the basin. The area where NPP has the strongest significant correlation with precipitation was about
10.4%, while this for solar radiation was only 1.9%.
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Figure 7. Correlation analysis between net primary productivity (NPP) and the three meteorological
factors. (a–c) are the spatial distribution of the correlation coefficients between annual net primary
productivity (NPP) and temperature, precipitation, and solar radiation during 2000–2017 over the
Poyang Lake basin; (d–f) are histograms of the correlation coefficients between annual net primary
productivity (NPP) and the three meteorological factors at a pixel scale. The red parts in the histograms
indicate significant positive correlations (p < 0.05) and their area percentages of the whole basin.

3.4. Controls of Climate and Land Use Change on TP

According to Equation (6), three driving factors determined the change of TP: climate change,
land-use change, and the interaction term. Because the effects of the three driving factors are much
different among the areas with land-use change and without land-use change, we first investigated
the land-use composition in the areas without land-use change and the specific land-use change in
the areas where the land-use change occurred according to the land-use scenarios in 2005 and 2015.
The result in Table 2 shows that the areas with land-use change in the Poyang Lake basin only accounts
for 3% of the whole basin. In those areas without land-use change, the percentage composition of land
cover was as follows: 19% for PF, 7% for DF, 42% for FT, 6% for SB, 12% for SF, 4% for GL, and 7% for
WC. In those areas where the land-use change occurred, the changes of different land-use types were
as follows: PF decreased 414 km2, DF decreased 116 km2, FT increased 593 km2, SB decreased 500 km2,
SF decreased 698 km2, GL increased 35 km2, and WC increased 1100 km2.
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Table 2. Composition and change of land use during the two periods in the Poyang Lake basin
(Unit: km2).

Land-Use Type Areas without
Land-Use Change

Areas with Land-Use Change
Changed Area

2000s 2010s

PF 30,463 714 299 −414
DF 10,954 290 173 −116
FT 67,235 1220 1813 593
SB 9043 538 38 −500
SF 19,255 1432 734 −698
GL 6467 391 426 35
WC 10,646 216 1316 1100

Total area 154,062 4800 4800

Based on the above analysis, the impacts of the three driving factors on ∆TP were quantitatively
distinguished for the whole Poyang Lake basin as well as the areas with land-use change. Our calculation
indicates that the TP of the whole Poyang Lake basin increased 6.84 TgC during the 2010s with reference
to the 2000s. The increased TP during the 2010s was dominated by the effect of climate change, and the
contribution rate was about 112.4% (Figure 9a). Land-use change played a negative effect on the
change of TP with a contribution rate of –11.6%. The contribution of the interaction term only accounts
for −0.84%. For the areas where the land-use change occurred, TP decreased 0.79 T gC during the
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2010s with reference to the 2000s. However, the change of TP was mainly attributed to the effect of
land-use change with a contribution rate of −121.3% (Figure 9b). Climate change had a positive effect
on increasing productivity, and the contribution rate was 29.5%. The effect of the interaction term was
relatively prominent in these areas, and the contribution rate was −8.2%.
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The impacts of different land-use types on ∆TP in those areas where the land-use change occurred
were further examined. Specifically, land-use change of PF, DF, SB, SF, and WC caused a decrease of
production of 0.164, 0.052, 0.421, 0.499, and 0.186 T gC in the 2010s, respectively. However, land-use
change of FT and GL caused an increase in production of 0.489 and 0.047 T gC (Figure 10).
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4. Discussion

4.1. About the Verification of CASA Model

Comparative analysis and verification of simulation results are one of the indispensable premises
in model simulation research. There are generally three kinds of references to evaluate the simulation
accuracy of the NPP model: measured biomass data, estimates from other models, and remote
sensing-based estimates [19,26,59]. Because there is no report about NPP simulation in the Poyang
Lake basin previously, and it is difficult to conduct NPP monitoring of different vegetation types in
such a large area [25], we choose to compare and verify the simulation results with relevant researches
according to the above three methods. In addition, by considering the focus of this study, we mainly
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compared the average NPP of different land-use types estimated by various methods, while the more
detailed spatial comparison of the results was not conducted.

Results in Table 3 show that the estimated NPP in the Poyang Lake basin is basically within
the range of the observed values. In recent years, a large number of simulations on terrestrial NPP
in China have been performed. Our results of NPP simulation are comparable to those simulated
by CEVSA (Carbon Exchange between Vegetation, Soil, and the Atmosphere), IBIS (Integrated
Biosphere Simulator), and CASA models in China. MODIS 17A3 is a remotely sensed data product,
which provides continuous global monitoring of NPP product [60]. Previous studies have pointed out
that the calculated NPP from MODIS 17A3 product fluctuates less among different vegetation types,
however, it can well reflect the spatial variation characteristics of NPP [61]. Compared with this remote
sensing dataset, our results fluctuate greatly in different land-use types.

Table 3. Comparison of estimated net primary productivity (NPP) by different methods. (Unit: gC·m−2).

Method
Land-Use Type

Study Area Study Period
PF DF FT SB SF GL WC

CASA in this study 500.1 546.5 1068.5 448.4 477.1 498.4 452.6 Poyang Lake basin 2000–2017

CEVSA from
Tao et al. [7] 606 873 423 624 348 — China 1981–1998

IBIS from
Yuan et al. [59] — — 1072.1 214.0 278.2 203 — China 1961–2005

CASA from
Zhu et al. [20] 426.5 985.8 367.6 465.0 349.8 347.1 China 1989–1993

MODIS 17A3 528.3 581.4 628.3 605.1 588.3 516.7 556.6 Poyang Lake basin 2000–2017

Measured value 239–760 a* 910–1340 b* 4–1200 c* 200–2000 c* 100–727 c* — China

Note: a* indicates measured value from Song et al. [62]; b* indicates measured value from Tao et al. [7]; c* indicates
measured value from Yuan et al. [59].

Generally, the simulation results of each vegetation type are comparable with the references,
indicating the estimated NPP by the CASA model in our study is reliable. Inevitably, there are some
differences in NPP estimation by different methods, which may be related to the calculation algorithm
of the model itself, the spatial-temporal scale of the study area, the different classification of land-use
types, and the accuracy of data sources.

4.2. Impact of Climate Change on NPP

The productivity of the terrestrial ecosystem is significantly affected by climatic conditions.
However, the relationship between vegetation NPP and meteorological factors varies with geographical
location [39]. Studies have shown that in arid and semi-arid areas, vegetation growth is mainly limited
by precipitation, while the effects of temperature and radiation are relatively weaker [10,32,49,63].
On the contrary, our investigation demonstrates that in the humid Poyang Lake basin, the temperature
is the main meteorological driving factor affecting vegetation NPP, followed by precipitation and solar
radiation. Previously, Nemani et al. [21] pointed out that vegetation growth on 40% of the earth’s
surface is mainly limited by water, while the other 33% and 27% are limited by temperature and
solar radiation, respectively. Tao et al. [7] revealed that the effects of temperature and precipitation
on NPP variation vary in different regions of China, but on the whole, precipitation is the primary
controlling factor, and the correlation between NPP and temperature is weak. In the Yangtze River basin,
Qu et al. [22] concluded that temperature is the most critical limiting factor in vegetation greenness,
while the effect of precipitation is relatively small. In terms of geographic pattern, precipitation matters
most on vegetation dynamics in arid and semi-arid areas, while the relative effects of temperature and
solar radiation are more prominent in those humid areas.

The mechanism behind the influence of climatic variables on vegetation NPP dynamics is
complicated. Available water is essential for plant growth. The increase in precipitation can improve
soil water supply conditions and enhance the photosynthetic rate, thereby increasing productivity [64].
However, the decrease of precipitation will lead to an increase in total respiration, Gross Primary



Remote Sens. 2020, 12, 3525 15 of 20

Productivity, and respiration of leaves and roots [65]. The impact mechanism of temperature on
vegetation NPP is more complicated, and mainly reflected in the following two aspects: on one hand,
an increase of temperature can prolong the growing season, enhance the ability of plant photosynthesis,
and thus promote the vegetation growth; on the other hand, an increase of temperature will strengthen
evapotranspiration, accelerate soil dry out, and decrease photosynthesis rate [27]. Concerning those
arid and semi-arid regions, the Poyang Lake basin is located in the subtropical humid zone with
good hydrothermal conditions. The average annual precipitation and temperature of the basin are
about 1680 mm and 17.6 ◦C, respectively. Although abundant precipitation is helpful to improve the
water supply condition of the soil and increase vegetation photosynthetic rate, it also reduces the
sensitivity of vegetation NPP to the change of precipitation. In addition, based on the precipitation
background of the Poyang Lake basin, the positive effect of rising temperature on plant photosynthesis
is much greater than that of the negative effect of potential drought induced by rising temperatures.
A previous study also confirmed that vegetation resilience to drought stress in humid areas is stronger
than that in other areas [66]. Therefore, this kind of climate condition in the Poyang Lake basin reduces
the dependence of vegetation growth on precipitation and highlights the impact of temperature.
Furthermore, our investigation also demonstrated that even inside the Poyang Lake basin, the impacts
of the three meteorological factors on NPP also show great regional differences. Precipitation in the
south of Poyang Lake Basin is larger than that in the north. Therefore, vegetation NPP in the south is
more affected by temperature, while in the north is more affected by precipitation.

Generally, the increase of vegetation NPP in the Poyang Lake basin was dominated by the
impact of climate change. This result was consistent with most of the similar studies in other
regions, e.g., [10,38,39]. At the basin scale, our investigation indicates that the annual NPP of the
Poyang Lake basin was positively correlated with the three meteorological factors. In recent decades,
climate change in the Yangtze River Basin was obvious, especially the rise of temperature was
significantly, and precipitation showed an increasing trend in some areas [67]. The projected results
from climate models also indicate that that the temperature and precipitation in the Poyang Lake basin
may increase to a certain extent in the near future according to global warming and continuous climate
change in the Yangtze River basin [68,69]. This would have a positive effect on the enhancement of
carbon sequestration capacity and improvement of ecosystem quality in this subtropical humid area.

4.3. Impact of Human Activities on NPP

Land use/cover change is one of the most important human driving factors affecting NPP variation
among the underlying surface conditions. Our observation indicates that land-use change in the
Poyang Lake basin was driven by urbanization expansion and the efforts of ecological protection
during the past two decades. This was consistent with the rapid development of the social economy
of China in recent decades. In this process, areas of some natural land-use types, such as cultivated
land, shrub, and sparse forest were reduced to a certain extent, while the urbanization area increased
remarkably. All these caused a decrease of 1.326T gC productivity in the Poyang Lake basin during the
2010s with reference to the 2000s. In contrast, the increased area of forest and grassland in the 2010s has
led to an increase in the production of 0.563 T gC. The increased area of forest and grassland of the basin
in the 2010s may benefit from the effect of the ecological restoration project, the “Mountain–River–Lake”
engineering, in recent years [70].

In comparison to the increased total production (TP) of 7.68 T gC caused by climate change,
land-use change induced decrease of vegetation total productivity (−0.79) in the basin was relatively
small. On the contrary, in those regions where land use occurred, the relative impact of the land-use
change was much bigger than that of climate change. Because of the complexity and lag of the land-use
change impact on ecosystems, as well as the difficulty to obtain large-scale continuous land-use data,
many human impacts (such as the ecological restoration project) on the local ecological environment
cannot be quantified [71,72]. To better understand the changes of carbon sequestration capacity and
ecological service function of the terrestrial ecosystem under the changing environment in those
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fast-developing regions, strengthen the research about the responses of vegetation productivity and
ecosystem status to the changes of land use structure and function is quite necessary, and this leaves
for future studies.

5. Conclusions

Taking the Poyang Lake basin as the study area, the current study investigated the change patterns
and causes of vegetation NPP in a subtropical humid area. Our investigation indicates annual NPP and
total production (TP) of the Poyang Lake basin experienced a significant increasing trend from 2000 to
2017. Meanwhile, land-use change in the basin was driven by urbanization expansion and the efforts
of environmental protection in recent years. In terms of climatic influencing factors, the NPP of the
Poyang Lake basin was positively correlated with temperature, precipitation, and solar radiation at the
basin scale. Annual temperature significantly limits vegetation NPP variation for about 26.1% area of
the Poyang Lake basin, while precipitation and solar radiation as the limiting factors only accounted for
10.4% and 1.9% of the basin. Attribution analysis further revealed that at the basin scale, the increased
TP of the Poyang Lake basin during the 2010s was dominated by the effect of climate change with
reference to the 2000s, while land-use change played a negative effect on the change of TP. However,
in the areas where the land-use change occurred, the decreased TP was mainly attributed to the impact
of land-use change, even though climate change showed a positive effect of increasing productivity.

Generally, the result of this study demonstrates that in contrast to those arid and semi-arid areas,
the temperature is the major influencing climatic factor in determining vegetation productivity in
the subtropical humid basin, followed by precipitation and solar radiation. Our investigation also
quantified the impact of climate change and land-use change on NPP dynamics in those land-use change
areas, which is an important advance that has not been considered in previous studies. According to
the increasing trend of NPP, the overall vegetation status in the Poyang Lake basin has improved over
the past two decades. It is anticipated that climate change and human disturbance will continue in the
near future, further research on the influence and mechanism of key factors interaction on vegetation
carbon and water processes at different scales are necessary. In addition, more attention should be
paid to the response and functional changes in terrestrial ecosystems.
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