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Abstract

Ensemble weather forecasting generally suffers from bias and under-dispersion,

which limit its predictive power. Several post-processing methods have been

developed to overcome these limitations, and an intercomparison is needed to

understand their performance. Four state-of-the-art methods are compared in

post-processing precipitation and air temperature of the Global Ensemble Fore-

casting System (GEFS) reforecasts using a simple bias correction (BC) method

as a reference. These methods include extended logistic regression (ExLR),

generator-based post-processing (GPP), Bayesian model averaging (BMA) and

affine kernel dressing (AKD). All these methods are tested over 659 national

standard meteorological stations in China. The research concerns are the influ-

ence of region and forecast date and the role of BC on ensemble weather fore-

casting. It was found that: (1) the deterministic methods (GPP and ExLR) are

more skilful than the probabilistic methods (BMA and AKD) in obtaining the

well-calibrated and skilful ensemble forecasts; (2) the forecast skill of the post-

processed ensemble weather forecasts is comparably high in the northern arid

areas for precipitation, while the forecast skill for air temperature is only low in

the Qinghai-Tibetan Plateau area; (3) the skill difference of the post-processed

forecasts on different forecast date is only evident for air temperature, while not

apparent for precipitation; and (4) only correcting bias for the ensemble weather

forecasts can achieve about 0–70% (for precipitation) and 30–100% (for air tem-

perature) forecast skill improvement for deterministic methods.
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1 | INTRODUCTION

Ensemble weather forecasting (EWF) has been a growing
field of numerical weather prediction (NWP) since the

1990s due to the fast-increasing computation resources
(Gneiting and Raftery, 2005). Using EWF to generate
ensemble forecasts involves running the NWP model
multiple times with the perturbations added to the initial
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state and the model physics process (Bauer et al., 2015).
Many studies have been conducted to verify the advan-
tages of ensemble weather forecasts, such as improving
weather forecast predictability and providing forecast
uncertainty information (Zhu et al., 2002; Zhu, 2005;
Leutbecher and Palmer, 2008). For example, Zhu (2005)
concluded that the ensemble weather forecasts are better
than the deterministic weather forecasts in several
aspects, including maintaining a high forecast skill after
three to five days in global modelling applications, exten-
ding the forecast lead time to about eight days and, most
importantly, providing forecast uncertainty information.
However, when comparing the ensemble forecasts with
the corresponding observations, raw ensemble weather
forecasts are typically unreliable, which results from
insufficient model resolution, less-than-optimal initial
conditions, suboptimal treatment of model uncertainty
and sampling errors (Gneiting and Raftery, 2005). Fur-
thermore, the skill of the ensemble forecasts is also
influenced by systematic bias, insufficient representation
of forecast uncertainty, and mismatched spatial scale
between gridded forecasts and station-based observations
(Hagedorn et al., 2008; Hamill et al., 2008; Scheuerer and
Hamill, 2015).

Realizing the full potential of the ensemble forecasts
requires statistical post-processing techniques that are
used to remove the bias and reconstruct the proper
ensemble spread. Various post-processing methods have
been proposed and used for this purpose. These can be
divided into two types according to the form of output,
namely, probabilistic methods and deterministic
methods.

Probabilistic methods seek to obtain the probabilistic
forecasts calibrated from the raw ensembles. Some proba-
bilistic methods build the relationships between the
observed relative frequencies for the specified events and
the probabilities derived from the raw ensemble weather
forecasts. These relationships are usually based on the
verification statistics used to evaluate the ensemble fore-
casts, such as rank histograms (Hamill and Colucci, 1997,
1998; Eckel and Walters, 1998), reliability diagrams
(Atger, 2003) and the spread–skill relationship
(Atger, 1999). Some probabilistic methods build the fore-
cast model based on the raw forecasts to predict the prob-
ability of the specified event. For example, Hamill
et al. (2004) used the logistic regression (LR) method and
chose the ensemble mean as a predictor for precipitation
and the ensemble mean anomaly as a predictor for tem-
perature. The proposed method was evaluated for the
improvement of the medium-range precipitation and air
temperature forecast skill in the United States. Their
results showed that the generated probabilistic forecasts
are more skilful and reliable than the raw ensemble

weather forecasts. Wilks (2009) further extended logistic
regression (ExLR) to yield coherent probabilistic forecasts
for multiple events simultaneously. Wilks (2006) used
ensemble model output statistics (EMOS)—which is also
called non-Gaussian regression (NGR) in some studies—
proposed by Gneiting et al. (2005) to make a probabilistic
forecast for the specified event. The EMOS assumes that
the model mean can be predicted by the ensemble mean,
and the model variance is a linear function of the ensem-
ble variance. Other probabilistic methods are based on
estimating the predictive probability distribution function
(PDF) for generating probabilistic forecasts. Bayesian
model averaging (BMA) is a statistical method used to
combine forecasts from different sources. When the BMA
is used to post-process ensemble forecasts, the predictive
PDF is obtained by weighted averaging all PDFs centred
on the individual bias-corrected forecasts. The weight
assigned to the forecast is equal to the posterior probabil-
ity of the model generating the forecasts and reflects the
model's relative contribution to predictive skill over the
training period. Raftery et al. (2005) used the BMA to
improve the 48 hr temperature forecasts from the Pacific
Northwest using the University of Washington's fifth-
generation Pennsylvania State University–NCAR
(National Center for Atmospheric Research) Mesoscale
Model (MM5) ensemble. The results showed that the pre-
dictive PDF from the BMA is well calibrated and sharp
compared with the raw ensemble forecasts. Sloughter et
al. (2007) modified Raftery et al.'s (2005) BMA for post-
processing precipitation forecasts. The revision is that the
PDF for the individual member is replaced from a normal
distribution by a discrete-continuous distribution, that is,
a discrete probability for precipitation occurrence and a
continuous gamma distribution for precipitation amount.
The modified BMA was evaluated in the North America
Pacific Northwest using the University of Washington's
mesoscale ensemble. The results showed that the predic-
tive PDF is well calibrated and sharp, the probability of
precipitation (PoP) forecasts is much better calibrated
than those based on the raw ensemble, and the estimates
of high-precipitation amount probability are better than
the results using the LR. Ensemble dressing is another
strategy to obtain the forecast PDF by dressing the origi-
nal forecast using historical error statistics or the vari-
able's statistical properties (Roulston and Smith, 2003).
Affine kernel dressing (AKD) (Bröcker and Smith, 2008)
is a representative ensemble dressing strategy. In it, every
member is represented by a kernel distribution with a
common set of parameters linked to the ensemble, and
the predictive PDF is obtained by equally weighted aver-
aging the all-member PDF. The EMOS can also be
extended to provide the predictive PDF for different
weather variables, such as surface temperature
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(Hagedorn et al., 2008), precipitation (Scheuerer and
Hamill, 2015; Baran and Nemoda, 2016) and surface
wind speed (Taillardat et al., 2016).

The deterministic methods use the forecast informa-
tion from the ensemble weather forecasts for sampling
from the historical observations, and the final output is
the discrete regenerated ensemble forecasts. Roulin and
Vannitsem (2012) proposed an inversing algorithm in
Wilks's ExLR for generating the post-processed weather
forecast ensembles by sampling the historical observa-
tions. This method was evaluated in two small catch-
ments in Belgium using the European Centers for
Medium-Range Weather Forecasts (ECMWF) forecasts.
The results showed that the proposed methods improve
reforecasts in terms of mean error and probabilistic per-
formance. Chen et al. (2014) proposed a generator-based
post-processing method (GPP) for post-processing precip-
itation and air temperature forecasts. The forecast gener-
ator is fitted using the historical observations which are
selected based on the forecast information of the ensem-
ble weather forecasts. The GPP was evaluated using the
reforecasts from the Global Ensemble Forecasting System
(GEFS) over two Canadian watersheds. The results
showed that the GPP could increase the predictive power
of the ensemble forecasts for one to seven lead days.

Various post-processing methods need to be com-
pared to provide the guideline for method selection and
insights for method improvement. Wilks (2006) summa-
rized and compared eight probabilistic methods for post-
processing ensemble weather forecasts in the Lorenz '96
settings, including: (1) early and ad-hoc approaches
(direct model output, rank-histogram recalibration and
multiple implementations of single-integration MOS
equations); (2) ensemble dressing methods; (3) regression
methods (LR and NGR); and (4) Bayesian methods (fore-
cast assimilation and BMA). Finally, the study concluded
that the LR, ensemble dressing and NGR were promising
methods. Wilks and Hamill (2007) further compared the
above three promising methods for post-processing the
GEFS ensemble precipitation and temperature forecasts.
They found that no single method was consistently better
than the other two methods. Schmeits and Kok (2010)
also found that the performance between the BMA and
LR was not statistically significant when post-processing
ECMWF ensemble precipitation forecasts. The above
comparison studies mainly focus on the comparison
between the probabilistic post-processing methods, while
less attention is paid to the comparison with the deter-
ministic post-processing methods. Vannitsem and
Hagedorn (2011) compared the deterministic method
error-in-variable model output statistics (EVMOS) and
the probabilistic method NGR to improve the ECMWF
temperature forecast performance over Belgium. The

EVMOS is mainly used to correct the systematic bias and
provide little improvement for the ensemble spread,
while the NGR considers improving the ensemble spread.
The results showed that the EVMOS could produce the
ensemble consistent with the observations of the NGR,
and even outperforms the NGR when the raw ensemble
is highly skewed, or the extreme event occurred. There-
fore, both deterministic and probabilistic post-processing
methods need to be compared for a better understanding
of the advantages and disadvantages of these methods.

The performance of the post-processing methods may
be influenced by multiple factors, such as the region and
date when the forecasts are made (Atger, 2003; Hagedorn
et al., 2008; Scheuerer and Hamill, 2015). Therefore, the
study will provide some useful insights for method selec-
tion if the influence of these factors can be considered in
the methods comparison.

For many post-processing methods, addressing the
issue of bias and under-dispersion requires two associated
procedures, bias correction (BC) and calibrating the PDF.
The post-processing method differs in the way it cali-
brates the PDF, but the role of the BC in the post-
processing methods has received less attention (Hagedorn
et al., 2008; Schmeits and Kok, 2010). It was also found
that implementing the BC before weighing each member
in using a BMA would bring an overweighting of clima-
tology, finally resulting in an increase in the mean
squared error (Erickson et al., 2012; Hodyss et al., 2016).

The study evaluated and compared four state-of-the-
art post-processing methods: the BMA, AKD, weather
GPP and ExLR, in order to post-process precipitation and
air temperature over a large study area covering different
climates and topographies. Their performances were also
compared with a reference method: the BC. The follow-
ing scientific questions will be addressed:

• How do the selected four methods perform in post-
processing precipitation and air temperature ensemble
forecasts?

• Is there any performance difference between the deter-
ministic methods and probabilistic methods?

• How does the performance of the four methods vary
across space and time?

• To what extent is the forecast skill of the ensemble
weather forecasts better than the reference method?

2 | DATA AND STUDY AREA

2.1 | Study area

The post-processing methods were evaluated over the
mainland of China, between 16–52� N and 75–133� E.
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The study area is a vast territory with various climate cat-
egories and complex topographic conditions, which allow
a consideration of the influence of region selection over
the post-processing methods. According to the climate
region division in Wang and Li (2007), fig. 3), China is
classified into seven climate regions: Northeast (NE),
North (N), Northwest (NW), East (E), Southwest (SW),
South (S) and Qinghai-Tibetan Plateau (QT). The
weather stations chosen from the Chinese mainland
must have had at least 30 year available observations for
evaluating the post-processing methods; 659 national
standard meteorological stations were therefore selected
(Figure 1).

2.2 | Data

The post-processing methods were used to post-process
two different weather variables: daily precipitation and
daily mean air temperature. The observed precipitation
and mean air temperature were obtained from the China
Meteorological Data Sharing Service System (http://cdc.
cma.gov.cn) covering the period 1961–2014. Ensemble
precipitation and air temperature forecasts were taken
from the second version of the Global Ensemble Fore-
casting System (GEFS) reforecasts (http://portal.nersc.
gov/project/refcst/v2/) (Hamill et al., 2013). Eleven-mem-
ber forecasts of up to 16 days were provided from Decem-
ber 1984, and this data set was archived with a global
grid of 1� for latitude and longitude.

For the study, GEFS forecasts and observations were
subsampled using the common period 1985–2014. The
GEFS forecast data were interpolated to the surface obser-
vation locations by the inverse distance weighting (IDW)
method using the nearby four grids. Since one week is the
maximum lead time for skilful precipitation forecasts (Liu
and Coulibaly, 2011; Chen et al., 2014), the GEFS
reforecasts with seven lead days were used in the study.

3 | METHODOLOGY

The post-processing methods used included two deter-
ministic methods and two probabilistic methods. The
deterministic methods included the GPP and ExLR; the
probabilistic methods used the BMA and AKD. For both
deterministic and probabilistic methods, the final post-
processed forecasts were presented in the form of a
multi-member ensemble. For the probabilistic methods,
the final PDF was transformed into an ensemble by ran-
dom sampling, whose frequency was defined as 1,000 to
represent the property of the PDF.

Two different weather variables, precipitation and air
temperature, were used for the evaluation of the post-
processing methods. The distinct statistical property of
the two variables offers an excellent opportunity to evalu-
ate these post-processing methods comprehensively. Spe-
cifically, the air temperature forecasts are normally
distributed, while the precipitation forecasts are skewed.
Generally, the post-processing of air temperature with a

FIGURE 1 Clustered weather

stations using different colours for

precipitation (a) and air temperature

(b). The dashed line separates

different climate divisions in China
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normally distributed variable is relatively easy, while the
post-processing of precipitation has significant chal-
lenges. For example, Scheuerer and Hamill (2015) listed
the three difficulties for post-processing precipitation: (1)
the precipitation forecasts are hard to depicted because of
their mixed discrete/continuous nature; (2) forecast
uncertainty is generally greater for a large precipitation
amount; and (3) the high precipitation amount occurs
very infrequently. Thus, the calibration of precipitation
forecasts requires much more extensive training data
than the air temperature forecasts to cover a possible rare
event (Hagedorn et al., 2008).

When simulating the highly skewed distributed pre-
cipitation amounts using the methods listed above, it was
found that the precipitation amounts are poorly fitted,
especially for extreme values. Using the power-trans-
formed precipitation amounts can give an especially good
fit (Sloughter et al., 2007; Hagedorn et al., 2008). Settings
the exponent as ≤ 1/3 gives the best fitting performance
when different exponent values (1, 1/2, 1/3, 1/4 and 1/5)
were tested to fit the power-transformed non-zero precip-
itation amounts to the skewed two-parameter Gamma
distribution. Using the power-transformed precipitation
amounts is also recommended by Sloughter et al. (2007)
and Roulin and Vannitsem (2012), the authors of the
BMA and ExLR methods. Therefore, the cubic root of the
precipitation amounts was used for the four post-
processing methods and BC.

3.1 | Generator-based post-
processing (GPP)

The GPP proposed by Chen et al. (2014) uses a post-
processing generator with parameters linked to the
ensemble forecasts. The generated ensemble forecasts are
proved to be fully coherent with the ensemble forecasts.
A brief introduction to the GPP now follows.

3.1.1 | Precipitation

For post-processing the precipitation forecasts, the first step
is to define precipitation classes according to precipitation
intensity. For each season, precipitation intensity is divided
into several precipitation classes according to the ensemble
mean precipitation amounts. In the study, 10 precipitation
classes were defined using 11 quantiles (0.0, 0.1, …, 1.0) of
the non-zero ensemble-mean precipitation amounts for all
forecasts in the same season during all historical periods.
The GPP is calibrated using the relationship between the
forecasted precipitation classes and the probability of
observed occurrence or observed precipitation amounts.

Specifically, for each class, the probability of the observed
precipitation occurrence corresponding to this class is used
as the probability of precipitation (PoP). The cubic root of
the non-zero precipitation amount is supposed to follow a
two-parameter gamma distribution. For any given day,
ensemble forecasts with an arbitrary size (1,000 in the
study) can be generated using the following steps: (1) deter-
mine the precipitation class according to the ensemble
mean precipitation; (2) 1,000 random numbers generated
from the 0–1 uniform distribution are used to represent
1,000 possible precipitation probabilities; and (c) the 1,000
members whose random number is ≤ PoP are deemed as
wet, and the precipitation amount for these wet members
is generated using the fitted gamma distribution.

3.1.2 | Temperature

Using the GPP to post-process air temperature forecasts
consists of two associated procedures: the BC and
reconstructing the ensemble spread. The ensemble mean
air temperature forecasts are corrected using the linear
regression method. A linear equation is calibrated for each
day by fitting between the observed and ensemble mean air
temperature anomalies using a neighbouring 15 day win-
dow. The observed and ensemble mean air temperature
anomalies are obtained by subtracting the long-term daily
mean observed air temperature from the corresponding
observed and ensemble mean air temperature. The ensem-
ble spread is generated using a two-parameter normal dis-
tribution. The corrected ensemble mean air temperature is
used as the mean of the normal distribution, and the stan-
dard deviation of the normal distribution is calibrated on
the seasonal scale by using an iterative method proposed
by Chen et al. (2014). For a given day, the post-processed
air temperature ensembles are generated by repeatedly
multiplying the optimized standard deviation by a normally
distributed random number and adding to the bias-
corrected ensemble mean air temperature.

3.2 | Extended logistic regression (ExLR)

The ExLR associates the probability that weather quan-
tity y (e.g. daily precipitation amount or air temperature)
is less than or equal to the threshold q to the predictor X
(e.g. the ensemble mean or ensemble spread) and the
threshold q itself:

P y≤ qð Þ=H f Xð Þ+ g qð Þ½ � ð1Þ

where H(�) is the logit function with the form of H
(t) = [1 + exp(−t)]−1; f(X) is a linear combination of the
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predictors X; and g(q) is a non-decreasing function con-
cerning the threshold q. For precipitation g(q) takes the
form βg ×

ffiffiffi
q

p
, the same as in Wilks (2009) and Roulin

and Vannitsem (2012). For temperature, g(q) = βg× q,
where the air temperature can be negative; and βg is the
parameter in g(q).

The selection of predictors X is essential for building
the LR model. The critical information for the ensemble
is found to be the ensemble mean and ensemble spread
(Wilks, 2009). However, Roulin and Vannitsem (2012)
found that choosing the ensemble spread offers marginal
improvement for precipitation. Therefore, for air temper-
ature, both the ensemble mean and ensemble spread are
selected as predictors. For precipitation, the cubic root of
the ensemble mean is used.

Roulin and Vannitsem developed a method to gener-
ate forecasts by inverting the logistic function in
Equation 2:

y= g−1 ln 1−P
P

� �
− f Xð Þ

βg

" #
ð2Þ

where P is a random number drawn from the uniform
distribution.

For any given day forecast, ensemble forecasts with
1,000 members are generated using Equation 2.

3.3 | Bayesian model averaging (BMA)

3.3.1 | Precipitation

The forecast PDF for the cubic root of precipitation accu-
mulation y is defined as:

p yj f 1,…, f Kð Þ=
XK
k=1

WkfP y=0j f kð Þ�I y=0ð Þ

+P y>0j f kð Þ�gk yj f kð Þ�I y>0ð Þg
ð3Þ

where fk is the cube root of precipitation amount for mem-
ber k; K is the number of members; Wk is the posterior
probability of ensemble member k to be selected; I[…] is
unity if the condition in brackets holds, and 0 otherwise;
P(y = 0|fk) and P(y > 0|fk) are the probabilities of non-
precipitation and precipitation given the forecast fk,
respectively; gk(y|fk) is the conditional PDF of the cube
root precipitation amount y given that y is positive for mem-
ber k, and gk(y|fk) takes the form of a gamma distribution.

For parameter estimation, P(y = 0|fk) and P(y > 0|fk)
are estimated by an LR model. The model uses fk and the

member precipitation state indicator as predictors and is
associated with three member-specific parameters. Gk(y|
fk) is a two-parameter gamma distribution; and the
gamma mean and variance are assumed to have a linear
relationship with the member value and the ensemble
variance, respectively. The two parameters of the Gamma
mean correction model are also member specific. The
weights Wk and two correction parameters for the
gamma variance correction model need to be optimized
by the expectation–maximization (EM) technique. For
more details about parameter estimation, see Sloughter
et al. (2007).

3.3.2 | Temperature

The forecast PDF of daily air temperature y is speci-
fied by:

p yj f 1,…, f Kð Þ=
XK
k=1

Wklk yj f kð Þ ð4Þ

where fk is the air temperature forecast for member k; K
is the size of the ensemble; Wk is the posterior probability
of ensemble member k to be the best one; and lk(y|fk) is
the conditional distribution of y for the k-th member, and
here it takes the form of a two-parameter normal
distribution.

For parameters estimation, the Normal mean of lk(y|
fk) is assumed to have a linear relationship with the
member values and contains two member-specific
parameters. The Normal variance and the weights Wk are
optimized using the EM technique. For more details
about parameter estimation, see Raftery et al. (2005).

For any given day, ensemble forecasts with 1,000
members are generated by randomly sampling the built
PDF from Equations 4 or 5.

3.4 | Affine kernel dressing (AKD)

The forecast PDF for the weather variable is a combina-
tion of K kernel distributions, as specified by:

p yj f 1,…, f K ;θð Þ= 1
Kσ

XK
k=1

l
y−zk
σ

� �
ð5Þ

where y is the forecast variable; fk is the ensemble fore-
cast for the member k; K is the number of members; l(.)
is the kernel distribution (a Normal distribution is
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selected here); and zk and σ are the mean and bandwidth
for the kernel distribution, as defined by:

zk = a× f k + r2 ×m Fð Þ+ r1 ð6Þ

σ2 = h2s s1 + s2 × var Zð Þð Þ ð7Þ

where m(F) is the ensemble mean; hs = 0.5�(4/[3�K])1/5 is
Silverman's factor; var(Z) is the variance of the affine
ensemble; a is the scaling parameter for the ensemble;
and r1, r2, s1 and s2 are optimized by a sequence of con-
strained quadratic optimization algorithms. For more
details about the parameter estimation, see Bröcker and
Smith (2008).

For any given day forecast, ensemble forecasts with
1,000 members are generated by randomly sampling the
PDF from Equation 5.

3.5 | Bias correction (BC)

The BC proposed by Chen et al. (2014) is used as a refer-
ence to evaluate the above post-processing methods. Here
it only corrects the bias and is served as a reference to
show the additional improvement of the post-processing
methods, which address bias and under-dispersion
simultaneously.

3.5.1 | Precipitation

The linear equation with the form y = ax (where a is the
regression co-efficient) is used to correct precipitation
forecasts. Dropping the intercept out of the linear equa-
tion can avoid the meaningless negative precipitation
values and has a negligible influence on the effect of
reducing the bias. The correction equations were fitted
using the neighbouring observed and ensemble mean
precipitation amounts during the training period, all
using the cubic root-transformed values. The above pro-
cedure is repeated for 365 days of the year to form 365
bias-correction equations (for simplicity, February 29
shares the similar correction equation with February 28).
The fitted correction equations are then used to correct
all ensemble members.

3.5.2 | Temperature

The linear correction equation with the form y = ax + b
(where a and b are two regression co-efficients) is used
to correct air temperature forecasts. The correction

equations are fitted using the neighbouring 15 day
observed and forecasted air temperature anomalies. The
air temperature anomalies are obtained by subtracting
the long-term mean observed air temperature. Similar to
precipitation, the 365 well-calibrated equations are used
for all ensemble members.

3.6 | Verification metrics

The rank histogram is first used to evaluate the calibra-
tion performance of ensemble forecasts. Calibration
refers to the statistical consistency between the ensemble
forecasts and the observations (Gneiting et al., 2008). An
asymmetric rank histogram indicates the consistent bias
in the ensemble forecasts. The concave (convex) rank
histogram suggests that the ensemble forecasts are
under-dispersive (over-dispersive). However, a flat rank
histogram is not sufficient to guarantee the reliability of
the ensemble, and it only measures whether the observed
probability distribution is well represented by the ensem-
ble (Hamill, 2001). It was found that the rank histogram
is strongly influenced by many factors, including the vari-
ance within each ensemble member, the correlation
between ensemble members, and the correlation between
observations and forecasts (Marzban et al., 2011;
Wilks, 2011). The reliability index (Δ) is used to quantify
the deviation from uniformity in a rank histogram, which
is defined by:

Δ=
XK +1

k=1

Pk−
1

K +1

����
���� ð8Þ

where Pk is the observed relative frequency of rank k.
Two verification metrics from the ensemble verifica-

tion system (EVS) by Brown et al. (2010) are used to eval-
uate the ensemble forecasts, including the deterministic
metric of the mean absolute error (MAE), and the proba-
bilistic metric of the continuous ranked probability skill
score (CRPSS). The MAE measures the difference
between the ensemble mean forecasts and the observa-
tions, and a small MAE close to zero is preferred. The
CRPSS measures the performance of the ensemble
weather forecasts relative to climatology (the mean obser-
vations) in terms of the continuous ranked probability
score (CRPS), where CRPS is the mean-squared differ-
ence between the distribution of ensemble forecasts and
corresponding distributions of observations. The CRPSS
is positively oriented, with a value of 1 being perfect.

Fractional improvement (FR) proposed by Hagedorn
et al. (2008) is a metric to measure the FR of the BC for
the post-processing method:
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FR=
CRPSSBC−CRPSSraw
CRPSSpp−CRPSSraw

ð9Þ

where CRPSSraw, CRPSSBC and CRPSSpp denote the
CRPSS of the raw, bias-corrected and calibrated (by the
GPP, BMA, AKD and ExLR) forecasts, respectively. A
larger FR indicates a smaller improvement in probabilis-
tic performance compared with the reference BC method.
A FR > 1 denotes that the post-processing method is infe-
rior to the BC; a FR < 0 denotes that the raw ensemble
forecasts are not improved by the BC. A total of five clas-
ses are thus divided based on the FR, including < 0.0,
0.0–0.3, 0.3–0.7, 0.7–1.0 and > 1.0.

To understand better the regional differences of the
ensemble weather forecasts before and after post-
processing, it is necessary to adopt a specific cluster
method in order to classify these stations into different
groups. The key to using the cluster analysis is to choose
a similarity measure. For example, Lerch and
Baran (2017) found using the distribution of forecast
errors as the similarity measure augments the training
data, which helps to improve the predictive performance
of the post-processing methods. Diaz et al. (2019) pointed
out that the distance measure should include the station
climatology and ensemble forecast errors. Therefore,
when using the K-means method for classifying these sta-
tions, the similarity between two stations is defined by
the forecast performance (including calibration metric Δ,
forecast error metric MAE and forecast skill metric
CRPSS) and climate division. The cluster analysis was
based on the K-means package in MATLAB, and the Sil-
houette value is used to evaluate the performance of clus-
tering. Three steps are involved in using the K-means
method:

1. The number of clusters is predetermined using one
fixed K-means settings. Specifically, the cluster num-
bers from two to eight are evaluated based on the
default K-means settings provided in the MATLAB
package. The cluster number with the highest Silhou-
ette value is chosen.

2. The various K-means settings are evaluated for the
cluster number determined in Step (1). Specifically,
the study tested different distance metrics (e.g.
squared Euclidean distance, sum of absolute differ-
ence), different ways to obtain the initial cluster cen-
troid, different K-means clustering algorithms, and so
on. If the above factors contribute to improving the
clustering performance measured in the Silhouette
value, the K-means algorithm settings will be updated.

3. The updated K-means algorithm settings will be used
to replace the default settings in Step (1) and to verify
whether the choice of the cluster number is reliable. If

the new cluster number using the updated K-means
settings is the same as the old run, the number of clus-
ters is determined. If not, Steps (2) to (3) will be
repeated until the cluster number is unchanged.

3.7 | Description of the experiment

Most studies have found that using a large training data
set can consistently improve the performance of the post-
processing methods (Hagedorn et al., 2008; Hamill
et al., 2008; Scheuerer and Hamill, 2015). In order to make
the best use of the available data, the study chose cross-
validation to implement the post-processing methods.
Given 30 years of available forecasts and observations,
when making forecasts for a particular year, the remaining
29 years were used as training data.

4 | RESULTS

4.1 | Classification of the stations

The study defines the similarity between two stations as
the performances of the one lead day GEFS forecasts
measured by the Δ, MAE and CRPSS and the climate
region, and tests the cluster numbers from two to eight to
determine the proper cluster number. A total of four clus-
ters are identified for precipitation and six clusters for
temperature (Figure 1 and see Supporting Information
Table S1). The above clustering schemes are based on the
results of the Silhouette value over different cluster num-
bers in Figure 2.

The cluster divisions for precipitation have a good
match to the existing climate divisions. For example,
cluster 1 includes SW and E; cluster 2 is distributed in
the northern region, including NE, N and NW; cluster 3
is in the QT region; and cluster 4 is mainly located in S
and some QT regions. The MAE for clusters 2 and 3 (1.68
and 1.47, respectively) is better than the MAE for clusters
1 and 4 (4.04 and 5.19, respectively). In terms of the
CRPSS, cluster 3 is characterized by a poorer CRPSS
(0.13) and a more significant variation (0.53) when com-
pared with other clusters. For air temperature, the cluster
divisions are partly consistent with the climate divisions.
For example, cluster 1 is in northeastern China, includ-
ing NE and N; cluster 2 is mainly distributed in Xinjiang
province in NW; cluster 3 is mainly spread in QT; cluster
4 is in SE, E and NW; cluster 5 is in S and some QT
regions; and cluster 6 is distributed in some areas of QT
and SW. Also, cluster 3 owns the worst MAE (7.51) and
CRPSS (−0.76), while clusters 1, 4 and 5 have the best
MAE and CRPSS.
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4.2 | Calibration performance

Figures 3 and 4 plot the verification rank value of the one
lead day precipitation and temperature forecasts for the
GEFS, BC, GPP, ExLR, BMA and AKD over different
clusters. The formation of the rank histogram requires an
equal number of ensemble members. The 1,000-member

post-processed ensemble forecasts and the 11-member
GEFS forecasts and BC-corrected ensemble forecast are
thus not matched. Therefore, 11 members are randomly
selected from the 1,000 members. For precipitation and
air temperature, a considerable number of observations
fall outside the range of GEFS ensemble forecasts (see
the lowest and highest ranks), forming an apparent

FIGURE 2 (top row) Silhouette

co-efficient against the number of

clusters from two to eight. Stars with

a red circle indicate the optimal

cluster number setting. (bottom row)

Silhouette plot using the optimal

cluster number. The left column is

for precipitation, the right column is

for air temperature

FIGURE 3 Line plot for the

rank histogram value of the one lead

day precipitation forecasts in four

clusters
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concave rank histogram, which indicates that the GEFS
ensembles are under-dispersive. Also, the rank histogram
plot for precipitation in clusters 2 and 3 is inclined to the
right, showing the observations are more distributed
between the smaller intervals than the larger intervals,
which indicates that the GEFS forecasts are biased. When
comparing these post-processing methods, the well-
calibrated results are achieved by the deterministic
methods (GPP and ExLR) by a flat rank histogram plot.
While for the BC and probabilistic methods (BMA and
AKD) the calibration results show improvement com-
pared with the GEFS results, but the ensemble forecasts
are still under-dispersive for both precipitation and tem-
perature and biased for precipitation.

4.3 | Performance evaluation

Figure 5 gives the precipitation results (CRPSS) of differ-
ent methods over four clusters against the lead time.
For detailed results for precipitation, see Supporting

Information Tables S2 and S3. The biased and unskilful
GEFS forecasts, as expected, have a poor MAE and
CRPSS performances, and tend to become even worse for
longer lead days. One exceptional condition is that the
GEFS seems to become better for longer lead days in all
clusters. Similar results were also found in Chen
et al. (2014, fig. 8). Because the ensemble spread (forecast
uncertainty) for shorter lead days is generally smaller
than for the longer lead days, the amplified ensemble
spread for the longer lead day may contribute to the false
improvement of the CRPSS. When comparing with other
post-processing methods, the BC achieves a desirable per-
formance in decreasing forecast bias (MAE) and has com-
parable CRPSS performance with the probabilistic
methods (BMA and AKD) after about four lead days.
The deterministic methods (GPP and ExLR) share similar
performances, both outperforming the probabilistic
methods (BMA and AKD) in terms of the CRPSS. When
considering different clusters, the most significant
improvement of the CRPSS happens in cluster 3, distrib-
uted in the QT region. The skill of ensemble forecasts

FIGURE 4 Line plot for the rank histogram value of the one lead day air temperature forecasts in six clusters
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after post-processing is generally higher in the dry north-
ern regions than in the humid southern regions.

Figure 6 presents the CRPSS results for air tempera-
ture; for the detailed results, including the MAE and
CRPSS, see Supporting Information Tables S4 and S5.
The GEFS forecasts are typically biased and unskilful,
especially for clusters 2, 3 and 6, where the CRPSS is
smaller than the lower limit of the plot. The above clus-
ters are distributed in the western dry and cold regions.
The BC is shown to be effective in improving the ensem-
ble forecasts, as shown by a comparable MAE perfor-
mance and a slightly worse CRPSS performance (mainly
for precipitation) compared with the post-processing
method. When comparing the post-processing methods,
only the GPP, ExLR and BMA tend to outperform the BC
for all lead times consistently. The AKD is only useful in
less than four lead days when compared with the BC.
After post-processing, all the stations except those located
in the QT region can achieve a comparable CRPSS
performance.

Figure 7 and Supporting Information Tables S6 and
S7 show the performance of the one lead day ensemble
forecast against the forecast date. Only two clusters from
northern and southern China are selected for display.
The skill of the GEFS forecasts depends on the date when
and region where the forecast is made. Specifically, for
the northern region, the GEFS tends to be more skilful in
the warm season (April–September) than in the cold sea-
son (December–March), while for the southern region,

the performance of the GEFS tends to be opposite to the
northern region. A simple BC method can well improve
the ensemble forecasts for all forecast dates, but the
improvement can be further improved when using the
post-processing methods. The GPP, ExLR and BMA have
a comparable CRPSS performance, and the AKD is found
to be consistently lower than the other methods. After
post-processing, the skill difference for the forecasts made
in different seasons is evident for air temperature, while
it is not evident for precipitation.

4.4 | Role of the BC

The above results have shown the additional improve-
ment of using the complicated post-processing methods
compared with solely correcting bias using the BC. A fur-
ther quantitative result for displaying the role of the BC
method is shown in Figure 8. The results are based on
the one lead day ensemble forecasts for two representa-
tive methods: the GPP and BMA. For precipitation, the
FR of the BC in the GPP is about 0–70% for most stations,
and in the BMA it is about 30–100% for most stations.
The GPP and BMA differ in more green points in S and
E, and more blue points in the northern and western
regions. The results show that the GPP can achieve addi-
tional improvement compared with the BMA over two
cases: the rainy region and the semi-arid region. For tem-
perature, the FR for the GPP and BMA is about 30–100%

FIGURE 5 Probabilistic

performance (continuous ranked

probability skill score—CRPSS) of

the precipitation forecasts over

different lead times in four clusters
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for most stations, and the two methods share a small dif-
ference. Both methods have a large proportion of red
points, distributed in the warm southern region with
small yearly fluctuations and cold western region with
rapid yearly fluctuations. The results show that for this
region, only correcting the bias is enough to achieve the
comparable CRPSS skill compared with the post-
processing methods.

5 | DISCUSSION AND
CONCLUSIONS

The biased and under-dispersive ensemble forecasts can-
not be directly used unless a specific post-processing
method is applied. Various post-processing methods have
thus been proposed in the last two decades. However, the
choice of post-processing method is usually based on the
user's preferences in practical applications. The previous

comparison studies provided some properties about these
methods, but there is a lack of guidance about how to
choose and use the post-processing methods in practice.
Therefore, the study included two variables: precipitation
and air temperature, and focused on the probabilistic
properties of the ensemble weather forecasts. With this
focus, the study evaluated four post-processing methods
in order to draw some guidance about the methods' abili-
ties and influencing factors.

For a better comparison of the post-processing
methods for the 659 national standard meteorological sta-
tions distributed over a large area, the study chose the K-
means algorithm to classify the 659 stations into several
groups. The clustering results using K-means are more
informative than when using climate divisions. It process
provides useful information about using the raw ensem-
ble weather forecasts and selecting the proper post-
processing methods for the Global Ensemble Forecasting
System (GEFS) forecasts users in China.

FIGURE 6 Probabilistic performance (continuous ranked probability skill score—CRPSS) of the air temperature forecasts over

different lead times in six clusters
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5.1 | Methods comparison

The study found that the deterministic methods—genera-
tor-based post-processing (GPP) and extended logistic
regression (ExLR)—are consistently competitive in
obtaining the well-calibrated and skilful post-processed
ensemble forecasts compared with the probabilistic

methods—Bayesian model averaging (BMA) and affine
kernel dressing (AKD). For the deterministic methods,
the ensemble spread is directly optimized from the histor-
ical observations and does not need to calibrate the rela-
tionship between the variance in the probability
distribution function (PDF) and the ensemble spread.
Therefore, the generated ensemble forecasts using the

FIGURE 7 Probabilistic

performance (continuous ranked

probability skill score—CRPSS) of the

precipitation forecasts (top row) and

air temperature forecasts (bottom

row) in different months. Only

clusters 2 and 4 are chosen for

precipitation, clusters 1 and 5 are

chosen for air temperature

FIGURE 8 Fractional

improvement (FR) of one lead day

precipitation forecasts (top tow) and

air temperature forecasts (bottom

row) post-processed by generator-

based post-processing (GPP) (left

column) and Bayesian model

averaging (BMA) (right column)
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deterministic methods are guaranteed to share similar
statistical properties with the observations, resulting in a
better probabilistic performance. The AKD has nearly no
contribution to improving the forecast skill after certain
lead days when compared with bias correction (BC). For
the AKD, the ensemble is transformed into a set of kernel
distributions (Normal distribution) of the same size. If
the number of well-estimated kernel distributions is ade-
quate, the AKD can be used to simulate the forecast dis-
tribution of any kind. Therefore, the effectiveness of the
AKD strongly relies on the number of kernels or the
ensemble size.

5.2 | Influencing factors

When applying the post-processing methods, the influ-
ence of region/forecast date and the role of the BC should
be considered. Previous studies have realized this issue
when using the post-processing method. For example,
Hagedorn et al. (2008) found that for air temperature, the
probabilistic performance could be improved mainly in
regions with complex terrain, where the forecast skill
was initially lower. About 60–80% of the improvement
from non-Gaussian regression (NGR) could be achieved
by the simple BC method.

A thorough investigation is made on the influence of
these factors in different post-processing methods. First,
in terms of region, it is also found that the forecast skill of
the post-processed ensemble weather forecasts is compa-
rably high in the northern arid areas for precipitation.
Moreover, the forecast skill for air temperature is only low
in the Qinghai-Tibetan Plateau area. In terms of forecast
date, the GEFS forecasts are more skilful when made in
warm seasons (April–September) than in cold seasons
(December–March) for northern regions. For southern
regions the pattern is the opposite. After post-processing,
the skill difference is only evident for air temperature,
while it is not evident for precipitation. Besides, in regions
with more precipitation events, the GPP can remarkably
increase probabilistic performance, while the improve-
ment of other post-processing methods is not apparent.

In terms of the role of the BC, a simple BC method
can achieve about 0–70% (for precipitation) and 30–100%
(for air temperature) forecast skill improvement of the
best-performed deterministic methods.

5.3 | Research prospects

There is an inherent autocorrelation structure of the time
series and a dependence structure among different cli-
mate variables. For example, heavy rainfall that occurred

on a previous day is likely to continue on the following
day, and the temperature is generally cooler on wet days.
Reproducing the autocorrelation structure of the time
series and the dependence structure among different vari-
ables may have an essential influence on the impact stud-
ies. For instance, temperature and precipitation together
determine the process of generating runoff. Therefore,
one possible problem of using the probabilistic methods
to generate ensemble forecasts by randomly sampling
from the built PDF is that the generated time series may
lack autocorrelation. However, the study is mainly con-
cerned with the statistical performance of these methods
over a long period. It may be interesting to consider auto-
correlation and dependence structures in future studies.
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