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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo under the supervision of Associate
Professor Andreas Carlson and Dr. Susanne Liese. The financial support for
this work was provided by the Research Council of Norway, through the project
"Mechanochemical interplay in Intraluminal Vesicle formation", project number
263056.

The thesis is a collection of three papers, presented in practical order.
The main subject of these papers is the mathematical modelling of biological
membranes, with a special focus on the e�ect of membrane-bound proteins in
membrane shape transformation. The papers are preceded by four chapters,
which serve to put in perspective the importance of membranes in living organisms
and to describe the main foundations of the mathematical membrane models.
The first paper studies the role of membrane morphology in the di�usion
of proteins/molecules. The second paper incorporates both di�usion and
recruitment of curvature-inducing proteins into a minimal model for membrane
shape dynamics. The third paper introduces a theoretical model for the formation
of Intraluminal Vesicles in the endosome.
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Chapter 1

Introduction

As the building block of life for multi-cellular organisms, the cell is responsible for
a myriad of processes. The cell’s intrinsic complexity has fascinated researchers
from all disciplines of natural sciences —from biology to physics and mathematics.
The compartmentalization of the cell is one of the fundamental factors which
make possible the physiological processes that produce and reproduce life [1].
Indeed, the cell’s correct functioning, growth and proliferation hinges upon the
concerted action of all its organelles. These organelles are encapsulated by
membranes with diverse composition, and the cell as such is surrounded by its
own plasma membrane. In consequence, membranes are directly involved in all
fundamental processes taking place within each cell: on one hand, membranes
protect both the organelles and the cell from the unrestricted flow of solutes and
water [2] while acting as a selective permeable barrier that allows the entrance
of solutes and ions [3]. On the other hand, membranes are composed by an
array of proteins and lipid species distributed non-homogeneously [4], whose
composition determines some of the membrane’s primary functions. For instance,
a membrane composed mostly by lipids will serve as a permeable barrier, whereas
a membrane with a larger protein content (such as the plasma membrane and
the internal membrane of the mitochondria), will additionally take on enzymatic
and transport functions [5].

Crucial membrane properties are its fluidity and elasticity: the membrane
behaves as a two-dimensional fluid with elastic properties. Both fluidity and
elasticity allow the membrane to perform the lateral transport of its molecular
components and undergo shape changes [6, 7]. Additionally, membrane elasticity
plays a fundamental role in cellular events requiring the formation of vesicles
and other highly deformed structures, all of which ultimately emanate from the
membrane. A number of cellular processes of paramount importance depend
on the membrane’s capacity to successfully incorporate and release molecular
substances: The process of exocytosis consists on the fusion of a vesicle and
a target membrane in order to release its molecular content, e.g., secretion of
transmitters, peptides and hormones from the neurons [8] and secretion of vesicle
from the endoplasmic reticulum to the plasma membrane [9]. Endocytosis is the
process whereby —aided by the action of proteins such as clathrin and caveolin—
trans-membrane proteins and lipids which are present in the plasma membrane
and extracellular fluids, become internalized into the cell [10, 11, 12]. The forma-
tion of Intraluminal Vesicles (ILVs) on the endosome membrane is equally related
to cell membranes. ILVs are required for the lysosomal degradation pathway of
internalized receptors and other cargo, which are sorted and sequestered by the
machinery of the Endosomal Sorting Complex Required for Transport (ESCRT)
[13, 14]. Finally, the process of viral replication requires virus assembly in a
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1. Introduction

host-cell membrane to acquire its membranous envelope. The assembled virus
is subsequently released as a small vesicle [15]. Within the biological processes
mentioned above, the formation of a small spherical vesicle is a recurrent
feature, regardless of the specific proteins and mechanisms participating in
the membrane deformation. Fig. 1.1 illustrates the processes of endocytosis
and formation of ILVs. Fig. 1.1a highlights di�erent internalization pathways
involving membrane deformation, which finally takes the form of a spherical
vesicle or a tubular structure. Fig. 1.1b shows clathrin-coated vesicles formed on
a giant liposome membrane, indicating that the clathrin polymerization alone
leads to the formation of clathrin-coated spherical vesicles. After the endocytic
event, the internalized cargo is tra�cked into endosomes; at a later stage, the
cargo is sorted into Multivisecular Bodies (MVBs) or lysosomes for degradation
[11]. Fig. 1.1c is a representation of the ILVs formed in the endosome: a
large membrane coat composed by several proteins leads to the formation of
vesicles, yet these proteins neither cover the vesicle nor become part of its content.

The complex membrane composition poses a taxing challenge to the under-
standing of the specific roles played by the membrane’s components. Depending
on the membrane’s varied make-up, it will take on an impressively wide range of
functions and properties. The challenge is particularly evident if one attempts
to understand such properties within the context of membrane deformation,
which is the main subject of this thesis. As a way to overcome the challenge and
enhance knowledge on the possible mechanisms inducing membrane deformation,
biophysicists have resorted to the study of lipid monolayers or bilayers composed
by a small number of lipid species and proteins. Monolayers and bilayers have
revealed a multiplicity of mechanisms that are instrumental to processes of
membrane shape transformation. Research has shown that a lipid bilayer can
change its shape in response to di�erent stimuli, such as osmotic conditions,
lipid composition, or temperature [17]. Additionally, a lipid bilayer attached
to an elastic surface changes its shape under compression, thus generating
tubules. However, under dilation, the lipid bilayer will instead adsorb vesicles
to preserve its area [18]. The role of di�erent types of proteins bound to lipid
bilayers has been assessed experimentally as well. Experiments have shown
that the pressure generated by the mutual exclusion of proteins with di�erent
structures on membrane surfaces (known as protein crowding) induce tubulation
whenever the membrane has a high protein density [19]. But tubulation is
not the sole outcome of protein crowding. Additional experiments on protein
crowding showed that this phenomenon is also correlated to vesicle fission, i.e.,
the detachment of membrane-bound vesicles from the donor membrane [20]. The
lipid composition of the bilayer is fundamental to the occurrence of the protein
crowding mechanism. Experiments have shown that if a Giant Unilamellar
Vesicle (GUV) is composed by lipid species which tend to strongly bind to a
certain kind of proteins, these proteins will be confined to a limited region,
thereby inducing protein crowding and membrane tubulation [21]. Another
mechanism, consisting in the anchoring of amphiphilic molecules/polymers onto
the membrane, via the insertion of one or more hydrophobic groups into the
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(a) Di�erent endocytic pathways in a mem-
brane [11].

(b) Clathrin-coated vesicles [16].

(c) Formation of ILVs [13].

Figure 1.1: Processes in the cell leading to formation of membrane vesicles. (a)
Schematic representation of di�erent endocytic processes leading to internaliza-
tion of cargo proteins into the cell. Clathrin mediated endocytosis is the best char-
acterized endocytic pathway, but endocytosis can also be clathrin-independent.
The cargo is then tra�cked into the endosome, for its later degradation in Mul-
tivesiclar Bodies (MVBs) and in the lysosome. Figure reprinted by permission
from Springer Nature: [11], ©2011. (b) Vesicles formed on a liposome after
the incubation with clathrin, a fundamental protein of the endocytic pathway
and which is capable, by polimerization on the membrane, of forming clathrin-
coated vesicles which at the final stage of the deformation detach themselves
from the liposome. Figure reprinted by permission from Springer Nature: [16],
©2012. (c) Formation of Intraluminal Vesicles (ILVs) in the endosome membrane.
The inlet represents an electron tomography of the endosome, showing that a
large protein complex or coat (blue) composed by clathrin and proteins of the
Endosomal Sorting Complex Required for Transport (ESCRT) machinery is
formed on the endosome membrane (green). Several ILVs (red) are detached
from the membrane and are not covered by the coat proteins. The yellow dots
are gold particles marking newly internalized activated Epidermal Growth Factor
Receptors (EGFRs) into the ILVs. Figure modified from [13], which is licensed
under CC BY 4.0.

lipid bilayer, induces changes in membrane morphology [22]. Experiments with
proteins which are the main component of the envelope of viruses have revealed
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that, once these proteins had self-assembled on the membrane, ILVs became
visible on a liposome, mimicking in this way the formation of viral particles [23].
Such experimental findings in synthetic membranes suggest that both the lipid
bilayer and the membrane-bound proteins are key to membrane remodeling, and
that proteins exploit di�erent mechanisms to deform the membrane.

Over the last decades, scientists have proposed mathematical models to
describe the membrane. Such abstraction-driven models aim at presenting the
membrane’s most important attributes in a mathematical way. These models
proceed by assigning generic properties such as elasticity, tension and curvature
to membranes. Mathematical models rightfully consider that the membrane’s
thickness and the individual size of the lipid molecules it contains are so much
smaller than the membrane’s surface, that the membrane can be consequently
regarded as a two-dimensional continuous surface [24]. It then becomes possible
to correlate the membrane’s shape with its elastic properties, given that, as
Helfrich proposed [25], the energy stored in the membrane depends on its
curvature and possibly on the asymmetries between the membrane monolayers
(also called spontaneous curvature). The rationale behind this correlation has
illuminated a fundamental quality of the membrane: the membrane adopts a
shape whereby it will minimize the total membrane energy. Helfrich’s model has
been extensively used. The model has predicted the biconcave discoid shape
of red blood cells [26] and other shapes found in experiments with purified
lipid bilayers [17], thereby suggesting that the bending energy is a determining
factor of the membrane’s shape. Fig. 1.2 presents a comparison between the
shapes exhibited by giant liposomes under changes of temperature and their
predicted theoretical shapes. The prediction is the result of the minimization of
the bending energy, as long as each of the membrane’s monolayers has a slightly
di�erent thermal expansivity. These experiments reveal the importance of the
bending energy in the modelling of biological membranes.

Similarities between membrane shapes calculated by mathematical models
and observed in experiments have encouraged further development and use
of mathematical models to predict shape transformation of membranes, in-
cluding additional biophysical mechanisms to describe the membrane energy.
For example, past research established that certain proteins are capable of
inducing curvature. The full mechanism by which these proteins deform the
membrane is multi-faceted and complex [27] (more than one protein species
is often involved in the membrane’s shape transformation [28]). Nevertheless,
it is possible to describe proteins as a continuous patch or coat, the size of
which is considerably larger than the proteins’ individual size. Such a patch
or coat has also macroscopic properties, of which bending rigidity and sponta-
neous curvature are the most significant. A coat-like description of proteins is
suitable for cellular processes such as clathrin mediated endocytosis, whereby
a complex assembly of proteins is formed on the cell membrane [29]. The
theoretical models referred above have demonstrated that whenever the model’s
parameters —the coat’s spontaneous curvature, bending rigidity and membrane
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Figure 1.2: Comparison between the shapes of giant liposomes under changes of
temperature and the predicted theoretical shapes resulting from minimizing the
bending energy of the membrane, assuming that each of the monolayers have
a di�erent thermal expansivity. The experiments were performed by Berndl
et. al. in 1990 [17] and highlight the importance of the bending energy in the
theoretical modelling of membranes. Figure reprinted from [24], ©2014, with
permission from Elsevier.

tension— fall into the range of values measured experimentally, the membrane
shapes obtained theoretically closely coincide with experimental results [30].
In the context of ILV formation, a theoretical model which incorporated the
bending energy and additional energy contributions arising from protein crowd-
ing [31] predicted the experimentally observed membrane shapes [13]. This
theoretical model and its experimental verification unraveled the biophysical
mechanism leading to the formation of these uncoated vesicles. As part of
the present thesis, the results of this theoretical work is summarized in Chapter 5.

In addition to the models in which the membrane is a continuous surface
with macroscopic properties, there are also discrete membrane models. In the
latter case, the membrane is studied at the molecular level, which means that
it becomes a three-dimensional structure constituted by lipids and proteins of
di�erent shape and properties [32]. Both Molecular Dynamics and Monte Carlo
methods delivered a fully atomistic description of the membrane’s molecular
properties, and allowed the study of processes such as the transport of molecules
across the lipid bilayer and the self-di�usion of lipid molecules within the
membrane [33]. Unfortunately, these methods are computationally costly and
limited to small membrane patches and short time scales. Coarse-grained models
partly overcame these limitations by providing simplified descriptions which
omitted some of the atomistic details. Rather than considering each individual
atom on the membrane, the latter model proposed that e�ective particles are
constituted by several atoms which experience e�ective forces and interactions
[33]. Coarse-grained models helped to reveal mechanisms by which proteins and
colloidal particles can drive vesiculation, as it is the case with curvature-mediated
interaction between either colloidal particles or proteins [34].
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1. Introduction

This thesis is built upon the assumption that the mathematical modelling
of membranes is a heuristic tool which facilitates the understanding of
the biophysical mechanisms underlying shape changes observed in biological
membranes. In particular, the present study builds upon the development of
generic membrane models based on the Helfrich energy while adding additional
biophysical e�ects. In consequence, Chapter 2 outlines the fundamental
assumptions that lead to a theoretical description of the membrane. Additionally,
it describes the formalism by which one can obtain the mathematical equations
which predict membrane shape by minimizing the membrane energy. Chapter
3 is devoted to show a second formalism used to obtain the membrane shape,
which consists in balancing the forces acting on a membrane. This chapter also
includes a comparison between the formalism based on the energy minimization
and on the balance of membrane forces. For the purpose of incorporating the
gradual shape transformation of the membrane into the mathematical model,
Chapter 4 outlines the processes which can influence membrane dynamics and
the manner by which they can be described mathematically. Finally, Chapter 5
presents a summary of this study’s findings, and o�ers an outlook on the future
of membrane modelling.
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Chapter 2

Membrane energy and shape

equations

Helfrich’s seminal work [1] proposed that the energy associated to membrane
elasticity —the bending energy— depends on two factors: the bending rigidity
measuring the membrane’s resistance to deformations, and the membrane
curvature. The curvature is a mathematical concept that helps to describe the
shape of a smooth surface [2]. Although a biological membrane is far from being
a smooth surface on short length scales, as the molecular thermal fluctuations
roughen the membrane [3], membrane elastic models are suitable for length
scales much larger than the typical lipid size and therefore such models allow
to conceive the membrane as a continuous and smooth surface described by its
curvature.

In this chapter, I will present two mathematical formalisms leading to the
so-called shape equations, i.e., equations predicting membrane shape. These
formalisms are the explicit formulation (which prescribes a coordinate system
and the mathematical parametrization of the membrane), and the covariant
formulation (which is independent from the coordinate system used to describe
the membrane and is based on the general expression of the curvature). Although
these two formalisms are equivalent, relying on one rather than on the other
might simplify the mathematical equations describing the membrane shape.

2.1 Membrane energy

The energy per unit area of the membrane is written as [1, 4, 5]:

w = B(H ≠ C)2 + ⁄ (2.1)

where B is the membrane bending rigidity, H = 1
2 (Ÿ1 + Ÿ2) is the membrane

mean curvature given by the sum of its two principal curvatures Ÿ1 and Ÿ2, and
C is the spontaneous curvature that measures any asymmetry between the two
membrane monolayers, e.g., di�erent lipid composition [4] or the presence of
membrane-bound proteins or polymers on the membrane [6]. In general, the
spontaneous curvature imposed by proteins, for example, is the result of the
combined e�ect of di�erent mechanisms exploited by the proteins to produce
membrane deformation [7]. In this model, the spontaneous curvature is an
e�ective parameter or function that does not consider the exact molecular
mechanism producing the curvature on the membrane. Additionally, the model
includes a surface tension ⁄ acting on the entire membrane. The tension is
associated with the membrane stretching and has a complex physical and
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2. Membrane energy and shape equations

biological origin [8]. Again, ⁄ represents an e�ective parameter or function that
does not detail all the possible mechanisms which produce it.

To better understand the concept of principal curvatures, Fig. 2.1 shows their
schematic representation. At any point X of a surface, one can define a normal
vector N and a tangent vector df(X). The plane that contains these two vectors
intersects the surface and allows to define the normal curvature Ÿn, as shown in
Fig. 2.1a. However, in general the normal curvature Ÿn is not the same for all the
tangent directions to the surface. The principal directions X1 and X2 are such
that the normal curvature becomes extremal. The corresponding curvatures are
denoted as first and second principal curvatures Ÿ1 and Ÿ2, as shown in Fig. 2.1b.

(a) The normal curvature Ÿn

(b) The principal curvatures Ÿ1 and Ÿ2.

Figure 2.1: Illustration of the principal curvatures describing a membrane surface,
adopted from [9]. (a) At each point X of the surface, one can define a normal
vector N and a tangent vector df(X). These two vectors form a plane that
intersect the surface and defines the normal curvature Ÿn. (b) The normal
curvature is maximal and minimal along the principal directions X1 and X2,
respectively, and their values are Ÿ1 and Ÿ2. These are the principal curvatures
that define the membrane mean curvature.

The membrane shape will be given by the minimization of the total energy
of the membrane with respect to its curvature. The total energy is given by the

12
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integral over the entire membrane area A of Eq. 2.1:

W =
⁄

[B(H ≠ C)2 + ⁄]dA (2.2)

If the membrane forms a closed surface with a fixed area, some constraints
need to be added, in the form of Lagrange multipliers that enforce a given fixed
area and volume [4]. However, in many cases it is convenient to assume that
the membrane is an infinite surface. For example, in processes such as clathirn
mediated endocytosis or virus budding, the membrane deforms to generate a
vesicle of radius ≥ 100nm [10, 11], much smaller than the cell radius, which is
≥ 10µm [11], in which case the membrane can be approximated as an infinite
surface. As consequence, there is no constraint on either the membrane area or
volume. This assumption helps to simplify the membrane description.

An additional term can be added to Eq. 2.2, which is proportional to the
Gaussian curvature, and written as kGŸ1Ÿ2, where kG is the Gaussian bending
rigidity [1]. However, if there are no topological changes on the membrane
(associated, for example, to the vesicle scission) and if kG is constant, the integral
of the Gaussian curvature energy is a constant which can be omitted [4].

2.2 Shape equations

The term shape equations refers to a set of di�erential equations that allow to
find the shape of a membrane that minimizes the energy in Eq. 2.2, for any
given spontaneous curvature C and tension ⁄. These equations can be found by
two di�erent means: by prescribing a priori a suitable coordinate system and
membrane parametrization to write explicitly the bending energy, or by using
the general expression of the curvature, in a coordinate-independent manner,
giving the covariant shape equations. The section below presents key details
regarding the derivation of the shape equations based on these two formalisms.

2.2.1 Euler-Lagrange formalism

In order to determine the shape equations, one needs to establish a suitable
parametrization of the membrane. In this regard, experiments on membrane
shape deformation induced by proteins indicate that many membrane vesicles
closely resemble axially symmetric shapes [12, 13]. The assumption of axial sym-
metry significantly simplifies the equation describing the membrane curvature
and, as consequence, the shape equations will be simpler as well.

The Euler-Lagrange (EL) formalism’s main purpose consists in finding
the equations satisfied by the functions of a given Lagrangian functional, so
that this functional is extremal. In a general way, the Lagrangian functional
L, parametrized by an arbitrary variable t, depends on a set of functions
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2. Membrane energy and shape equations

fi(t), its derivatives f
Õ

i(t) ©
dfi

dt , and one or more functions �(t) introduced
to impose constraints. The Lagrangian is written in a general form as
L © L(fi(t), f

Õ

i(t), �(t)) [14, 15]. The Euler-Lagrange (EL) equation, satisfied by
each of the functions fi, reads:

ˆL

ˆfi
≠

d

dt

3
ˆL

ˆf
Õ

i

4
= 0 (2.3)

In the present case, the Lagrangian L will be associated with the membrane
energy, while the functions fi will describe the membrane curvature. The exact
form of the EL equations depends on the parametrization used to describe the
surface coordinates, given that the expression for the curvature will depend on
this choice. In the context of membranes, it is usual to use cylindrical coordinates
{r, ◊, z} to describe the membrane. The position vector in cylindrical coordinates
is given by:

X = x̂r cos ◊ + ŷr sin ◊ + ẑz (2.4)

where {x̂, ŷ, ẑ} are the unit basis vectors in cartesian coordinates. The functions
r, ◊, and z can be parametrized in di�erent ways, the most common of which
are the arc-length and the radial parametrization.

2.2.1.1 Arc-length parametrization

The arc-length is the distance measured along a curve. A schematic representation
of an axially symmetric budded membrane parametrized by the arc-length s is
shown in Fig. 2.2. There, the radial coordinate r and the height z are functions
of s, and the tangent angle „(s) relates the change of r and z along the curve
with the arc-length, that is:

r
Õ = cos „ (2.5)

z
Õ = sin „ (2.6)

A
Õ = 2fir (2.7)

where ()Õ
©

d
ds . Fig. 2.2 also shows the polar angle ◊, but the membrane surface

will be symmetric with respect to the z-axis due to the axial symmetry. In such
cases, the membrane shape will not depend on the polar angle.

In order to write the energy in Eq. 2.2 explicitly as a function of the membrane
curvature, one needs to find the expressions for the tangent vectors and the
mean and Gaussian curvature in the arc-length parametrization. The tangent
vectors define the tangent plane on the surface, and are given in terms of the
position vector in Eq. 2.4 as:

es = dX
ds

= x̂r
Õ cos ◊ + ŷr

Õ sin ◊ + ẑz
Õ (2.8)
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Figure 2.2: Schematic representation of the coordinates used to describe an
axially symmetric budded membrane with the arc-length parametrization. The
radial distance r and the membrane height z are functions of the arc-length s,
and the change of r and z along the curve is given in terms of the tangent angle
„. Due to the axial symmetry, the membrane shape will not depend on the polar
angle ◊, and the membrane surface will be a surface of revolution around the
z-axis.

e◊ = dX
d◊

= ≠x̂r sin ◊ + ŷr cos ◊ (2.9)

The basis vectors define the metric. Intuitively, the metric measures "the
infinitesimal squared distance associated to an infinitesimal displacement in the
surface" [16]. As the basis vectors are orthogonal, the metric is a diagonal matrix,
and its coe�cients are [17]:

gss = es · es = r
Õ2 + z

Õ2 = 1, g
ss = 1

g◊◊ = e◊ · e◊ = r
2
, g

◊◊ = 1/r
2 (2.10)

The determinant of the metric is then given by |gij | = gssg◊◊ = r
2. The outward

normal vector N is:

N = es ◊ e◊

r
= ≠x̂z

Õ cos ◊ ≠ ŷz
Õ sin ◊ + ẑr

Õ (2.11)

With the expressions of the tangent vectors in Eqs. 2.8 and 2.9 and the normal
vector in Eq. 2.11, one can calculate the membrane curvature. Ultimately, the
curvature is defined in terms of the second fundamental form, denoted as bij ,
which is an intrinsic property of the surface, and is defined as:

bij = ei,j · N (2.12)
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2. Membrane energy and shape equations

where ei,j ©
ˆei
ˆxj is the derivative of the basis vectors with respect to the

coordinates. The non-vanishing components of bij are:

bss = ≠z
Õ
r

ÕÕ + r
Õ
z

ÕÕ = „
Õ

b◊◊ = rz
Õ = r sin „

where Eqs. 2.5 and 2.6 were used. Consequently, bij is a diagonal matrix and
its determinant is |bij | = „

Õ
r sin „. The mean and Gaussian curvature of the

membrane are [17]:

2H = b
i
i = g

ij
bij = Ÿ1 + Ÿ2 = „

Õ + sin „

r
(2.13)

K = |bij |

|gij |
= „

Õ
r sin „

r2 = Ÿ1Ÿ2 = „
Õ
sin „

r
(2.14)

where I have introduced the expressions of inverse metric components in Eq.
2.10. Having established both the expression of the mean curvature H and the
area di�erential given by dA = 2firds, the membrane energy is:

W = 2fi

⁄ I
B

5
1
2

3
„

Õ + sin „

r

4
≠ C

62
+ ⁄

J
rds (2.15)

Minimizing the energy in Eq. 2.15 with respect to the curvature means to
minimize W with respect to the functions r(s) and „(s), for any given spontaneous
curvature C and surface tension ⁄. The Lagrange functional will have as
parameter the arc-length s. Additionally, one must take into account that the
function r satisfies Eq. 2.5, which means that one needs to include a constraint,
or Lagrange parameter function, which is called �(s). Therefore, the Lagrangian
L is:

L(r, r
Õ
, „, „

Õ
, �) =

I
B

5
1
2

3
„

Õ + sin „

r

4
≠ C

62
+ ⁄

J
r + �(rÕ

≠ cos „) (2.16)

The EL equations satisfied by r(s) and „(s), given in generic form in Eq. 2.3,
are:

ˆL

ˆr
≠

d

ds

3
ˆL

ˆrÕ

4
= 0 æ �Õ = ⁄ + M

2

B
≠

M sin „

r
(2.17)

ˆL

ˆ„
≠

d

ds

3
ˆL

ˆ„Õ

4
= 0 æ M

Õ = � sin „

r
(2.18)

where M is the bending moment of the membrane and describes the response of
a deformable surface to the bending stresses. M is proportional to the membrane
curvature and the bending rigidity [11, 18]:

M = B

5
1
2

3
„

Õ + sin „

r

4
≠ C

6
(2.19)
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The Lagrangian has an associated functional called Hamiltonian, denoted as H

and defined as [14]:

H = ≠L + r
Õ
ˆL

ˆrÕ
+ „

Õ
ˆL

ˆ„Õ

The Hamiltonian H satisfies dH

ds = ≠
ˆL

ˆs . The Lagrangian L does not depend
explicitly on the coordinate s, i.e., ˆL

ˆs = 0. As consequence, the Hamiltonian
H is a conserved quantity, given that dH

ds = 0. Since the membrane surface is
infinite, the edge of the arc-length smax is not constrained. This implies that
the Hamiltonian fulfills H(smax) = 0 æ H(s) = 0 [14]. The Hamiltonian H is
given by:

H = r

5
� cos „

r
≠

M
2

B
≠ ⁄ + M„

Õ

6
= 0

æ
� cos „

r
≠

M
2

B
≠ ⁄ + M„

Õ = 0 (2.20)

It now becomes possible to write Eqs. 2.17 and 2.18 as a single equation, by
writing � = M Õr

sin „ , taking the derivative of this expression and writing the result
so that it equals Eq. 2.17. Therefore one obtains, after multiplying by sin „

r :

M
ÕÕ + M

Õ cos „

r
≠

M
Õ
„

Õ cos „

sin „
= M

5
M

B

sin „

r
≠

sin2
„

r2

6
+ ⁄ sin „

r
(2.21)

The Laplace-Beltrami operator is the Laplacian in generalized coordinates,
defined as Ò

2
©

1Ô
|gij |

d
dxi (gij d

dxj ). The Laplace-Beltrami operator in the arc-
length parametrization, applied to M , is given by:

Ò
2
M = 1

r

d

ds

3
r

dM

ds

4
= M

ÕÕ + M
Õ cos „

r

From this expression, it is evident that the two first terms in Eq. 2.21
correspond to Ò

2
M . From the mean curvature given in Eq. 2.13, one can write

sin „
r = 2H ≠ „

Õ, and using the expression for the Gaussian curvature in Eq. 2.14,
Eq. 2.21 becomes:

Ò
2
M ≠

M
Õ
„

Õ cos „

sin „
= M [≠2H(H + C) + K + „

Õ(H + C)] + ⁄(2H ≠ „
Õ) (2.22)

For convenience, I wrote K = 2K ≠ K in the previous expression, and placed all
the terms proportional to „

Õ on the right hand side. Thus, one now obtains:

Ò
2
M + 2M [H2

≠ K + HC] ≠ 2H⁄

= „
Õ

3
M

Õ cos „

sin „
+ M(H + C) ≠ ⁄ ≠

M sin „

r

4
(2.23)
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2. Membrane energy and shape equations

With the expression for the bending moment in Eq. 2.19 and the mean curvature
H in Eq. 2.13, one writes H + C = 2H ≠

M
B = sin „

r + „
Õ
≠

M
B . Also, using Eq.

2.18 to write M
Õ as a function of �, one finds that:

Ò
2
M + 2M [H2

≠ K + HC] ≠ 2H⁄

= „
Õ

3
� cos „

r
≠

M
2

B
≠ ⁄ + M„

Õ

4
(2.24)

According to the condition for the Hamiltonian to vanish (Eq. 2.20), the right
hand side of the expression above is identically zero. The left hand side, upon
writing M = B(H ≠ C), is:

BÒ
2(H ≠ C) + 2B(H ≠ C)[H2

≠ K + HC] ≠ 2H⁄ = 0 (2.25)

This equation has the form of the covariant shape equation which will be derived
from a more general point of view further below. The EL formalism using the
arc-length parametrization specifically has been used to determine the phase
space of stationary membrane shapes. The phase space is spanned by the
spontaneous curvature and the area-to-volume ratio of closed vesicles [14]. The
EL formalism was also the theoretical base for the study of membrane shape
deformations induced by protein coats, whereby an assembly of proteins in the
membrane surface induces a constant spontaneous curvature over a certain area
[19, 20]. Furthermore, it was used to determine theoretically the influence of
such coats in the shape of the neck regions joining together the vesicle and the
surrounding membrane [21]. Below, I will describe the process of writing the
shape equations as a coupled system of linear, ordinary di�erential equations.

First, one eliminates the Lagrange function �, redefining Eq. 2.18 in terms
of a new function that is called Q. This means that now Eq. 2.18 is written as:

M
Õ = � sin „

r
© ≠Q (2.26)

Then, one writes the EL equation for the radial coordinate r using the expression
for the Hamiltonian in Eq. 2.20. By expressing ⁄ + M2

B = � cos „
r + „

Õ
M and

inserting this expression into Eq. 2.17 one obtains:

�Õ = � cos „

r
≠

2M sin „

r
+ M

3
2M

B
+ 2C

4
(2.27)

From the definition of Q in Eq. 2.26, one finds its derivative and substitutes the
expression for �Õ given in Eq. 2.27 to obtain:

Q
Õ = ≠

M sin „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
≠

� cos „

r
„

Õ

© ≠
M sin „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
≠ T„

Õ (2.28)
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where a new function T ©
� cos „

r was introduced. Again, one finds its
corresponding di�erential equation using the expression for �Õ in Eq. 2.27
and the definition of Q in Eq. 2.26:

T
Õ = M cos „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
+ Q„

Õ (2.29)

It now becomes possible to find expressions for Q and T that satisfy Eq. 2.28
and 2.29. These expressions are:

Q = ≠U sin „

T = U cos „

where the function U satisfies the following di�erential equation:

U
Õ = M

r

3
2M

B
+ 2C ≠

2 sin „

r

4

To summarize, one arrives at the following set of coupled, first order, ordinary
di�erential equations, derived from the minimization of the energy functional in
Eq. 2.2. In the di�erential equations, I have used the definition of the bending
moment in Eq. 2.19 to express „

Õ as a function of M , r and C:

„
Õ = 2M

B
≠

sin „

r
+ 2C (2.30)

r
Õ = cos „ (2.31)

z
Õ = sin „ (2.32)

A
Õ = 2fir (2.33)

M
Õ = U sin „ (2.34)

U
Õ = M

r

3
2M

B
+ 2C ≠

2 sin „

r

4
(2.35)

Next, I will use this set of equations to illustrate membrane shapes obtained
from a simple choice of the spontaneous curvature C. I will also present another
commonly used membrane parametrization where, instead of the arc-length, the
parameter of the Lagrangian functional is the radial distance r.

2.2.1.2 Radial distance r as a parameter

If one chooses to describe the membrane using the radial coordinate r as
parameter, there will be only one Euler-Lagrange equation, associated with
the tangent angle „. The expressions for dz

ds and dA
ds in Eqs. 2.6 and 2.7,

respectively, need to be rewritten as functions of r. These expression are given
by:

dz

ds
= dz

dr

dr

ds
æ

dz

dr
© zr = sin „

cos „
(2.36)

dA

ds
= dA

dr

dr

ds
æ

dA

dr
© Ar = 2fir

cos „
(2.37)
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where, to ease notation, ()r ©
d()
dr . Additionally, the mean and Gaussian curvature

given in Eqs. 2.13 and 2.14, respectively, are expressed as:

d„

ds
= d„

dr

dr

ds
© „r cos „ (2.38)

H = 1
2

3
„r cos „ + sin „

r

4
(2.39)

K = „r cos „ sin „

r
(2.40)

As before, one needs to find the basis vectors and the metric coe�cients in
this parametrization. The basis vectors are given by:

er = dX
dr

= x̂ cos ◊ + ŷ sin ◊ + ẑzr

e◊ = dX
d◊

= ≠x̂r sin ◊ + ŷr cos ◊

where X is the position vector in cylindrical coordinates, given in Eq. 2.4. The
corresponding non-vanishing metric coe�cients are given by:

grr = er · er = 1 + z
2
r = 1

cos2 „
g

rr = cos2
„ (2.41)

g◊◊ = e◊ · e◊ = r
2

g
◊◊ = 1/r

2 (2.42)

Above, I have used the expression for zr in Eq. 2.36. The Lagrangian functional
is given as:

L(r, „, „r) =
C

B

5
1
2

3
sin „

r
+ „r cos „

4
≠ C

62
+ ⁄

D
r

cos „
(2.43)

where one notes that, as the radial distance r is the parameter, there is no
Lagrange parameter function associated to r. Moreover, L depends explicitly on
the parameter r, and hence the Hamiltonian is not conserved, because ˆL

ˆr ”= 0.
There will be only one EL equation, which is given by:

ˆL

ˆ„
≠

d

dr

3
ˆL

ˆ„Õ

4
= 0 æ M sin „

5
sin „

r
≠

M

B
≠ 2C

6
+ ⁄ sin „ ≠ Mr cos2

„ = 0

(2.44)

The Laplace-Beltrami operator applied to the bending moment M is given as:

Ò
2
M = 1

|gij |

d

dr

3
g

rr
Ò

|gij |
dM

dr

4
= Mr cos2

„

r
≠ Mr„

Õ cos „ sin „ + Mrr cos2
„

(2.45)

where Mrr ©
d2M
dr2 , and where I have used the metric coe�cients in Eq. 2.41

in order to find that the determinant of the metric is |gij | = grrg◊◊ = r2

cos2 „ .
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It is now possible to take the derivative d
dr of the Eq. 2.44 and use Eq. 2.45

to express M
ÕÕ cos2

„ in terms of the Laplacian Ò
2
M . Additionally, with the

expression for the Gaussian curvature in Eq. 2.40, one writes:

BÒ
2(H ≠ C) + 2B(H ≠ C)(H2 + HC ≠ K) ≠ 2H⁄

+1
r

5
M sin „

3
sin „

r
≠

M

B
≠ 2C

4
+ ⁄ sin „ ≠ Mr cos2

„

6

≠2CrM sin „ + ⁄r sin „ = 0 (2.46)

In the second line of Eq. 2.46 it is possible to recognize the EL equation of
the angle „ in Eq. 2.44, which vanishes identically. The third line provides a
relation between the spontaneous curvature and the surface tension ⁄ that reads
⁄r = 2MCr, which indicates that the surface tension accommodates the possible
dependence of the spontaneous curvature with the surface coordinates. If this
condition is satisfied, one obtains:

BÒ
2(H ≠ C) + 2B(H ≠ C)(H2 + HC ≠ K) ≠ 2H⁄ = 0 (2.47)

In the seminal work by Helfrich [1], this parametrization has been used to study
the deformation of spherical vesicles.

2.2.2 Covariant formulation

The term covariant refers to the way of writing physical quantities in a coordinate-
independent manner, that is to say, without specifying a priori how to describe
the membrane surface. The equations derived in this way will then be valid
regardless of the coordinate system and surface parametrization used. To derive
the covariant shape equation for the shape that minimizes the energy given
in Eq. 2.2, one needs to write the area di�erential dA and the curvatures in
a coordinate-independent way. In covariant form, dA =


|gij |dx1dx2, where

|gij | is the determinant of the metric, the indexes i, j refer to the coordinates
used to describe the membrane surface, and dx1 and dx2 are the infinitesimal
displacement in the coordinate x1 and x2, respectively. The metric is defined as:

gij = ei · ej (2.48)

where {ei} are the basis vectors defining the tangent plane on the surface, that
is:

ei = ˆX
ˆxi

(2.49)

where X is the position vector on the surface.
The total energy is given, in a covariant form, as:

W =
⁄ Ò

|gij |[B(H ≠ C)2 + ⁄]dx1dx2 (2.50)
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Minimizing the energy W means to perform an infinitesimal deformation of the
surface, which will induce a variation of the position vector denoted as ”X. The
resulting expression should vanish for any arbitrary ”X. That is, ”W = 0. In
general, ”X has two components: one along the tangent plane on the surface and
one along the normal direction. However, in order to find the shape equation, it
su�ces to assume that the variation of X has only one component, lying along
the normal direction [22], i.e, ”X = ‘(x1, x2)N, where ‘ is a function of the
coordinates and N is the unit normal vector to the surface, defined as:

N = e1 ◊ e2
|gij |

(2.51)

The tangential variations of the surface energy are associated with boundary
terms. If the surface has no boundary or edges, these terms will vanish and
will not contribute to the energy [23]. In such case, it is enough to consider the
normal variations of the surface energy. As consequence, the variation of the
energy can be written in a general form, as [17, 23]:

”W =
⁄

{”

Ò
|gij |[B(H ≠ C)2 + ⁄] + 2B

Ò
|gij |(H ≠ C)”H}dx1dx2 = 0 (2.52)

Obtaining the variation ”


|gij | and ”H involves many intermediate
calculations whose details can be found in [22, 23, 24]. Although my purpose
is not to present an exhaustive derivation of the covariant shape equation, it is
worth mentioning that the expression of ”


|gij | and ”H are functions of the

mean and Gaussian curvature, which are given in terms of the second fundamental

form, denoted as bij and which was first introduced in Eq. 2.12. From the second
fundamental form, the mean and Gaussian curvature are defined as:

H =
gijbij

2 =
b

j
j

2 = (Ÿ1 + Ÿ2)
2 (2.53)

K = |bij |

|gij |
= Ÿ1Ÿ2 (2.54)

where g
ij is the inverse metric. The mean curvature is the trace of the

second fundamental form and the Gaussian curvature is the ratio between
the determinants of bij and the metric gij . The expressions for ”


|gij | and ”H

are given by [17, 23]:

”
(1)

Ò
|gij | =

Ò
|gij | [≠2‘H] (2.55)

”
(1)

H = ‘(2H
2

≠ K) + 1
2Ò

2
‘ (2.56)

where the symbol ”
(1) denotes the variation up to the first order with respect

to the perturbation ‘. By substituting Eqs. 2.55 and 2.56 into Eq. 2.52 one
obtains:

”
(1)

W =
⁄ Ò

|gij |{2B(H ≠ C)[‘(H2
≠ K + HC) + 1/2Ò

2
‘] ≠ 2‘H⁄}dx1dx2
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And integrating by parts the term (H ≠ C)Ò2
‘ twice, one obtains [17, 23]:

”
(1)

W =
⁄ Ò

|gij |‘{BÒ
2(H ≠ C) + 2B(H ≠ C)(H2

≠ K + HC) ≠ 2H⁄}dx1dx2

Finally, the condition ”
(1)

W = 0 should hold for any arbitrary ‘, and the
expression inside the curly brackets must vanish. That is:

BÒ
2(H ≠ C) + 2B(H ≠ C)(H2

≠ K + HC) ≠ 2H⁄ = 0 (2.57)

where the operator Ò
2

©
1Ô
|gij |

d
dxi (gij d

dxj ) is called Lapace-Beltrami operator.
The Eq. 2.57 is the shape equation in covariant form and it is identical to Eqs.
2.25 and 2.47. This means that, as expected, the Euler-Lagrange equations lead
to the covariant shape equation, regardless of the membrane parametrization
used. The covariant shape equation, which poses considerable challenges for it
to be solved, is a non-linear, second order partial di�erential equation. However,
if one assumes that the equilibrium shapes have axial symmetry, Eq. 2.57
becomes an ordinary di�erential equation of higher order [25]. Theoretical
studies of membranes have used the covariant shape equation, primarily for
axially symmetric shapes [26, 27, 28].
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Chapter 3

Forces on a membrane

Aside from the mathematical formalism described in the previous chapter, a
second formalism —the force balance based on the thin shell theory—, also
serves to describe the membrane. This alternative formalism deals with the
elastic deformations experienced by a solid, closed surface, whose thickness is
significantly smaller than the length scale associated to its area. The assump-
tion of negligible thickness was also adopted in the energy formulation of the
membrane, discussed in Chapter 2.

A biological membrane has a solid-fluid duality: on one hand, it can be both
stretched and compressed as if it were a thin shell [1, 2], due to the slightly elastic
nature of the lipid molecules [3]. On the other hand, the membrane shows a fluid
structure at physiological temperatures [4], and the lipid molecules and proteins
can laterally di�use. Due to the elastic nature of the biological membrane, a
bent lipid membrane is bound to experience forces and torques. The physical
condition for the mechanical equilibrium of the bent membrane is the balance of
the net force along the normal and tangent directions. The forces acting on a
small patch of a fluid membrane and the equations resulting from their balance
are equal to the ones found on a solid thin shell. Researchers have derived
these equations in detail [5] and summarized them in several publications [3, 6, 7].

Within lipid membranes, which are the object of this study, the force
balance formalism illustrated the modeling of budding induced by viral proteins
embedded in the cell membrane [8]. Additionally, the formalism was used in the
modeling of lipid membranes containing coexisting fluid domains, that is to say,
a liquid-ordered and liquid-disordered phase. The boundary between these two
phases generates a line tension [9], which is related to the matching conditions
satisfied by the transverse shear and lateral stresses across the boundary created
between the two fluids phases [7].

The force balance formalism establishes several intrinsically dissimilar
constitutive relations between the membrane tension and the bending moments
[3, 10]; depending on the chosen relation, the predicted membrane shapes may
di�er. The section below presents the force balance equations. While describing
them, I will set forth and analyze some of the implications that such di�erent
constitutive relations pose for the predicted membrane shapes.
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3. Forces on a membrane

3.1 Forces balance equations

As in Chapter 2, this chapter will consider an axially symmetric membrane
described with cylindrical coordinates {r, ◊, z}, involving r and z (parametrized
using the arc-length s), together with the angle between the axis of revolution
and the normal to the meridian, „. Fig. 2.2 shows a representation of the
membrane parametrization with these characteristics. The coordinates r and z,
together with the membrane area A, satisfy Eqs. 2.5, 2.6 and 2.7, respectively.
The deformed membrane describes two radii of curvature, r◊, along the azimuthal
direction, and r„ along the meridional direction. These two radii of curvature
will define the principal curvatures of the membrane, Ÿ◊ and Ÿ„, which are given
by [11]:

Ÿ◊ = 1
r◊

= sin „

r
(3.1)

Ÿ„ = 1
r„

= „
Õ (3.2)

Once the mathematical description of the membrane has been established,
it is possible to determine the forces acting on it. In order to do this, one
envisions a small membrane patch, as shown in Fig. 3.1. Membrane forces act
on the membrane patch. Specifically, Q (transverse shear) and p (pressure) act
perpendicularly to the membrane. The tensile stresses, T◊ and T„, act in the
tangential direction of the membrane. These forces generate bending moments
(denoted by M◊ and M„) which adopt the direction of the axis around which
they are applied, following a right-handed sense. The bending moments depend
on the membrane curvature and on a prescribed spontaneous curvature C, as it
is shown further below. As a consequence of axial symmetry, none of the forces
depend on the angle ◊. The forces act on the membrane patch edges whose
lengths are given in terms radius of curvatures r◊ and r„ and the di�erential
angles d◊ and d„. Fig. 3.1 illustrates these lengths, together with the forces
acting on the membrane patch. To ease the visualization of such forces, each
force is represented with a di�erent color.

The balance of the forces and bending moments in Fig. 3.1 results in the
following equations [5, 6]:

M
Õ

„ = (M◊ ≠ M„)cos „

r
≠ Q

T
Õ

„ = (T◊ ≠ T„)cos „

r
+ Q„

Õ

Q
Õ = p ≠

T◊ sin „

r
≠ T„„

Õ
≠

1
r

Q cos „

Within the general theory of thin shells, the bending moments M„ and M◊

are defined in terms of the bending strains [6, 10]. Within lipid bilayers, these
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Forces balance equations

Figure 3.1: Schematic representation of the forces acting on a small membrane
patch, subtended by a small azimuthal angle d◊ and a small meridional angle
d„. On the patch, tensile stresses T◊ and T„ (depicted in green) act on the
membrane; they are located on the plane of the membrane and directed on the e◊

and e„ directions, respectively. These tensile forces generate bending moments
(depicted in blue), that act around the membrane edges and are directed on a
right-handed sense: M◊ is directed on the ≠e„ direction and M„ follows the
e◊ direction. The transverse shear Q (depicted in magenta) is directed along
the normal direction n respect to the membrane patch. The net pressure p is
depicted in orange. The forces act over di�erent lengths depending on the edge
where they are applied. Each length is given in terms of the principal radii of
curvature r◊ and r„ and the di�erential angles d◊ and d„. These lengths are
also shown in the figure.

bending strains are the membrane curvatures, and the bending moments are [6]:

M◊ = M„ © M = B

5
1
2

3
sin „

r
+ „

Õ

4
≠ C

6
(3.3)

where B is the bending rigidity and C is the spontaneous or preferred curvature.
The equation for the balance of moments adopts the following simplified form:

M
Õ = ≠Q

To summarize, the di�erential equations to be solved in the force balance
formalism are:

„
Õ = 2M

B
≠

sin „

r
+ 2C (3.4)
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3. Forces on a membrane

r
Õ = cos „ (3.5)

z
Õ = sin „ (3.6)

A
Õ = 2fir (3.7)

M
Õ = ≠Q (3.8)

Q
Õ = p ≠

T◊ sin „

r
≠ T„„

Õ
≠

1
r

Q cos „ (3.9)

T
Õ

„ = (T◊ ≠ T„)cos „

r
+ Q„

Õ (3.10)

Eqs. 3.4-3.8 are equivalent to Eqs. 2.30-2.34. The following section discusses the
conditions which allow that the equation for the transverse shear Q (Eq. 3.9) and
the tension (Eq. 3.10) are equivalent to Eq. 2.28 and Eq. 2.29, respectively. In
order to examine this possible equivalence, one needs to establish the description
of membrane tension. Theoretical research [12, 13] proposed that membrane
tension and bending moments are related to each other by a constitutive relation.
The physical origin of such relation lies in the stratified nature of the membrane,
where the tangential stresses and moments accumulate across the material and
can be defined with respect to a "neutral" or equivalent surface. The tension T„

and T◊, which are defined in this neutral mid-surface, are [3, 12, 13]:

T„ = · + Ÿ◊M = · + M sin „

r
(3.11)

T◊ = · + Ÿ„M = · + M„
Õ (3.12)

where · is a tension that is common to both T„ and T◊. Regarding the particular
case of vanishing spontaneous curvature (C = 0) [3], the constitutive relations
in Eqs. 3.11 and 3.12 demonstrated that the force balance equations lead to
the covariant shape equation, Eq. 2.57. I intend to illustrate whether the
force balance equations are equivalent to the equations derived from the energy
minimization with the constitutive relations described above (Eqs. 3.11 and 3.12)
for the membrane tension. In consequence, Eqs. 3.11 and 3.12 are introduced
into Eq. 3.10 to obtain:

T
Õ

„ = M cos „

r

3
„

Õ
≠

sin „

r

4
+ Q„

Õ = M cos „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
+ Q„

Õ

(3.13)
where the expression for the bending moment M in Eq. 3.3 was used to write „

Õ

as a function of M , „, and r. The derivative of T„, following Eq. 3.11, is:

T
Õ

„ = ·
Õ + M

Õ sin „

r
+ M cos „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
(3.14)

In consequence, Eq. 3.13 becomes:

·
Õ = Q

3
sin „

r
+ „

Õ

4
(3.15)
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Previously, the first order di�erential equations of the functions T and Q, Eqs.
2.29 and 2.28 were obtained from the EL formalism. The equation for T was:

T
Õ = M cos „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
+ Q„

Õ (3.16)

The right hand side of Eqs. 3.13 and 3.16 are identical. Yet it remains to be seen
whether their left hand sides are also identical. To answer this, the expression of
the Hamiltonian in Eq. 2.20 is used, together with the definition of T , T ©

� cos „
r .

From the expression of H, it then follows that:

� cos „

r
© T = M

2

B
+ ⁄ ≠ M„

Õ = ⁄ ≠
M

2

B
≠ 2MC + M sin „

r
(3.17)

where Eq. 2.26 was used to write M
Õ = ≠Q. Hence, the left hand side of Eqs.

3.13 (force balance formalism) and 3.16 (EL formalism) are equal as long as
T = T„. This condition is fulfilled if T = · + M sin „

r , where · is:

· = ⁄ ≠
M

2

B
≠ 2MC æ ·

Õ = ≠M
Õ

3
2M

B
+ 2C

4
= Q

3
sin „

r
+ „

Õ

4
(3.18)

From this point onwards, ⁄ and C are constants. As the equations fulfilled by ·
Õ

in Eqs. 3.15 and 3.18 are consistent, I have been able to show that the function
T defined in the EL formalism conveys the physical interpretation of the tension
along the meridional direction, T = T„.

It is possible to perform a similar analysis for the equations corresponding to
the transverse shear Q. The equation for Q, Eq. 3.9, with the definition of the
tension T„ and T◊ in Eqs. 3.11 and 3.12, respectively, is written as:

Q
Õ = p ≠ ·

3
sin „

r
+ „

Õ

4
≠

2M„
Õ sin „

r
≠

Q cos „

r
(3.19)

Previously, the function Q from the EL formalism appeared as the following
expression:

Q
Õ = ≠

M sin „

r

3
2M

B
+ 2C ≠

2 sin „

r

4
≠

3
· + M

sin „

r

4
„

Õ (3.20)

where I used T = T„ = · + M sin „
r . By comparing the expression for Q

Õ in both
Eqs. 3.9 (force balance formalism) and 3.20 (EL formalism), it is possible to
notice that they are equal if:

p ≠
· sin „

r
≠

Q cos „

r
= M sin2

„

r2 æ p ≠
T sin „

r
≠

Q cos „

r
= 0 (3.21)

where I have also used T = T„ = · + M sin „
r . The functions T and Q in the EL

formalism admitted as solution:

Q = ≠U sin „

T = U cos „
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3. Forces on a membrane

By inserting these expressions into Eq. 3.21, this equation is fulfilled as long as
p = 0. In the derivation of the EL equations, it was assumed that the membrane
is infinite. As a result, there was no constraint on the volume it enclosed. In
consequence, the pressure p = 0. On the other hand, when analyzing the forces,
it is now justifiable to assume that the pressure is negligible as long as the radius
of the bud formed on the vesicle is significantly smaller than the vesicle size, as
it will be shown further below. Therefore, if T = T„ and if p = 0, Eqs. 3.9 and
3.10 are equivalent to Eqs. 2.28 and 2.29, respectively.

Consequently, I have shown that the functions T and Q derived from the EL
formalism can have a clear interpretation of membrane tension and transverse
shear stress, respectively, provided that the tension and bending moments are
coupled according to the constitutive relations Eqs. 3.11 and 3.12.

Previous literature on this topic indicates that there is another way of
describing membrane tension: the tensions are decoupled from the bending
moments, that is, T◊ = T„ = · [8, 10]. This assumption simplifies the equations
derived from the force balance formalism which, together with the geometric
equations derived from the membrane parametrization, form the following set of
coupled first order, ordinary di�erential equations:

„
Õ = 2M

B
≠

sin „

r
+ 2C (3.22)

r
Õ = cos „ (3.23)

z
Õ = sin „ (3.24)

A
Õ = 2fir (3.25)

M
Õ = ≠Q (3.26)

·
Õ = Q„

Õ (3.27)

Q
Õ = p ≠

· sin „

r
≠ ·„

Õ
≠

Q cos „

r
(3.28)

However, Eq. 3.27 does not allow to establish an equivalence with the equations
derived from the EL formalism. Therefore, the solution of the equations derived
from these two formalisms will be, in general, di�erent. In the following section,
I will compare the shapes obtained by solving Eqs. 3.22-3.28 (when decoupled
tension and bending moments are chosen) with the shapes obtained through the
EL formalism, Eqs. 2.30-2.35, for a given spontaneous curvature C.

3.1.1 Boundary conditions in the force balance equations

To illustrate the predictions from both the EL formalism (Eqs. 2.30-2.35) and
the force balance equations (Eqs. 3.22-3.28), it is assumed that a small bud of
radius L is formed on a closed vesicle of radius rc, which is significantly larger
than L. The formation of the bud is driven by the spontaneous curvature C

32



Forces balance equations

defined on a certain region of the membrane. Such region has an area equal to
Ap. The spontaneous curvature C is a piecewise constant function, given by [8]:

C =
;

1/L if A < Ap

1/rc if A Ø Ap

<
(3.29)

The boundary conditions for the tangential angle „, the radial coordinate r, the
membrane height z, and the membrane area A are:

„(s = 0) = 0, r(s = 0) = 0, z(s = 0) = 0, A(s = 0) = 0

which defined the origin of the coordinate z to be set at s = 0. The bending
moment M in Eq. 3.3 satisfies the following boundary condition at s = 0:

M(s = 0) = B

2

3
lim
sæ0

sin „

r
+ „

Õ(0) ≠ 2C(0)
4

= B(„Õ(0) ≠ C(0))

given that the L’hopital rule allowed to approximate the limit of sin „
r as s æ 0.

Additionally, the transverse shear Q at s = 0 vanishes. Away from the budding
region, the membrane has a mean curvature given by the inverse of the vesicle
radius rc. Both the mean curvature and the spontaneous curvature (defined
in Eq. 3.29) at the far boundary smax are given by 1/rc, whereby the bending
moment M vanishes. Subsequently, from Eq. 3.26 it is found that M

Õ = 0 = ≠Q

at s = smax. From the equation for the transverse shear Q (Eq. 3.28), it results
that Q = Q

Õ = 0 at s = smax, and that the boundary condition for the tensile
stress is:

0 = p ≠ 2·(smax)rc æ ·(smax) = prc

2 (3.30)

Hence, the far field tension is related to the net pressure di�erence acting on
the membrane. Lastly, at the far boundary smax, the tangential angle „ satisfy
„(smax) = 0, if rc ∫ L.

3.1.2 Non-dimensional analysis

A usual step of analysis consists in finding the dimensionless form of both the
shape equations and the boundary conditions. The forces are scaled with the
bud radius L and the bending rigidity B. The lengths in the system are scaled
with L. The dimensionless forces and lengths are:

s̄ = s

L
, r̄ = r

L
, z̄ = z

L
, Ā = A

L2 , C̄ = CL

M̄ = ML

B
, Q̄ = QL

2

B
, ·̄ = ·L

2

B
, p̄ = pL

3

B
(3.31)

The spontaneous curvature C in Eq. 3.29 in dimensionless form is:

C̄ =
;

1 if Ā < Āp

L/rc © 1/R ¥ 0 if Ā Ø Āp

<
(3.32)

33



3. Forces on a membrane

where it was defined that R ©
rc
L . If the vesicle radius is significantly larger than

the bud radius (rc ∫ L), then R ∫ 1. In this limit, the spontaneous curvature
outside the budding region C æ 0. The dimensionless boundary condition in
Eq. 3.30 is given by:

·̄(smax) = p̄R

2 © T0 (3.33)

As consequence, p̄ = 2·̄(s̄max)
R æ 0 in the limit R ∫ 1, and the equation for the

transverse shear Q (Eq. 3.28) is simplified, given that the dimensionless pressure
is small. As result, Q̄

Õ is:

Q̄
Õ = ≠

·̄ sin „

r̄
≠ ·̄

3
2M̄ ≠

sin „

r̄
+ 2C̄

4
≠

Q̄ cos „

r̄
(3.34)

However, the far field tension ·̄(s̄max) will generally have a finite value, unless
p = 0. To ease notation, all bars from the dimensionless quantities and variables
from the non-dimensional equations will be omitted. The simplified equation
for the transverse shear shown in Eq. 3.34 allows the finding of exact solutions
for Q and · which satisfy the boundary conditions summarized before. These
solutions are [8]:

· = T0 cos „ (3.35)
Q = ≠T0 sin „ (3.36)

and satisfy identically Eq. 3.27 and Eq. 3.34. As consequence, the governing
ordinary di�erential equations are reduced to:

„
Õ = 2M ≠

sin „

r
+ 2C (3.37)

r
Õ = cos „ (3.38)

z
Õ = sin „ (3.39)

A
Õ = 2fir (3.40)

M
Õ = T0 sin „ (3.41)

Noticing that the equations will become singular if the boundary conditions
at s = 0 are not properly regularized, the boundary conditions are defined with
respect to a small value ‘ π 1, instead of defining them at s = 0. By performing
a Taylor expansion of the boundary conditions around s = 0, the result is:

„(s = 0) = 0 æ „(‘) ¥ ‘„
Õ(0) © ‘c1 (3.42)

r(s = 0) = 0 æ r(‘) ¥ ‘ (3.43)

z(s = 0) = 0 æ z(‘) ¥
‘

2
c1
2 (3.44)

A(s = 0) = 0 æ A(‘) ¥ fi‘
2 (3.45)

M(s = 0) = „
Õ(0) ≠ C(0) æ M(‘) = c1 ≠ C (3.46)

„(s = smax) = 0 (3.47)
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In these regularizations, one free parameter (c1) was introduced. The system of
five ordinary di�erential equations (ODEs) given in Eqs. 3.37-3.41, the parameter
c1, and the six boundary conditions in Eqs. 3.42-3.47 all close the systems of
unknowns and equations.

3.1.3 Boundary conditions in the Euler-Lagrange formalism

The shape equations derived from the EL formalism are given in Eqs. 2.30-2.35.
The surface tension ⁄ and the function U are non-dimensionalized as:

⁄̄ = ⁄L
2

B
, Ū = UL

2

B
(3.48)

and the variables s, r, z, A, M and C are written in dimensionless form as in
Eq. 3.31. Again, to ease notation, the bars from the dimensionless variables
were omitted.

The boundary conditions in the EL formalism are given by Eq. 3.42-3.47.
Additionally, a boundary condition for the function U is obtained from the
Hamiltonian, Eq. 2.20. As r(s = 0) = 0, the condition H = 0 is satisfied
automatically. However, there is a non-trivial boundary condition at s = smax

related to the surface tension ⁄. If at s = smax the bending moment and the
tangential angle „ vanish, the boundary condition for U is written as:

H(smax) = r(smax)
#
≠⁄ ≠ M

2 + U cos „ + „
Õ
M

$
= 0 æ U(smax) = ⁄ (3.49)

3.1.4 Comparing force balance and Euler-Lagrange formalisms

By comparing the set of di�erential equations derived from the energy min-
imization (EL formalism), Eqs. 2.30-2.35 with the ones obtained using the
force balance formalism, Eqs. 3.37-3.41, one notices that both formalisms
are equivalent only under very particular situations. If the bending moment
M is zero everywhere, the equations obtained from the force balance formal-
ism reduces to U

Õ = U = 0, which is satisfied only if the surface tension
⁄ vanishes. On the other hand, the bending moment vanishes in Eq. 3.41
if T0 = 0. This means that both formalisms are equivalent only if the far
field tension vanishes. In such case, M = 0, implying that H = C, that is,
the membrane shape adopts the form imposed by its spontaneous curvature.
Intuitively, one can notice that, given the form of the energy functional in Eq.
2.2, the energy will be minimal if indeed the bending moment vanishes, as
long as the surface tension ⁄ vanishes. In general, the inclusion of surface ten-
sion in the system will lead to non-vanishing bending moments on the membrane.

In Fig. 3.2, I obtained the membrane shapes corresponding to di�erent values
of the far field tension and protein area coverage Ap. This was achieved by
solving numerically the shape equations derived from the balance of forces (Eqs.
3.37-3.41 with the boundary conditions in Eqs. 3.42-3.47) and the equations
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3. Forces on a membrane

derived from the energy formalism (Eqs. 2.30-2.35 with the boundary conditions
in Eqs. 3.42-3.47 and Eq. 3.49). Both sets of equations contain the spontaneous
curvature C given by Eq. 3.32. To facilitate the comparison between the two
formalisms, I will assume that the far field tension is the same, which I will
designate as T0. I also select the area coverage Ap = 8 and T0 œ [0, 0.4]. Fig.
3.2 illustrates the shapes obtained from the two formalisms discussed previously,
which are equivalent whenever T0 = 0. As T0 increases, the solutions are no
longer the same. Furthermore, I observed that a larger value of T0 prevents the
formation of a bud and flattens the membrane.

(a) T0 = 0. (b) T0 = 0.01. (c) T0 = 0.1.

(d) T0 = 0.2. (e) T0 = 0.3. (f) T0 = 0.4.

Figure 3.2: Comparison between the predicted membrane shapes obtained with
the force balance (red curves) and EL (black curves) formalisms. When the far
field tension vanishes, T0 = 0 (a) the shapes are identical, but as T0 increases
((b)-(f)), the shapes are no longer the same. A larger T0 brings about a closer
similitude between the shapes, whereas a smaller T0 makes the extent of their
di�erence more noticeable, as a lower far field tension allows more complex
shapes. Additionally, the far field tension prevents membrane budding, which
results in a flattened membrane.

The examples above demonstrates that the force balance formalism and
the EL formalism are equivalent as long as specific conditions are met. Yet in
theoretical studies of biological membranes, energy minimization is the prevalent
formalism. The reason for such preference resides in the fact that it acknowledges
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that a typical membrane is not only an elastic surface with bending energy: the
membrane energy can include many other biophysical e�ects, such as mixing
entropy between its components and protein-protein interactions [14]. Protein
flux, which is a fundamental concept behind protein movement, is defined in
terms of membrane energy [15, 16]. Furthermore, given that I am also concerned
with the movement of curvature-inducing proteins on the membrane (which also
plays a role on membrane shape evolution [17]), it is then more convenient to
rely on the EL formalism (and not on the force balance formalism). The latter
does not allow to define the flux of proteins, given that the membrane energy
cannot be readily found purely from the balance of forces. For this reason, I will
employ the EL formalism to describe the membranes which the present study
examines.
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Chapter 4

Membrane dynamics

The fluid nature of biological membranes has significant implications: lipids and
proteins —key membrane components— are mobile on the membrane surface [1,
2], they reorganize themselves, and migrate from one place of the membrane to
another. Proteins and lipids play a crucial role in membrane deformation, which
exhibits a gradual and progressive behavior. In clathrin-mediated endocytosis, a
fundamental process on the cell membrane, a nascent invagination or pit grows
depth-wise and evolves into a well-defined vesicle, joined to the membrane by
a narrow neck. In the last stage of the membrane deformation, the vesicle is
separated from the donor membrane through a scission process [3, 4]. Fig. 4.1
shows the gradual membrane deformation during clathrin-mediated endocytosis,
where the membrane evolves from being a shallow pit to become a fully formed
vesicle. Progressive membrane deformation is observed in other processes as
well. For example, in ILV formation, the endosome membrane is deformed into
budding profiles characterized by a larger invagination depth and narrower necks
as the deformation process evolves in time [5].

Figure 4.1: Clathrin-coated vesicle budding where yolk protein is being
incorporated into vesicles in oocytes. The process involves a series of shapes:
(1) shallow pit, (2) U-shape, (3) spherical vesicle attached to the membrane by
a narrow neck, and (4) a vesicle completely detached after neck scission. The
image is adapted from [6].

Membrane deformation requires the cooperative action of a large number
of proteins. Research has been able to identify several protein modules in-
volved in clathrin-mediated endocytosis. The protein modules function and
recruitment dynamics into the endocytic site has been also identified [7, 8, 9].
The proteins required for membrane deformation are hardly static: proteins in
the cytosol such as clathrin are in constant exchange with the membrane [4].
Such constant exchange between membrane-bound and free clathrin proteins
is a fundamental property of clathrin coats assembled on the membrane; this
exchange contributes to clathrin structural rearrangement as the membrane
deformation evolves [10]. Additionally, the evolution of protein accumulation
required for vesicle formation is also correlated with the progression of mem-
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brane deformation: the initiation of the pulling forces produced by the actin
protein in the endocytic site is correlated with an increase in its density [8]. A
cooperative and concerted action between di�erent proteins is also observed
in the formation of Intraluminal Vesicles: the ESCRT machinery exhibits a
well-defined recruitment dynamics in time, where the accumulation of some of
these proteins is slower, and other proteins exhibit faster dynamic recruitment [5].

In an attempt to broaden the theoretical models based on membranes energy
minimization (reviewed in Chapter 2), I will discuss some of the details of the
theoretical modelling of dynamic shape deformation, i.e., the time evolution of
the membrane shape. I take into account the role of two primary factors on
the membrane dynamics: the di�usion of proteins on the membrane (owed to
its fluid properties), and the recruitment of these proteins onto the membrane
through a kinetic model. I will discuss the implications of these mechanisms in
membrane budding dynamics.

4.1 Diffusion in membranes

Di�usion is one of the mechanisms which facilitates the migration of solutes
and molecules [11, 12]. The transport of proteins and other molecules occurs
on cell membranes with complex shapes, and these shapes can be the result of
biological processes that require membrane deformation, such as endo/exocytosis
[13]. In the early stages of endocytosis, membranes form pits, while at later
stages of the process membranes form nearly spherical vesicles joined with their
surrounding membrane by a narrow neck [4, 14]. Another example of complex
shape formation is exhibited by the communication pathways for material
transport between the Golgi apparatus and the endoplasmic reticulum, which
requires the formation of tube networks [15]. More complex shapes, such as con-
catenated buds joined together by narrow bridges or necks (pearled structures)
are observed in experiments where amphiphilic molecules anchor themselves
onto a lipid bilayer [16]. These pearled structures were also observed as the
result of adsorption of nanoparticles into the inner leaflet of Giant Unilamellar
Vesicles (GUVs) [17].

Experiments designed to establish the influence of membrane geometry in
the sorting of trans-membrane proteins demonstrated that the radii of tubular
structures have a strong e�ect in the enrichment of proteins in the tubes
[18]. Subsequently, theoretical studies were developed to account for these
experimental findings. For example, the solution of the di�usion equation in
tubular membranes employing numerical methods established a dependence
between time and protein density on the tube [19]. This dependence was
confirmed by experiments [18], where protein density was measured over time
through the Fluorescence Recovery After Photobleaching (FRAP) experimental
technique. The FRAP technique consists in labeling a population of molecules
within a certain region with a fluorescent tag. The molecules then undergo
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photobleaching, which allows the observer to follow the fluorescence recovery
resulting from the exchange between bleached and unbleached molecules located
in the surroundings of that region [20, 21]. The tight correspondence between
theoretical and experimental findings pointing to the link between protein
density and time, provides a validation of the theoretical foundations of di�usion
on surfaces.

The mathematical treatment of di�usion often involves numerical methods
for solving the di�usion equation on an arbitrary surface, given that analytical
solutions are found for simple geometrical surfaces only, such as the surface
corresponding to spheres and cylinders [22]. In contrast, numerical solutions do
account for arbitrary surfaces. For example, numerical studies of di�usion were
performed on surfaces mimicking dendritic spines, which range from elongated
to mushroom-like protrusions [23], with the random walk simulation technique.
This technique was also used to simulate di�usion in the mitochondrial inner
membrane, which possess numerous invaginations or cristae of di�erent shapes
[24]. Additionally, random walk simulations were performed on periodical, nodal
surfaces [22].

The numerical solutions of the di�usion equation on such arbitrary shapes
determine how protein density evolves over time, and enable the exploration of
possible relations between membrane shape and protein density.

4.1.1 Diffusion on axially symmetric surfaces

The axially symmetric surfaces I will consider are structures that constitute a
more complex object of study than the surface of a sphere or cylinder. The
surface of axially symmetric membranes where protein di�usion takes place
can be parametrized by the arc-length, as described in Fig. 2.2. The di�usion
equation satisfied by the protein density ‡̃ is [25]:

ˆ‡̃

ˆt
≠

D

r
(r‡̃

Õ)Õ = 0 (4.1)

where D is the di�usion coe�cient (considered here as a constant), which mea-
sures the rate of molecule movement in the absence of active transport or flow
[26]. The dimensionless protein density ‡̃ is a continuous field that depends on
time and on the arc-length, ‡̃ = ‡̃(s, t). The radial coordinate r, the membrane
height z, and the area A satisfy Eqs. 2.5, 2.6 and 2.7, respectively. The di�usion
equation, Eq. 4.1, on a flat surface is written as ˆ‡̃

ˆt ≠ D‡̃
ÕÕ

≠
D
s ‡̃

Õ = 0 in
polar coordinates, while on a curved surface is contains an additional term
D‡̃

Õ

1
1
s ≠

cos „
r

2
. As consequence, di�usion dynamics on a flat surface is clearly

di�erent from di�usion on a flat surface.

Di�usion is a process by which an initial protein density is distributed
over the available membrane surface. The protein density tends to acquire an
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homogeneous profile as time proceeds, as observed in Fig. 4.2. There, a pearled
structure with two buds is depicted with its corresponding protein density at
di�erent points in time. The initial density spreads over the entire membrane
and, as consequence, the density in the pearled structure decreases over time.

(a) ‡̃(s, t = 0). (b) ‡̃(s, t = 150dt). (c) ‡̃(s, t = 250dt).

Figure 4.2: Time evolution of protein density on a pearled structure with two
buds, via di�usive dynamics. (a) At t = 0, the proteins are mostly concentrated
in the upper bud. As time proceeds ((b) and (c)) the density becomes smaller
and more uniform over the pearled structure because proteins leave the budded
region. The color bar represents the protein density. The dimensionless time
interval (employed to solve the di�usion equation numerically) is dt = 5 ◊ 10≠3.

By considering di�usion of protein density on fixed, generic shapes (mimicking
the ones observed in biological membranes, such as tubes, domes, and pearled
structures with di�erent number of concatenated buds), it was possible to find a
quadratic relation between the membrane curvature and the exit time of proteins
from tubes [27]. In some cases, these shapes can be reproduced experimentally,
as it is the case with tubular structures [18]. The FRAP technique is a powerful
tool to measure the half-time, that is to say, the time required to recover half of
the initial fluorescence of the proteins after photobleaching in a certain membrane
region [21]. These measurements provide insights on protein mobility and have
corroborated the recovery time predicted theoretically by means of the di�usion
equation on tubular membranes [19]. Once again, such fine congruity between
experiments and theory encourages the further use of mathematical models for
di�usion of molecules in membranes with diverse shapes. In consequence, the
mathematical models for di�usion can be applied to the biological membrane,
even if one takes into account that the biological membrane is not a static, fixed
surface.

Additionally, experiments have shown that the shape transformation of a
single-component phospholipid vesicle is correlated with di�usion of adsorbed
polymers on the membrane. These polymers induce a spontaneous curvature
whose primary determinant is the polymers’ density on the membrane [16].
Experiments have also revealed that a typical membrane remodeling process
goes on as proteins are locally recruited on the membrane surface, inducing
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curvature [5, 7, 28]. Indeed, experiments revealed that membrane deformation
is driven by a gradual recruitment and accumulation of membrane-bound
proteins. This suggests that, in order to derive a more complete theoretical
description of the evolution of the membrane shape, it becomes necessary to
include the recruitment of curvature-inducing proteins into the theoretical model.

Experimental findings on di�usion-driven shape transformation [16] inspired
a modification in the membrane energy defined in Eq. 2.2. The modification
consisted in the inclusion of a spontaneous curvature which depends on the
protein/polymer density, and which evolves over time according to the di�usion
equation (Eq. 4.1). This modified membrane energy served as basis for the
theoretical study of the influence of macromolecules di�usion on the shape of
closed vesicles [29]. Another theoretical model for di�usion-mediated shape
transformation of an initially flat membrane containing trans-membrane proteins
established the dynamics of the protein density from the protein flux, defined in
terms of the chemical potential of the proteins [30].

4.2 Protein recruitment and diffusion

The starting point to build a theoretical model for membrane shape transfor-
mation induced by protein di�usion and kinetic recruitment is to define the
membrane energy. This step is accomplished by defining an energy having a
spontaneous curvature that depends on the membrane-bound density of proteins
‡̃. The second step towards the model necessitates that the membrane energy
includes the mixing entropy of the proteins. This term (mixing entropy) was not
included in the Eq. 2.2 (defined in Chapter 2). The rationale and motivation
for including an entropic contribution in the energy derives from the fact that
entropic free energy minimization is the physical driving mechanism of di�usion
[31]. Yet, other theoretical models for protein di�usion did not include mixing
entropy in the energy [29, 30]. In its most general mathematical form, the mixing
entropy considers that the binding sites on the membrane are bounded [32]. For
simplicity’s sake, it can be rather assumed that the binding sites are unbound,
in which case the mixing entropy of the proteins is that of the ideal gases [31,
33]. Taking into account these considerations, the membrane energy can be
formulated as:

W =
⁄ 5

B(H ≠ C0‡̃)2 + ⁄ + kbT

ap
‡̃(log ‡̃ ≠ 1)

6
dA (4.2)

The first term is the Helfrich energy [30, 34]. The induced spontaneous
curvature C = C0‡̃ depends linearly on the protein density [30, 35], where C0 is
the spontaneous curvature induced by one protein and ‡̃ is the non-dimensional
protein density on the membrane. The proteins are mobile on the membrane,
hence the density ‡̃ varies in time and space. The second term in Eq. 4.2 is the
surface tension. The third term is the mixing entropy of the proteins, where kb

is the Boltzmann constant, T is the temperature, and ap is the area occupied by
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one protein.

The membrane geometry is described according to the arc-length parametriza-
tion described in Fig. 2.2. Additionally, the entropic term in the energy described
in Eq. 4.2 does not depend on the membrane curvature —it only depends on
the protein density ‡̃. Hence, the shape equations associated to the total energy
in Eq. 4.2 are the same as those which were derived from the Euler-Lagrange
formalism, Eqs. 2.31-2.35. This implies that the membrane is at mechanical equi-
librium at all times, supported by the fast mechanical relaxation dynamics of the
membrane if compared to the larger time scale associated to protein di�usion [36].

In order to couple the di�usive dynamics of proteins with their kinetic
recruitment, the first defined term is the protein flux, which is given in terms
of the chemical potential derived from the energy functional in Eq. 4.2,
J = ≠�‡̃Ò

!
”W
”‡̃

"
, [31, 37]. � is the protein mobility and ”W

”‡̃ is the functional
derivative of the energy functional W with respect to the protein density. As
the energy does not depend on protein gradients, the functional derivative is
”W
”‡̃ = ˆW

ˆ‡̃ [38]. Hence, the non-vanishing component of the flux J is given by:

J = ≠�
3

kbT

ap
‡̃

Õ + 2C0‡̃Q

4
© ≠D‡̃

Õ
≠ 2�C0‡̃Q (4.3)

Ediff is the di�usive contribution of the evolution equation of the protein
density ‡̃, and is given by:

Ediff = ˆ‡̃

ˆt
+ 1

r
(rJ)Õ = ˆ‡̃

ˆt
≠

1
r

(r(D‡̃
Õ + 2�‡̃C0Q))Õ (4.4)

The recruitment dynamics is included in the model via a combination of a
source (protein attachment to the membrane) and a sink (detachment from the
membrane). The source term has the following property: protein attachment
is triggered when the membrane mean curvature exceeds a threshold value H0.
This assumption is suggested by experimental observations, which found that
certain proteins are enriched in curved regions of the membrane [39, 40]; some of
these proteins can induce curvature [41]. Theoretical studies based on molecular
dynamics simulations [42] and Monte Carlo simulations [43] have shown that
protein adsorption on the membrane can have a step-like behaviour with respect
to the membrane mean curvature. These key characteristics are included in
a phenomenological recruitment model, where the on-rate is multiplied by a
Heaviside function �(H ≠ H0). In contrast, protein detachment is curvature-
independent. The mathematical form of Esource, which includes the recruitment
and detachment term, is:

Esource = cpkon�(H ≠ H0) ≠ koff ‡̃ (4.5)

where cp is the constant bulk density of proteins, kon measures the recruitment
rate of proteins, � is the Heaviside function, H0 is the curvature above which
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the recruitment is triggered, and koff is the turnover rate.

The equation governing the time evolution of ‡̃, Ediff = Esource, in non-
dimensional form is written as:

ˆ‡̃

ˆ t̄
≠

1
r

!
r

!
‡̃

Õ + 2�̄C̄0‡̃Q̄
""Õ = K1�(H̄ ≠ H̄0) ≠ K2‡̃ (4.6)

where, in order to obtain the dimensionless variables, I have used Eq. 3.31. The
model reveals a characteristic length L = 1/(C0‡̄eq), i.e, the length scale given
by the spontaneous curvature C0 induced by one protein and the equilibrium
density of proteins, ‡̄eq = K1/K2, obtained when all gradients vanish in Eq. 4.6.
The ratio was fixed to K1/K2 = 1/5, to keep the number of parameters minimal.
Time has been scaled with ·D = L

2
/D. Additionally, the dimensionless numbers

�̄, K1 and K2 are defined as �̄ = B
kbT

ap

L2 , K1 = cpkonL
2
/D and K2 = koff L

2
/D.

To ease notation, all the bars from Eq. 4.6 are omitted.

The exploration of the phase space spanned by the parameters K1 and
H0 made possible the finding of diverse shapes, ranging from single vesicles
to pearled structures [44]. The di�uso-kinetic protein dynamics induces a
progressive shape transformation, as shown in Fig. 4.3. A membrane with
a small deformation induced by a low protein density evolves into a pearled
structure, which has a high protein density in its most curved region. The time
intervals are defined with respect to the time at which the neck width equals
the membrane thickness, which is called tcut.

It is important to emphasize that, for the present study, I focused on the impli-
cations of the phenomenological recruitment model described above. This model
o�ers an intuitive formulation for the process of recruitment that experimental
research also observes: recruitment depends on membrane curvature. A di�erent
formalism, the Onsager’s variational principle, lead to the coupling between
di�usion and recruitment kinetics, based on the competition between dissipation
and energy release rate [31]. When applied to a curvature-induced recruitment
of proteins that also di�use on the membrane, the Onsager formalism lead to
yet another recruitment model where the o�-rate was also multiplied by the
step function. But given that them main predictions of both recruitment models
proved to be very similar (additional simulations not presented here), I focused
on the implications of the phenomenological model due to its already-mentioned
intuitive formulation. Additionally, researchers have proposed other theoretical
models for the recruitment of proteins. For example, one study implemented
a spatio-temporal coordination between the recruitment of di�erent proteins
without the e�ect of protein di�usion, thereby proposing a more complex
dependence between protein recruitment and membrane curvature [8].

The simplified continuous model of the membrane I have described is a
minimal model for protein recruitment induced by membrane curvature, coupled
with protein di�usive dynamics. As a phenomenon which takes place on
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(a) t = 0.2tcut = 0.02. (b) t = 0.5tcut = 0.05.

(c) t = 0.8tcut = 0.08 (d) t = tcut = 0.1.

Figure 4.3: Shape evolution of the membrane, driven by the di�uso-kinetic
dynamics of curvature-inducing proteins, for K1 = 4.5 and H0 = 0.0015. (a)
At an early stage, the membrane has a pit shape with low protein density. As
time evolves, the membrane turns to a (b) U-shape, (c) an �-shape, and (d) a
pearled structure, with high protein density in its most curved region. The time
points are defined respect to tcut, at which the membrane neck width equals the
typical membrane thickness. The scale bar represent the protein density on the
membrane.

membrane cells, recruitment is often overlooked in theoretical models. Yet
this study’s contribution does not intend to o�er an exhaustive explanation of
the detailed binding/recruitment mechanism. A number of biophysical processes
can contribute to membrane dynamics, which were purposefully left aside. I
however hope that protein recruitment will be taken into account on further
theoretical descriptions of dynamic membrane remodeling.
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Chapter 5

Summary of papers and future

outlook

5.1 Summary of papers

Paper I: Di�usion on membrane domes, tubes and pearling structures.

The fluid nature of biological membranes allows the migration of their
components (lipid molecules, trans-membrane and membrane-bound proteins)
from one place to another on the membrane. Biological membranes often exhibit
complex shapes, such as concatenated buds joined by narrow necks, and tubes.

In this work, we solved numerically the di�usion equation on several complex
surfaces with axial symmetry (dome, pearled structures with di�erent number
of buds, and tubes), where we prescribed an initial protein density. In order to
find a relation between the membrane curvature and the exit time of proteins
away from these budded structures, we defined the average mean and Gaussian
curvature (the integral of the mean and Gaussian curvature over the budded
region) and t̃, which is the time required for the total protein content in the
budded region to reach half of its initial value. Our results suggest that the
exit time t̃ is not clearly correlated to the average Gaussian curvature K̃ of
the budded region of the membrane (Fig. 5.1a), but is shows a clear quadratic
dependence with respect to the average mean curvature H̃ for the tubes (Fig.
5.1). The relations between the exit time and the membrane curvature can help
to estimate relevant time scales associated to di�usion of proteins and molecules
in complex surfaces.
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(a) (b)

Figure 5.1: (a) The ratio t̃/t̃flat is depicted as a function of the averaged Gaussian
curvature K̃ =

s 1
0 Kda. There is not a clear dependence between t̃ and K̃ across

all the shapes considered. (b) The ratio t̃/t̃flat is presented as a function of the
average mean curvature H̃ for each of the shapes considered, in logarithmic scale.
The blue dashed line represents a fit t̃ ≥ H

m, where m = 2.03 is the average
of the slopes of the logarithmic relations between H̃ and t̃ for the tubes and
the pearled structures, indicating that the exit time follows approximately a
quadratic relation with respect to H̃.

Paper II: Di�uso-kinetic membrane budding dynamics.

Many biological processes, such as endocytosis, exocytosis and virus budding,
require gradual membrane shape transformation. Experiments have shown that
membrane shape transformation involves the concerted recruitment of proteins,
some of which are able to induce curvature. Additionally, these proteins are able
to di�use on the membrane, due to the membrane’s fluid structure.

In this work, we focused on protein di�usion and recruitment. The protein
density evolves in time following a di�uso-kinetic equation, describing the protein
distribution driven by di�usion and a phenomenological recruitment model where
proteins attach to curved regions of the membrane surface. The proteins induce
a spontaneous curvature on the membrane, which is proportional to the protein
density. The membrane shape is the solution of the shape equations obtained
from the energy minimization formalism. The budding structures obtained range
from single vesicles joined to the surrounding membrane by a narrow neck to
pearled structures. We defined the scission time tcut as the time at which the
neck width is equal to the membrane thickness. This theoretical model revealed
that tcut is related to the kinetic recruitment parameter K1, defined as the ratio
between the di�usive and the recruitment time scale. The relation between tcut

and K1 is shown in Fig. 5.2a and has the form of a scaling law, tcut ≥ K
≠2/3
1 .

The scaling law is found for all the values of H0, which measures the membrane
curvature above which proteins are recruited. Additionally, the values of K1
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and H0 had an influence on the final membrane shape, which can be a pearled
structure for small H0 (protein recruitment occurs in a larger, less curved region)
or a single vesicle for larger H0 (protein recruitment occurs in a smaller, more
curved region). Additionally, by rescaling the membrane shapes at t = tcut

with the length given by the average protein density on the bud region and
the spontaneous curvature induced by one protein C0, self-similar shapes were
obtained, as shown in Fig. 5.2b.

(a) tcut as a function of K1 for in
logarithmic axis.

(b) Rescaled shapes for K1 œ [0.2 ≠ 9]
and H0 œ [0.0015 ≠ 0.15].

Figure 5.2: (a) Scission time tcut as a function of K1 for di�erent values of
H0 in logarithmic axis. The scission time follows a power law tcut ≥ K

–
1 , with

– ¥ ≠2/3 for all values of H0. The blue and white regions represent the part of
the phase space where single buds or pearls are formed, respectively. When H0
is small, the formation of pearls is observed across all the values of K1. When
H0 = 0.015, the formation of pearls is observed only for small values of K1 and
as K1 increases pearls are no longer observed. When H0 = 0.15 pearl formation
is prevented and only single buds are formed. (b) Rescaled shapes obtained for
all the values of K1 and H0. The model predicts self-similar shapes, where both
the vesicle and neck regions coincide.

Paper III: Protein crowding mediates membrane remodeling in upstream
ESCRT-induced formation of Intraluminal vesicles

The formation in Intraluminal Vesicles (ILVs) from the endosome membrane
is a fundamental requirement in the lysosomal degradation pathway, where the
Endosomal Sorting Complexes Required for Transport (ESCRTs) sequester cargo
and deform the membrane. The ESCRT proteins form a large patch on the
endosome membrane, but do not become part of the ILV. As consequence, the
mechanism involved in the formation of ILV is di�erent from other internalization
pathways, such as clathrin-mediated endocytosis, where diverse proteins deform
the membrane via an sca�old mechanism, creating a protein-coated vesicle.
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Theoretical models for the formation of uncoated vesicles emphasized the
importance of the Gaussian bending energy, an energy contribution that is
often omitted, as long as the Gaussian rigidity is constant. However, in this work,
a protein density-dependent Gaussian rigidity was proposed, and also included
an e�ective steric repulsion due to protein crowding in the membrane energy.
This theoretical model predicted that no energy consumption was needed to form
ILVs, and also predicted the membrane shapes observed in the experiments, as
shown in Fig. 5.3. The theoretical shapes are such that they minimize the total
membrane energy. Additionally, the theoretical model predicts that the proteins
have a high density in the neck region joining the vesicle with the surrounding
membrane.

Figure 5.3: Top row: Comparison between the experimentally measured
endosome shapes and the shapes obtained with the theoretical model, by
minimizing the membrane energy. The shapes are grouped into three categories:
Pit, U-shape and �-shape. The average shapes obtained from the experiments
are shown as solid green lines. The shaded green regions are the standard
deviations from the experimental data. The theoretical shapes of the uncoated
vesicles are shown as solid black lines. The red dashed lines represent the protein-
coated membrane region. Bottom row: the ESCRT density fl/fl0, where fl0 is
the equilibrium density of ESCRT on a flat membrane. The protein density is
higher in the neck regions.
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5.2 Future outlook

Biological membranes are highly complex structures with distinctive physical
properties such as fluidity, elasticity, and viscosity. In consequence, future
comprehensive mathematical models of a membrane should account for these
properties as well.

This thesis might be a starting point for further analysis and model refine-
ment. One of the possible extensions of the models proposed in this study
would be to include the e�ect of the dissipative dynamics induced by the
in-plane shear experienced by the lipid molecules constituting the membrane.
Additionally, future research could also take into account energy terms as a
result of protein-protein interactions. To facilitate a minimal formulation, the
mixing entropy was that of an ideal gas, valid in the limit of low protein densities.
More complex studies could also engage with a more general mixing entropy,
accounted by bounded (rather than unbounded) binding sites.

This study proposed that the driving mechanism for protein recruitment was
membrane curvature, through a simple switch-like model. Experiments have
suggested that certain proteins are enriched in curved regions and, consequently,
a curvature-driven recruitment became a plausible assumption. Although I
incorporated an element overlooked is some models for membrane dynamics, a
complete understanding of the mechanisms driving protein recruitment is still
lacking. Deeper knowledge of these molecular mechanisms would help to model
protein recruitment more accurately, as there is no universal way to describe
protein kinetics driven by curvature.

A description of the membrane as a continuous surface is applicable as
long as membrane deformations are significantly smaller than the membrane
width. This study encountered membrane dynamics leading to the formation
of constricted neck regions, yet additional terms and physical e�ects should be
included in further research. Consequently, another possible extension of the
models proposed in this dissertation is to include such mechanical e�ects arising
in the onset of membrane scission.

In a model where recruitment of proteins from the bulk is one of the main
driving mechanisms of membrane dynamics, it could be relevant to consider the
e�ect the of bulk fluid flow induced by the membrane deformation. This flow in
the vicinity of the budding region might contribute to the redistribution of bulk
proteins, and influence the protein distribution on the membrane. The model
presented in this study assumed that the bulk density of proteins was constant,
but protein bulk dynamics could also be included in future studies, together
with the coupling between the membrane interface deformation and bulk flow.

This minimal model of protein recruitment could serve as a starting point
towards more complex integral modelling of biological membranes involving,
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among other processes, protein recruitment and di�usive dynamics. The
progressive inclusion of additional physical e�ects into membrane models has
the potential of guiding future perspectives of membrane dynamics deformation
in the years to come.
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A wide range of proteins are known to create shape transformations of biological membranes, where
the remodelling is a coupling between the energetic costs from deforming the membrane, the recruit-
ment of proteins that induce a local spontaneous curvature C0 and the diffusion of proteins along the
membrane. We propose a minimal mathematical model that accounts for these processes to describe
the diffuso-kinetic dynamics of membrane budding processes. By deploying numerical simulations we
map out the membrane shapes, the time for vesicle formation and the vesicle size as a function of the
dimensionless kinetic recruitment parameter K1 and the proteins sensitivity to mean curvature. We
derive a time for scission that follows a power law ⇠ K

�2/3
1 , a consequence of the interplay between

the spreading of proteins by diffusion and the kinetic-limited increase of the protein density on the
membrane. We also find a scaling law for the vesicle size ⇠ 1/(s̄avC0), with s̄av the average protein
density in the vesicle, which is confirmed in the numerical simulations. Rescaling all the membrane
profiles at the time of vesicle formation highlights that the membrane adopts a self-similar shape.

1 Introduction
In a wide range of cellular processes, membrane shape remod-
eling due to the association and dissociation of proteins plays a
fundamental role, e.g., endo- and exocytosis1, virus assembly2

and the formation of intracellular compartments3. The presence
of proteins on the membrane leads to changes in biomechani-
cal properties such as bending rigidity4, diffusion coefficient of
proteins5,6 and membrane curvature. The molecular machinery
associated with curvature-inducing processes is often complex7,8

and while some involve active motor proteins9–11, there is a mul-
titude of proteins that are able to passively induce membrane
shape transformations8,12. The biophysical mechanisms that in-
duce membrane curvature include the insertion of amphipathic
helixes into the bilayer13, producing an area difference between
the inner and outer membrane leaflet through the binding of large
proteins to one membrane side14,15 or protein crowding16,17.
Thus, the net effect of any asymmetry between the leaflets of the
bilayer due to anchoring inclusions or steric pressure can be rep-
resented by the spontaneous curvature18.

Reconstituted and synthetic vesicles are essential model sys-
tems that help to reveal the fundamental biophysical mechanisms

a
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way.

b
Department of Mechanical and Aerospace Engineering, University of California, San

Diego, CA 92093, USA.

⇤
Email: acarlson@math.uio.no

† Electronic Supplementary Material (ESM) available: See DOI:
10.1039/cXsm00000x/

by which proteins are able to induce membrane shape transfor-
mations16–21. For instance, experiments have demonstrated that
the formation of tubular structures is directly correlated with the
protein density on the membrane16 and that protein crowding
correlates with the formation and abscission of vesicles17. More-
over, it has been shown experimentally that the local membrane
curvature and the resulting membrane shape is coupled to the
concentration of curvature-inducing macromolecules. For exam-
ple, tubular structures that are formed by anchoring polymers,
shrink as diffusion reduces the local polymer density21.

A typical membrane remodeling process starts from a flat sur-
face and develops into a deformed membrane with the shape of
a bud, vesicle or tubule22,23 as proteins are locally recruited to
the membrane surface and induce a spontaneous curvature24,25.
Membrane deformation is thus driven by a gradual recruitment
and accumulation of membrane-associated proteins and changes
in physical properties over time8, suggesting that in order to
derive a theoretical description of the dynamic evolution of a
membrane shape we must include the recruitment of curvature-
inducing proteins.

Over the years, numerous theoretical studies have been ded-
icated to describe a wide range of mechanisms that play a vi-
tal role in various cellular processes, i.e. diffusion of transmem-
brane proteins26, protein crowding27–29 and spontaneous cur-
vature induced by macromolecules such as polymers and pro-
teins18,21,30–32. More complex theoretical models also include
the viscous dissipation generated as the proteins move on the lipid
bilayer33,34, as well as non-local hydrodynamics where the entire
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flow field is resolved35–37.
Since the thickness of a lipid bilayer is much smaller than the

typical length scale of membrane deformations, it is common to
treat biomembranes as elastic thin sheets38–41. Similarly, the size
of an individual protein is at least an order of magnitude smaller
than the extension of a membrane bud or vesicle, which justifies
the proteins as a continuous field. Previous theoretical studies
have investigated various aspects of membrane deformation gen-
erated by concentration-dependent spontaneous curvature, con-
sidering either a static protein distribution on the membrane42–45

or including diffusion dynamics26,30,34. In addition, a theoret-
ical framework based on the Onsager variational principles has
been developed, where the dynamics are given by the balance
between dissipative and driving forces33,46,47. This framework
gives a compact mathematical description of adsorption and des-
orption of proteins from the bulk and its diffusive dynamic on a
fixed membrane shape.

Compared to the diffusive protein dynamics on membranes, far
less is known about the dynamic interplay between diffusion, lo-
cal protein kinetics and membrane shape changes, where a the-
oretical model considering all three processes has not yet been
explicitly established. In this study, we develop such model with
a focus on finding temporal relationships between the kinetics of
protein recruitment and the timescales of bud formation.

To study the spatio-temporal budding process of a membrane,
we develop a minimal mathematical model for the diffuso-
kinetics of membrane associated proteins. We treat the concentra-
tion of proteins as a continuous field following a diffusion equa-
tion with an adsorption term, describing the protein recruitment
from a reservoir i.e. the cytosol or the extracellular space, and a
detachment term representing the protein turnover. Additionally,
our model incorporates that the protein concentration induces an
effective local spontaneous curvature on the membrane, which
drives the membrane shape evolution. Finally, to characterize the
dynamic of membrane deformation over time, we spanned the
phase space by varying the kinetic parameters and the protein
sensitivity for the detection of membrane curvature to uncover
scaling relationships between time for scission and kinetic recruit-
ment parameters of proteins onto the membrane.

2 Theoretical model

2.1 Energy functional

To study how proteins that are bound to biological membranes in-
fluences the membrane shape evolution, we begin by defining the
membrane energy per unit area W , which includes the bending
energy, surface tension and entropic effects due to membrane-
protein interactions given by41,46,48:

W = B(H �C0s̄)2 +l +
kbT

ap

s̄(log s̄ �1) (1)

The first term is the Helfrich energy26,38, where H is the mean
curvature and B is the bending rigidity. The Helfrich model is
suitable to describe cases where the radii of membrane curva-
tures are much larger than the thickness of the bilayer40, allow-
ing us to treat the lipid bilayer as a thin elastic shell. Here, we

assume that the induced spontaneous curvature C = C0s̄ due to
membrane-protein interactions depends linearly on the protein
density26,48,49, where C0 is a proportionality constant associated
to the spontaneous curvature induced by one protein and s̄ is
the protein density on the membrane scaled by the saturation
density49. The proteins are mobile on the membrane, hence the
density s̄ varies in time and space.

The second term in Eq. 1 is the surface tension. We describe the
membrane as an infinite surface, where the far-field acts as a lipid
reservoir. In this case, a constant surface tension l acts long the
entire membrane. The third term accounts for entropic effects.
When the protein density in the membrane surface is small and
the available binding sites for the proteins are not bounded, the
entropy term is well approximated by the mixing entropy of an
ideal gas46,50,51. This model is simpler than the general Langmuir
absorption model52,53, where kb is the Boltzmann constant, T is
the temperature and ap is the area occupied by one protein.

Additional terms may be included in W (Eq. 1), such as interac-
tion terms between proteins ⇠ s̄2 and the energy cost arising from
density gradients ⇠ (—s̄)2 48,54. Both terms scale with the mag-
nitude of the protein-protein interaction. Since the non-specific
interaction between proteins is weak compared to the bending
and entropic energy, the interaction and gradient terms can be
neglected. In the Supplementary Material (SM, section 8), we
estimate the contribution to the energy functional by the interac-
tion between proteins and the density gradients, to illustrate that
the mixing entropy is the leading contribution to the energy, thus
simplifying its description. To keep the mathematical model mini-
mal, we assume that both the Gaussian bending modulus and the
bending rigidity B are constant, i.e, they do not depend on the lo-
cal protein density, which also implies that the Gaussian bending
energy is a constant, since we do not consider topological changes
such as membrane scission30,55.

2.2 Membrane shape equations
The axially symmetric membrane is described in the arc-length
parametrization with the radial and vertical components r = r(s)

and z = z(s) and the tangent angle f = f(s), where s is the arc-
length. A schematic representation of the system and the coordi-
nates are shown in Fig. 1.

The mean curvature H in the arc-length parametrization is
given by56:

H =
1
2

✓
sinf

r
+f 0

◆
(2)

The operator ()0 ⌘ d

ds
() represents the derivative with respect

to the arc-length s.
The arc-length parametrization allows to express the coordi-

nates r, z and the area of the membrane, A, in the following way:

r
0 = cosf (3)

z
0 = sinf (4)

A
0 = 2pr (5)

The shape of the membrane for a given protein distribution s̄ is
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Fig. 1 a) The proteins in the bulk have a constant volume density cp, rep-
resented by a uniform light yellow color. The proteins attach to the mem-
brane at a rate kon and detach from it at a rate ko f f . The attached proteins
on the membrane can diffuse on the surface of the membrane and also
induce a spontaneous curvature proportional to the protein concentration
s̄(s, t) represented as a color gradient, which evolves in time according
to a diffusion process coupled with kinetic recruitment and detachment
leading to an inhomogeneous protein distribution on the membrane. b)
A description of the membrane surface parametrization in axisymmetric
coordinates. Here s is the arc-length measured along the membrane, r(s)
is the radial coordinate, f(s) is the angle that the curved membrane forms
with respect to the horizontal r-axis and z is the height of the membrane.
The angle q is the rotation around the symmetry axis.

such that it must minimize the total energy, given by the integral
of Eq. 1 over the total area of the membrane, Wtot = 2p

R
Wrds.

To derive the energy minimizing shape, we define L

L = r


l +

kbT

ap

s̄(log s̄ �1)
�
+ rB


1
2

✓
sinf

r
+f 0

◆
�C0s̄

�2

+G(r0 � cosf) (6)

which is equivalent to a Lagrange functional in analytical me-
chanics57. A Lagrange multiplier, G, is introduced in Eq. 6 to
satisfy Eq. 3. We assume that far away from the budding region
the membrane is not deformed and is modeled as a flat sheet of
infinite size. In this case there is no constraint in the total area of
the membrane, A, nor on the volume V enclosed by it.

The bending moment of the membrane, M, is given by58:

M = B(H �C) = B


1
2

✓
sinf

r
+f 0

◆
�C0s̄

�
(7)

From eq. 7 we obtain the differential equation for the angle f
as:

f 0 =
2M

B
�

sinf
r

+2C0s̄ (8)

Finally, following the Euler-Lagrange formalism, we obtain (see
the Supplementary Material (SM) for details):

M
0 =U sinf ⌘�Q (9)

U
0 =

M

r

✓
2M

B
+2C0s̄ �

2sinf
r

◆
(10)

The boundary conditions implemented to solve the set of 6

equations given by Eq. 3-5 and Eq. 8-10), which enforce a transi-
tion into a flat membrane at the outer boundary, are described in
detail in the SM.

2.3 Spatio-temporal dynamics of the protein concentration

At cell membranes proteins are recruited and disassociated in ki-
netic binding and unbinding processes7,8,59 while they diffuse
along the membrane5,6. Hence, the dynamics of the protein den-
sity s̄(s, t) is described by a diffuso-kinetic equation with two con-
tributions: the diffusive part, Edi f f , and the recruitment/turnover
part, Esource. The two terms have to fulfill Edi f f = Esource, implying
that the flux of proteins along the membrane arises from a protein
source/sink. The general form of Edi f f is written as:

Edi f f =
∂ s̄
∂ t

+
1
r
(rJ)0 (11)

where the first term is the time derivative of s̄ and the second
term is the surface divergence of the protein flux J in axially
symmetric coordinates.

In general, the protein flux is given in terms of the chemi-
cal potential derived from the energy functional in Eq. 1, J =

�Ls̄—
⇣

dW

d s̄

⌘
, 46,60. L is the protein mobility and dW

d s̄ is the func-
tional derivative of the energy functional W with respect to the
protein density. In the absence of gradient terms in the energy,
the functional derivative reduces to dW

d s̄ = ∂W

∂ s̄
61. Hence, the non-

vanishing component of the flux, J, is given by:

J =�L
✓

kbT

ap

s̄ 0+2C0s̄Q

◆
⌘�Ds̄ 0

�2LC0s̄Q (12)

where D ⌘ L kbT

ap

is the diffusion coefficient and Q is defined in
Eq. 9. Eq. 12 recovers a diffusive flux on a flat surface, in the
limit, C0 ⇡ 0, which implies that the membrane is flat in this limit,
as the proteins have no influence in the membrane shape. How-
ever, in the general case the flux has a non-negligible contribution
arising from the curvature of the membrane, via the function Q.
Finally, the explicit form of Edi f f is:

Edi f f =
∂ s̄
∂ t

�
1
r
(r(Ds̄ 0+2Ls̄C0Q))0 (13)

To model the protein recruitment, we make four assumptions:
First, the recruitment is modeled following the linear adsorption-
diffusion model46, in which it is assumed that the protein den-
sity is small, and that the available binding sites for the proteins
are not bounded, as in the more general Langmuir absorption
model. Second, we assume that the protein density in the bulk is
constant. Third, protein recruitment is triggered when the mem-
brane curvature exceeds a threshold value H0. This assumption is
inspired by experimental observations, which found that certain
proteins are enriched in curved regions of the membrane62,63

with the ability to also induce a curvature64. Theoretical stud-
ies based on molecular dynamics simulations65 and Monte Carlo
simulations66 have shown that various biophysical mechanisms
can cause curvature sensing, where proteins adsorb to a mem-
brane in a step-like manner with respect to the membrane cur-
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vature. We incorporate this key characteristics in a phenomeno-
logical curvature sensing model by multiplying the on-rate by a
Heaviside function Q(H�H0) and show in the SM (section 7) that
regularizing the Heaviside function does not affect the prediction
as long as the jump is sufficiently steep. Lastly, we consider the
diffuso-kinetic dynamics i.e. out equilibrium, which is further il-
lustrated below by our numerical simulations. We acknowledge
that a more complex relation between the recruitment kinetics
and the membrane curvature might be proposed67, which re-
quires a more elaborated theoretical treatment also satisfying de-
tailed balance at equilibrium. To the best of our knowledge, a
universal model for curvature-sensitive recruitment dynamics is
still a topical question in the field.

In light of these assumptions, the mathematical form of Esource

can be written as:

Esource = cpkonQ(H �H0)� ko f f s̄ (14)

where cp is the constant bulk density of proteins, kon measures the
recruitment rate of proteins, Q is the Heaviside function, H0 is the
curvature above which the recruitment is triggered and ko f f is the
turnover rate. Biologically relevant values for the parameters that
appear in the mathematical model are listed in Table 1.

Table 1 The parameters present in the evolution equation of the protein
concentration s .

Parameter Typical value
Membrane thickness h 5nm 68

Membrane viscosity hm (10�9
�10�7)Ns/m 33,69,70

Cytosol viscosity hc (1�4)⇥10�2Ns/m2 71,72

Spontaneous curvature of one protein C0 (0.075�0.2)nm�1 73,74

Area of one protein ap (16�70)nm2 17,19,74

Bulk concentration of proteins cp (0.1�50)µM 17,59

Dissociation constant KD (0.1�5)µM 59

Diffusion coefficient D (0.01�1)µm2
/s 75,76

Bending rigidity B (20�40)kBT 43,74

Surface tension l (0.003�0.3)⇥10�3N/m 74,77

To understand which process sets the time scale of the mem-
brane dynamics, we perform a scaling analysis. The rate of
change of the bending energy can be dissipated by membrane vis-
cosity, i.e, ∂Eb

∂ t
⇠ hm(—su)2, where Eb =B(H�C0s̄)2 is the bending

energy, hm is the membrane viscosity and u is the membrane ve-
locity. The bending energy scales as Eb ⇠ B/L

2, u ⇠ L/tv, where
tv is the viscous time scale and — ⇠ 1/L, giving B/tv ⇠ hmL

2
/t2

v .
We can then write tv ⇠ hmL

2
/B. On the other hand, the diffu-

sive time scale is given by tD ⇠ L
2
/D, where the diffusion co-

efficient D is related to the membrane viscosity hm through the
Saffman-Delbruck theory78, where D ⇠

kBT

4phm

ln
⇣

hc

rphc

⌘
. Here, hc

is the viscosity of the cytosol and rp ⇠ 5nm is the typical radius of
one protein. With the typical values of the membrane and cytosol
viscosity in Table 1, the diffusion coefficient D ⇠

6kBT

4phm

. The ratio
between these to time scales becomes tD

tv

⇠
2Bp
3kBT

. With B ⇠ 20kBT ,
we obtain that tD

tv

⇠ 13p, that is, the diffusive time scale can be
more than one order of magnitude larger than the viscous time
scale, supporting our assumption that the mechanical relaxation
of the membrane is fast compared to its diffusive transport of pro-
teins.

The equation governing the time evolution of s̄ , Edi f f = Esource

in non-dimensional form is written as (see the SM for details):

∂ s̄
∂ t̄

�
1
r̄

�
r̄
�
s̄ 0+2L̄C̄0s̄Q̄

��0
= K1Q(H̄ � H̄0)�K2s̄ (15)

where we have scaled all lengths with L = 1/(C0s̄eq), i.e, the
length scale given by the spontaneous curvature C0 induced by
the recruited proteins and the equilibrium density of proteins,
s̄eq = K1/K2, obtained as all gradients vanish in Eq. 15. Time has
been scaled with tD. The energy has been scaled with the bend-
ing rigidity B. Introducing the scaling into the governing equa-
tions gives us the scaled variables, Q̄ = QL

2

B
, s̄ = s

L
, r̄ = r

L
, H̄ = HL,

t̄ = tD

L2 and the dimensionless numbers, L̄ = B

kbT

ap

L2 , C̄0 = C0L and
H̄0 = H0L, K1 = cpkonL

2
/D, K2 = ko f f L

2
/D. To ease the notation,

we drop all the bars from Eq. 15 and for simplicity we keep
()0 ⌘ d

ds̄
.

The non-dimensional number K1 = cpkonL
2
/D is the ratio be-

tween the diffusive time scale and the kinetic recruitment time
scale and K2 = ko f f L

2
/D is the ratio between the diffusive time

scale and the protein turnover time scale. L = B

kbT

ap

L2 is the ratio
of the bending energy and the thermal energy. In addition, we
set the surface tension l to be zero, but the influence of l > 0 is
further discussed in the SM. The ratio between K1 and K2 can be
written in terms of the dissociation constant KD as K1

K2
=

cp

KD

. Since
we assume the protein density is small as compared to the sat-
uration density, K1 and K2 must be chosen in such a way that
the equilibrium density of proteins in the membrane is small.
To reduce the number of parameters influencing the dynamics
we set K1/K2 = 1/5 in all the numerical simulations, which for
s̄t = s̄ 0 = 0 = K1 �K2s̄ gives s̄ = 1/5 < 1, consistent with a sys-
tem where the recruitment is slower that the turnover of proteins.
We have chosen B= 20kBT , C0 = 0.1nm�1, and ap = 27nm2, which
gives C0 = 5 and L = 0.22 in Eq. 15 and point out that Eq. 8 and
10 are the only shape equations that have a non-dimensional pa-
rameter in them, which is C0. The rest of the shape equations, Eq.
3-5 and 9 are parameter-free. The non-dimensional numbers K1
and H0 form the basis of a parameter space that will allow us to
determine the dependence of the membrane shape respect to the
coupling between diffusion and kinetics.

As we span the phase space of H0 2 [0.0015� 0.15] and K1 2

[0.2� 9] we observe formation of thin membrane necks with re-
spect to the rotational axis r = 0. Since the mathematical model
is no longer valid if the neck width is comparable in size with
the membrane thickness, we consider the numerical results up to
the point when the neck width is equal to the membrane thick-
ness h, that in non-dimensional form has the value h = 0.1 and
corresponds to the membrane thickness h reported on Table 1.
We define the scission time as tcut . The range of H0 corresponds
to a radius of curvature of about 300 nm to 30 µm, covering
the typical size range of cells (⇡ 6µm), membrane-bound vesicles
(⇡ 500nm) and giant unilaminar vesicles (up to 200µm)22,79.

3 Results:
We begin by illustrating the dynamic formation of two charac-
teristic membrane shapes obtained using numerical simulations
based on Eqs. 3-5, 8-10 and Eq. 15 for H0 = 0.0015 (Fig. 2) and
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H0 = 0.15 (Fig. 3). Initially the membrane is flat with a small
initial protein density near the axis of symmetry r = 0, which
we model as a Gaussian profile with small amplitude and width
s̄(s, t = 0) = 0.1e

�(s/0.3)2
. The initial amplitude of the protein

density on the membrane plays a minor role in the budding
dynamics, as the scission time tcut is insensitive to the initial
amplitude of the Gaussian profile (see SM, section 6). This initial
protein density induces a change in the spontaneous curvature
and generates a small membrane deformation. The proteins start
to be recruited and redistributed on the membrane, inducing a
deformation that goes through a set of different shapes: Bump
(Figs. 2a and 3a), U-shape (Figs. 2b and 3b), W- shape (Figs. 2c
and 3c) and at the final stage a pearl, when H0 = 0.0015 (Fig.
2d) or a single bud, when H0 = 0.15 (Fig. 3d). These structures
are also found for non-vanishing, but small surface tension, as
shown in the SM (Section 9). From Figs. 2 and 3 we see that
the parameter H0, i.e. the proteins sensitivity to mean curvature,
plays an important role in determining the final shapes of the
membrane. If H0 is small, pearled structures can be observed,
whereas if H0 is larger (H0 � 0.0015), the formation of smaller,
single buds is favored. A low value of H0 (H0 = 0.0015) leads
to recruitment to a large area of the membrane and it adopts a
pearl-like structure. In contrast, when H0 is larger (H0 = 0.15), an
almost spherically shaped membrane emerges from the initially
flat membrane, caused by the recruitment of proteins to a smaller
area of the membrane, as compared to a smaller H0. There are
also some other noteworthy features we would like to highlight:
Despite the fact that K1 is identical for the two simulations, the
proteins are distributed over a different area. Besides the obvious
differences in shape, it appears that also H0 will determine the
continuation of the process for t > tcut . If a vesicle is shed from
the membrane at t = tcut in Fig. 2d the rest of the membrane
will still have a significant portion covered by curvature inducing
proteins and it appears that another vesicle will form from the
W shape. When H0 is larger a single vesicle forms (Fig. 3d),
which contain almost all the proteins. In this case, after scission
the membrane may return to its undeformed state stalling the
dynamics.

To see the details of the protein distribution on the membrane
in Figs. 2 and 3, we plot in Fig. 4 the protein density s̄ as a
function of the membrane area A. In order to clearly illustrate the
influence of H0 on the protein distribution over the membrane
we extract s̄ at the same snapshots in time as in Figs. 2 and 3
using the time for membrane scission tcut as a point of reference:
t = 0.2tcut ,0.5tcut ,0.8tcut and tcut where [H0 = 0.0015, tcut = 0.1]
and [H0 = 0.15, tcut = 0.38]. A general feature is that the protein
density is distributed over a larger area on the membrane when
H0 is small and it has a smaller gradient as we move from the axis
of symmetry to the undeformed membrane. In contrast, when
H0 is larger the proteins are limited to a much smaller region of
the membrane with a steep decay in s̄ . By inspecting Figs. 4a-4d
we can notice the growth rate of the area covered by proteins
is much faster when H0 is small. To see this, we can roughly
estimate the rate of change of covered area DA in the time
interval Dt = (0.5�0.2)tcut , which for H0 = 0.0015 is DA/Dt ⇠ 600

(a) t = 0.2tcut = 0.02 (b) t = 0.5tcut = 0.05

(c) t = 0.8tcut = 0.08 (d) t = tcut = 0.1

Fig. 2 Characteristic membrane shapes at four different snapshots in time
when the dimensionless rate coefficient is K1 = 4.5 and the threshold for
protein recruitment is H0 = 0.0015. As we march forward in time the
membrane deforms from a nearly flat membrane (not shown) into a pit-
shape (a), an U-shape (b), an W-shape (c) and finally into a pearl-like
membrane shape (d). The color bar represents the protein density s̄(s, t).
In Figs. 2c and 2d the protein density is almost uniform on the vesicle at
the top of the budding structure and decays gradually along the rest of
the deformed membrane. The scale bar is the dimensionless unit length
of the system, equivalent to L = 50nm.

contrasting the same calculation DA/Dt ⇠ 50 when H0 = 0.15.
During the last stages of the membrane deformation (Figs. 4b -
4d) the area covered by proteins increases much slower once an
W-shape is formed (see Figs. 2b-2d and Figs. 3b-3d) and at the
last stage (Figs. 4c and 4d) this area barely increases and just an
increment on the protein density is observed on the membrane
for both values of H0. Thus, the geometry of the membrane may
also play a role in the dynamic growth process. H0 appears to be
a critical parameter, because it determines bot only the overall
size of the budding structures, but also determine in part how
proteins are distributed on the membrane. Fig. 4d also shows
that as a single vesicle forms (H0 = 0.15) the recruited proteins
leaves the membrane and stalls the dynamics, contrary to when
proteins are almost insensitive to the mean curvature and covers
a much larger membrane area (H0 = 0.0015).

To further characterize qualitatively the membrane dynamics
we extract the height of the membrane, zmax, along the symmetry
axis r = 0 for K1 = 4.5 when H0 = 0.0015 (Fig. 5a) and H0 = 0.15
(Fig. 5b). Initially, we can observe that zmax increases as the
membrane bud grows in size, but as the membrane starts to form
an W-shape its height starts to decrease as the neck constricts.
The features of zmax also allows us to identify the pit-, U- and
W-shape of the membrane already shown in Figs. 2 and 3. When
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(a) t = 0.2tcut = 0.08 (b) t = 0.5tcut = 0.19

(c) t = 0.8tcut = 0.3 (d) t = tcut = 0.38

Fig. 3 Characteristic membrane shapes at four different snapshots in time
when the dimensionless rate coefficient is K1 = 4.5 and the threshold for
protein recruitment is H0 = 0.15. Similarly to the intermediate shapes
shown in Figs. 2a - 2c), we observe that here the membrane shape exhibits
a pit-shape (a), U-shape (b) and W-shape (c), but at t = tcut a single bud
with a constricted neck is formed (d) instead of a pearl, as in Fig. 2d. The
color bar represents the protein density s̄(s, t). In Figs. 3c and 3d we also
observe and almost constant protein density on the vesicle, but it rapidly
decays outside of the neck. The scale bar is the dimensionless unit length
of the system, equivalent to L = 50nm

the membrane forms a pearl-like shape, the bud growth and
neck constriction happens several times. The insets in Fig. 5a
show the shapes corresponding to the first maximum and the
first minimum of zmax as well as the final shape at t = tcut . In the
time interval between the first maximum and first minimum in
zmax(t), the membrane shows a gradual transition between a pit-,
U- and W-shape. As the neck size in the W-shape corresponding
to the first minimum of zmax in Fig 5a is larger than the typical
width h of the membrane bilayer, its height starts to increase
again forming a vesicle at the top of the newly formed W-shape
as we march forward in time. The oscillatory behaviour of zmax

is not observed when H0 = 0.15 (Fig. 5b) but zmax has a similar
growth and decay when the W-shaped membrane is formed.

Next, we turn to map out the membrane shapes predicted by
the mathematical model at the scission time, i.e. t = tcut , by sys-
tematically varying K1 2 [0.2�9] and H0 2 [0.0015�0.15], see Fig.
6. As we go through the parameter space we see how the val-
ues of the non-dimensional numbers K1 and H0 determines if a
vesicle buds directly from the membrane or on a deformed foun-
dation as a pit, U or W-shape. The phase space in membrane
shapes also suggests that we can distinguish membrane deforma-
tions that are likely to form only a single vesicle (H0 = 0.15) and
those that appear to continuously form vesicles by budding from a
pit-shape (H0 = 0.015,K1 = 1.4,4.5,9 and H0 = 0.0015,K1 = 9), U-
shape (H0 = 0.0015,K1 = 4.5) and W-shape (H0 = 0.0015,K1 = 1.4).
Qualitatively we can understand the effect of H0 by associating
this parameter with the membrane region where recruitment of

(a) t = 0.2tcut . (b) t = 0.5tcut .

(c) t = 0.8tcut . (d) t = tcut .

Fig. 4 Characteristic protein density at four different snapshots in time
when the dimensionless rate coefficient is K1 = 4.5 and the threshold for
protein recruitment is H0 = 0.0015 and H0 = 0.15. At first ((a) and (b))
s̄(A, t) decays nearly linearly with A from the maximum at the symme-
try axis r = 0, but once an W-shape is formed (c) s̄(A, t) in the vesicle is
more uniform whereas the steepest decay in s̄ occurs from the membrane
neck to the undeformed membrane, specially when H0 = 0.15. In (c) we
observe that there are proteins distributed in the region beyond the vesi-
cle neck when H0 = 0.0015 but there are no protein outside the vesicle
when H0 = 0.15. (d) At t = tcut we observe that the protein density in the
membrane neck does not vanish. The star shaped markers in (c) and (d)
represent the position of the neck (smallest radius at that given point in
time).

protein occurs: The inverse of H0 sets a length scale that becomes
large for small H0, then proteins are recruited into a larger por-
tion of the membrane, leading to larger budding structures such
as pearls (see Fig. 6), while for larger H0 this length scale will be-
come smaller and in this case smaller budding structures would
be expected.

The exploration of the phase space spanned by the parameters
K1 and H0 also allows us to determine how they affect the dy-
namics of the membrane deformation. One quantity that helps
to illustrate the time scale of the budding process is tcut . The
scission time is measured as the neck size reaches h = 0.1 in the
radial direction, see Fig. 7a. In Fig. 7b we present the depen-
dence of tcut with respect to K1 in logarithmic axis. Interestingly,
we find a universal behavior: tcut ⇠ K

�2/3
1 despite that we vary K1

over two orders of magnitude and changing H0 only affects the
pre-factor of the scaling relation and not the power law. The uni-
versal behavior suggests that the same mechanisms are present
across different simulations, where there is a complex interplay
between the membrane geometry, diffusion and the area limited
for protein recruitment.

To rationalise the power-law dependence we turn to look at the
different mechanisms at play. First, we notice that tcut effectively
measures the time required for the proteins to cover an area that
scales with the typical length of the bud ⇠ L

2. We notice that
the growth of this area in time must involve diffusion as it helps
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(a)

(b)

Fig. 5 The maximum height of the membrane respect to its symmetry
axis, zmax, as a function of time, for K1 = 4.5 and different values of H0.
In (a) it is shown that zmax oscillates. Once a pit shape is formed and zmax

starts to decrease (first maximum of zmax), an W-shape starts to emerge.
During the decrease of zmax, up to the first minimum of zmax in (a) the
construction of the bud neck proceeds. As at this stage the neck radius
is larger than the membrane thickness, the membrane shape evolution
leads to a pearl structure at a later time (t = tcut). In contrast, a higher
value of H0 prevents oscillation on zmax, as shown in (b). The color bar
represents the protein density along as a function of the arc-length s and
time t, s̄(s, t).

increase the area on the membrane in which H >H0. Such a diffu-
sive motion scales by a balance between the two terms on the left
hand side of the evolution equation for s̄ , Eq. 15, which indicates
that 1

tcut

⇠
1
L2 , or equivalently tcut ⇠ L

2. On the other hand, within
the region where H > H0, the increase of the protein density is ki-
netically limited and the characteristic length scale is given by
L ⇠ (C0s̄)�1. Since we have for the region with H > H0 that
s̄

tcut

⇠ K1, or, s̄ ⇠ tcutK1 and then L ⇠ (C0K1tcut)�1. By combining
these relations between tcut and K1, i.e, tcut ⇠ L

2
⇠ (C0K1tcut)�2,

we obtain tcut ⇠ K
�2/3
1 as predicted by our numerical simula-

tions. Thus, the time scale associated with bud formation, tcut ,
is a combination of a diffusive front spreading the proteins and
the kinetically-limited recruitment process responsible for the lo-
cal increase of the protein density on the membrane.

Fig. 6 The membrane shapes at t = tcut for K1 2 [0.2�9] and H0 2 [0.0015�
0.15]. The color bar represents the protein concentration as function of the
arc-length at t = tcut , s̄(s, tcut).

At the defined scission time we are now in place to measure the
size, rbud , of the vesicle that forms. Fig. 8a reveals that also rbud

is a function of K1 and H0. We find that when H0 is small, the
bud radius is sensitive to the parameter K1, but as H0 increases,
the bud radius becomes insensitive to K1 where the formed vesi-
cles have nearly the same size. To understand what sets rbud we
turn to the mechanism that drives the dynamics, i.e., the spon-
taneous curvature induced by the protein density on the mem-
brane. A length scale that appears in our system is 1/(C0s̄av),
with s̄av =

1
Abud

R
Abud

s̄dA is the mean protein density on the bud,
i.e. in the region above the membrane neck, and Abud is the area of
the membrane comprised between s = 0 and the membrane neck.
The vesicle size is now predicted to scale as rbud ⇠ 1/(C0s̄av). To
test our scaling prediction we scale the bud radius rbud with C0s̄av,
which collapses the data onto a single line. To further illustrate
the self-similar dynamics in the budding process, we rescale all
lengths with the predicted bud size ⇠ 1/(C0s̄av) at the time tcut

and shift the profiles so they all start at the same zmax at r = 0,
see Fig. 8c-8e. The upper part of the vesicle all follow the same
spherical cap as we would expect from Fig. 8b, but interestingly
the profiles map onto a universal shape also in the neck region
(inner region) although the far field (outer region) is very differ-
ent as it takes an W, pearl and flat shape. We zoom into the shed-
ding vesicle and plot all the obtained membrane profiles together,
which collapses onto a universal shape, shown in Fig. 8f. It is
interesting to place this in the context of models for neck closure,
where it was recently shown that there are optimal angles formed
by the membrane depending on the outer membrane shape with
a shape of a dome or a cone80. In the model developed here neck
constriction is achieved despite that there is no assembly of spe-
cialised scission proteins, but still reveal an optimal angle shared
among all shapes Fig. 8f for all the rescaled data K1 2 [1.35� 9],
H0 2 [0.0015�0.15].
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(a) The neck region of a vesicle.

(b) The time tcut as function of K1 for different values of H0, in
logarithmic scale.

Fig. 7 (a) The membrane shape at time tcut for K1 = 4.5 and H0 = 0.15
(point of the phase space highlighted in a black circle on Fig. 7b). The
inset shows a zoom of the membrane neck region. The color bar rep-
resents the protein density s̄(s, t = tcut) along the membrane. (b) The
dependence of the scission time tcut as a function of K1 for different values
of H0 in logarithmic axis, showing that tcut follows a power law respect to
K1. The scission time follows a power law tcut ⇠ K

a
1 , with a ⇡�2/3 for all

values of H0. The dashed lines in each of the curves is a fit respect to the
average value of the slopes obtained for each value of H0. The two regions
in Fig. 7b represent the parts of the phase space where single buds (blue)
or pearls (white) are formed. When H0 is small, the formation of pearls is
observed across all the values of K1. When H0 = 0.015, the formation of
pearls is observed only for small values of K1 and as K1 increases pearls
are no longer observed. When H0 = 0.15 pearl formation is prevented and
only single buds are formed, up to K1 = 1.35. For smaller K1 we predict
no budding structures.

(a)

(b)

(c) H0 = 0.0015. (d) H0 = 0.015.

(e) H0 = 0.15.
(f) K1 2 [0.2�9] and
H0 2 [0.0015�0.15].

Fig. 8 (a) The bud radius rbud as a function of K1. For small values of
H0, the vesicle size depends on the parameter K1: As K1 is smaller the
vesicles have larger sizes, but as H0 increases this dependence becomes
less significant, as it happens when H0 = 0.15. In this case, all the vesicles
formed have nearly the same size, independent of K1. (b) We approximate
the bud size as the inverse of the spontaneous curvature induced by the
average concentration of proteins on the bud ⇠

1
C0s̄av

. The average protein
density on the bud is computed as s̄av =

1
Abud

R
Abud

s̄dA. It is observed that
all vesicle sizes shown in (a) collapse onto a single curve. The dashed
straight line illustrates the average ratio (C0s̄av)rbud . In Fig. (c)-(e) we
plot the rescaled shapes at t = tcut for selected values of K1, when (c)
H0 = 0.0015, (d) H0 = 0.015 and (e) H0 = 0.15. The radial coordinate r and
the height z have been scaled with 1/(s̄avC0) for each of the values of K1
and H0 considered. Fig. (c)-(e) show that the upper part of the budding
structures are very similar despite being connected to a membrane with
very different shape (W, pearl, flat). In (f) we zoom into the vesicle and
plot together all the obtained shapes at tcut . This reveals that in addition to
the vesicle radius, the vesicle neck has almost the same shape regardless
of K1 and H0.
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4 Conclusions
We proposed a minimal mathematical model to describe the
diffuso-kinetic membrane dynamics as curvature inducing pro-
teins are recruited to a membrane and diffuse along its surface.
The ratio of the diffusive and the kinetic time scale (K1) and the
proteins sensitivity to mean curvature (H0) are systematically
changed in our numerical simulations, which predicts a continu-
ous formation of vesicles from a pearl-like membrane structure
to the formation of a single vesicle from a nearly flat mem-
brane. The coupled mechanism between diffusion and kinetic
recruitment of protein in the membrane leads to the formation
of vesicles with narrow necks at the last stages of the membrane
deformation, without the action of additional mechanisms or
protein complexes that might be responsible for constriction
of membrane vesicle necks. The budding time is found to
follow a power-law tcut ⇠ K

�2/3
1 , despite varying the parameter

H0 over few orders of magnitude and of going from diffusion
(K1 < 1) dominated to recruitment dominated (K1 > 1) dynamics.

We derive a scaling law tcut ⇠ K
�2/3
1 based on considering the

interplay between the time scale associated with the diffusive
spreading of the area allowing protein recruitment and the
kinetically limited recruitment process associated with the
increase of the local protein density in this area of the membrane.
We extract the predicted vesicle size rbud that is a function of
both K1 and H0, but asymptotes towards a constant vesicle size
for K1 > 9 where it becomes insensitive to H0. We propose a
scaling law for the vesicle size rbud ⇠ 1/(C0s̄av) based on the
spontaneous curvature induced by the recruited proteins (C0s̄av)
where s̄av is the mean protein density in the vesicle. By rescaling
the numerical prediction for rbud with this scaling law collapses
the data onto a single curve, further highlighting the self-similar
budding dynamics.

The membrane shapes predicted by our minimal model can
be found in a wide range of biological processes as well as in-
duced by polymers and nanoparticle on lipid vesicles18,81. The
mathematical model couples the energy of the membrane to the
diffuso-kinetics of the recruited proteins, providing a minimal de-
scription of the dynamics. Since the kinetic models describing
protein recruitment are phenomenological, as details about the
precise binding mechanisms of proteins are, to a large extent,
missing in the field, we hope future work can closer couple these
and incorporate the statistical mechanics properties as well as vis-
cous flow effects in the recruitment dynamics of curvature sensing
proteins. The model proposed here may form a basis for further
characterizing how additional biophysical effects e.g., line ten-
sion, non-homogeneous bending rigidity and diffusion coefficient
and direct protein-protein interactions influence the membrane
dynamics.
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Di↵uso-kinetic membrane budding dynamics: Electronic Supplementary
Material (ESM)
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1 Derivation of the shape equations

The energy functional that describes the membrane is given by:

W = B(H � C0�̄)
2 + �+

kbT

ap
�̄(log �̄ � 1) (1)

To derive the energy minimizing shape, we define the Lagrangian functional L as:

L = r


�+

kbT

ap
�̄(log �̄ � 1)

�
+ rB


1

2

✓
sin�

r
+ �

0
◆
� C0�̄

�2
+ �(r0 � cos�) (2)

The equations that describe the membrane shape are derived from the minimization of a Lagrange functional L given by
Eq. 2 with respect to the functions r and �. These functions are parametrized by the arc-length s. The Euler-Lagrange
equations for these functions read:

@L

@r
�

d

ds

✓
@L

@r0

◆
= 0 !

d�

ds
= �+
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ap
�̄(log �̄ � 1) +

M
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B
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M sin�

r
(3)
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@�
�

d

ds

✓
@L

@�0

◆
= 0 !

dM

ds
=

� sin�

r
(4)

We derive a Hamiltonian from the Lagrangian functional in Eq. 2. The total energy of the membrane depends on
its area, which is an implicit function of the arc-length s. This implies that the Lagrangian depends on the spatial
coordinate s implicitely as well. In order to specify the domain where the shape equations are to be solved, the protein
concentration �̄ must be evaluated on the membrane area. This can be done as the relation A

0 = 2⇡r provides a one-to-
one correspondence between the area A and the arc-length s. Moreover, as the size of the upper limit of the coordinate
s is not fixed the following relations are obtained:

@L

@s
= �

dH

ds
= 0 (5)

H(smax) = 0 ! H(s) = 0 (6)

The Hamiltonean is given by:

H = �L+ r
0 @L

@r0
+ �

0 @L

@�0 = 0 (7)

Explicitly:

H = r


�
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◆
�

M
2

B
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r
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0
M

�
= 0 (8)

1



The expression inside the brackets in Eq. 8 vanishes and then we express the terms inside the parenthesis as function of
M

2
,�, r and �. Inserting the resulting expression into Eq. 3 we obtain:

d�

ds
=

� cos�

r
�

2M sin�
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✓
2M

B
+ 2C0�̄

◆
(9)

Next, we write Eq. 3 and Eq. 4 as a function of two new variables Q and T :

Q ⌘ �
� sin�

r
(10)

T ⌘
� cos�

r
(11)

Using Eq. 9 these new variables fulfill the following di↵erential equations:

dQ
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A solution to Eq. 12 and Eq. 13 is given by the following ansatz:

Q = �U sin� (14)

T = U cos� (15)

where U satisfies
dU

ds
=

M

r

✓
2M

B
�

2 sin�

r
+ 2C0�̄

◆
(16)

Finally, the equations that determine the shape of the membrane are given by the ones obtained of the geometry described
in Fig. 1 of the Main Text together with Eq. 4 and Eq. 16:

�
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2M

B
�
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r
+ 2C0�̄ (17)

r
0 = cos� (18)

z
0 = sin� (19)

A
0 = 2⇡r (20)

M
0 = U sin� (21)

U
0 =

M

r

✓
2M

B
�

2 sin�

r
+ 2C0�̄

◆
(22)

We notice that the shape equations do not depend on the parameter kbT .

2 Boundary conditions

From the geometry used to describe the shape of the membrane, shown in Fig. 1 of the Main Text the following boundary
conditions can be extracted:

r(s = 0) = 0 (23)

�(s = 0) = 0 (24)

A(s = 0) = 0 (25)

and we define the origin of the z coordinate to be located at s = 0:

z(s = 0) = 0 (26)
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However, given the form of the shape equations and its divergent behaviour at s = 0 these boundary conditions need to
be regularized by doing a Taylor expansion around s = 0. Then, we define the boundary condition at s = ✏ instead of
s = 0, where ✏ ⌧ 1:

r(✏) ⇡ r(0) + ✏r
0(0) = ✏ (27)

�(✏) ⇡ �(0) + ✏�
0(0) ⌘ ✏c1 (28)

A(✏) ⇡ A(0) + ✏A
0(0) +

✏
2

2
A

00(0) = ⇡✏
2 (29)

z(✏) ⇡ z(0) + ✏z
0(0) +

✏
2

2
z
00(0) =

c1

2
✏
2 (30)

M(✏) ⇡ B(c1 � C0�̄(✏)) (31)

where c1 is defined as the mean curvature at s = ✏ and results from solution of the ODEs. Additionally, we impose that
at the far boundary smax the membrane is nearly flat which implies:

�(smax) = 0 (32)

To find a boundary condition for the function U , we use the expression for the Hamiltonean in Eq. 8. This equation
holds identically assuming that r(s = 0) = 0, and it holds for s = smax only if the term in brackets vanishes. The
equation 32 allow us to assume that the mean curvature and the bending moment M vanish at the far boundary. With
these assumptions, we can find a relation for U(smax):

U(smax) = �+
kbT

ap
�̄(log �̄ � 1) ⇡ � (33)

where �̄ is evaluated at smax. As we are considering a large spacial domain, the protein concentration at the far boundary
satisfies �̄(smax) ⇡ 0, and then U(smax) can be written as in eq. 33. In this way, we have a system of 6 coupled ordinary
di↵erential with the boundary conditions in Eq. 27-33 and the parameter c1.

3 Non-dimensional analysis

Assuming that the characteristic length of the system, L, is given by the typical vesicle size, we can non-dimensionalize
the shape equations and the evolution equation for the protein concentration � as follows:

s̄ =
s

L
, r̄ =

r

L
, z̄ =

z

L
, M̄ =

ML

B
, C̄0 = C0L

Ū =
UL

2

B
, Q̄ =

QL
2

B
, �̄ =

�L
2

B
, �̄ =

�

�m

t̄ ⌘
t

⌧D
=

tD

L2
, ⇤̄ =

⇤B

L2D
=

B

kbT

ap

L2

Substituting the dimensional quantities in terms of the non-dimensional variables and then dropping all the bars, the
evolution equation can be written in dimensionless form as

�̄t �
1

r
(r(�0 + 2C̄0⇤̄�̄Q̄))0 =

⌧D

⌧on
⇥(H �H0)�

⌧D

⌧off
�̄ (34)

where ⌧on and ⌧off define the time scales of recruitment and detachment, respectively, and are given by:

⌧on =
1

cpkon
, ⌧off =

1

koff

where cp is the typical protein concentration on the bulk surrounding the membrane and kon is the a�nity between the
proteins and the membrane. Further, we define the ratio between the time scales as:

K1 ⌘
⌧D

⌧on
K2 ⌘

⌧D

⌧off

where ⌧D = L2

D is the typical di↵usive time scale on a biological membrane. With these definitions we recover Eq. 15 of
the Main Text.
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4 Numerical implementation

To solve numerically the shape equations we used the solver bvp4c in Matlab and the evolution equation of the protein
concentration was solved using a finite di↵erence discretization in time and space, where the spatial derivatives where
computed by a centered-di↵erence scheme and the time derivative by a backward scheme. The steps to solve the coupled
equations are summarised as follows:

1. Give an initial protein concentration �̄0, for example a Gaussian profile, with small amplitude.

2. Solve the associated shape equations using bvp4c in Matlab.

3. With the geometry given by the solution of the shape equations, solve the difusso-kinetic equation to obtain the
protein concentration at a later time step, namely, �̄, using as initial density �̄0.

4. Solve the shape equations with the new protein concentration �̄.

5. Update the initial protein concentration, �̄ ! �̄0

6. Iterate over the steps 3 to 5, until the formation of a bud neck with almost vanishing width is reached. In this case
the shape equations and the evolution equation for �̄ becomes singular and the numerical solver cannot provide
a valid numerical solution. As explained in the main text, we will consider the evolution of the membrane shape
until the time tcut, at which the membrane neck has a small but finite width, equal to the membrane thickness.

5 Validity of the solutions given by the shape equations.

To show that the shapes obtained as a result of the integration of the shape equations, Eq. 17-22 do correspond to a
minimized energy we consider the case of zero surface tension, namely � = 0 in the energy functional given by Eq. 1. In
this case, the bending moment M given in Eq. 21 should vanish, which implies that the mean curvature of the membrane
follows the spontaneous curvature imposed by the proteins. Hence, a simplified set of equations can be obtained by
setting M = 0. As a consequence, U = 0. These equations are:

�
0 = �

sin�

r
+ 2C0�̄ (35)

r
0 = cos� (36)

z
0 = sin� (37)

A
0 = 2⇡r (38)

with the following boundary conditions:

r(✏) = ✏

�(✏) = C0�̄(A = 0)✏

A(✏) = ⇡✏
2

z(✏) =
C0�̄(A = 0)

2
✏
2

In Fig. 1a we compare the shapes obtained at t = tcut by solving the full set of equations, Eq. 17-22 (set of equations 1),
and the simpler equations given by Eq. 35-38 (set of equations 2) for K1 = 2.25 and H0 = 0.015. The shapes obtained
are very similar, indicating that the assumption of vanishing bending moment, M = 0, when the surface tension vanishes
is correct. In addition, in Fig. 1b we show that by solving the set of equations 1, the bending moment is zero.
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(a) Comparison between the shapes obtained by solving

the set of equations 1 and 2.

(b) The bending moment M(s) obtained by solving the

set of equations 1.

Figure 1: Verification of the validity of the solutions given by the shape equations (set 1), for the particular case of vanishing
surface tension, � = 0. The shape obtained agrees well with the solution given by the simplified equations (set 2). The bending
moment M(s) obtained as a solution of the shape equations vanishes, as shown in fig. 1b.

6 E↵ect of the initial protein density

In all the simulations, we have assumed that the initial protein density is given by a Gaussian profile, �̄(s, t = 0) =

�0e
�(s/0.3)2 , where �0 measures the amplitude of the initial density. In all the results presented in the main text we have

chosen �0 = 0.1. Given that the recruitment term depends on the mean curvature via a cuto↵ function, the membrane
should have initially a small but finite deformation to trigger the recruitment. Then it is expected that if the initial
protein density is too small, the membrane will not evolve into a budded shape. To see the e↵ect of the parameter �0

on the membrane shape dynamics, we chose K1 = 9 and H0 = 0.15 and varied the amplitude of the initial density. If
�0 = 0.03, i.e, almost one order of magnitude smaller than the one we have considered, the membrane remains flat, as
shown in Fig. 2a. However, with an initial amplitude of �0 > 0.03 the membrane evolves into a budded shape, similar to
the one obtained when �0 = 0.1. In Fig. 2b we show the dependence between the time at which the neck width equals
the membrane thickness, tcut, and the amplitude of the initial protein density, �0, where it is observed that the initial
amplitude �0 has a small e↵ect on tcut. Hence, the parameter �0 plays a minor role in the budding dynamics.

(a) Shapes at t = tcut. (b) tcut as function of �0.

Figure 2: (a) Comparison of the shapes obtained at t = tcut for K1 = 9 and H0 = 0.15, when �0 = 0.1. The amplitude of
the initial protein density does not have a strong influence in the final membrane shape, provided �0 > 0.03. If �0 < 0.03 the
membrane shape does not evolve into a budded structure. (b) The scission time tcut as a function of the initial density amplitude,
�0, showing that indeed tcut is only slightly modified by the parameter �0. Then, this parameter does not play a key role in the
membrane budding dynamics.

5



7 Influence of other recruitment models:

In the main text we have assumed that the protein recruitment depends on the membrane curvature via a cut-o↵ or
Heaviside function that is piece-wise constant, giving a finite and constant on and o↵ rates when the membrane mean
curvature exceeds a threshold, H > H0, and vanishing rates when H < H0. The Heaviside function is discontinuous, but
can be regularized with an hyperbolic tangent function, i.e, ⇥(H �H0) ! 0.5(1+ tanh a(H �H0)), where a determines
the steepness of the tanh function. To mimic the Heaviside, a should be large enough, to ensure that if H < H0

the recruitment vanishes. This cut-o↵ model is restrictive, as it assumes that recruitment is only possible in a very
restricted membrane region. However, the parameters K1 and K2 have a clear physical interpretation, as on and o↵
rates. Other models for protein recruitment could be considered. For example, one could assume that the recruitment
term is proportional to the mean curvature, ⇠ �H, where � is a constant of proportionality. Nevertheless, � might not
have a straightforward physical interpretation, and to address the general e↵ect of changing the recruitment model is
beyond the scope of this work. In Fig. 3a we show the comparison between the shapes obtained for the Heaviside and
tanh, for K1 = 2.25 and H0 = 0.015, corresponding to t = tcut. We observe that the Heaviside and tanh model give
similar shapes, provided that a is large. If a < 300 the shapes di↵er considerably. In Fig. 3b we show the protein profiles
�̄ as a function of the area A. The profiles look similar compared to the Heaviside models, but start to di↵er if a < 300.
However, regularizing the recruitment model do not a↵ect the results.

(a) Shapes at t = tcut for K1 = 2.25 and H0 = 0.015. (b) �̄(A) for the shapes in Fig. 3a.

Figure 3: (a) Shapes obtained with the Heaviside model and its regularized version ⇠ 0.5(1 + tanh a(H �H0)) at t = tcut for
H0 = 0.015 and K1 = 2.25. The shapes are similar, provided that the tanh is steep enough. If a < 300 the shapes di↵er. (b)
The protein density �̄ as a function of the area A, associated to the shapes in Fig. 3a. If the tanh function is not steep enough
(a < 300), the density �̄ start to di↵er, as the recruitment term does not capture the same features of the Heaviside function.

8 Estimation of the interaction and gradient terms in the energy func-
tional

According to Eq. 1, we are considering an energy functional where interaction terms ⇠ b�̄
2 and gradient terms ⇠ b(r�̄)2

are absent, as we have assumed that the interaction between proteins b is weak. This choice a priori is arbitrary, as
in general these terms should be present. However, it is illustrative to estimate the relative importance of these terms
respect to the bending energy and the entropy. In order to do this, for simplicity we will assume that � = 0. Following
the result of the previous section, if the surface tension vanishes the bending moment and hence the bending energy
vanishes for any given protein concentration profile (see Fig. 1b). We will assume that the protein concentration is one
of the solutions obtained from the numerical simulations at a given time step, for K1 = 2.25 and H0 = 0.015, shown in
Fig. 4a.

It has been estimated theoretically and experimentally that the interaction potential is of the order of 2kbT (1; 2),
which in practice is considerably smaller than the typical bending energy of the membrane. Then the interaction
potential should satisfy b ⌧ B. In Fig. 4b we plot the adimensional entropic term kbT

B
L2

ap
�̄(log(�) � 1), the interaction

term �
b
B

L2

ap
�̄
2 and the gradient term b

B (r�̄)2 assuming that the ratio b
B = 1

10 . We can observe that in this case the

entropy dominates over the interaction and the gradient terms. Hence, it is reasonable to neglect these terms in the
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energy functional.

(a) A protein profile obtained from numerical simulations, for

K1 = 2.25 and H0 = 0.015.

(b) Comparison between the entropy and the interaction term for the

protein profile in fig. 4a

Figure 4: Estimation of the contributions to the energy arising from the entropy and interaction between proteins. Assuming
that the ratio b

B = 1
20 , the interaction and gradient terms have a small contribution to the energy.

9 The e↵ect of surface tension in the membrane shape evolution

The surface tension influences the budding time and the shape of the forming vesicle. In order to establish the e↵ect of
the surface tension in the membrane dynamics we fix the parameters K1 and H0 and change the the parameter �. As �
increases, the numerical calculations become challenging and exploring the e↵ect of the surface tension on the membrane
shape evolution is limited to very small values of �. The dependence of zmax with respect to time is shown in Fig. 5a
for some values of �. One of the e↵ects of having surface tension in the system is that the variable zmax defined in the
main text ceases to have an oscillatory behaviour after a certain value of �, which implies that the formation of pearl
structures is prevented in general. The budding time tbud is defined respect to the local minimum of zmax(t), which,
following the discussion presented in the main text, correspond to the formation of an ⌦-shape. The budding time tbud

as a function of � is shown in Fig. 5b, where it can be observed that the surface tension delays the formation of the bud,
as tbud increases if the surface tension becomes larger.

(a) zmax(t) for di↵erent values of �. (b) tbud as a function of �.

Figure 5: The e↵ect of the membrane tension in its shape evolution. Fig. 5a shows the evolution in time of the height of the
budding structure zmax. This function does not exhibit oscillations in general, as in the case where � = 0. Hence, the formation
of pearls is prevented in most cases. In Fig. 5b the budding time, tbud is plotted as function of the tension �. The budding
time corresponds to the first local minimum of zmax. tbud increases as the surface tension becomes larger. This indicates that the
surface tension delays the budding process. In all simulations K1 = 2.25 and H0 = 0.015.

To further characterise the e↵ect of surface tension on the membrane shape, we compare the shapes obtained when
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� = 0.04 and the ones corresponding to � = 0, at given times. This comparison is shown in Fig. 6, where is shown that
at the scission time t = tcut corresponding to vanishing surface tension, � = 0, H0 = 0.015 and K1 = 2.25, the membrane
under the e↵ect of surface tension exhibits quite di↵erent shapes. In general, the surface tension favors the formation of
budding structures with small height, as compared with the shapes when � = 0.

(a) t = 0.2tcut = 0.05. (b) t = 0.5tcut = 0.13. (c) t = tcut = 0.25.

Figure 6: Comparison between the shapes obtained when the surface tension is zero, � = 0 and � = 0.04 at three di↵erent
snapshots in time defined respect to tcut discussed in the main text, when the dimensionless rate coe�cient is K1 = 2.25 and the
threshold for protein recruitment is H0 = 0.015. As we march forward in time the membrane deforms from a nearly flat membrane
(not shown) into a pit-shape for both values of � (a), but the shapes start to di↵er visibly at a later time ((b) and (c)) and at
t = tcut a pearl structure is already formed when � = 0 but only a single bud is formed when � = 0.04 (c). The color bar represents
the protein density �̄(s, t). A finite but small value of � has the overall e↵ect of reducing the height of the budding structure and
preventing the formation of pearls. The scale bar is the dimensionless unit length of the system, equivalent to L = 50nm.
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