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Abstract 21 

Increased exploitation of resources in sensitive marine ecosystems emphasizes the importance 22 

of knowledge regarding ecological impacts. However, current bio-monitoring practices are 23 

limited in terms of target-organisms and temporal resolution. Hence, developing new 24 

technologies is vital for enhanced ecosystem understanding. In this study, we have applied a 25 

prototype version of a phylogenetic microarray to assess the eukaryote community structures 26 

of marine sediments from an area with ongoing oil and gas drilling activity. The results were 27 

compared with data from both sequencing (metabarcoding) and morphology-based 28 

monitoring to evaluate whether microarrays were capable of detecting ecosystem 29 

disturbances. A significant correlation between microarray data and chemical pollution 30 

indicators, as well as sequencing-based results, was demonstrated, and several potential 31 

indicator organisms for pollution-associated parameters were identified, among them a large 32 

fraction of microorganisms not covered by traditional morphology-based monitoring. This 33 

suggests that microarrays have a potential in future environmental monitoring.   34 
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Introduction 65 

The ocean provides valuable resources such as food, energy and materials. Harvesting these 66 

resources can substantially impact marine ecosystems. Current knowledge regarding the 67 

bioecological effects of anthropogenic activities, such as oil extraction, trawling and deep-sea 68 

mining is limited. Marine ecosystems contain a complex network of interacting organisms 69 

(Arrigo, 2005), yet it is only larger, visible organisms that are commonly considered in 70 

monitoring programs, despite evidence that microorganisms play key roles in maintaining 71 

ecosystem functions (Bik et al., 2012). Therefore, to better understand anthropogenic impacts 72 

on an ecosystem, a more complete diversity of organisms needs to be considered.   73 

To investigate the effects of petroleum exploitation, microscopy-based monitoring programs 74 

with taxonomic classification of macro- and to some extent meiofauna are conducted on 75 

benthic samples (Diaz et al., 2004; Gray, 2000; Miljødirektoratet, 2015). This is time-76 

consuming and does not allow frequent assessments of samples (Baird and Hajibabaei, 2012; 77 

Brodin et al., 2012; Hajibabaei et al., 2011). Because of this, sampling schedules are often 78 

conducted with long temporal intervals, e.g. every third year (OSPAR, 2007), limiting the 79 

capacity to distinguish between anthropogenic short and long term effects (e.g. of oil drilling 80 

and climate change) and natural factors. It is therefore of interest to develop new, more 81 

efficient methods to generate ecosystem data in environmental samples, such as marine 82 

sediments (Baird and Hajibabaei, 2012; Chariton et al., 2010; Leray and Knowlton, 2015).  83 

Previous studies have suggested that the implementation of molecular high throughput 84 

methods could improve biological monitoring (Aggelen et al., 2010; Baird and Hajibabaei, 85 

2012; Brodin et al., 2012; Gescher et al., 2008; Hajibabaei et al., 2011; Lallias et al., 2015; 86 

Lanzén et al., 2016; Leray and Knowlton, 2015; Thomsen and Willerslev, 2015). The use of 87 

DNA based methods makes it possible to include microorganisms in the assessments (Lallias 88 



et al., 2015) and allows us to obtain information on taxa affiliated with several trophic levels 89 

in a biological system (Lanzén et al., 2016). This enables more complete assessment of 90 

anthropogenic impacts on the ecosystem and provides insight into impacts on ecosystem 91 

structure, beyond binary (“affected”/”not affected”). Molecular high throughput assays, using 92 

sequencing or microarray hybridization of phylogenetic marker genes, can provide more 93 

objective analyses when samples from many locations are compared and when conducting 94 

environmental monitoring over long periods of time (Baird and Hajibabaei, 2012), since these 95 

methods are less subjective to errors from morphometric assessments by individual 96 

taxonomists (Mann et al., 2010). They can also increase the rate and cost-effectiveness of 97 

sample processing (Ansorge, 2009; Wetterstrand, 2012). Metagenomic sequencing does 98 

indeed provide more information and is able to obtain a deeper characterization of genomes 99 

and microbial communities compared to microarrays. However, when optimized, microarrays 100 

may serve as an attractive tool for routine, more targeted monitoring of a high number of 101 

samples, with both costs and time benefits (Thissen et al., 2019). Microarrays also have the 102 

potential for implementation as part of automatic remote sensing pipelines such as an 103 

Environmental Sample Processor (ESP), where samples can be collected and processed in 104 

situ, with direct data transfer to land for analysis (Jones et al., 2008; Preston et al., 2009). This 105 

would be advantageous in routine monitoring of remote areas with limited infrastructure, e.g. 106 

deep-sea habitats and areas covered with ice. Automatization may also be beneficial from an 107 

economical perspective, since it can reduce boat time and therefore significant costs during 108 

these monitoring programs. These benefits can allow for increased temporal resolution, 109 

potentially allowing detection of early warning signals, preceding state changes in ecosystems 110 

associated with negative and often permanent alterations in ecosystem functioning (Scheffer 111 

et al., 2012).   112 



Several studies have tested the potential of high throughput molecular methods, sequencing in 113 

particular, for monitoring environments and ecosystem health (Caldwell Eldridge et al., 2017; 114 

Carew et al., 2013; Hajibabaei et al., 2011; Kisand et al., 2012; Lanzén et al., 2016; 115 

Lejzerowicz et al., 2015). Further, microarrays targeting algae that cause toxic blooms have 116 

been tested and integrated in environmental monitoring (Diercks et al., 2008; Dittami et al., 117 

2013a; Dittami et al., 2013b; Edvardsen et al., 2013; Galluzzi et al., 2011). Also, microarrays 118 

targeting a broader diversity have been designed for the 16S small subunit (SSU) ribosomal 119 

RNA (rRNA) gene and tested on environmental samples (DeSantis  et al., 2007; Dubinsky et 120 

al., 2012; Nemir et al., 2010; Wang et al., 2017; Yergeau et al., 2009; Zhao et al., 2017). 121 

However there are several challenges related to using microarrays for assessing environmental 122 

samples (Avarre et al., 2007; Zhou and Thompson, 2002). High sample complexity has been 123 

demonstrated to decrease hybridization specificity (Koltai and Weingarten-Baror, 2008) and 124 

quantification problems arise because of PCR biases (Palmer et al., 2006; Taberlet et al., 125 

2012).  126 

In this study, a previously developed microarray design (Lekang et al., 2018) was tested on 127 

sediment samples from an ongoing environmental monitoring program on the Norwegian 128 

continental shelf, to evaluate the impact on targeted taxa by several environmental and 129 

discharge parameters. The results were compared to data obtained by metabarcoding (Lanzén 130 

et al., 2016) and morphology-based monitoring (DNV, 2011). The main objective was to 131 

evaluate the potential of integrating phylogenetic microarrays in routine monitoring using this 132 

prototype version of a phylogenetic microarray.  133 

 134 

 135 

 136 



Methods 137 

Samples 138 

Sediment grab samples were collected by Det Norske Veritas (DNV) and Molab as part of an 139 

environmental monitoring program in the North Sea, Region III in May 2010 (DNV, 2011), 140 

using a van Veen grabb. Aliquots of 50-100 g of sediment were transferred to 250 ml plastic 141 

containers (Kautex Textron) and fixed using 96% ethanol, to a final concentration of 70-80%. 142 

Samples were stored at -20 °C until further processing. Sediment properties, such as 143 

geographical position, grain size and content of chemical compounds were assessed and 144 

reported by DNV and Molab (DNV, 2011). In total, 30 samples were included in this study. 145 

The fields included were Oseberg C (OSEC); station 05, 06, 08-10 and 15-18, Oseberg D 146 

(OSED); station 01, 03-05 and 08, and Veslefrikk (VFR); station 01-11, 20-21, K1-K3 147 

(Figure S1). These were selected based on chemical and physical properties of the samples, 148 

which established gradients optimal for such an assessment. Physical parameters (depth and 149 

distance from platform), sediment characteristics (grain size, composition; sand, silt/clay and 150 

gravel) and chemical parameters (Total Organic Material (TOM), Total Hydrocarbons (THC), 151 

Polycyclic Aromatic Hydrocarbons (PAH), Napthtalene Phenantren and Dibenzothiophene 152 

(NPD), Barium (Ba), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), 153 

Zinc (Zn)) are listed in Table S1. The same samples were also studied by metabarcoding 154 

(Lanzén et al., 2016) and by traditional morpho-taxonomic techniques (DNV, 2011).  155 

 156 

 157 

Sample preparation for microarray analysis 158 

To assess whether we could obtain biological data relevant to environmental monitoring using 159 

microarray analyses, genomic DNA extracted from sediments sampled from the 30 samples 160 



are described in the previous section (Table S1). In this study, we used the same genomic 161 

DNA extracted for the sequencing analysis (Lanzén et al., 2016). Briefly, genomic DNA was 162 

extracted in 10 replicates of 0.5 g sediment from each sample using the PowerSoil® DNA 163 

extraction kits (MO BIO Laboratories Inc., Carlsbad CA) (Lekang et al., 2015). The replicate 164 

genomic DNA extracts were pooled prior to quantification and PCR. Genomic DNA extracts 165 

were quantified using a Qubit® 2.0 Fluorometer (Invitrogen). PCR amplification targeting 166 

18S SSU rRNA was carried out using 25 µl Hot Start Taq Master Mix (Qiagen) and 1 µg/µl 167 

of Bovine Serum Albumin (BSA, Thermo Scientific). To each PCR reaction, 2.5 µl of the 168 

template was added. To each reaction, 0.5 µM of each of the primers, F-566 and R-1200 169 

(Hadziavdic et al., 2014) with a T7-promotor attached to the reverse-primer (R-1200-T7) 170 

were used. PCR amplification was carried out in a thermal cycler (C1000TM Thermal Cycler, 171 

BioRad) using the following program: 95 °C for 15 min, 35 cycles consisting of 95 °C for 45 172 

sec, 60 °C for 45 sec, 72 °C for 1 min, and a final extension step of 72 °C for 10 min. Ten 173 

replicate PCR reactions were run per sample. Amplification was verified with gel 174 

electrophoresis. Positive PCR products were pooled and purified using Agencourt AMPure 175 

XP (Beckman Coulter Inc).  176 

From each sample, 500 ng of the PCR product was used as template in the RNA transcription 177 

reaction using the MEGAscript T7 kit (Ambion) following the manufacturer’s protocol, with 178 

the exception that 5-(3-Aminoallyl)-UTPs (InvitrogenTM) was included in a 1:1 ratio to UTP. 179 

Five replicate transcriptions for each sample were conducted. The reactions were incubated at 180 

37 °C for 4 hours. RNA transcripts were pooled and purified in two replicates with 181 

MEGAclearTM Transcription Clean-Up Kit (Ambion), -precipitation with 5 M Aluminum 182 

Acetate and eluted in 25 µl nuclease free water. Replicates for each of the samples were 183 

pooled and the final samples quantified by Qubit.  184 



The RNA was labeled with Cy3 Mono-Reactive Dye Pack (Amersham), following 185 

manufacturer’s recommendations. To each labeling reaction, 10 µg RNA was added to a tube 186 

of Cy3 dye. The labeling reaction was stopped using 8 µl of 1M Tris-EDTA, pH 8 (Sigma). 187 

Labeled RNA was further purified using MEGAclearTM Transcription Clean-Up Kit 188 

(Ambion) to eliminate excess Cy3-molecules. Both staining and purification were conducted 189 

in an ozone-free environment, and the Cy3-labeled RNA was quantified using NanoDrop® 190 

ND-1000 Spectrophotometer. Labeled RNA was split in aliquots of 4 replicates, stored at -80 191 

°C and further fragmented and hybridized within 5 days.  192 

 193 

Microarray experiment 194 

The labeled RNA was hybridized using a previously designed and optimized microarray 195 

(V.1.2) (Lekang et al., 2018). In this specific microarray, the probes were designed to target 196 

208 OTUs obtained from a metabarcoding assessment (Lanzén et al., 2016), of the sediment 197 

samples included in this study. This strategy, where the probes target OTUs rather than 198 

taxonomic group, makes it possible to also detect undescribed organisms. This is an 199 

advantage since such organisms represent a substantial fraction of the benthic biodiversity. 200 

Each OTU was targeted by several unique probes to reduce the risk of false positives. The 201 

process of designing probes has been described in detail, in a previous study (Lekang et al., 202 

2018).   203 

The samples were hybridized in replicates of four. The replicates were randomly distributed 204 

among the microarrays. For each sample replicate, 50 ng RNA was used for hybridization.  205 

Labeled RNA was eluted to a final volume of 19 µl using nuclease free water, according to 206 

the protocol from the manufacturer (Agilent technologies). Then, 5 µl of 10X blocking agent 207 

(Agilent) and 1 µl of 25X fragmentation buffer (Agilent) were added to each reaction and 208 



incubated at 60 °C for 30 minutes. The fragmentation reaction was stopped by placing the 209 

samples on ice for 1 min. Before hybridizations, 25 µl of 2X GE hybridization buffer HI-210 

RPM (Agilent) was added to each reaction and centrifuged 1 min at 13 000 rpm. Finally, 40 211 

µl of the hybridization mixture was loaded onto gasket slide wells and the microarray slides 212 

were placed on top with probes facing down. The arrays were hybridized at 61 °C in a 213 

rotating oven for 17 hours. After hybridization, slides were washed using a Gene expression 214 

wash buffer kit (Agilent) following manufacturer’s recommendations. Scanning was 215 

performed immediately after washing using an Agilent G2505B (Agilent Technologies). 216 

Fragmentation, hybridization, wash and scanning of slides were conducted in an ozone free 217 

environment.  218 

 219 

Data analysis 220 

Data was extracted from microarray images using Feature Extraction v. 10.7.3.1 (Agilent 221 

Technologies) and imported to the Software J-Express 2012 build 119 (Dysvik and Jonassen, 222 

2001). Several filters were applied in J-Express to remove spots flagged by the feature 223 

extraction software due to pixel variation (glsFeatNonUnifOL and glsBGNonUnifOL), outlier 224 

status compared to replicate probes (glsFeatPopnOL and glsBGPopnOL), background noise 225 

(lsWellAboveBG) or saturated spots (glsSaturated) as calculated in the feature extraction step. 226 

Median values were calculated for replicate probes on each array and the 4 replicates of each 227 

sample were quantile normalized. The data was stored in CSV format. To filter the data we 228 

used a six-step filtration pipeline (Lekang et al., 2018) in order to decrease false positives 229 

caused by cross-hybridization. Briefly described, the filtration removed OTUs that did not 230 

obtain a satisfactory signal in a certain number of probes, and further normalized over-231 

estimated intensity values of probes due to cross-hybridization. We filtered all data with both 232 



average filtration (all replicas together) and individual filtration (individual replicas) as 233 

previously described (Lekang et al., 2018).      234 

Statistical analysis was conducted using the R software (R_Development_Core_Team, 2008). 235 

Technical variation between hybridization replicates was calculated and compared with 236 

sample variation from each of the tree fields. A heatmap was generated using log-transformed 237 

data from the 30 sediment samples from VFR, OSEC and OSED using the R-packages vegan 238 

(Oksanen et al., 2013) and gplots (Warnes et al., 2015). The information regarding OTU 239 

taxonomy was obtained from the previously published metabarcoding study (Lanzén et al., 240 

2016) (Table S2).   241 

Microarray data from the sediment samples at VFR, OSEC and OSED were compared to 242 

previously published data from microscopy and metabarcoding (DNV, 2011; Lanzén et al., 243 

2016). Initially, Spearman correlation coefficients were calculated to compare relative 244 

abundances of sequences obtained by metabarcoding and corresponding hybridization 245 

intensity signals. In this analysis, all OTUs targeted in the microarray and further detected by 246 

metabarcoding were included. Hellinger transformation was then conducted on the microarray 247 

data and on relative abundance data from microscopy and metabarcoding. Bray-Curtis 248 

dissimilarity matrices were calculated based on the transformed values, and the matrices were 249 

used to perform multivariate statistics tests, conducted using the vegan-package in R 250 

(Oksanen et al., 2013). Specifically, non-metric multidimensional scaling (NMDS; function 251 

metaMDS), permutational ANOVA (PERMANOVA; function adonis), Mantel and partial 252 

Mantel-tests were performed. Correlations of environmental parameters to the NMDS 253 

coordinates were investigated using the function envfit. PERMANOVA was carried out by 254 

only including parameters significantly correlated to NMDS coordinates (p < 0.05). 255 

Parameters were added sequentially, starting with the one with highest correlation to the 256 

NMDS coordinates and subsequently removed from the model unless found to be significant 257 



by PERMANOVA. To assess the effect of environmental parameters and diversity profiles, 258 

Mantel and Partial Mantel tests were performed for all sediments collectively and for each 259 

field (VFR, OSEC and OSED) separately. In both the PERMANOVA and Mantel tests, a 260 

separation was made between parameters such as sediment characteristic and depth and 261 

parameters associated with contamination.  262 

To identify possible indicator-OTUs from the microarray dataset, Spearman rank correlations 263 

between hybridization intensity signals and environmental parameters were determined. A p-264 

value cut-off of 0.05 after Bonferroni correction was applied. Variation between replicate 265 

hybridizations from the sample was compared to variation between replicate hybridizations of 266 

different samples, by non-parametric comparison of distribution of Bray-Curtis dissimilarities 267 

(Wilcoxon Rank Sum Test).  268 

 269 

 270 

 271 

 272 

 273 
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 275 
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 279 



Results 280 

Evaluation of microarray hybridization and metabarcoding 281 

There was low variation between replicate hybridizations of the 30 samples from Oseberg C, 282 

Oseberg D, and Veslefrikk, and the variation between separate samples was demonstrated as 283 

higher than replicate variation for individual samples (p < 3E-16; Figure 1).  284 

A Mantel-test was performed to compare biodiversity-profiles obtained by microarrays and 285 

metabarcoding, and demonstrated significant correlation between the two methods (r = 0.47, p 286 

= 0.001). The quantitative estimates obtained by microarray and metabarcoding were 287 

compared, including only OTUs targeted by the microarray, by calculating Spearman rank 288 

correlation coefficients across all 30 samples, as well as for the three individual fields (Table 289 

1). Relative abundance estimates obtained by the two methods were also correlated, resulting 290 

in coefficients ranging from 0.40 –0.63.  291 

In total 208 OTUs were included on the microarray tested in this study. When comparing the 292 

hybridization data to sequencing data, using only these 208 OTUs, the microarray detected 37 293 

– 100% (80% on average) of the OTUs detected by metabarcoding (Table S3). The OTUs 294 

detected by metabarcoding (Lanzén et al., 2016), but not by microarray had a relatively low 295 

relative mean abundance (5x10-4) according to the sequencing results. Among these, 44% 296 

were singletons in their respective sample. The OTUs detected by both metabarcoding, and 297 

the microarray, had a higher mean relative abundance (4x10-3) according to the sequencing 298 

results. The number of OTUs not detected by metabarcoding, but detected by the microarray, 299 

ranged from 26 in OSEC-06 to 80 in OSEC-08.  300 

Correlation to environmental parameters 301 

NMDS was performed based on hybridization intensity signals from samples collected at all 302 

three fields, along with metabarcoding from the previous study (Lanzén et al., 2016) and 303 



morpho-taxonomy results (DNV, 2011) from the same sample stations (Figure 2). Among the 304 

samples from VFR, three samples representing the least contaminated sites within this field 305 

(VFR-02, VFR-08 and VFR-11; see Table S1) appear closely together and distinct from other, 306 

more contaminated VFR samples (Figure 2a).  307 

Based on NMDS, microarray-based community results were more strongly correlated to most 308 

of the environmental parameters (included Barium), compared to what was observed for the 309 

metabarcoding-results (Table 2). However, grain size and depth correlated more strongly with 310 

morpho-taxonomy based results. NMDS correlations were consistent with PERMANOVA, 311 

indicating a significant impact of Barium (p<0.001) and depth (p<0.001) on community 312 

structure. When controlling for depth, a significant impact was still indicated for Barium 313 

(p<0.001).  314 

According to Mantel-tests, microarray-based community data correlated more strongly to 315 

physical, non-contamination related parameters (depth, sand and grain size; r = 0.33, p < 316 

0.001) than to contaminants (r = 0.15, p < 0.05; see Table 3). Mantel-tests performed 317 

individually on VFR results generated results that were consistent with this (r = 0.42 and, p = 318 

0.002 for physical parameters vs. r = 0.30 and p < 0.05 for contaminant-related). A partial 319 

mantel test discounting influences of depth, sand, and grain size did not confirm a significant 320 

influence on community composition of contamination alone when performed on samples 321 

from all three fields. Nevertheless, partial Mantel-tests on samples from VFR did indicate a 322 

significant influence of contamination (r = 0.5, p < 0.05), as opposed to results of OSEC or 323 

OSED.    324 

Biodiversity and indicator analysis  325 

Hybridization intensity signals for all OTUs detected in the sediment samples are presented in 326 

a heatmap with OTUs affiliated to taxonomic groups and a dendrogram presenting the results 327 



of a hierarchical clustering analysis based on Bray-Curtis dissimilarities (Figure 3). Six of the 328 

samples from VFR (03, 20, 05, 04, K3 and K1), representing the most contaminated (in terms 329 

of Ba and THC) formed a cluster in the dendrogram presented above the heatmap. Finally, all 330 

samples from OSED, grouped together according to the hierarchical clustering.  331 

Several OTUs were present in most samples and did not seem to decrease in abundance with a 332 

high level of contamination (Figure 3). However, some OTUs and taxa were more abundant 333 

in certain samples; e.g. OTUs from the class Cnidaria had high hybridization intensity signals 334 

in several samples from OSEC. This was also the case for a cluster of OTUs assigned to 335 

Annelida, more specifically, the family Canalipalpata. These OTUs were detected in some 336 

VFR samples, but were not correlated to contamination. Several OTUs from Arthropoda and a 337 

cluster of OTUs assigned to Ciliophora (Alveolata) were less abundant in samples from VFR, 338 

which had high levels of Ba and THC. There were also some OTUs that appeared more 339 

abundant in samples from VFR with a high level of Barium and hydrocarbons:  OTU16294, 340 

assigned to Peridiniales (Dinophyceae, Alveolata) and two OTUs assigned to Ascomycota 341 

(Fungi). The two latter OTUs were detected in OSEC-08 and 09, two of the most Ba-rich 342 

samples in this field (Table S1).       343 

Several potential indicator OTUs were identified based on correlations of hybridization 344 

intensity signals with environmental parameters (Table S4). These OTUs were taxonomically 345 

assigned to Metazoa (5 OTUs), Alveolata (4 OTUs) and Fungi (2 OTUs). Of the metazoan 346 

OTUs, four were assigned to Arthropoda and one to Gastrotricha. Two of the OTUs from 347 

Alveolata were assigned to Dinophyceae and the other two OTUs to Ciliophora. Both of the 348 

fungal OTUs were affiliated with Ascomycota. Three OTUs correlated with parameters 349 

describing depth or sediment characteristics (OTU20507; Gastrotricha, OTU21201; 350 

Ciliophora, OTU8414; Ciliophora). Most of the correlations to environmental parameters 351 

were negative. However, both fungal taxa were positively correlated with Ba, whereas both 352 



Dinophyceae taxa were positively correlated with THC, Ba and Hg. Additionally, three OTUs 353 

that could not be taxonomically classified (OTU20507, OTU21201 and OTU8414), had a 354 

positive correlation with sand.  355 

 356 

 357 

 358 

 359 

 360 
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 372 



Discussion 373 

In this study, an 18S rRNA microarray (Lekang et al., 2018) was used to evaluate 374 

phylogenetic microarrays as a method for environmental monitoring of marine sediments. 375 

This method was applied to a set of samples also analyzed using microscopy (DNV, 2011) 376 

and metabarcoding (Lanzén et al., 2016), and the resulting data were compared. Furthermore, 377 

biological aspects, such as distribution of taxonomic groups in the benthos and possible 378 

indicator OTUs for oil and gas drilling contamination, were assessed.  379 

 380 

Evaluation of the microarray assessment 381 

Comparisons between microarray datasets and results obtained by sequencing have 382 

demonstrated correlations between the two methods (Brodie et al., 2006; Tottey et al., 2013; 383 

Yergeau et al., 2009), in agreement with our results. Several OTUs, not present in the 384 

metabarcoding dataset, were detected only by the microarray (Table S3). These might either 385 

represent true diversity in the samples, not detected by sequencing, or false positives. Several 386 

studies comparing microarrays and metabarcoding have indicated significant correlations 387 

when using higher taxonomical levels, such as phyla and class (Claesson et al., 2009; van den 388 

Bogert et al., 2011; Yergeau et al., 2009). However, correlation typically decreases with more 389 

resolved taxonomic levels (e.g. family or genus) (Claesson et al., 2009; van den Bogert et al., 390 

2011), indicating cross-hybridization between closely related taxa. Here we used a more 391 

taxonomy-independent approach, instead based on probes chosen from individual OTUs 392 

defined by de novo clustering of metabarcoding data. Nonetheless, using the same microarray 393 

design but from a previous study, we demonstrated that several false positive hybridizations 394 

correspond to OTUs with high sequence similarity to true positive OTUs, and that some 395 

OTUs were classified within the same genus as true positive OTUs (Lekang et al., 2018). This 396 



suggests that many false positives may be explained by cross-hybridization to closely related 397 

species or strains. Thus, the microarray biodiversity profiles provide meaningful biological 398 

information because changes in biodiversity patterns will be reflected in the microarray 399 

results, although the presence of specific strains may be challenging without further 400 

optimization of the microarray.  401 

Reproducibility is critically important for biodiversity studies since data are compared 402 

spatially and temporally, and large variation within samples will generate noise that limits this 403 

comparison. Microscopy-based investigations of environmental samples depend on manual 404 

evaluations of morphological features by individual taxonomists. The data might therefore 405 

vary depending on the person conducting the survey (Archibald, 1984; Mann et al., 2010; 406 

Morales et al., 2001) especially at higher taxonomic resolution. Variation in quality might 407 

therefore impact conclusions on long time-series. Molecular methods based on phylogenetic 408 

marker genes are considered to be more objective, because taxonomical identification is done 409 

by comparing nucleic acid sequences (Zimmerman et al., 2014). Still, it is important to assess 410 

variation between replicate samples as well as the reproducibility of molecular methods. In 411 

this study, four technical hybridization replicates were included for each sample. The VFR, 412 

OSEC and OSED samples exhibited low variation between replicates (Figure 1), and variation 413 

between hybridization replicates was significantly lower than variation between different 414 

samples. These results demonstrate that the microarray is able to distinguish biodiversity 415 

signals between separate samples.   416 

 417 

Correlation to environmental parameters 418 

Microarray technology has previously been proposed as a tool with good potential for 419 

environmental monitoring (Rich, 2011; Rivas, 2011; Wang et al., 2017). Here we aimed to 420 

assess this by comparing microarray-based results to morpho-taxonomy and metabarcoding 421 



results from the same samples. A fully developed microarray or metabarcoding approach may 422 

potentially provide information on all taxonomic groups, including microorganisms. This is 423 

an advantage because smaller organisms quickly respond to changes in the environment due 424 

to their small size and rapid generation time (Santos et al., 2010). Furthermore, metabarcoding 425 

is more universal in the sense that it can cover all organisms targeted by the primers used, 426 

whereas microarrays are restricted to specific taxa targeted by the probes. Compared to 427 

morpho-taxonomy techniques, however, molecular methods are not directly quantitative, but 428 

rather semi-quantitative, because quantitative abundances can primarily be assessed between 429 

samples or over time of the same taxa but not strictly between taxa in one sample (D'Amore et 430 

al., 2016). However, changes in biological composition relative to environmental parameters 431 

are arguably more important than the number of individuals from each taxonomic group.  432 

In this study, both metabarcoding and morphology data yielded better separation of sites as 433 

compared to the microarray data. The microarray-based diversity profiles obtained in this 434 

study correlated equally well to most environmental parameters tested, particularly to those 435 

associated with contamination or disturbance, such as Barium (Table 2). The metabarcoding 436 

results did not correlate as strongly with these parameters. However, higher correlation has 437 

been demonstrated by splitting the sequence dataset into metazoan and non-metazoan 438 

sequences in a previous study based on the same metabarcoding dataset (Lanzén et al., 2016) 439 

(data not shown here). Sample VFR05 was indicated to be most affected by contaminants 440 

according to both morphology and microarray results (Figure 2). Indeed, VFR05 was also the 441 

most contaminated sample in reference to chemical data (Table S1). This suggested that 442 

results from microarray and microscopy yielded similar conclusions based on correlations 443 

between community composition and contaminants.  444 

Even though a positive correlation was demonstrated between all contaminants and the 445 

community structure profiles obtained by the microarray, this was likely an effect of 446 



autocorrelation between contaminant levels rather than suggesting a biological effect from all 447 

contaminants. Out of the measured disturbance indicators, Barium was indicated as the most 448 

strongly correlated to community structure, according to PERMANOVA, which agrees well 449 

with practices and experiences of current monitoring. Barium is a heavy metal, often used as 450 

an indicator of drilling activity because it is a component of barite (BaSO4), which is present 451 

in drilling mud (Breuer et al., 2004), drill fluids, and other fluids used in offshore petroleum 452 

activities (Neff et al., 1987).  453 

Based on the microarray results, depth, sand and grain size appeared to affect community 454 

structure stronger than the chemical parameters. However, this seems to vary among the oil 455 

fields because the effects of contaminants were suggested to be more significant for VFR 456 

compared to OSEC and OSED (Table 3). 457 

 458 

Indicator organisms 459 

Environmental parameters correlated significantly with the abundance of several taxa, thus 460 

potentially useful of indicator organisms in routine monitoring (Table S4). This included four 461 

OTUs assigned to Copepoda, negatively correlated to several contaminants, including Ba and 462 

Pb. Copepoda has previously been demonstrated to be highly sensitive to petroleum 463 

contamination (Bonsdorff, 1981; Frithsen et al., 1985). Two OTUs assigned to Macrodasyida 464 

and Euplotida (Hypotrichia) were also negatively correlated to depth and Cd. These two taxa 465 

were also sensitive to these environmental parameters in the metabarcoding study (Lanzén et 466 

al., 2016). Interestingly, a positive correlation to sand content (%) was also demonstrated with 467 

both microarray and sequencing for both of these taxa. Several organisms are known to 468 

respond positively to pollution (Frithsen et al., 1985). In this study, two OTUs assigned to 469 

Microascales (Fungi), correlated positively with Ba, which was also supported in the 470 



metabarcoding study (Lanzén et al., 2016). Microascales has been suggested to degrade 471 

aromatic hydrocarbons, such as toluene (Prenafeta-Boldu´ et al., 2006). Organisms within 472 

Dinophyceae have previously been suggested to ingest hydrocarbons (Cooper, 1968) and this 473 

has been demonstrated for Dinophyceae; Noctiluca scintillans and Gyrodinium spirale 474 

(Almeda et al., 2014). After a large oil spill in the Bay of Biscay in 1967 (Torrey Canyon), 475 

dinoflagellate blooms were linked with the elimination of crude oil (Cooper, 1968). In this 476 

study, two OTUs assigned to Dinophyceae (Alveolata) were demonstrated to correlate 477 

positively with THC, Ba and Hg.   478 

An important advantage of methods based on phylogenetic markers, such as 18S rRNA genes, 479 

is that we can obtain information from a broader spectrum of organisms in an ecosystem than 480 

classical microscopy methods, which mainly focus on macro- and meiofauna. Several studies 481 

have previously suggested that stressor-effects on microorganisms differ from larger 482 

organisms (Danovaro et al., 1995; Lanzén et al., 2016; Santos et al., 2010). In our study, most 483 

organisms included on the microarray were multicellular organisms (metazoans, >80%). 484 

Nonetheless, more than 50% of the potential indicator OTUs identified were microorganisms, 485 

indicating that these are valuable in environmental monitoring and that changes in their 486 

abundance should be considered and included in monitoring programs.  487 

 488 

Conclusions  489 

This study demonstrates that our previously developed phylogenetic microarray design is 490 

capable of profiling eukaryotic community structure with an accuracy similar to 491 

metabarcoding and morpho-taxonomy approaches. Specifically, obtained results were 492 

significantly correlated with environmental parameters, including contaminants from offshore 493 

oil and gas activities. In combination with high throughput sequencing, microarrays have the 494 



potential to increase the temporal and spatial resolution of environmental monitoring by 495 

contributing to a more complete ecosystem understanding of anthropogenic activity effects.  496 
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 712 

Figure and Table legends 713 

Figure 1: Boxplot presenting the variation among hybridization replicates and between 714 

distinct samples from the tree locations; a) Oseberg C, b) Oseberg D and c) Veslefrikk  715 

 716 

Figure 2: NMDS based on Bray-Curtis dissimilarities of community composition from a) 717 

microarray, b) metabarcoding using data presented in (Lanzén et al., 2016) and c) microscopy 718 

using data presented in (DNV, 2011). Hybridization intensities and relative abundances of 719 

sequence-reads were Hellinger-transformed and significant environmental parameters marked 720 

with blue vectors.  721 

 722 

Figure 3: Heatmap of log-transformed hybridization intensity signals from Veslefrikk, 723 

OsebergC and OsebergD sediment samples. Color gradients are from black to yellow, 724 

representing low to high intensity, respectively. The color on the left axis indicates taxonomic 725 

group as coded in the accompanying legend.  726 

 727 



Figure S1: Map indicating the geographic position of sampled oilfields. All petroleum fields 728 

were included in the metabarcoding analysis (Lanzén et al., 2016), whereas the results created 729 

the database for creating probes for the microarray. Petroleum fields marked with a circled dot 730 

have been used to test the microarray in this study.  731 

 732 

Table 1: Spearman correlation (r) and significance (*** = < 0.001) between relative 733 

abundance of sequences and hybridization intensity signals for OTUs targeted by probes 734 

and additionally detected by sequencing.  735 

 736 

Table 2: Correlation of environmental parameters to NMDS clustering patterns. R2 737 

values for linear correlation of parameter vectors with maximal correlation to NMDS 738 

space resulting from Bray-Curtis distance of Hellinger transformed hybridization 739 

intensity signals are displayed together with significance (* = < 0.05, ** = < 0.01, *** = 740 

< 0.001) as determined by envfit in the R package vegan.     741 

 742 

Table 3: Mantel test statistics: permutation-based Mantel tests were used to evaluate the 743 

correlation between two dissimilarity matrices (“explanatory” and “dependent” variables 744 

below). Bray-Curtis dissimilarity was used to derive community dissimilarities, and log-745 

transformation for environmental parameters.   746 

 747 

Table 4: Indicator organisms identified based on significant Spearman correlation with 748 

environmental parameters. Significance after Bonferroni correction is indicated by (* = < 749 

0.05, ** = < 0.01, *** = < 0.001). 750 

 751 



Table S1: All sediment samples included in this study with the corresponding 752 

environmental parameters (DNV, 2011).  753 

 754 

Table S2: Taxonomic affiliation of all 264 OTUs targeted by the microarray. The OTUs are 755 

indicated by colors based on results from the plasmid experiment (microarray V.1.1); Green = 756 

OTU present in the plasmid-mix, green*=false negative, red = false positive, blue = true 757 

negative. 758 

 759 

Table S3: Sediment samples from Veslefrikk (VFR), OsebergC (OSEC) and OsebergD 760 

(OSED) with information on the number of OTUs detected by sequencing, which were 761 

targeted by the microarray (1). The table also gives the % positive OTUs based on the 762 

microarray (2) and false positive OTUs at each station with reference to the 763 

pyrosequencing data (3).   764 

 765 

Table S4: Indicator organisms identified based on significant Spearman correlation with 766 

environmental parameters. Significance after Bonferroni correction is indicated by (* = < 0.05, ** = 767 

< 0.01, *** = < 0.001). 768 
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 770 

 771 


