The quintet completed: The partitioning of sulfur between nominally volatile-free minerals and silicate melts

SARA CALLEGARO 1,2,*, K ALOTINA GERA KI 3, ANDREA MARZOLI 1,†, ANGELO DE MIN 4, VICTORIA MANETA 5, AND DON R. BAKER 5

1Department of Geosciences, University of Padova, via Gradenigo 6-35131 Padova, Italy
2CEED—Centre for Earth Evolution and Dynamics, Sem Sælands vei 2A, 0371 Oslo, Norway
3Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K.
4Department of Mathematics and Geoscience, University of Trieste, via Weiss 2, 34128 Trieste, Italy
5Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec, Canada

ABSTRACT

Magmatic systems are dominated by five volatiles, namely H2O, CO2, F, Cl, and S (the igneous quintet). Multiple studies have measured partitioning of four out of these five volatiles (H2O, CO2, F, and Cl) between nominally volatile-free minerals and melts, whereas the partitioning of sulfur is poorly known. To better constrain the behavior of sulfur in igneous systems we measured the partitioning of sulfur between clinopyroxene and silicate melts over a range of pressure, temperature, and melt composition from 0.8 to 1.2 GPa, 1000 to 1240 °C, and 49 to 66 wt% SiO2 (13 measurements). Additionally, we determined the crystal-melt partitioning of sulfur for plagioclase (6 measurements), orthopyroxene (2 measurements), amphibole (2 measurements), and olivine (1 measurement) in some of these same run products. Experiments were performed at high and low oxygen fugacities, where sulfur in the melt is expected to be dominantly present as an S6+ or an S2– species, respectively. When the partition coefficient is calculated as the total sulfur in the crystal divided by the total sulfur in the melt, the partition coefficient varies from 0.017 to 0.075 for clinopyroxene, from 0.036 to 0.229 for plagioclase, and is a maximum of 0.001 for olivine and of 0.003 for orthopyroxene. The variation in the total sulfur partition coefficient positively correlates with cation-oxygen bond lengths in the crystals; the measured partition coefficients increase in the order: olivine < orthopyroxene < clinopyroxene ≤ amphibole and plagioclase. At high oxygen fugacities in hydrous experiments, the clinopyroxene/melt partition coefficients for total sulfur are only approximately one-third of those measured in low oxygen fugacity, anhydrous experiments. However when the partition coefficient is calculated as total sulfur in the crystal divided by S2– in the melt, the clinopyroxene/melt partition coefficients for experiments with melts between ~51 and 66 wt% SiO2 can be described by a single mean value of 0.063 ± 0.010 (1σ standard deviation about the mean). These two observations support the hypothesis that sulfur, as S2–, replaces oxygen in the crystal structure. The results of hydrous experiments at low oxygen fugacity and anhydrous experiments at high oxygen fugacity suggest that oxygen fugacity has a greater effect on sulfur partitioning than water. Although the total sulfur clinopyroxene-melt partition coefficients are affected by the Mg/(Mg+Fe) ratio of the crystal, partition coefficients calculated using S2– in the melt display no clear dependence upon the Mg# of the clinopyroxene. Both the bulk and the S2– partition coefficients appear unaffected by 26Al in the clinopyroxene structure. No effect of anorthite content nor of iron concentration in the crystal was seen in the data for plagioclase-melt partitioning. The data obtained for orthopyroxene and olivine were too few to establish any trends. The partition coefficients of total sulfur and S2– between the crystals studied and silicate melts are typically lower than those of fluorine, higher than those of carbon, and similar to those of chlorine and hydrogen. These sulfur partition coefficients can be combined with analyses of volatiles in nominally volatile-free minerals and previously published partition coefficients of H2O, C, F, and Cl to constrain the concentration of the igneous quintet, the five major volatiles in magmatic systems.

Keywords: Clinopyroxene/melt sulfur partitioning, equilibrium melts, magmatic volatiles, synchrotron micro X-ray fluorescence

INTRODUCTION

Five volatiles (the igneous quintet), H2O, CO2, F, S, and Cl, dominate magmatic systems (e.g., Johnson et al. 1994; Symonds et al. 1994). They play multiple roles in the character of magmatism, from influencing the explosivity of volcanic eruptions to driving local or global environmental upheavals through poisoning of the ecosystems by acid fallout and net cooling or heating of the troposphere (e.g., Robock 2013). Quantitative estimations of volatile concentrations in magmas come primarily from two types of samples: glassy rinds of submarine pillow lavas and melt inclusions trapped in phenocrysts. The former is quenched at a
Experimental techniques

Experiments on basaltic compositions were performed with a powdered MORB and a powdered basalt (AN-31) of the Central Atlantic Magmatic Province (CAMP), collected from a lava flow in Morocco (Marzoli et al. 2019). Two intermediate-composition glasses were also used as starting materials; one anodesite glass (AT-29D) was made from a mixture of 95% Anesite andesite and 5% diopside glass, added to facilitate clineopyroxene crystalization, and the other (AT-150) was a synthetic dacite glass, whose composition was similar to a natural Aleutian rock. Starting samples AN-31, AT-29D, and AT-150 were enriched in sulfur through the addition of finely ground pyrrhotite and dry mixed in a horizontal rotary mill to homogenize them. Electron microprobe analyses of super-liquidus glasses of these starting materials are provided in Table 1. The MORB contained approximately 800 ppm sulfur, AN-31 approximately 900 ppm S, and AT-29D and AT-150 both approximately 300 ppm S (Table 1). Starting samples were ground by hand in a mortar to less than 50 μm in size and stored in a drying oven at ~120 °C before experiments.

Low oxygen fugacity experiments were performed in graphite-lined platinum capsules. These double capsules minimize iron loss and create oxygen fugacity conditions approximately 1.5 to 2 log units below the fayalite-quartz-magnetite buffer (FMQ) or FMO+2 (e.g., Měděr et al. 2008); at these conditions sulfur dissolved in the melt exists in a sulfide complex, S⁰ (Wilke et al. 2011). Capsules for anhydrous experiments were loaded with starting materials (~10 mg) and dried in the oven before welding. Hydrous conditions were achieved by first adding liquid water and then the other starting materials before welding with the capsule immersed in water to keep the metal cool and prevent volatile loss during welding. All hydrous capsules were heated at 110 °C for at least 2 h to test the weld, and any capsules whose weight changed either during welding or after heating were discarded.

High oxygen fugacity experiments were performed in Au₄, P₄ capsules. These capsules mitigate iron loss and in our piston-cylinder assembly create oxygen fugacities approximately 1 to 2 log units above FMQ, i.e., FMQ+1 to FMQ+2 (Dalpé and Baker 2000; Liu et al. 2007); at these fO₂ values much of the sulfur in the melt is present as a sulfate complex, SO⁴ (Wilke et al. 2011). The loading, drying, and heating procedures for these capsules were identical to those used for the graphite-in-Pt capsules.

Experiments were performed in a piston-cylinder using NaCl-pyrex-crushable alumina assemblies following the techniques of Baker (2004). Hydrous experimental capsules were surrounded by pyrophyllite or Al₂O₃ powder to reduce water loss (Feda et al. 2001). Experiments were simultaneously heated and pressurized to conditions above the liquidus and held at those conditions for 1 to 2 h to homogenize the melt and destroy any crystals in the starting material before cooling to subliquidus conditions at a rate of 1 °C per minute. Upon reaching the desired, sub-liquidus temperature the experiments were held at that temperature for a duration of approximately 24 h, allowing crystal growth (Table 2). This duration has previously been shown sufficient for the anesite AT-29 and the MORB basalt to reach equilibrium conditions at anhydrous conditions and similar temperatures and pressures, even with residual melt compositions as rich in silica (67 wt% SiO₂) as those in this study (Baker and Eggler 1987; Baker 2008).

Analytical techniques

Run-product phases were analyzed for major element concentrations on a JEOL 8900 electron microprobe (McGill University). We used an accelerating voltage of 15 kV, a beam current of 20 nA, and a beam diameter of 20 μm for the glasses and 1 μm for the crystals. We used 20 s counting time for the peaks of major elements and 1 μm for the crystals. We used 20 s counting time for the peaks of major elements and 1 μm for the crystals.

Table 1. Compositions of starting materials based upon microprobe analysis of super-liquidus glasses

<table>
<thead>
<tr>
<th>MORB basalt</th>
<th>AN-31 CAMP tholeiite</th>
<th>AT-29D anodesite</th>
<th>AT-150 dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>49.5 (0.70)</td>
<td>50.2 (0.18)</td>
<td>55.99 (0.58)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.28 (0.06)</td>
<td>1.17 (0.04)</td>
<td>0.86 (0.04)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.4 (0.12)</td>
<td>11.1 (0.06)</td>
<td>16.33 (0.08)</td>
</tr>
<tr>
<td>FeO</td>
<td>9.37 (0.27)</td>
<td>11.4 (0.17)</td>
<td>7.86 (0.37)</td>
</tr>
<tr>
<td>MgO</td>
<td>8.89 (0.11)</td>
<td>12.8 (0.12)</td>
<td>4.00 (0.16)</td>
</tr>
<tr>
<td>CaO</td>
<td>11.7 (0.16)</td>
<td>9.07 (0.11)</td>
<td>8.19 (0.25)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.4 (0.08)</td>
<td>1.63 (0.04)</td>
<td>3.48 (0.07)</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1 (0.01)</td>
<td>0.66 (0.03)</td>
<td>1.94 (0.07)</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.11 (0.02)</td>
<td>0.12 (0.02)</td>
<td>0.23 (0.01)</td>
</tr>
<tr>
<td>S (ppm)</td>
<td>842 (39)</td>
<td>911 (36)</td>
<td>366 (67)</td>
</tr>
</tbody>
</table>

Total | 98.93 | 98.33 | 99.07 | 99.46

Note: Standard deviations in parentheses.
Table 2. Experimental conditions and phases ([AU:OK?])

<table>
<thead>
<tr>
<th>Expt.</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>ΔFMQ ΔFMQ</th>
<th>H2O (wt%)</th>
<th>Phase</th>
<th>n°</th>
<th>S (ppm)</th>
<th>S/S0 S0*</th>
<th>D (%)</th>
<th>D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB2012-36</td>
<td>1.0</td>
<td>1350/1240</td>
<td>2/20.1</td>
<td>-2</td>
<td>n.a.</td>
<td>glass</td>
<td>12</td>
<td>1032 (84)</td>
<td>0</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cpx</td>
<td>[8]</td>
<td>29 (7)</td>
<td>0.036</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI</td>
<td>[1]</td>
<td>37 (1)</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>glass</td>
<td>12</td>
<td>1090 (27)</td>
<td>0</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cpx</td>
<td>[8]</td>
<td>25 (11)</td>
<td>0.017</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>CS2014-13</td>
<td>1.0</td>
<td>1350/1240</td>
<td>2/24</td>
<td>1.8</td>
<td>n.a.</td>
<td>glass</td>
<td>10</td>
<td>917 (36)</td>
<td>0.73</td>
<td>0.017</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cpx</td>
<td>[4]</td>
<td>16 (13)</td>
<td>0.018</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>DRB2015-1</td>
<td>1.0</td>
<td>1150/1060</td>
<td>2/24</td>
<td>1.5</td>
<td>7.6 (0.9)</td>
<td>glass</td>
<td>18</td>
<td>1156 (62)</td>
<td>0.63</td>
<td>0.123</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cpx</td>
<td>[5]</td>
<td>21 (7)</td>
<td>0.017</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Opx</td>
<td>[3]</td>
<td>2 (1)</td>
<td>0.002</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Water concentration (measured by Raman spectroscopy) and sulfur concentration and oxidation state (measured by electron microprobe) in the glass phase are reported. Sulfur concentration in the crystals was measured by SXRF. Partition coefficients are reported for total S and S²⁻. Standard deviation values are in parentheses. Where only a single analysis is available, the uncertainty is the analytical uncertainty measured through peak counting statistics as discussed in the “Analytical Techniques” section (i.e., 14% relative for S concentrations >6 ppm).

a The high temperature step of the experiment followed by the low temperature step.
b The oxygen fugacity of the experiment; see text for discussion.
c The number of analyses by electron microprobe (for glass), and in brackets by SXRF (for crystals and one experiment glass).
d Fraction of S²⁻ in the glass determined by peak shift of the sulfur x-ray measured on the electron microprobe.
e Crystal-melt partition coefficient of sulfur determined by dividing the sulfur measured in the crytal by the total sulfur measured in the glass.
f Crystal-melt partition coefficient of sulfur determined by dividing the sulfur measured in the crystal by the S²⁻ measured in the glass.

were all one-half of those on the peaks. The lower detection limit of S in glasses was approximately 100 ppm. Synthetic pyrrhotite was used as the sulfur standard for analyses of experiments at low oxygen fugacity, whereas barite was used for experiments at high oxygen fugacity. The standards used for glass analyses were a basaltic glass, VG-A99 (Jarosewicz et al. 1980), for Na, Al, Fe, Si, Mg, Ca, and Ti; a rhetic glass for K; a spessartine for Mn; and a fluorapatite for P. Basaltic glass standards VG-2 (1410 ppm S) and VG-A99 (125 ppm S) were repeatedly analyzed to ensure the accuracy of our analyses (cf. Liu et al. 2007; Fortin et al. 2015). The standards used for mafic crystal analyses were diopside for Ca and Mg and olivine for Fe; feldspars were used as Na, K, and Al standards for the analyses of the plagioclase crystals formed in the experiments. The standards for all other elements were the same as those used for glass analyses.

The oxygen fugacity in all high oxygen fugacity experiments was determined by the sulfur peak shift method pioneered by Carroll and Rutherford (1988). The wavelength of the sulfur peak in the glass of each high oxygen fugacity experiment was found using the electron microprobe by scanning the peak of 20 different spots in the glass and then summing the scans to increase the peak-to-background ratio. A 10 μm diameter beam with a 15 kV potential and 20 nA current was used to minimize possible sulfur oxidation during analysis. This measured peak position was then compared to the sulfur peak positions measured in spalerite, the sulfide standard, and barite, the sulfate standard, to determine the fraction of sulfur dissolved as sulfate in the melt (Carroll and Rutherford 1988). From this sulfate fraction, the log of the oxygen fugacity relative to the FMQ buffer was calculated following Wilke et al. (2011).

Water was measured in the run-product glasses of all hydrous experiments by Raman spectroscopy (see Supplementary Fig. S1), following Fortin et al. (2015).
Sulfur in the crystals was measured by synchrotron X-ray microfluorescence (SXRF) on beamline 118 at the Diamond Light Source synchrotron, U.K. (Moselmann et al. 2009). Synchrotron X-ray fluorescence analyses of silicon and sulfur concentrations in the crystals were performed in a helium atmosphere using a 3 keV beam focused to 6 × 6 μm by a pair of Kirkpatrick-Baez mirrors, and the fluorescence spectra of the samples were measured with a Vortex silicon drift detector. Sulfur concentrations in the crystals were performed in a helium atmosphere using a 3 keV SXRF instrument on beamline I18 at the Diamond Light Source synchrotron, U.K. (Moselmann et al. 2009) using as standards a set of andesitic and basaltic glasses previously analyzed by ion microprobe (CAMECA ims 1280 at Nordsim Laboratory, Stockholm Natural History Museum, Sweden) using glass standards for calibration and yield sulfur concentrations in DeKalb and F-14 less than 1 ppm. Because of the significant difference between the bulk sulfur analyses and those obtained by ion microprobe, we did not use the latter in this study. We suggest that the difference between ion microprobe and SXRF analyses may be due to inadequate standards for ion probe sulfur analysis in mafic crystals.

We calculated a detection limit of approximately 1 ppm for our SXRF analyses by two different methods (p. 446, Goldstein et al. 2003; Rousseau 2001). Based upon a relative uncertainty of 10% in our electron microprobe analyses as well as 10% uncertainty seen in our peak fitting areas, we calculate through error propagation (Rousseau 2001) an analytical uncertainty of 14% relative for samples with 6 ppm and greater. At 2 ppm sulfur, the uncertainty in the peak fitting areas reaches 37%, and the analytical uncertainty becomes 38% relative.

RESULTS

The experimental conditions and the analyses of the run product phases are presented in Tables 2 and 3. Experimental conditions were chosen for the crystallization of clinopyroxene, but plagioclase, low-calcium pyroxene, olivine, amphibole, and opaque phases were also present in selected experiments. Iron sulfide phases, either quenched from an immiscible liquid or present as a stable sulfide crystal, were observed in three experiments.
Table 3.—Extended

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Phase</th>
<th>n</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB2014-38</td>
<td>glass</td>
<td>12</td>
<td>2.92 (0.06)</td>
<td>0.13 (0.01)</td>
<td>0.12 (0.07)</td>
<td>98.57</td>
</tr>
<tr>
<td>Cpx</td>
<td>9</td>
<td></td>
<td>0.01 (0.01)</td>
<td>0.02 (0.01)</td>
<td>0.03 (0.03)</td>
<td>99.40</td>
</tr>
<tr>
<td>Pl</td>
<td>1</td>
<td></td>
<td>4.29 (0.43)</td>
<td>0.05 (0.01)</td>
<td>n.a.</td>
<td>99.35</td>
</tr>
<tr>
<td>DRB2014-39</td>
<td>glass</td>
<td>12</td>
<td>3.13 (0.02)</td>
<td>0.13 (0.01)</td>
<td>0.16 (0.05)</td>
<td>98.42</td>
</tr>
<tr>
<td>Cpx</td>
<td>18</td>
<td></td>
<td>6.09 (0.12)</td>
<td>0.29 (0.01)</td>
<td>n.a.</td>
<td>99.87</td>
</tr>
<tr>
<td>Cpx</td>
<td>28</td>
<td></td>
<td>0.63 (0.15)</td>
<td>0.02 (0.02)</td>
<td>n.a.</td>
<td>99.35</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB2014-36</td>
<td>glass</td>
<td>18</td>
<td>3.06 (0.09)</td>
<td>0.13 (0.01)</td>
<td>0.15 (0.02)</td>
<td>94.22</td>
</tr>
<tr>
<td>Cpx</td>
<td>52</td>
<td></td>
<td>0.50 (0.06)</td>
<td>0.22 (0.01)</td>
<td>n.a.</td>
<td>99.21</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2014-13</td>
<td>glass</td>
<td>10</td>
<td>2.65 (0.08)</td>
<td>0.11 (0.01)</td>
<td>0.13 (0.01)</td>
<td>99.65</td>
</tr>
<tr>
<td>Cpx</td>
<td>28</td>
<td></td>
<td>0.63 (0.15)</td>
<td>0.02 (0.02)</td>
<td>n.a.</td>
<td>99.35</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2014-29</td>
<td>glass</td>
<td>18</td>
<td>1.98 (0.05)</td>
<td>0.81 (0.03)</td>
<td>0.15 (0.02)</td>
<td>94.22</td>
</tr>
<tr>
<td>Cpx</td>
<td>42</td>
<td></td>
<td>0.05 (0.06)</td>
<td>0.08 (0.02)</td>
<td>n.a.</td>
<td>99.40</td>
</tr>
<tr>
<td>Ol</td>
<td>19</td>
<td></td>
<td>n.a.</td>
<td>0.02 (0.01)</td>
<td>0.04 (0.02)</td>
<td>99.60</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2014-30</td>
<td>glass</td>
<td>15</td>
<td>0.10 (0.03)</td>
<td>0.04 (0.01)</td>
<td>n.a.</td>
<td>99.78</td>
</tr>
<tr>
<td>Cpx</td>
<td>37</td>
<td></td>
<td>0.59 (0.04)</td>
<td>0.07 (0.02)</td>
<td>n.a.</td>
<td>99.45</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2014-14</td>
<td>glass</td>
<td>12</td>
<td>1.94 (0.03)</td>
<td>0.78 (0.02)</td>
<td>0.15 (0.01)</td>
<td>97.91</td>
</tr>
<tr>
<td>Cpx</td>
<td>31</td>
<td></td>
<td>0.06 (0.02)</td>
<td>0.22 (0.01)</td>
<td>n.a.</td>
<td>98.62</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2014-9</td>
<td>glass</td>
<td>10</td>
<td>3.42 (0.04)</td>
<td>2.04 (0.06)</td>
<td>0.36 (0.02)</td>
<td>97.91</td>
</tr>
<tr>
<td>Cpx</td>
<td>17</td>
<td></td>
<td>0.38 (0.04)</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.02)</td>
<td>99.07</td>
</tr>
<tr>
<td>Pl</td>
<td>20</td>
<td></td>
<td>5.54 (0.14)</td>
<td>0.16 (0.01)</td>
<td>n.a.</td>
<td>99.90</td>
</tr>
<tr>
<td>Starting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-29D</td>
<td>glass</td>
<td>11</td>
<td>3.39 (0.06)</td>
<td>2.92 (0.04)</td>
<td>0.41 (0.03)</td>
<td>98.73</td>
</tr>
<tr>
<td>Cpx</td>
<td>18</td>
<td></td>
<td>0.32 (0.08)</td>
<td>0.03 (0.01)</td>
<td>n.a.</td>
<td>99.19</td>
</tr>
<tr>
<td>Pl</td>
<td>22</td>
<td></td>
<td>5.73 (0.08)</td>
<td>1.01 (0.09)</td>
<td>n.a.</td>
<td>100.18</td>
</tr>
<tr>
<td>CS2014-38</td>
<td>glass</td>
<td>12</td>
<td>3.42 (0.07)</td>
<td>2.43 (0.14)</td>
<td>0.29 (0.05)</td>
<td>98.85</td>
</tr>
<tr>
<td>Cpx</td>
<td>19</td>
<td></td>
<td>0.38 (0.06)</td>
<td>0.03 (0.03)</td>
<td>n.a.</td>
<td>99.70</td>
</tr>
<tr>
<td>Pl</td>
<td>13</td>
<td></td>
<td>5.56 (0.14)</td>
<td>0.88 (0.01)</td>
<td>n.a.</td>
<td>99.71</td>
</tr>
<tr>
<td>CS2014-30</td>
<td>glass</td>
<td>15</td>
<td>3.29 (0.1)</td>
<td>4.24 (0.21)</td>
<td>0.67 (0.06)</td>
<td>98.79</td>
</tr>
<tr>
<td>Pl</td>
<td>15</td>
<td></td>
<td>5.99 (0.23)</td>
<td>1.19 (0.33)</td>
<td>n.a.</td>
<td>99.95</td>
</tr>
<tr>
<td>Amp</td>
<td>5</td>
<td></td>
<td>1.96 (0.79)</td>
<td>2.04 (0.77)</td>
<td>n.a.</td>
<td>98.11</td>
</tr>
<tr>
<td>DRB2015-2</td>
<td>glass</td>
<td>19</td>
<td>3.54 (0.06)</td>
<td>2.13 (0.04)</td>
<td>0.25 (0.02)</td>
<td>91.72</td>
</tr>
<tr>
<td>Cpx</td>
<td>29</td>
<td></td>
<td>0.79 (0.04)</td>
<td>0.22 (0.01)</td>
<td>n.a.</td>
<td>98.83</td>
</tr>
<tr>
<td>CS2014-19</td>
<td>glass</td>
<td>14</td>
<td>3.20 (0.1)</td>
<td>2.05 (0.06)</td>
<td>0.25 (0.01)</td>
<td>92.68</td>
</tr>
<tr>
<td>Cpx</td>
<td>17</td>
<td></td>
<td>0.59 (0.04)</td>
<td>0.03 (0.03)</td>
<td>n.a.</td>
<td>98.70</td>
</tr>
<tr>
<td>Pl</td>
<td>25</td>
<td></td>
<td>6.15 (0.25)</td>
<td>0.49 (0.11)</td>
<td>n.a.</td>
<td>100.33</td>
</tr>
<tr>
<td>CS2014-20</td>
<td>glass</td>
<td>10</td>
<td>0.62 (0.08)</td>
<td>1.64 (0.03)</td>
<td>n.a.</td>
<td>99.02</td>
</tr>
<tr>
<td>Cpx</td>
<td>4</td>
<td></td>
<td>0.82 (0.04)</td>
<td>0.02 (0.01)</td>
<td>n.a.</td>
<td>99.22</td>
</tr>
<tr>
<td>Pl</td>
<td>4</td>
<td></td>
<td>6.09 (0.12)</td>
<td>0.29 (0.01)</td>
<td>n.a.</td>
<td>98.87</td>
</tr>
<tr>
<td>Amp</td>
<td>3</td>
<td></td>
<td>1.90 (0.22)</td>
<td>0.97 (0.37)</td>
<td>n.a.</td>
<td>97.23</td>
</tr>
<tr>
<td>Opg</td>
<td>1</td>
<td></td>
<td>0.00</td>
<td>0.03 (0.01)</td>
<td>n.a.</td>
<td>99.74</td>
</tr>
</tbody>
</table>

Crystal-melt equilibrium was assessed by comparing measured Fe-Mg partitioning between crystals and melts with previous studies. With one exception, the clinopyroxene-melt Fe-Mg partitioning of the low oxygen fugacity experiments was within 25 relative percent of values calculated following Putirka (1999). Experiment CS2014-31, performed at 1000 °C, is an exception; we do not attribute its difference to disequilibrium, (CS2014-3, -5, and -30), but in each experiment the modal proportion of sulfides was less than 5%. The typical morphologies of the crystals in low oxygen-fugacity experiments with basaltic compositions were euhedral to subhedral (Fig. 1a), whereas crystals in experiments with basaltic compositions at high oxygen fugacity and experiments with andesitic and dacitic bulk compositions were typically subhedral to anhedral (Fig. 1b). Most crystals were approximately 100 μm in their minimum dimension; however, some were as low as 25 μm and some as high as 400 μm across. All the crystals were significantly larger than the beam sizes of all applied analytical techniques (6–2 μm). The smallest crystals allowed for only one analysis each, while several analyses (for instance at the core and at the rim) were performed on the largest crystals. In all run products, the rims (within 10 μm of the melt) of the most euhedral crystals were used for the measurement of major element and sulfur concentrations, because some crystals displayed major element compositional zoning. Although we tried to analyze at least five crystals in each experiment, in some cases, this was impossible. Additionally, some of our analyses contained anomalously high sulfur concentrations indicative of an analysis of a mixture of crystal+glass, marked also by a higher Cl concentration. Such obviously incorrect analyses were removed from those used to calculate the mean sulfur concentrations of the crystals. In one case (CS2014-20) only one clinopyroxene analysis was deemed acceptable, but for most experiments, three or more analyses were used for the calculation of the mean and standard deviation (see Table 3). The compositions of the melts and crystals obtained from all successful experiments are reported in Table 3. The many anhydrous experiments at high oxygen fugacity that produced crystals too small for microbeam analysis were not considered. Notably, the melt compositions, sulfur concentrations in clinopyroxenes, and the resulting partition coefficients for experiments DRB2012-29, -35, -36, and -38 were previously presented in Callegaro et al. (2014) and are included in this study for comparison.
but to the fact that the experimental temperature is below the
calibration range of Putirka’s study, and the melt composition is
richer in silica (66 wt%) than the melts used in Putirka (1999) to
calibrate Fe-Mg partitioning equations. The Fe-Mg partitioning
for both orthopyroxene and olivine in the low oxygen fugacity
experiments of this study were similar to those previously mea-
sured for similar compositions at similar temperatures (Baker
and Eggler 1987). On the other hand, the high oxygen fugacity
experiments displayed partition coefficients significantly higher
than expected from Putirka’s (1999) calibration. We attribute this
difference to the effect of oxygen fugacity on the ferric/ferrous
ratio in both the melt and the crystal, a variable not included
in Putirka’s (1999) equations describing Fe-Mg partitioning
between clinopyroxene and melt.

No intracrystalline heterogeneity was observed for sulfur, but
many crystals were so small that only one analysis was made for
each. Boyd’s homogeneity index was used to assess the homogene-
itv of sulfur in the analyzed clinopyroxenes. According to Boyd
et al. (1967), if the ratio of the relative standard deviation (based
upon multiple analyses) to the relative uncertainty inherent in
the analyses (e.g., the counting statistics) is above 3, it should be
taken as highly suggestive of the presence of inhomogeneity in
the material (see also Harries 2014). Potts et al. (1983) suggested
that a higher value, above 4, should be considered as the threshold
between homogeneity and heterogeneity. We calculated Boyd’s
homogeneity index using the relative standard deviation about
the mean of multiple S analyses on different crystals (Table 2)
and a relative analytical uncertainty for concentrations greater
than 6 ppm of 14%, as calculated in the Analytical Techniques.
Of the 13 clinopyroxene samples {auth: okay?} analyzed, we
find that 4 display a Boyd homogeneity index greater than 3, but
only 1 is greater than 4 (CS2014-13, with a value of 5.8). Thus,
despite the large standard deviations seen for some analyses, the
intracrystalline sulfur concentrations from each experiment do not
display significant evidence of heterogeneity. Although CS2014-
13 displays evidence of heterogeneity, we retain it because we
believe that the mean sulfur concentration in the clinopyroxenes
is a reliable estimate.

The fraction of sulfur as sulfate (as measured at the electron
microprobe by the sulfur peak shift) in the high oxygen fugacity
experiments varied from 0.33 to 0.73, and their calculated oxygen
fugacities range from FMQ+0.8 to FMQ+1.8 (Table 2). These high
oxygen fugacities are consistent with the presence of Fe-Ti oxide
minerals (e.g., CS2014-20 in Table 2) only in the high oxygen fu-
gacity experiments. Additionally, only these experiments produced
clinopyroxenes whose mineral formula calculations indicated the
presence of ferric iron. Three low-oxygen-fugacity experiments
(CS2014-9, -30, and -31) were also measured and found to have all
sulfur dissolved as sulfide, consistent with previous measurements
of sulfide speciation in anhydrous and hydrous melts in graphite-
lined Pt capsules (Fortin et al. 2015). Although the oxygen fugacity
cannot be calculated for these low oxygen fugacity experiments,
the lack of measurable sulfate indicates oxygen fugacities at, or
below, the FMQ buffer, which following Fortin et al. (2015) we
estimate as FMQ-2 in Table 2. The oxygen fugacity may possibly
be lower, but its minimum value is constrained by the lack of
metallic iron in the run products, i.e., the oxygen fugacity is above
FMQ-4 at the conditions studied.

Sulfur partitioning between clinopyroxene and melt

The mean concentration of sulfur in the clinopyroxenes varied
from a minimum of 9 to a maximum of 54 ppm (Table 2), and the
corresponding partition coefficients varied from 0.017 to 0.0750.
Total sulfur partition coefficients are calculated by dividing the sulfur
concentration in the crystal by the total sulfur concentration in
the coexisting melt and are plotted as a function of the SiO₂
concentration in the melt in Figure 2a. This figure demonstrates
that with the exception of one hydrous experiment with a high-SiO₂
melt (CS2014-31), the partition coefficients can be separated into
low-fO₂ and high-fO₂ trends. Based upon the major element com-
position of the clinopyroxenes, approximately half were augitic
and the other half pigeonitic. There appear to be no significant dif-
fences in the crystal-melt sulfur partition coefficients of augitic
and pigeonitic clinopyroxenes; however, as discussed below, the
Fe/Mg ratio of the clinopyroxene appears to affect the total sulfur
partition coefficient.

Five hydrous, clinopyroxene-bearing experiments were per-
formed. The water concentrations in the melts varied from 1.1 to
11.2 wt% H₂O (Table 2). Comparison of the one hydrous experi-
ment producing a basaltic melt with 7.6 wt% H₂O (DRB2015-1)
with the anhydrous experiment at the same pressure and oxygen
fugacity (CS2014-13) produced similar total sulfur partition
coefficients (Fig. 2a, Table 2). The clinopyroxene/melt parti-
tion coefficient for a hydrous dacite melt (CS2014-31) at low
oxygen fugacity is within the uncertainty of the extrapolation
of the high oxygen fugacity, hydrous partition coefficients (Fig.
2a). Two hydrous experiments at high fO₂, produced melts with
andesitic compositions coexisting with clinopyroxene (CS2014-
19, DRB2015-2). On the other hand, no anhydrous experiments at
high fO₂, were successfully performed for andesitic compositions.
Therefore, we cannot make any direct comparison between results
from hydrous and anhydrous high fO₂ andesitic experiments (Fig.
2a). Overall, these results lead to a conundrum: the total sulfur
partition coefficients for basaltic melts indicate that the difference
in oxygen fugacity is responsible for the two trends in Figure 2a;
instead the clinopyroxene-melt partition coefficients for the dace-
tic melt suggest that the presence of water may be responsible for
the different trends.

The oxygen fugacity and compositional dependence of the sul-
fur partition coefficient can be removed if the partition coefficient
is calculated by dividing the sulfur concentration of the crystal by
the sulfide concentration in the melt, calculated from the shift of
the sulfur peak and the bulk sulfur concentration (Table 2). When
this is done, all of the S²⁻ partition coefficients show a weak cor-
relation (Fig. 2b). However, the partition coefficients for the melts
with silica concentrations below ~51 wt% from Callegaro et al.
(2014) all cluster slightly below the line suggesting the existence
of a small compositional effect for clinopyroxenes crystallizing
from low-silica melts. If the influence of these points is removed,
the S²⁻ partition coefficient between clinopyroxene and melts with
SiO₂ higher than ca. 51 wt% can be calculated from the mean of
the points in Figure 2b: 0.063 ± 0.010 (1σ St.dev. about the mean).

Partitioning of sulfur between melt and plagioclase

Plagioclase crystallized in 7 experiments (Tables 2 and 3).
However, as discussed below, one of the experiments appears to
have crystallized plagioclase during quench, hence only six parti-
Partitioning of sulfur between melt and olivine or orthopyroxene

Olivine and orthopyroxene crystallized in one and two anhydrous experiments, respectively (Tables 2 and 3). The concentrations of sulfur in the orthopyroxenes and olivines were near, or at, the detection limits of the SXRF analysis. Consequently, the corresponding total sulfur partition coefficients (which are the same as the S^{2-} partition coefficients for the low oxygen fugacity experiments because all sulfur is found in the S^{2-} state) were significantly lower than those of clinopyroxene (Table 2). The olivine in DRB2012-29 was at the detection limit of our analysis with a S concentration of 1 ± 0.2 ppm, yielding a maximum sulfur partition coefficient of 0.001. The orthopyroxenes that co-existed with a basaltic melt in the low oxygen fugacity experiment DRB2012-29 (at 0.8 GPa, 1240 °C) contained 3 ± 2 ppm S, and produced a total sulfur orthopyroxene/melt D of 0.003. The orthopyroxene crystallized from a basaltic melt in the high oxygen fugacity experiment (CS2014-14 at 1.0 GPa, 1240 °C) contained an average of 2 ± 1 ppm S; the total sulfur orthopyroxene/melt partition coefficient appears constant for melts above approximately 51 wt% SiO$_2$. The uncertainties in the measured partition coefficients shown in this and subsequent figures are 1σ uncertainties calculated from either the standard deviation about the mean (where multiple analyses were performed; see Table 2), or uncertainties calculated from counting statistics (where only single measurements were available). See text for further discussion.

![Figure 2](null) Correlation of sulfur clinopyroxene-melt partition coefficient, D, with melt composition at low and high oxygen fugacity as well as with and without added water. (a) Total sulfur partition coefficients for clinopyroxene-melt vs. silica concentration in the melt. Note that, with one exception, experiments at low f_{O_2} display higher partition coefficients (by a factor of approximately 3) than hydrous experiments at high f_{O_2}, as discussed in the text. The stippled line labeled low f_{O_2} is fit through the anhydrous experiments performed in graphite capsules and the dashed line labeled high f_{O_2} is fit to hydrous experiments performed in gold-palladium capsules (see Table 2). (b) S^{2-} partition coefficient between clinopyroxene and melt as a function of the SiO$_2$ concentration in the melt. Note that the two trends presented in a collapse into a single trend almost independent of the silica concentration in the melt, and that the S^2 partition coefficient appears constant for melts above approximately 51 wt% SiO$_2$. The uncertainties in the measured partition coefficients shown in this and subsequent figures are 1σ uncertainties calculated from either the standard deviation about the mean (where multiple analyses were performed; see Table 2), or uncertainties calculated from counting statistics (where only single measurements were available). See text for further discussion.

![Figure 3](null) Total sulfur partition coefficients for plagioclase-melt vs. silica concentration in the melt, at low and high oxygen fugacities with and without added water. Both the anorthite content and the amount of iron in the plagioclase formula are displayed next to the data points. The range in anorthite concentrations is too small to obtain any meaningful relation between them and the partition coefficients, and no clear dependence upon the silica concentration in the melt is observed. (Note that as discussed in the text the value for the one hydrous experiment at high oxygen fugacity should be considered unreliable.)

Table 2

Partitioning of sulfur between melt and olivine or orthopyroxene

Olivine and orthopyroxene crystallized in one and two anhydrous experiments, respectively (Tables 2 and 3). The concentrations of sulfur in the orthopyroxenes and olivines were near, or at, the detection limits of the SXRF analysis. Consequently, the corresponding total sulfur partition coefficients (which are the same as the S^{2-} partition coefficients for the low oxygen fugacity experiments because all sulfur is found in the S^{2-} state) were significantly lower than those of clinopyroxene (Table 2). The olivine in DRB2012-29 was at the detection limit of our analysis with a S concentration of 1 ± 0.2 ppm, yielding a maximum sulfur partition coefficient of 0.001. The orthopyroxenes that co-existed with a basaltic melt in the low oxygen fugacity experiment DRB2012-29 (at 0.8 GPa, 1240 °C) contained 3 ± 2 ppm S, and produced a total sulfur orthopyroxene/melt D of 0.003. The orthopyroxene crystallized from a basaltic melt in the high oxygen fugacity experiment (CS2014-14 at 1.0 GPa, 1240 °C) contained an average of 2 ± 1 ppm S; the total sulfur orthopyroxene/melt partition coefficient appears constant for melts above approximately 51 wt% SiO$_2$. The uncertainties in the measured partition coefficients shown in this and subsequent figures are 1σ uncertainties calculated from either the standard deviation about the mean (where multiple analyses were performed; see Table 2), or uncertainties calculated from counting statistics (where only single measurements were available). See text for further discussion.

![Figure 2](null) Correlation of sulfur clinopyroxene-melt partition coefficient, D, with melt composition at low and high oxygen fugacity as well as with and without added water. (a) Total sulfur partition coefficients for clinopyroxene-melt vs. silica concentration in the melt. Note that, with one exception, experiments at low f_{O_2} display higher partition coefficients (by a factor of approximately 3) than hydrous experiments at high f_{O_2}, as discussed in the text. The stippled line labeled low f_{O_2} is fit through the anhydrous experiments performed in graphite capsules and the dashed line labeled high f_{O_2} is fit to hydrous experiments performed in gold-palladium capsules (see Table 2). (b) S^{2-} partition coefficient between clinopyroxene and melt as a function of the SiO$_2$ concentration in the melt. Note that the two trends presented in a collapse into a single trend almost independent of the silica concentration in the melt, and that the S^2 partition coefficient appears constant for melts above approximately 51 wt% SiO$_2$. The uncertainties in the measured partition coefficients shown in this and subsequent figures are 1σ uncertainties calculated from either the standard deviation about the mean (where multiple analyses were performed; see Table 2), or uncertainties calculated from counting statistics (where only single measurements were available). See text for further discussion.

![Figure 3](null) Total sulfur partition coefficients for plagioclase-melt vs. silica concentration in the melt, at low and high oxygen fugacities with and without added water. Both the anorthite content and the amount of iron in the plagioclase formula are displayed next to the data points. The range in anorthite concentrations is too small to obtain any meaningful relation between them and the partition coefficients, and no clear dependence upon the silica concentration in the melt is observed. (Note that as discussed in the text the value for the one hydrous experiment at high oxygen fugacity should be considered unreliable.)
Partitioning of sulfur between melt and amphibole

Amphibole crystallized in two hydrous experiments, CS2014-20 (at 0.8 GPa, 1000 °C and high oxygen fugacity) and CS2014-30 (at 0.8 GPa, 1000 °C and low oxygen fugacity). In CS2014-30 the average S concentration in amphibole was 87 ± 58 ppm (1σ St.dev.) and in CS2014-20 it was 29 ± 14 ppm, which yielded total sulfur partition coefficients of 0.127 and 0.123, and S\(^{2-}\) partition coefficients of 0.127 and 0.208, respectively. These values are larger than measured in clinopyroxenes. However, the crystallization of amphibole in CS2014-30 is surprising due to the measured water concentration of only 1.1 wt% in the quenched glass, although the presence of halogens in the melt of this experiment may be responsible for the presence of amphibole (see review in Webster et al. 2018). Amphibole crystallizing at such a low water concentration might suggest the possibility of disequilibrium in CS2014-30; we cannot discount this possibility, but we decided to include this value because it is the only amphibole/melt partition coefficient measured at high oxygen fugacity.

DISCUSSION

Influence of silicate mineral structure on \(D\)

Although clear trends in the clinopyroxene/melt partition coefficients as a function of melt composition can be seen in Figure 2, it is well known that the partition coefficients of trace elements are controlled more by crystal chemistry and structure than by melt composition (e.g., Blundy and Wood 1991). The total sulfur partition coefficients and the S\(^{2-}\) partition coefficients in Table 2 correlate with the average bond distance for the mean M(2)-O distances in olivine, orthopyroxene, and clinopyroxene, with the mean Ca-O distance in plagioclase, and with the mean M(4)-O distance for a pargasitic hornblende (Fig. 4).

We propose that the dominant dissolution mechanism of sulfur is the replacement of some oxygen by S\(^{2-}\). This hypothesis is based upon the similar sizes and same charge of S\(^{2-}\), 170 pm in sixfold coordination and 0\(^{2-}\), 121 pm in twofold coordination (Shannon 1976). This replacement is also suggested by the observation that the total partition coefficient between clinopyroxene and melt is significantly lower in experiments at high \(f\text{O}_2\), where most sulfur in the melt is present as an S\(^{2-}\) species, as opposed to the low \(f\text{O}_2\) experiments, where the sulfur in the melt is in an S\(^{0}\) species (e.g., Fincham and Richardson 1954; Wilke et al. 2011). Furthermore, the near-constant value of the clinopyroxene/melt S\(^{2-}\) partition coefficient is seen in Figure 2b, despite variations in melt composition, water concentration, and oxygen fugacity, is more easily explained if S\(^{2-}\) is exchanging between the crystals and the melts.

The correlation between the bond lengths and the sulfur crystal/melt partition coefficient (Fig. 4) is interpreted to indicate that crystallographic sites with average cation-oxygen bond lengths greater than 220 pm are necessary to accommodate substantial amounts of sulfur, greater than a few parts per million, and that sulfur replaces some of the oxygen coordinating the M(2) sites in olivine, orthopyroxene, and clinopyroxene, some oxygen coordinating the alkalis and alkali earths in plagioclase, and oxygen coordinating the M(4) site in amphibole.

The sulfur partitioning (Fig. 4) also positively correlates with an increasing fraction of bridging O atoms in the crystal structure. However, the replacement of bridging O atoms by sulfur seems improbable because in this case the similar T-O bond lengths of the minerals would suggest similar partition coefficients, which is not seen in Figure 4.

Influence of clinopyroxene composition on \(D\)

When the total sulfur partition coefficients are plotted as a function of the Mg\#, molecular Mg/(Mg\# + Fe\#) of clinopyroxenes crystallized in these experiments, two trends can be observed—one for low and one for high oxygen fugacity (Fig. 5a). However, when the S\(^{2-}\) partition coefficients are plotted against the clinopyroxene Mg\#, only a weak correlation is visible (Fig. 5b). Most of that dependency is due to the results of Callegaro et al. (2014) at high Mg\# values, where it appears that most clinopyroxene/melt S\(^{2-}\) partition coefficients are within the uncertainty of each other (Fig. 2b), as was previously observed for the effect of melt composition. However, a small negative dependency of the sulfur partition coefficients (total and S\(^{2-}\)) on the Mg\# might be expected because as iron substitutes for magnesium in the structures of ferromagnesian minerals, the cation-oxygen bond distances get slightly longer (Cameron and Papik 1980). In contrast to the possible small effect of Mg\# on partitioning, our results provide no evidence that \(^{27}\text{Al}\) plays a role on sulfur partitioning (Fig. 5c). Such an effect has been hypothesized and investigated for halogen partitioning between clinopyroxene and melt (O’Leary et al. 2010; Rosenthal et al. 2015; Urann et al. 2017; Bénard et al. 2017). Our observations are similar to those of Rosenthal et al. (2015) who found no significant effect of \(^{27}\text{Al}\) in their partitioning measurements of halogens between clinopyroxene and melt.
Comparison between S partitioning and H, C, F, and Cl partitioning between nominally volatile-free crystals and melts

The partition coefficients of total sulfur and S^2^- between nominally volatile-free minerals (NVFMs) and silicate melts are typically lower than those of fluorine, higher than those of carbon, and similar to those of chlorine and hydrogen (Fig. 6). Hydrogen, fluorine, and chlorine display similar trends in the value of the partition coefficient as seen for sulfur in ferromagnesian crystals (Figs. 6). Indeed, the crystal/melt partition coefficients for each of these elements increase in the order: olivine < orthopyroxene < clinopyroxene.

The plagioclase/melt fluorine partition coefficients are similar to those of clinopyroxene and amphibole, whereas H and Cl plagioclase/melt partition coefficients are more than one order of magnitude lower (Fig. 6). The hydrous mineral amphibole displays significantly higher partition coefficients of Cl, H, and F than the other ferromagnesian crystals and plagioclase because of the structural role of these volatiles in the amphibole crystal lattice (Fig. 6).

The similar crystal/melt partitioning of H, F, S, and Cl supports the hypothesis that the dissolution mechanism of these elements into silicate minerals is similar and occurs probably either as a replacement of an oxygen atom (F, Cl, and S) or by association with an oxygen atom (H).

In contrast to these volatiles, the partition coefficient of carbon between melt and olivine, orthopyroxene, or clinopyroxene appears to be approximately constant, although orthopyroxene may have a lower partition coefficient than either olivine or clinopyroxene (Fig. 6). However, this behavior needs further investigation because of the relatively large uncertainties in the partition coefficients derived from the very low S concentrations in these crystals. The unique behavior of carbon in comparison to the other elements in Figure 6 suggests a different dissolution mechanism, but discussion of this mechanism is far beyond the scope of this contribution.

Implications: Sulfur Partitioning Applied to Natural Magmatic Systems

The proposed crystal/melt partition coefficients for sulfur combined with previously published ones for hydrogen, carbon, fluorine, and chlorine can be used to provide insights into the concentrations of the igneous quintet of major volatiles in magmatic systems.

Estimating the pristine volatile budget of a magma that has already solidified is challenging, and this is particularly true for sulfur, carbon, and water, which are degassed earlier than fluorine or chlorine in the eruptive history of magmas (e.g., Spilna et al. 2006). Therefore, quantitative estimates of gas budgets in melts from past eruptions are still scarce because of the rarity of melt inclusions, which are the primary means of determining pre-eruptive volatile concentrations in magmatic melts (e.g., Devine et al. 1984; Johnson et al. 1994; Cannatelli et al. 2016). In the absence of melt inclusions, the magma volatile budget may be determined by a combination of the measurement of volatile concentrations in natural minerals with experimentally determined partition coefficients (mineral/melt D). The challenge in this case is set by the low concentration of volatiles in the crystals, typically at the parts-per-million level in NVFMs, such

![Figure 5](image-url) Effect of clinopyroxene composition on the sulfur D. (a) Correlation between the total sulfur partition coefficient and the $Mg/(Mg+Fe)$ in the clinopyroxene. The low fO_2 experiments define a trend distinctly different from experiments at high fO_2. Note that the low fO_2, regression line (stippled) was fit only through the anhydrous results at low oxygen fugacity and the high fO_2 regression line (dashed) only through the hydrous results at high oxygen fugacity. (b) Relationship between the S^2^- partition coefficient and the $Mg#$ of the clinopyroxene. The two trends seen in a for the total sulfur partition coefficient collapse into a single trend in b that is at most slightly dependent upon the $Mg#$ of the clinopyroxene. (c) No correlation is visible between the S^2^- clinopyroxene-melt partition coefficient and the IV/Al in clinopyroxene. See text for further discussion.
of standards will help reduce the uncertainties in the future, but the uncertainties involved are very large. A further characterization
of sulfur partition coefficients for reduced or oxidized conditions can be used.

These partition coefficients will allow calculation of the sulfur budget of ancient natural basalts, particularly those constituting Large Igneous Provinces (LIPs), whose timing often coincides with mass extinction events (Wignall 2001; Bond and Wignall 2014). Quantifying gas loads and rates of degassing for LIP magmas is fundamental to understand this causal relationship, and particular attention, through analyses or models, has been recently directed to sulfur (e.g., Self et al. 2008, 2014; Callegaro et al. 2014; Jones et al. 2016; Schmidt et al. 2016).

We stress however that we are working with S concentrations very close to the detection limits of the SXRF technique; therefore the uncertainties involved are very large. A further characterization of standards will help reduce the uncertainties in the future, but at present we advise that the here proposed partition coefficients should be applied only to analyses carried out by the same analytical technique (SXRF), as well as the same data reduction routine (PYMCA). Thanks to fast acquisition times and small spot size (few square micrometers), SXRF provides the opportunity to map sulfur in crystals and to potentially discover evidence of degassing episodes or magma mixing events (i.e., S loss or S uptake by the system) during crystal growth, an application of great interest in the study of active volcanic systems.

ACKNOWLEDGMENTS AND FUNDING

We thank two anonymous reviewers for their insightful suggestions and K. Iacovino for her comments on an earlier version of this manuscript. This research was supported by an NSERC Discovery Grant to D.R.B. and by the 2014 SIMP prize grant dedicated to the memory of E.M. Piccirillo awarded to S.C. Further support from PRIN (PRIN 2017LPCP) to A. Marzoli is gratefully acknowledged. The synchrotron measurements were supported by Diamond Light Source.

REFERENCES CITED

Baker, D.R., and Moretti, R. (2011) Modeling the solubility of sulfur in magmas: a 50-year old geochemical challenge. In H. Behrens and J.D. Webster, Eds., Sulfur in Magmas and Melts and Its Importance for Natural and Technical Processes. Reviews in Mineralogy and Geochemistry, 73, 167–213. ([auth: not called out in paper, unless it is called out in deposit material please add or delete from list])

Dalpé, C. and Baker, D.R. (2000) Experimental investigation of Li, Fe, HFSE, and REE partitioning between calcic amphibole and basaltic melt. The effects of pressure
and oxygen fugacity. Contributions to Mineralogy and Petrology, 140, 233–250.

Hill, R., and Roeder, P. (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. The Journal of Geology, 82, 709–729. [*fault: not called out in paper, unless it is called out in deposit material please add or delete from list]*

