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ABSTRACT

We review and compare two different cosmic microwave background (CMB) dipole estimators discussed in the literature and as-
sess their performances through Monte Carlo simulations. The first method amounts to simple template regression with partial sky
data, while the second method is an optimal Wiener filter (or Gibbs sampling) implementation. The main difference between the two
methods is that the latter approach takes into account correlations with higher-order CMB temperature fluctuations that arise from
nonorthogonal spherical harmonics on an incomplete sky, which for recent CMB data sets (such as Planck) is the dominant source
of uncertainty. For an accepted sky fraction of 81% and an angular CMB power spectrum corresponding to the best-fit Planck 2018
ΛCDM model, we find that the uncertainty on the recovered dipole amplitude is about six times smaller for the Wiener filter approach
than for the template approach, corresponding to 0.5 and 3 µK, respectively. Similar relative differences are found for the correspond-
ing directional parameters and other sky fractions. We note that the Wiener filter algorithm is generally applicable to any dipole
estimation problem on an incomplete sky, as long as a statistical and computationally tractable model is available for the unmasked
higher-order fluctuations. The methodology described in this paper forms the numerical basis for the most recent determination of the
CMB solar dipole from Planck, as summarized by Planck Collaboration Int. LVII (2020).
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1. Introduction

The cosmic microwave background (CMB) radiation was dis-
covered in 1965 by Penzias & Wilson (1965) and has been the
primary target for several dozens of CMB experiments ever
since. The main scientific target for most of these studies has
been small variations in intensity and polarization that corre-
spond to cosmic density variations some 380 000 years after
the Big Bang. These variations contain a wealth of information
about the early history and evolution of the Universe; for a recent
analysis, see, for example, Planck Collaboration VI (2020).

The CMB sky features three main physical components.
The first is simply a constant blackbody term with a temper-
ature of 2.7255 K (Fixsen 2009), corresponding to the aver-
age temperature of the CMB photons populating the Universe
today. This component is often denoted as the CMB monopole,
which acknowledges its correspondence to the lowest multipole
moment in spherical harmonics space.

The second component is the CMB dipole, which has an
amplitude of about 3 mK (Lineweaver 1997). The CMB dipole is
the result of Doppler boosting caused by the motion of the mea-
suring instrument with respect to the CMB rest frame. It may
be decomposed into two components, namely the solar dipole,
which is caused by the movement of the Solar System around the
Milky Way’s center, and the orbital dipole, which is generated by
the movement of the Earth and the instrument around the Sun.
Both components play an important role in CMB experiments as
they represent the best available astrophysical calibration source
for most experiments. Specifically, the orbital dipole serves as an

invaluable tool for absolute calibration since the Earth–Sun dis-
tance and the orbital period are known with very high precision.
Likewise, the solar dipole provides an excellent relative calibra-
tion target since it is brighter than most other signals, it has a
perfectly known frequency spectrum, and it is visible across the
entire sky.

The third component is the CMB density fluctuations with
typical variations of about 100 µK. These correspond very
closely to a statistically isotropic and Gaussian random field
with an angular power spectrum, which can be described
by a ΛCDM power spectrum (Planck Collaboration VI 2020;
Planck Collaboration VII 2020). In addition to these CMB
sources, real-world microwave observations also contain con-
tributions from astrophysical foregrounds, most notably in the
form of synchrotron, free-free, spinning and thermal dust, and
CO emission from the Milky Way (e.g., Planck Collaboration IV
2020).

This paper discusses how to optimally estimate the ampli-
tude and direction of the CMB dipole with data that contain
both astrophysical foregrounds and small-scale CMB fluctua-
tions. Obtaining robust estimates for these parameters is impor-
tant for several reasons. First, since the CMB dipole is used as
a calibration source for most experiments, a potential bias in
the CMB dipole amplitude translates directly into a correspond-
ing bias in the overall normalization of the angular CMB power
spectrum. Second, because the CMB dipole is about four orders
of magnitude brighter than the cosmological variations in the
large-scale polarization field, it is necessary to estimate the rel-
ative gains between detectors within a single frequency channel
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Fig. 1. Basic templates used for CMB dipole estimation in the tradi-
tional template fitting approach, shown in Galactic coordinates. These
correspond to the monopole (upper left) and the x- (upper right),
y- (lower left), and z-dipoles (lower right).

prior to mapmaking with a precision better than O(10−4) in order
to avoid significant bias on the optical depth of reionization, τ
(Planck Collaboration VI 2020).

Uncertainties on the dipole parameters result mainly from
four different contributors. First, statistical instrumental noise
defines a fundamental floor for the overall sensitivity that can be
achieved. Second, many systematic effects due to nonidealities
in the instrument itself can induce spurious dipoles, including
sidelobe pickup, time-variable gain, or ADC corrections. Third,
as already mentioned, foreground emission from the Milky Way
obscures our view of the CMB, and also carries a dipole moment.
To mitigate this effect it is in practice necessary to mask out parts
of the Galactic regions. However, working with incomplete sky
coverage has the unwanted effect of making the spherical har-
monic base functions, Y`m (θ, φ), lose their orthogonality. This
leads to the fourth and last contaminant, which is confusion from
the higher-order CMB temperature fluctuations when analyzing
partial-sky observations.

The traditional way of CMB dipole parameter estimation
with real data has typically followed a fairly simple approach.
First, the orbital dipole contribution is removed from the time-
ordered data of a given experiment, which are subsequently co-
added into pixelized sky maps. Then foreground contamination
is suppressed either through some component separation tech-
nique or by simple template regression with respect to known
foreground tracers. Next, some part of the sky is removed by
masking, before finally the CMB dipole is estimated through
template fitting with partial-sky and foreground-cleaned data,
typically adopting the templates shown in Fig. 1. It is impor-
tant to note that the monopole is usually included in the fit for
marginalization purposes only, to avoid potential inaccuracies in
the zero-level determination from biasing the dipole fit. For one
specific example of such an implementation, see, for example,
Planck Collaboration II (2016).

As instrumental sensitivity has improved through the years,
the specific details of each step in this procedure have become
more important. For instance, for COBE-FIRAS (Fixsen et al.
1994) the uncertainty on the dipole amplitude due to statistical
noise was 6 µK, while the foreground-induced uncertainty was
about 14 µK. For comparison, Lineweaver (1997) estimated that
the uncertainty due to confusion from higher-order CMB fluctu-
ations was 3 µK, and this particular term was therefore irrelevant
for COBE.

The same did not hold true for the Wilkinson Microwave
Anisotropy Probe (WMAP) experiment, for which both the
raw sensitivity and foreground rejection capabilities improved

massively with respect to COBE. For this reason, the WMAP
team replaced the simple dipole template-fitting procedure dis-
cussed above with a more sophisticated and optimal Wiener
filter method (Hinshaw et al. 2009) originally pioneered by
Jewell et al. (2004), Wandelt et al. (2004), Eriksen et al. (2004).
The main advantage of this approach is the fact that the higher-
order CMB fluctuations are estimated jointly with the dipole
parameters, and by assuming that these correspond to a statis-
tically isotropic and Gaussian random field, it is possible to par-
tially reconstruct their properties even inside the Galactic mask.

The main goal of the current paper is to quantify the relative
performance of the template fitting and Wiener filter methods.
This has recently become a particularly important topic in the
context of the Planck experiment, for which the sensitivity and
control of systematic effects is so high that the total error bud-
get has now become dominated by the higher-order CMB con-
tribution. Specifically, the total instrumental uncertainty on the
dipole amplitude is about 1 µK (Planck Collaboration I 2020),
whereas the CMB confusion term arising from the naive tem-
plate approach is, as we see later, typically between 1 and 3 µK,
depending on sky fraction. Minimizing this term is therefore crit-
ically important. The results we obtain when applying this anal-
ysis framework to the latest Planck observations are summarized
in Planck Collaboration Int. LVII (2020).

The rest of this paper is organized as follows: in Sect. 2 we
give a short theoretical introduction on how the dipole parame-
ters are obtained from sky maps, what effect partial sky coverage
has on the uncertainties of these parameters, and further present
a Wiener filter method for the estimation of these uncertainties.
In Sect. 3 we describe the implementation of the uncertainty esti-
mation technique. We present our results in Sect. 4, and we give
our conclusions in Sect. 5.

2. Notation and methods

We start our discussion with a review of the traditional approach
for estimating the dipole parameters (amplitude A, Galactic lon-
gitude l and latitude b) from a CMB map, and a discussion of
how partial sky coverage complicates this procedure.

In this paper, we take as a starting point for dipole parame-
ter estimation a cleaned CMB map in which as much foreground
emission as possible has been removed; for details on how to per-
form foreground cleaning, we refer the interested reader to, for
example, Planck Collaboration IV (2020) and references therein.
However, no component separation technique allows for per-
fect foreground removal, and there will always be some residual
emission, especially in the Galactic plane. One therefore must
typically apply a mask to eliminate heavily contaminated regions
on the sky. How to optimally estimate the dipole parameters from
such a clean but incomplete CMB map is the main topic of this
section.

2.1. Traditional template fitting

As a starting point for our analysis, we assume that the clean sky
map may be written in the form

d = Ta + n, (1)

where T is a matrix containing the monopole and dipole tem-
plates in its columns, shown in Fig. 1; a is a corresponding vec-
tor of template amplitudes; and n is noise. We note that the lat-
ter may or may not include higher-order CMB fluctuations. In
addition, we define a noise covariance matrix N = 〈nnt〉, and a
diagonal mask matrix M that is zero for masked pixels and unity
for unmasked pixels.
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Fig. 2. Spherical harmonics coupling kernel K for ` ≤ 60 for an
unmasked (top) and a masked (bottom) sky. Multipole moments are
listed in `-major ordering with element numbering given by i = `2 +
`+m+1. The sky fraction for the masked case is 36%. The correspond-
ing mask is plotted in Fig. 8.

Assuming that the noise is Gaussian, the maximum-
likelihood solution for a is then given by the so-called “normal
equations”,

a =
(
TtMN−1T

)−1
TtMN−1d. (2)

The trigonometric relations between these amplitudes and the
dipole parameters are

A =

√
a2

x + a2
y + a2

z (3)

l = arctan(ay/ax) (4)
b = 90 − arccos(az/A). (5)

Here, ax, ay and az are the components of the coefficient
vector a and A, l and b are the dipole amplitude, longitude
and latitude respectively. We note that many commonly used
implementations of this approach do not implement full inverse
variance noise weighting, as described by Eq. (2), but simply
adopt N = const., and thereby in effect assign equal weight to all
pixels. We do the same in the following.

2.2. Complications from partial sky coverage

The dipole parameters in Eq. (3)–(5) are subject to confusion
from small-scale CMB fluctuations whenever a mask is applied.
To see this, we expand the CMB fluctuation field into spherical
harmonics as follows,

T (n̂) =

`max∑
`=0

∑̀
m=−`

a`mY`m (n̂), (6)

where T is the CMB fluctuation map; Y`m are the spherical har-
monic base functions; and the a`m are the associated weights.
With access to the full celestial sphere, these coefficients may be
computed as

a`m =

∫
4π

T (n̂) Y∗`m (n̂) dΩ. (7)

However, when masking parts of the sky with a mask M
the spherical harmonic base functions are no longer orthogo-
nal, and the new so-called pseudo-harmonic coefficients read
(Hivon et al. 2002)

ã`m =

∫
4π

MT (n̂) Y∗`m (n̂) dΩ

=
∑
`′m′

a`′m′K`m,`′m′ [M].
(8)

Here, K is called the coupling kernel, and quantifies the mutual
dependence between any two modes Y`m and Y`′m′ . The explicit
expression for the coupling kernel reads

K`m,`′m′ =

∫
4π

M (n̂) Y`m (n̂) Y∗`′m′ (n̂) dΩ. (9)

Figure 2 shows K for multipoles up to `max = 60 for two differ-
ent cases. In the no-mask case, shown in the top panel, all modes
are orthogonal and therefore independent. When we apply a
mask, shown in the bottom panel, nonzero off-diagonal elements
appear. In other words, any higher-order mode will induce a
spurious dipole contribution unless properly accounted for. The
magnitude of this effect is dependent on the size of the mask,
which is demonstrated in the following. Figure 3 highlights the
` = 1 part of the coupling kernel and quantifies the coupling
strength between the dipole and higher-order harmonic modes.
The top and bottom panel correspond to the Y10 and Y11 modes
respectively. The first peak of each line is the coupling strength
with itself and therefore is unity. With access to only 36% of the
sky (blue line), the mode coupling strength is significantly higher
compared to the case where 92% of the sky is available (orange
line). Another interesting observation is that the Y11 mode is
more strongly coupled to higher modes than the Y10 mode. This
is true because the former is oriented in the x-direction while
the latter is oriented in the z-direction (see Fig. 1), therefore a
mask applied along the equator will affect the coupling kernel in
different ways.

Figure 4 provides an intuitive illustration of how a mask
induces a spurious dipole. The top panel shows an ideal CMB
realization drawn from a ΛCDM power spectrum with an iden-
tically vanishing dipole moment, A = 0. However, one of the
largest hotspots on the sky happens, by chance, to align closely
with the western half of the Galactic plane. After applying the
Galactic mask, which gives this hotspot zero weight in the dipole
fit, the result is a net dipole that points in the opposite direction.
In this particular case, the result is a spurious dipole of 7.6 µK
pointing toward the Eastern Hemisphere.
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Fig. 3. Spherical harmonics coupling kernel K for dipole modes Y10
(top) and Y11 (bottom) for two differently masked skies. The blue and
orange lines correspond to skies with an unmasked sky fraction of 36%
and 92% respectively. The corresponding masks are shown in Fig. 8.

2.3. Wiener filtering and Gibbs sampling

Within the simple template fitting approach described above,
the higher-order CMB fluctuations are treated as a random fluc-
tuation term. Since the CMB fluctuations are Gaussian and
isotropic, this term does not lead to any bias in the central esti-
mates, but it does increase the variance. An alternative approach
is to exploit the assumptions of isotropy and Gaussianity to esti-
mate the CMB signal jointly with the dipole parameters, adopt-
ing the following data model,

d = s + n, (10)

where

s = s(n̂) =
∑
`,m

a`mY`m(n̂) (11)

now is an isotropic and Gaussian random field with some angular
power spectrum C`. We note that the previously defined dipole
is contained within s in the form of Ta =

∑1
`=0

∑
m a`mY`m(n̂).

To estimate s and C` jointly, we employ the Gibbs sam-
pling algorithm described by Eriksen et al. (2004). This algo-
rithm draws samples from the probability density P(s,C` |d).
Since it is difficult to sample directly from this joint distribu-
tion, we instead employ Gibbs sampling and perform consec-
utive sampling from each conditional density, P(s|C`, d) and
P(C` |s, d), which according to Gibbs sampling theory will con-
verge to being samples from the joint density P(s,C` |d). Thus,
the two Gibbs sampling steps are

si+1 ← P(s|Ci
`, d), (12)

Ci+1
` ← P(C` |si+1). (13)

For more information on the sampling process for the CMB
power spectrum in Eq. (13), we again refer to Eriksen et al.

A = 0 µK

A = 7.6 µK

-200 200µK

Fig. 4. Illustration of spurious dipole excited from higher-order
moments through mask coupling. Top panel: an ideal CMB sky with
identically vanishing dipole moment. Bottom panel: same realization,
but with the Galactic plane masked. By accident, one large extended
hotspot happens to lie on the Western Hemisphere inside the mask.
Once this is removed by the mask, the net unmasked result is a dipole
pointing toward the Eastern Hemisphere with an amplitude of 7.6 µK.

(2004). However, we note that the inverse-gamma sampler
described in that paper is only employed for multipoles ` ≥ 2
in the current analysis. For the first two elements, we manually
set C` to a numerical large value of 1012 µK2, which effectively
corresponds to imposing no informative priors on the monopole
and dipole moments.

In our context we are mostly interested in the map sampling
process in Eq. (12). In effect, the sky sample si uses phase infor-
mation in the data d outside the mask to extrapolate into the
missing pixels. The result is a constrained realization with the
assumed power spectrum C`, such that the full map is a sample
from the desired target distribution.

The map sampling process in Eq. (12) is performed in two
steps. First we compute the so-called mean field map by solving
the Wiener filter mapmaking equation for x̂,(
§−1 + YtN−1Y

)
x̂ = YtN−1d. (14)

Here, § is a diagonal prior matrix that contains the assumed
power spectrum, Y denotes spherical harmonic transforms, and
N is the noise covariance matrix. The equation above is a Wiener
filter and the resulting map x̂ is as such biased. To unbias the full
sample, we have to add a fluctuation term. We obtain the cor-
responding fluctuation map by solving the following expression
for ŷ,(
§−1 + YtN−1Y

)
ŷ = §−1/2ω1 + YtN−1/2ω2. (15)

Here, ω1 and ω2 are two independent Gaussian white noise maps
with zero mean and unit variance. The full sample s is then the
sum of x̂ and ŷ.
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-150 150µK

Fig. 5. Illustration of the Gibbs sampling procedure. The full sample s
(bottom panel) is the sum of the mean field map x̂ (top panel) and a
fluctuation map ŷ (middle panel).

The key advantage of sampling from the full distribution is
that one simultaneously takes into account all multipole scales
and all elements of the coupling kernel shown in Fig. 2. To illus-
trate this visually, Fig. 5 shows the different maps involved in
the sampling procedure for some typical mask. The top panel
shows the Wiener filter component. We note that this map con-
tains small-scale structures in the unmasked regions, but only
smooth structures in the masked regions. However, critically,
it is not zero inside the mask. On the contrary, because of the
assumptions of statistical isotropy and Gaussianity, the field
inside the mask must show some degree of phase correlation
with the unmasked regions, and this is precisely the information
that allows partial reconstruction inside the mask.

Of course, this extrapolation is only supported for large
angular scales. The fluctuation term, shown in the middle panel,
therefore compensates for the fluctuation power that is lost due
to the mask and noise, such that the sum of the two components,
shown in the bottom panel, is a single full-sky map that is consis-
tent with the original data. We note, however, that this map con-
tains a significant stochastic component, and a full ensemble of
such Gibbs samples is therefore required to adequately describe
both the mean and covariance of the true underlying signal.

3. Simulations

We have now established two different methods for estimating
dipole parameters from a foreground-cleaned CMB map with
partial sky coverage. In order to assess the relative performance
of these two methods, we perform Monte Carlo simulations for
both algorithms, and compare the resulting uncertainties.

3.1. Monte Carlo procedure

For the standard template fitting approach, the procedure is
defined as follows:
1. Generate N simulated CMB skies d[1,...,N] based on a ΛCDM

power spectrum.
2. Apply mask M to each sample.
3. Compute best-fit dipole parameters A, l and b for each sam-

ple with Eqs. (2)–(5).
4. Report the standard deviation for each parameter, σA, σl and

σb.
For the Wiener filter approach, the procedure is similar, but

additionally involves an intermediate sampling loop for each
realization:
1. Generate N simulated CMB skies d[1,...,N] based on a ΛCDM

power spectrum.
2. Apply mask M to each sample.
3. For each masked CMB map:

(a) Draw n full-sky Wiener filter samples s[1,...,n].
(b) Compute dipole parameters A, l and b for each sample.
(c) Compute single-realization standard deviations σi

A, σi
l

and σi
b.

4. Report the mean of σi
A, σi

l and σi
b.

The template fitting analysis is implemented using the
HEALPix fit_dipole routine (Górski et al. 2005), while the
Wiener filter analysis is performed using the Commander code
Eriksen et al. (2004).

3.2. CMB simulations

For our simulated sky maps, we adopt the same model as in
Eqs. (10)–(11), but this time we explicitly include support for
an instrumental beam with Legendre expansion b`,

d = s + n =

`max∑
`=0

∑̀
m=−`

b`a`mY`m + n. (16)

We generate multipoles with ` ≥ 2 using Healpy’s synfast1

routine, drawn from the Planck 2018 best-fit ΛCDM power spec-
trum (Planck Collaboration VI 2020). For the dipole component,
we adopt A = 3364.0 µK, l = 264.1 deg and b = 48.3 deg. No
monopole is added.

For both the template and Wiener filter approaches, we estab-
lish ensembles of 100 realizations. To limit the computational
speed involved in the Wiener filter stage, which requires itera-
tive sampling, we choose to perform the analysis at a HEALPix
resolution of Nside = 32, corresponding to a pixel size of about
1.8 deg. This is sufficient to capture all features that are relevant
for dipole estimation.

For high-sensitivity experiments such as Planck, the direct
template fitting approach is largely insensitive to specific details
of the instrumental noise, as the dominant noise contributor is
the CMB fluctuations, and n may be safely disregarded in this
framework. However, for the Wiener filter approach some care is

1 http://healpix.jpl.nasa.gov
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Fig. 6. Overview of signal and noise power spectra adopted for the
Monte Carlo simulations. The solid line shows the best-fit Planck
ΛCDM power spectrum, and the dashed line shows the same, but con-
volved with a 6◦ FWHM Gaussian beam. The dotted line shows the
noise spectrum for white uncorrelated noise with σ0 = 1 µK per pixel
at a HEALPix resolution of Nside = 32. The vertical dotted line shows
the harmonic space truncation limit of `max = 95.

warranted also for this term. In particular, the details of n deter-
mine how aggressively the estimator is able to extrapolate into
the masked region. For the method to be accurate and unbiased,
it is important that the data model in Eq. (16) actually is a good
representation of the observations in question.

First, since we perform our analysis at Nside = 32, the high-
est resolvable multipole moment is given roughly by `max ≈

3Nside = 96. In order to suppress the signal above this `max,
which is not supported by Eq. (16), we smooth the simulated
CMB realizations with a 6 deg FWHM Gaussian beam with a
Legendre expansion given by (Tegmark 1997)

b` = exp

−1
2
`(` + 1)

(
FWHM · π

180
·

1
√

8 ln 2

)2 . (17)

Next, to avoid ringing artifacts from the truncation limit around
the mask edge, we have to ensure that the effective signal-to-
noise ratio is negligible at `max. We do this by adding regulariza-
tion noise with a standard deviation of σ0 = 1 µK per pixel. In
harmonic space, this corresponds to a flat noise spectrum with
an amplitude given by (Tegmark 1997)

N` = σ2
0 ·

4π
Npix

·
`(` + 1)

2π
. (18)

Figure 6 summarizes the simulated data in terms of signal and
noise power spectra. We note that with these choices of param-
eters, the effective signal-to-noise ratio at ` = 95 is smaller than
0.01. The individual components involved in the simulated map
are illustrated in Fig. 7.

Since the elements of the coupling kernel depend on the sky
fraction and on the shape of the mask, we repeat the Monte
Carlo analysis for a variety of different masks with sky fractions
ranging from 20 to 95%, shown in Fig. 8. These masks were
already used for a similar purpose in Planck Collaboration III
(2020).

4. Results

We are now ready to present the main result of this paper, which
is a quantitative comparison of the template fitting and Wiener

CMB

-150 150µK

Dipole

-3364 3364µK

Noise

-5 5µK

Full sample

-3364 3364µK

Fig. 7. Components used to construct each Monte Carlo realization.
These are the higher-order CMB fluctuations (top panel), the CMB
dipole (second panel), and instrumental noise (third panel). Bottom
panel: sum of the three components with a mask super-imposed.

filter approaches to dipole parameter estimation. For each mask
shown in Fig. 8, we analyze 100 independent Monte Carlo real-
izations with both methods.

The main result is summarized in Fig. 9, where we show
the mean dipole parameters and their corresponding statisti-
cal uncertainties as a function of the sky fraction. From top to
bottom, the panels show the dipole amplitude, the longitude, and
the latitude. The thick red lines show the mean of the derived
solar dipole parameters using the Wiener filter technique, and
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Fig. 8. Analysis masks used for the Monte Carlo comparison. The col-
ored areas mark the regions of the sky that are to be ignored in the
analysis. Analysis masks are typically characterized by their unmasked
sky fraction, which is the fraction of the sky that remains after apply-
ing the mask. The unmasked sky fractions of the various masks are 92%
(brown), 84% (yellow), 76% (purple), 68% (lilac), 60% (bright orange),
52% (red), 44% (bright red), 36% (green), 28% (cyan) and 20% (light
blue).

33
50

33
65

33
80

A
m

pl
it

ud
e

[µ
K

] Wiener filter estimator

traditional estimator

simulation input

26
3.

9
26

4.
6

L
on

gi
tu

de
[d

eg
]

20 30 40 50 60 70 80 90 100
Sky Fraction [%]

48
.1

48
.3

48
.5

L
at

it
ud

e
[d

eg
]

Fig. 9. CMB solar dipole parameter uncertainties as a function of sky
fraction; The thick red and black lines show the posterior means derived
by the Wiener filter method and the traditional method respectively;
The shaded bands are the corresponding ±1σ confidence intervals; The
horizontal dashed lines mark the true dipole parameters that were used
as input for the simulations.

the regions shaded in red show the corresponding ±1σ confi-
dence intervals. The equivalent results derived using the tradi-
tional method are shown in black and gray. We mark the true
dipole parameters as horizontal dashed lines.

We find that the uncertainties derived by the Wiener filter
technique are significantly reduced compared to the traditional
method. This effect is strongest for large sky fractions, for which
it is easier to extrapolate into the masked regions. In contrast,
for small sky fractions the extrapolation is very unreliable, and
the two methods therefore give very similar results. It is worth
to mention that the uncertainties derived with the traditional
method decrease less smoothly with sky fraction than those of
the Wiener filter method, which is a result of the morphologies
of the various masks.

In some cases in Fig. 9 it may appear as if the traditional
method yields smaller uncertainties than the Wiener filter at
small sky fractions, especially for the longitude and latitude
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Fig. 10. Absolute uncertainties of solar dipole parameters estimated
with Wiener filter method (solid lines) and traditional method (dashed
lines) as a function of sky fraction.
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Fig. 11. Ratio of uncertainties derived by traditional method and Wiener
filter method as a function of sky fraction.

where the upper confidence interval boundary is in fact below
that of the Wiener filter method. However, this is not actually the
case, since the gray band is also shifted to lower values due to
statistical fluctuations of the derived means. To make this more
explicit, we plot the absolute uncertainties of the two methods in
Fig. 10, and their ratios in Fig. 11. We see that for large sky frac-
tions (above ≈85%) the Wiener filter uncertainties are reduced
by a factor of 10 or more for all parameters. At a sky fraction of
about 50%, the uncertainties drop to roughly half of those of the
traditional method.

5. Conclusions

In this paper we have quantitatively compared two numerical
techniques for estimating the dipole parameters from a CMB
map. The first method is basic template fitting regression with
partial sky data, while the second method relies on Wiener fil-
tering. The main difference between the two methods lies in
their treatment of partial sky observations. Specifically, mask-
ing parts of the sky introduces couplings between small-scale
CMB fluctuations and the dipole. The traditional template fitting
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Table 1. Comparison of Solar dipole measurements from COBE, WMAP, and Planck.

Galactic coordinates

Amplitude l b
Experiment [ µKCMB] [deg] [deg] Reference

COBE (a,b) . . . . . . 3358 ± 23 264.31 ± 0.16 48.05 ± 0.09 Lineweaver (1997)
WMAP (c) . . . . . . 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03 Hinshaw et al. (2009)
LFI 2015 (b) . . . . . 3365.5 ± 3.0 264.01 ± 0.05 48.26 ± 0.02 Planck Collaboration II (2016)
HFI 2015 (d) . . . . . 3364.29 ± 1.1 263.914 ± 0.013 48.265 ± 0.002 Planck Collaboration VIII (2016)
LFI 2018 (b) . . . . . 3364.4 ± 3.1 263.998 ± 0.051 48.265 ± 0.015 Planck Collaboration II (2020)
HFI 2018 (d) . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005 Planck Collaboration III (2020)
NPIPE (a,c) . . . . . . 3366.6 ± 2.7 263.986 ± 0.035 48.247 ± 0.023 Planck Collaboration Int. LVII (2020)

Notes. (a)Statistical and systematic uncertainty estimates are added in quadrature. (b)Computed with naive dipole estimator that does not account
for higher-order CMB fluctuations. (c)Computed with Wiener filter estimator that estimates, and marginalizes over, higher-order CMB fluctuations
jointly with the dipole. (d)Higher-order CMB fluctuations are accounted for by subtracting a dipole-adjusted CMB map from frequency maps prior
to dipole estimation.

procedure disregards this coupling effect and simply treats the
CMB fluctuations as a noise term. In contrast, the Wiener filter
approach exploits the fact that these fluctuations represent a sta-
tistically isotropic and Gaussian random field to partially recon-
struct the field inside the mask, and thereby reduce the overall
uncertainties.

We apply both methods to an ensemble of 100 Monte Carlo
realizations for sky fractions ranging from 20 to 95%, and derive
uncertainties as a function of sky fraction. We find that the
Wiener filter approach leads to significantly reduced uncertain-
ties for typical sky fractions used in this type of analyses. For
example, at fsky ≈ 60% the uncertainties are reduced by a factor
of ≈3, while at fsky ≈ 85% they are reduced by a factor of ≈8.

Table 1 shows a comparison of measurements of the CMB
solar dipole made by COBE, WMAP and (various genera-
tions of) Planck, and is a direct reproduction of Table 10 from
Planck Collaboration Int. LVII (2020). Most of these analyses
employed sky fractions around 80%. For this sky fraction, we see
from Fig. 10 that the uncertainty on the amplitude due to small-
scale CMB fluctuations is about 2.5 µK using the template fitting
approach. In contrast, the total uncertainty for COBE was 23 µK,
and for WMAP it was 8 µK. As such, the contribution from CMB
confusion was subdominant for both these experiments. Never-
theless, it is important to note that WMAP was indeed the first
experiment to implement this method for this particular purpose
(Hinshaw et al. 2009), even though it may not have been criti-
cally important.

For Planck, the situation is fundamentally different. For this
experiment, the raw uncertainty from instrumental noise and sys-
tematics is smaller than 1 µK, and the CMB confusion has there-
fore become a dominant factor. In the low frequency instrument
(LFI) processing, this contribution was simply included in the
error budget, leading to a final uncertainty of 3 µK. For the high
frequency instrument (HFI), however, a different approach was
taken, in that an estimate of the CMB fluctuations was removed
from the raw data prior to template fitting. At first sight, this
approach appears to eliminate the CMB confusion term entirely,
evading the topic discussed in this paper. However, it is impor-
tant to note that for this approach to be unbiased, the CMB
template that is being subtracted must itself have a vanishing
dipole moment. Determining the dipole moment of this map
is therefore equivalent to the problem described in this paper.
For the HFI analyses summarized in Table 1, this determina-
tion was performed with a very small mask, which in effect

assumes that the component separation method of choice (see
Planck Collaboration IV 2020 for details) is able to remove fore-
grounds accurately even in the central Galactic plane.

The last row in Table 1 lists results for the most recent Planck
analysis, which is informally referred to as NPIPE. NPIPE rep-
resents the first joint analysis of the Planck LFI and HFI data
sets, using a common machinery to reduce the raw time-ordered
data into final sky maps. One important difference between these
maps and earlier versions of the Planck data is that the NPIPE
maps retain the solar dipole for both LFI and HFI. It is there-
fore, for the first time, possible to compute a single coherent all-
Planck dipole with these sky maps. The results from this anal-
ysis are presented in Sect. 8 of Planck Collaboration Int. LVII
(2020) and employ the Wiener filter methodology described in
this paper. The values reported in Table 1 correspond to a sky
fraction of 81%, which represents a compromise between max-
imizing available data and minimizing foreground-induced sys-
tematic effects. We believe that the values reported for NPIPE in
Table 1 represent the most conservative and statistically robust
estimate of the CMB solar dipole published to date.
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