Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals

Vilde M. Reinertsen,1, a) Philip M. Weiser,1, b) Ymir K. Frodason,1 Marianne E. Bathen,1 Lasse Vines,1 and Klaus Magnus Johansen1

1Centre for Material Science and Nanotechnology, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, Oslo, N-0316, Norway

(Dated: 30 October 2020)

The effect of lattice anisotropy on the diffusion of hydrogen (H)/deuterium (2H) in β-Ga2O3 was investigated using secondary ion mass spectrometry (SIMS) and hybrid-functional calculations. Concentration-depth profiles of 2H-implanted single crystals show that 2H can diffuse along the direction perpendicular to the (010) surface at temperatures as low as 300 °C, whereas diffusion along the direction perpendicular to the (-201) surface occurs only around 500 °C. For both directions, the evolution of the 2H concentration-depth profiles after heat treatments can be modeled by trap-limited diffusion. Moreover, the traps can be present in the as-received crystals or created during ion implantation. Comparison of the experimentally-obtained binding energy for 2H to the trap (2.3 ± 0.2 eV) with the binding energies determined from first-principles calculations suggests that intrinsic point defects (e.g., VGa) or defect complexes (e.g., VGa2VO2), are excellent candidates for the trap and will play a crucial role for the diffusion of H or 2H in β-Ga2O3.

a)V. M. Reinertsen and P. M. Weiser contributed equally to this work.

Electronic mail: p.m.weiser@smn.uio.no
The large bandgap of 4.5–4.9 eV\(^{1-3}\) and ability to be doped \(n\)-type using Sn or Si,\(^4-12\) makes monoclinic gallium oxide (\(\beta\)-Ga\(_2\)O\(_3\)) a promising candidate for high-power electronics and UV-photo detectors.\(^13-16\) The precise control over the electrical and optical properties of a material needed for these applications demands a thorough understanding of the dominant point defects, and their effects on these properties, which is still in early development for \(\beta\)-Ga\(_2\)O\(_3\).\(^17,18\) Hydrogen (H) has emerged as an increasingly important impurity in \(\beta\)-Ga\(_2\)O\(_3\). Indeed, unintentionally doped as-grown \(\beta\)-Ga\(_2\)O\(_3\) crystals can exhibit free electron concentrations up to about \(10^{18}\) cm\(^{-3}\) that originate from H-related defects.\(^19\) Theory predicts that interstitial H (H\(_i\)) and H substituting at an oxygen site (H\(_O\)) will behave as shallow donors\(^20\), but H can also form complexes with other defects\(^21\) of both extrinsic and intrinsic type, thereby passivating their electrical activity. Infrared spectroscopy measurements of gas-hydrogenated or ion-implanted \(\beta\)-Ga\(_2\)O\(_3\) single crystals reveal localized vibrational modes of O-H stretches originating from different H-related point defects,\(^22-25\) the most dominant one being a shifted gallium vacancy (V\(_{\text{Ga}}\)) containing two H atoms (V\(_{\text{Ga}}\)-2H).\(^22,23,26\) Recent investigations using deep-level transient spectroscopy show that the concentration of the deep-level E\(_2\) defect,\(^27,28\) which is associated with an intrinsic defect, can be decreased considerably by heat treatments in the presence of H under \(n\)-type conditions.\(^29\) This is important, since E\(_2\) was shown to be the main defect limiting the performance of \(\beta\)-Ga\(_2\)O\(_3\)-based metal-semiconductor field-effect transistors.\(^30\) Furthermore, Islam \textit{et al.}\(^31\) have reported observation of \(p\)-type conductivity, which could expand the application space of \(\beta\)-Ga\(_2\)O\(_3\) considerably, and that was claimed to originate from H-related point defects created by specific sample treatments.

Recently, Polyakov and coworkers\(^32\) reported that the electrical properties of plasma-hydrogenated \(n\)-type \(\beta\)-Ga\(_2\)O\(_3\) single crystals are radically different depending on the crystal's surface orientation. One potential explanation for this observation is differences in the fundamental diffusion properties of H along the different crystallographic directions. So far there are only a few reports that address the diffusion properties of H in \(\beta\)-Ga\(_2\)O\(_3\). Ahn and coworkers\(^33,34\) studied deuterium (\(^2\)H) migration in both plasma-diffused and ion-implanted (-201)-oriented \(\beta\)-Ga\(_2\)O\(_3\) single crystals using secondary-ion mass spectrometry (SIMS). It was found that a large fraction of the implanted \(^2\)H out-diffused after 5 minutes in rapid thermal annealing, nominally at 650 °C, leaving a fraction of \(^2\)H trapped at residual implantation damage. In a subsequent study, Sharma \textit{et al.}\(^35\) examined out-diffusion at
additional annealing temperatures and determined a dissociation energy of 2.58 eV for the release of \(^2\text{H}\) from the traps. Their model assumed the out-diffusion of \(^2\text{H}\) via the formation of molecules. Recently, Nickel and Geilert\(^{36}\) used SIMS to reveal inter-diffusion in the as-grown state for a layered structure of plasma assisted pulsed layer deposition (PLD)-grown \(\text{Ga}_2\text{O}_3\). The sample was grown at 425 °C, and the first layer was exposed to \(^2\text{H}\) and the second to H. Interestingly, from hydrogen effusion measurements they found that the ratios between H-H, \(^2\text{H}\)-H and H-\(^2\text{H}\) molecules were equal, which showed that the diffusion occurs \textit{mono-atomically} and the formation of molecules occurs on the sample surface during the effusion process. However, due to the limited amount of available data, it was not possible to extract the full diffusion properties of H in \(\text{Ga}_2\text{O}_3\).

In this work, the effect of crystal anisotropy on the diffusion of \(^2\text{H}\) in ion-implanted \(\beta\)-\(\text{Ga}_2\text{O}_3\) single crystals with either the (-201) or (010) surface orientation was systematically investigated after post-implantation heat treatments between 300 and 600 °C. We find that \(^2\text{H}\) diffusion is highly anisotropic, with diffusion along the [010] direction \((d_{[010]})\) occurring after heating at temperatures \((T) \leq 300\) °C, whereas that along the direction perpendicular to the (-201) surface \((d_{(-201)})\) begins after heat treatments at 500 °C. For both surface orientations, the \(^2\text{H}\) concentration-depth profiles are described by a model of trap-limited diffusion, where the redistribution of \(^2\text{H}\) is strongly affected by traps present in the as-received samples or created during ion implantation. Comparison of the binding energies between experiment and first-principles calculations suggests that intrinsic point defects and their complexes are strong candidates for traps, and play a crucial role on the diffusion of H and \(^2\text{H}\) in \(\beta\)-\(\text{Ga}_2\text{O}_3\).

The \(\beta\)-\(\text{Ga}_2\text{O}_3\) samples studied in this work were \(n\)-type (Sn-doped) single-side polished crystals grown by the edge-defined film-fed growth method (Tamura Corporation, Japan). The samples had approximate dimensions 5 mm × 5 mm, 500-700 \(\mu\)m thickness, and either the (-201) or (010) surface orientation to monitor diffusion along the two different directions. \(^2\text{H}\) was implanted from the polished surface at room temperature with fluences between \(5 \times 10^{14}\) cm\(^{-2}\) and \(4 \times 10^{15}\) cm\(^{-2}\). The implantation energy was chosen to be either 200 keV or 1.1 MeV, which resulted in implantation peaks at approximately 1.5 or 8.0 \(\mu\)m, respectively, below the sample surface as estimated using the Stopping and Range of Ions in Matter (SRIM) code\(^{37}\). Concentration-depth profiles of \(^2\text{H}\) were acquired using a Cameca IMS7f SIMS microanalyzer equipped with a primary Cs\(^+\) ion beam (15 keV energy, 100 nA.
current) by rastering the beam over an area of 150 µm². A secondary ion field aperture (diameter of circular gated region = 33 µm) was employed to ensure detection at only the center of the sputtered crater bottom. The depth calibration was performed by measuring the sputtered crater using a Dektak 8 stylus profilometer and assuming a constant erosion rate. Unfortunately, the electrical conductivity at the surfaces of as-implanted samples was too low to perform SIMS measurements. However, heating the samples inside a tube furnace in air at temperatures between 300 and 350 °C for 20-30 minutes improved the conductivity sufficiently to permit SIMS measurements. The depth profile of the sample in this state served as the reference measurement for the ²H concentration calibration. We assume a negligible amount of ²H out-diffused during this heat treatment, thus ensuring less than a ± 10% error in the absolute concentration. The samples were heat-treated subsequently in air for 30 minutes at temperatures up to 600 °C, then removed from the furnace and cooled to room temperature in air outside the furnace.

Figure 1 shows ²H concentration-depth profiles for a ²H-implanted (-201)-oriented β-Ga₂O₃ sample after heat treatments between 350 and 600 °C. The diffusion profile for the lowest temperature (350 °C) shows a well-defined implantation peak similar to that expected from SRIM simulations, which indicates that ²H does not diffuse along d_{\perp} for $T \leq 350$ °C. Indeed, diffusion is not observed after heating the samples at temperatures up to and including 450 °C. However, heat treatments ≥ 500 °C result in ²H diffusion, which is evidenced by the increasing penetration of ²H into the sample. Diffusion towards the surface of the sample is also observed for heat treatment in this temperature range. Interestingly, the ²H concentration-depth profiles shown in Fig. 1 are similar in shape to the concentration-depth profiles observed for ²H diffusion in ZnO and H diffusion in SiC. 38, 39 In both of these materials, the diffusion profiles were modeled best within the framework of trap-limited diffusion (TLD), 39 which modifies Fick’s second law of diffusion to include the capture and release of the diffusing species from a single dominant trap (a), i.e., $²H + a \rightleftharpoons ²Ha$. The total concentration of the trap is assumed to remain unchanged during the diffusion process and is given by $[a_{\text{tot}}] = [²H + a] + [a]$. Thus, the differential equation describing the change in the ²H concentration with respect to time is given by,

$$\frac{∂[²H]}{∂t} = D \frac{∂²[²H]}{∂x²} - \frac{∂[²Ha]}{∂t}, \quad (1)$$
FIG. 1. 2H concentration-depth profiles (unfilled points) for a (-201)-oriented β-Ga$_2$O$_3$ sample implanted with 2H (energy=200 keV, fluence=4×10^{15} cm$^{-2}$) after 30-min heat treatments at select temperatures between 350 and 600 °C. The solid curves are fits to the data using the trap-limited diffusion (TLD) model (eqn.(1)). Inset: Arrhenius plots of the 2H diffusivity (left axis) and trap dissociation rate (right axis) determined from TLD fits at each temperature. Linear fits (solid lines) were used to determine the thermal activation energies and prefactors for 2H diffusion and trap dissociation, respectively.

where,

$$\frac{\partial [^2\text{H}]_{\text{a}}}{\partial t} = \kappa [^2\text{H}]_{\text{SS}}[a] - \nu [^2\text{H}]_{\text{a}}. \tag{2}$$

In Eqns.(1) and (2), $[^2\text{H}]_{\text{a}}$ is the concentration of the filled trap state, $[^2\text{H}]_{\text{SS}}$ is the amount of 2H available from the source that is free to diffuse, 3D is the diffusivity of the mobile 3H species, κ is a trapping rate given by $4\pi RD$, and ν is the dissociation rate of the filled trap.
The effective capture radius of the trap, R, was set to 5 Å, which is in the order of the lattice constant. Equation (1) was solved numerically using the partial differential equation solver flexPDE, treating D and ν as fitting parameters. The total trap concentration $[a_{tot}]$ was set in order to fit the height of the diffusion shoulder. The fits from the TLD model, shown as solid lines in Fig. 1, are in excellent agreement with the data, and capture especially well the steep decrease in the 2H concentration deeper into the sample (i.e., the edge of the 2H diffusion front). The inset of Fig. 1 shows Arrhenius plots for the values of D (left axis) and ν (right axis) determined from the TLD fits. From the linear fits to D and ν vs. $1/T$ shown in Fig. 1, we determined activation energies for 2H diffusion (E_m) and trap dissociation (E_d) of 1.9 ± 0.2 eV and 2.6 ± 0.2 eV, respectively. Our E_d is consistent with the value of 2.6 eV reported by Sharma et al., whereas our E_m is larger by about 0.7 eV. It should be noted that the prefactors for diffusion and dissociation rate can vary by an order of magnitude in either direction with very little impact on the activation energies. The prefactor for the dissociation rate of 7.5×10^{13} s$^{-1}$ is, however, quite close to the expected values calculated using the reported Debye temperatures of 738 and 872 K. Ahn et al. and Nickel and Geilert have reported diffusivities for 2H of 6.4×10^{-13} cm2 s$^{-1}$ at 270 °C and 2.6×10^{-13} cm2 s$^{-1}$ at 425 °C, respectively. Using our value of $D_0 = 310$ cm2 s$^{-1}$ (inset of Figure 1), we calculate 2H diffusivities corresponding to 7.3×10^{-16} cm2 s$^{-1}$ and 6.0×10^{-12} cm2 s$^{-1}$ at 270 °C and 425 °C, respectively. We speculate that the differences in E_m’s and 2H diffusivities between our data and the values reported in the literature originate from differences in the sample type (PLD-grown thin films vs. bulk single crystals), heat treatments (rapid thermal processing vs. conventional thermal annealing), and trapping model.

The 2H concentration-depth profiles for a shallow-implanted (010) β-Ga$_2$O$_3$ sample after heat treatments between 300 and 575 °C are shown in Fig. 2(a). There are two distinct differences between these concentration-depth profiles and those observed for the (-201)-oriented samples. First, the post-implantation heat treatment at 300 °C for the (010) sample results in a shoulder on the shallow side of the implantation peak; no such shoulder was observed for the (-201) sample until it was heat-treated at 500 °C. Second, the height of the 2H implantation peak decreases strongly for heat treatments \geq 500 °C in the (010) sample, whereas it remains essentially constant in the (-201) sample. Both of these observations indicate that the monoclinic lattice plays a significant role on 2H diffusion in β-Ga$_2$O$_3$, with diffusion more favorable along $d_{\perp(010)}$ than along $d_{\perp(-201)}$. One potential explanation for
FIG. 2. (a) 2H concentration-depth profiles (unfilled points) for a (010)-oriented β-Ga$_2$O$_3$ sample implanted with 2H (energy=200 keV, fluence=5×10^{14} cm$^{-2}$) after 30-min heat treatments at select temperatures between 300 and 575 °C. (b) 2H concentration-depth profiles (unfilled points) for the same (010)-oriented sample shown in (a) after a second 2H implantation (energy=1.1 MeV, fluence=2×10^{15} cm$^{-2}$) and subsequent heat treatments between 300 and 355 °C. Fits for each temperature using the TLD model are shown as solid curves. The concentration of V$_{Ga}$’s generated by the 2H implantation was simulated using SRIM37 (dashed blue curve) and assumes that 2% of the vacancies do not annihilate.

This is the open channels along $d_{(010)}$ that might facilitate H^+_i diffusion via cross-channel jumps between O sites (Fig. 3). These channels are unavailable along $d_{(-201)}$, which will presumably result in higher energy barriers for diffusion along this direction. Similar effects of lattice anisotropy have been reported for H^+_i diffusion in rutile TiO$_2$, in which H^+_i diffusion in open channels along the c axis is more favorable than in the a – b plane.43
FIG. 3. Structure of β-Ga_2O_3. The (010) and (-201) planes are shown in light grey and magenta, respectively. The black arrows are the directions perpendicular to these planes, $d_{\bot(010)}$ and $d_{\bot(-201)}$. The atoms are color-coded as follows: Ga(1)=dark blue, Ga(2)=light blue, O(1)=light red, O(2)=red, and O(3)=dark red. The crystallographic orientation is shown to the right of the structure. Figure produced by VESTA.44

Additional investigations, however, are needed to establish the precise mechanism(s) by which H^+ diffusion occurs along the different crystallographic directions of β-Ga_2O_3.

Unlike the ^2H distribution observed in the (-201) samples, the profiles in the (010) samples do not show a significant ^2H concentration into the bulk. One possible explanation for the missing observation of ^2H is that the trap concentration is substantially lower than that in the (-201) sample, i.e., below the detection limit of SIMS for ^2H. Interestingly, on the shallow side of the implantation peak, where a significant amount of ion-induced defects are created, a distinct increase in the ^2H concentration is observed after heat treatments \geq 500 °C. This observation suggests that ^2H is trapped by intrinsic defects created during ion implantation as it diffuses towards the sample surface, thus accumulating to a concentration well above the detection limit of SIMS for ^2H. To test this hypothesis, a second implantation was made deeper into the same (010) sample after its heat treatment at 575 °C (Fig. 2(a), unfilled green diamonds). The sample was subsequently heat-treated between 300 and 355
°C, with SIMS measurements performed after each heat treatment (Fig. 2(b)). Indeed, the
2H concentration-depth profile after the 300 °C heating exhibits a shoulder on the shallow
side of the deep implantation peak, which is consistent with 2H diffusion having a lower
energy barrier along \(d_{\perp}(010)\) than along \(d_{\perp}(-201)\). As the heat-treatment temperature is
increased, we observe a significant diffusion of 2H towards the surface. In fact, after the heat
treatment at 355 °C, the 2H diffusion front has almost reached the position of the shallow
implantation peak. The 2H diffusion after the heat treatments between 325 °C and 355 °C
can be modeled by Eqn. (1), which implies that TLD of 2H also occurs along \(d_{\perp}(001)\).

Unfortunately, the small heating steps (\(\Delta T \approx 10\) K) and narrow temperature range pre-
vent reliable determination of parameters for 2H diffusivity and trap dissociation parameters
along \(d_{\perp}(010)\). Furthermore, the environment where 2H undergoes TLD in the (010) sample
is expected to be more complex than that present in the bulk of the (-201) sample due to
implantation damage. Note that the concentration of \(V_{Ga}\), which has been shown to be the
dominant trapping defect for 2H,22,23 is, based on SRIM simulations, expected to vary by
almost one order of magnitude in the region where TLD is observed.37 This variation in
the trap concentration is not accounted for during the fit of the TLD model and prevents
us from determining reliable fit parameters for 2H diffusion along \(d_{\perp}(010)\). Nevertheless, we
conclude that the TLD model partially captures 2H diffusion along \(d_{\perp}(010)\).

The results from the (010) sample clearly show that the introduction of intrinsic defects
into the sample provides traps for 2H diffusion, where \(V_{Ga}\) is one of the prime candidates.
Moreover, recent positron annihilation spectroscopy results45 suggest that as-grown \(\beta\)-2Ga\textsubscript{2}O\textsubscript{3}
single crystals can contain considerable concentrations of shifted \(V_{Ga}\), which is consistent
with the 2H concentration-depth profiles shown in Figure 1. To investigate this further,
we have calculated binding energies for several H-related defect complexes using the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional46 and the project augmented-wave method,47–49
as implemented in the Vienna Ab initio Simulation Package (VASP) code.50,51 The fraction
of screened Hartree-Fock exchange was set to 0.33 and all calculations were performed with
the semicore Ga 3d electrons treated as explicit valence electrons. Defect calculations were
carried out using 160-atom supercells, a plane-wave energy cutoff of 500 eV, and a single
special k-point at (0.25,0.25,0.25).52 For charged defects, the total energies were corrected
using the anisotropic53 scheme of Freyssoldt-Neugebauer-Van de Walle.54,55 Defect formation
energies (\(E_f\)) were calculated using the well-established formalism described in Ref.56. Bind-
ing energies were calculated as the difference in E_f between the H-decorated complex, and the sum of the E_f's of H^+_i and the remaining defect when a single H is removed from the complex. For example, the binding energy of the $(\text{V}_{\text{ib}}\text{Ga}_2\text{H})^{-1}$ complex is given by,

$$E_b[(\text{V}_{\text{ib}}\text{Ga}_2\text{H})^{-}] = (E_f[H^+_i] + E_f[(\text{V}_{\text{ib}}\text{Ga}_2\text{H})^{2-}]) - E_f[(\text{V}_{\text{ib}}\text{Ga}_2\text{H})^{-}],$$

where the sign is chosen such that a positive binding energy indicates a stable H-complex. Binding energies are calculated assuming n-type material (Fermi-level position at the conduction band minimum). The calculated H binding energies for selected H-related defect complexes are listed in Table I. The values for $\text{V}_{\text{ib}}\text{Ga}_2\text{H}$, $\text{V}_{\text{ib}}\text{Ga}_2\text{H}$, and $\text{Mg}_{\text{Ga}(2)}\text{H}$ are in good agreement with other hybrid functional calculations reported in Refs. 21,24 and 28. An estimate of the trap binding energy (E_b) from experiment can be determined from $E_b = E_d - E_m$, where E_d is the trap dissociation energy (2.6±0.2 eV) and E_m is the lowest migration energy available to H^+_i. Since E_m for H^+_i along $d_{\perp(010)}$ cannot be determined from our data, we use the reported value of 0.34 eV computed by Varley et al. 31 which results in $E_b = 2.3 \pm 0.2$ eV. Comparison of this value with the values listed in Table I suggest that $\text{V}_{\text{Ga}(2)}\text{H}$ and $\text{V}_{\text{Ga}(2)}\text{H-V}_{\text{O}(2)}$, which are the lowest energy configurations for $\text{V}_{\text{Ga}2}\text{H}$ and $\text{V}_{\text{Ga}}\text{H-V}_{\text{O}}$-type defects, respectively, are excellent candidates for the filled trap. The E_b’s of $\text{V}_{\text{Ga}}\text{H}^+$ and $\text{V}_{\text{Ga}}\text{H}$, which were recently shown 57 to be more likely than the corresponding structures consisting of unshifted $\text{V}_{\text{Ga}(1)}$, 31 are considerably lower than our experimental E_b, and are

<table>
<thead>
<tr>
<th>Defect reaction</th>
<th>Binding energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{V}_{\text{ib}}\text{Ga}2\text{H})^{2-} \rightarrow (\text{V}{\text{ib}}\text{Ga}_2\text{H})^{3-} + H^+_i$</td>
<td>2.94</td>
</tr>
<tr>
<td>$(\text{V}_{\text{ib}}\text{Ga}2\text{H})^{-} \rightarrow (\text{V}{\text{ib}}\text{Ga}_2\text{H})^{2-} + H^+_i$</td>
<td>2.62</td>
</tr>
<tr>
<td>$(\text{V}_{\text{ib}}\text{Ga}2\text{H})^0 \rightarrow (\text{V}{\text{ib}}\text{Ga}_2\text{H})^{-} + H^+_i$</td>
<td>0.73</td>
</tr>
<tr>
<td>$(\text{V}_{\text{ib}}\text{Ga}2\text{H})^+ \rightarrow (\text{V}{\text{ib}}\text{Ga}_2\text{H})^0 + H^+_i$</td>
<td>0.44</td>
</tr>
<tr>
<td>$H^+i \rightarrow V^0{\text{O}(2)} + H^+_i$</td>
<td>0.34</td>
</tr>
<tr>
<td>$H^+i \rightarrow V^2{\text{O}(2)} + H^+_i$</td>
<td>0.82</td>
</tr>
<tr>
<td>$(\text{V}{\text{Ga}(2)}\text{H-V}{\text{O}(2)})^{2-} \rightarrow (\text{V}{\text{Ga}(2)}\text{V}{\text{O}(2)})^{3-} + H^+_i$</td>
<td>2.48</td>
</tr>
<tr>
<td>$(\text{Mg}{\text{Ga}(2)}\text{H})^0 \rightarrow \text{Mg}{\text{Ga}(2)}^{2+} + H^+_i$</td>
<td>0.68</td>
</tr>
<tr>
<td>$(\text{N}{\text{O}(1)}\text{H})^0 \rightarrow \text{N}{\text{O}(1)}^{2+} + H^+_i$</td>
<td>2.18</td>
</tr>
</tbody>
</table>
therefore excluded. Both the negative and positive charge states of H_{O(2)} are excluded as candidates for the trap, also due to their low E_b's.58 Alternatively, the hydrogen-passivated N-acceptor complex (N substituting at an O(1) site) also has an E_b59 that falls within the range of E_b determined from our data. However, the concentration of N impurities in the as-received single crystals is below the detection limit of our SIMS measurements ($< 10^{17}$ cm-3) and therefore excluded as the dominant trap in these samples.

In summary, we have shown that the diffusion of 2H in β-Ga$_2$O$_3$ single crystals is highly anisotropic: diffusion along $d_{\perp(010)}$ occurs already at 300 °C, whereas that along $d_{\perp(-201)}$ starts at 500 °C. The evolution of the 2H concentration-depth profiles after heat treatments for both directions is well described by a model of trap-limited diffusion. From the (-201) data, we determined a migration energy for 2H along $d_{\perp(-201)}$ of 1.9 ± 0.2 eV and a trap dissociation energy of 2.6 ± 0.2 eV. The binding energy of 2H to the trap determined from experiment is similar to the calculated binding energies of H-containing intrinsic defects, including V\textsubscript{Ga}H and V\textsubscript{Ga(2)}H-V\textsubscript{O(2)}. Based on these data, we tentatively conclude that V\textsubscript{Ga} and the divacancy act as a trap for H diffusion in β-Ga$_2$O$_3$. As a consequence of this, 2H may be used as a probe for V\textsubscript{Ga}-related defects in β-Ga$_2$O$_3$. Although our model implies that there are differences between the initial V\textsubscript{Ga}-related defect concentrations in the (-201)- and (010)-oriented crystals studied in this work, a systematic study, using other techniques that can detect these defects directly, on an extensive sample set would be needed to substantiate this claim. Such differences could have important implications for β-Ga$_2$O$_3$ crystal growth and device fabrication.

This work was supported by the Research Council of Norway through the Norwegian Micro- and Nano-Fabrication Facility (NorFab, project number 245963), the FUNDAMENT project (project number 251131), and the Research Center for Sustainable Solar Cell Technology (FME SUSOLTECH, project number 257639). The Faculty of Mathematics and Natural Sciences at the University of Oslo is also acknowledged for their support via the strategic research initiative FOXHOUND. The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES

10. K. Shimamura, E. G. Villora, T. Ujje, and K. Aoki, “Excitation and photoluminescence of pure and Si-doped β-Ga$_2$O$_3$ single crystals,” Applied Physics Letters **92**, 201914 (2008), This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DO:10.1063/5.0027333
https://doi.org/10.1063/1.2910768.

45A. Karjalainen, V. Prozheeva, K. Simula, I. Makkonen, V. Callewaert, J. B. Varley, and

^2H concentration (cm$^{-3}$)

depth (µm)

diffusivity (cm2 s$^{-1}$)

dissociation rate (s$^{-1}$)

$E_m = 1.9 \pm 0.2$ eV

$D_0 = 310$ cm2 s$^{-1}$

$E_d = 2.6 \pm 0.2$ eV

$v_0 = 7.5 \times 10^{13}$ s$^{-1}$
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0027333