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Abstract—The Recursive InterNetworking Architecture RINA
describes a new way to look at networking; it offers a point
of view that is fundamentally different from today’s networks.
This paper explains how designing congestion control strictly in
line with this model almost automatically leads to a conceptually
cleaner, and quite possibly altogether better design than what
we have in the Internet today. We give an overview of how far
the OCARINA research project has come with the development
of the RINA congestion control elements that follow from this
design. Then, we conclude with an explanation of how the shift
in thinking that RINA suggests can be applied to more gradual
Internet developments related to congestion control.

Index Terms—congestion control, RINA, recursive networks

I. INTRODUCTION

Internet congestion control has many issues: unnecessary
latency, the inability to quickly saturate a bottleneck’s capacity,
lack of a meaningful fairness notion, difficulty in efficiently
utilising more than one network path, and ignorance of the
underlying medium, which renders controls unable to react
to swift and drastic capacity changes (as expected in 5G
networks). Nevertheless, the Internet works—but it really only
just works [1].

In this paper, we briefly discuss these problems, and ex-
plain why they are an inevitable result of the Internet’s
architectural design. Beginning with ideas from the X-Bone’s
Virtual Internet Architecture, the Recursive Network Archi-
tecture (RNA) [2], the Recursive Internetworking Architecture
(RINA) [3] and the compositional architecture described in [4]
(which, in turn, is based upon RINA), have all recognized that:
1) today’s reality of layering is quite different from the

original layer model envisioned for the Internet;
2) the essential role of layers should not be to represent a

collection of a specific set of functions (i.e., the link layer
carries out typical link layer functions, the network layer
carries out typical network layer functions, and so on), but
instead to define a communication scope (e.g., IP routing
does not need to know about MAC addresses);

3) some essential communication functions should exist at
every layer, although they might be instantiated differently
depending on the environment. This repetition of functions
constitutes the recursive aspect of these architectures.

RINA demands a form of congestion control that solves the
problems above (it satisfies all the requirements that we derive
from these problems in the next section), and this design
results from decisions that seem obvious in a RINA context.

We will make this clear with a discussion of an Internet-like
RINA configuration in Section III, where we then proceed with
an overview of our developed solutions and ongoing work in
the OCARINA1 research project. Section IV concludes.

II. PROBLEMS OF INTERNET CONGESTION CONTROL

Here we discuss congestion control issues and derive re-
quirements from them. We cover the problems very briefly
because they are generally well known and amply discussed
in the broader congestion control literature.

A. Latency

With the exception of Explicit Congestion Notification
(ECN), which does not see any significant level of deployment
as of yet, TCP relies on implicit feedback: once a bottleneck’s
capacity is exceeded and queues have grown to the point of
overflowing, a packet is dropped and this is taken as a sign
of congestion. In the process, TCP creates latency by making
queues grow. Countless approaches to reduce this latency exist;
to name one example, one of the earliest ideas was to back
off in response to delay growth (TCP Vegas [5]). All practical
solutions rely on feedback from queues, and hence need to
create at least a little bit of latency before they can react.
Derived requirement: R1: Do not create latency.

B. Capacity utilization

Approximately 15 years ago, TCP’s inability to saturate a
long-delay, high-capacity path with a bulk data transfer was
considered one of the biggest problems in congestion control.
This problem was tackled by many research teams [6], and
it is now solved by the wide deployment of experimental
congestion control mechanisms such as Cubic [7] (one of the
proposals from that time, enabled by default in Linux for many
years), and, more recently, BBR [8]. Nowadays, the majority
of data transfers are short or application-limited, and the focus
is on reducing latency in general. Latency, as perceived by
end users, is not only a function of the time that a single
packet needs from one end to the other—for web surfing, for
example, the prevalent factor influencing the user-perceived
latency is the flow completion time. This, in turn, depends on
the ability to quickly saturate the bottleneck capacity, so as to
transfer all the data within the minimum number of Round-
Trip Times (RTTs). Cutting round-trips is the motivation for a

1https://www.mn.uio.no/ifi/english/research/projects/ocarina/



larger initial window of TCP [9], and it is also a core aspect
of the design of QUIC [10].
Derived requirement: R2: Quickly utilize available capacity.

C. Fairness

Fairness is an aspect of congestion control which faces a
gap between theory and practice. On the practical side, TCP
equally shares the bottleneck capacity between multiple long-
lasting permanently-sending connections that have the same
RTT. Often, this type of fairness is not very meaningful [11]
(e.g., would it make sense to equally divide the capacity be-
tween a VoIP and P2P file sharing traffic?). On the theoretical
side, Network Utility Maximization (NUM), introduced by
Kelly et al in [12], is a well-established and widely accepted
notion of fairness in networks. Here, the idea is to maximize
the utility per sender under the constraint of the available
network resources; with a logarithmic utility function, NUM
yields the well-known “proportional fairness”. NUM optimizes
the send rate at end hosts according to the cost it receives from
the network. Cost should be an additive measure, but this is
not available as an input to congestion control in the Internet.
Derived requirement: R3: Implement NUM.

D. Multipath communication

TCP was originally designed to operate across a single end-
to-end network path with not much flexibility in routing. If in-
network load balancing mechanisms such as Equal-Cost Multi-
Path (ECMP) would operate on a per-packet basis, they would
introduce reordering in TCP connections—but TCP is sensitive
to reordering and easily interprets it as a sign of congestion
(the latest TCP versions address this problem to some degree).
Therefore, ECMP usually balances connections rather than
packets, which requires routers to look at the transport header.

With the growing pervasiveness of multi-homing (e.g.,
WiFi and cellular connectivity of cell phones), using multiple
paths at the same time has become attractive. Multipath TCP
(MPTCP) [13] achieves this with a coupled congestion control
mechanism, where sub-flows of an MPTCP connection attempt
to better use the total available capacity while avoiding to
be more aggressive than a single flow in case they share a
bottleneck. Sub-flows of one connection can also be placed
on different paths by ECMP, enabling more efficient network
usage even with single-homed end systems [14].

Despite its obvious benefits, the MPTCP approach to multi-
path communication has a limitation: ECMP only uses shortest
paths. Combining congestion control with an in-network view
could enable the occasional use of longer paths. This idea has
been proposed in [15], but the proposed scheme is limited
in that each load balancing point can only use congestion
information of its immediate outgoing links.
Derived requirement:
R4: Support efficient multi-path usage inside the network.

E. Reacting to link layers

We have already discussed that (not MP-)TCP assumes a
single network path and is sensitive to reordering. There are
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Fig. 1: A RINA configuration which resembles an Internet
scenario, with the 1-DIFs as link layers, the 2-DIF as the

network layer and the 3-DIF as the transport layer.

more implicit assumptions: TCP expects that all packet losses
indicate congestion, and it does not expect quick changes of
the physical bottleneck capacity. A large body of research
on cross-layer optimization [16] is testimony to TCP’s poor
performance when these assumptions are wrong—but none of
the proposed solutions are deployed in the Internet (we will
briefly discuss the reasons for this failure in Section IV).
Derived requirement: R5: Use knowledge of lower layers.

III. DEVELOPING RINA CONGESTION CONTROL

We explain our design with a RINA configuration that mim-
ics the Internet with its “end-to-end”2 congestion control. One
of RINA’s fundamental principles is that computer networking
is just Inter-Process Communication (IPC). Communicating
entities are called “IPC Processes (IPCPs)”, and the collection
of such entities in a layer is accordingly called “Distributed
IPC Facility (DIF)”. DIFs provide a common set of APIs to
other DIFs. Figure 1 shows a simple RINA network where a
sender S1 talks to the IPCP T1 of the layer immediately below
it to transmit data to the other end, eventually reaching the
receiver R1. IPCPs of this DIF in turn make use of lower
DIFs—if this were the Internet, the 1-DIFs would be link
layers, the 2-DIF would be the network layer, and the 3-DIF
would be the transport layer; relay 1 would be an IP router
and relay 2 could, e.g., be an Ethernet switch.3

Considering congestion control in this setup, it might be
tempting to think that it would only be implemented at
the transport layer, i.e. in the 3-DIF between T1 and T2.

2The “end-to-end” argument is an oft-quoted design guideline; it recom-
mends to carefully consider the trade-offs between implementing functions
inside the network versus end systems, and it advises against implementing
application-specific functionality in the network [17]. It is common to mis-
quote the argument to say that the network must be kept “as dumb as possible”.
While such design would certainly be in line with the argument, it is a
too strict interpretation—e.g., it would also forbid using complex routing
algorithms. Congestion is network-specific, not application-specific; it should
therefore arguably be resolved as close as possible to where it happens.

3The primary of layers in RINA is to establish a scope of communication.
Because the 2-DIF and the 3-DIF have equal scope in the diagram, a typical
RINA configuration would normally not contain the 3-DIF, but have its
functionality included in the 2-DIF. We show them as separate DIFs here
to facilitate the discussion of RINA vs. the Internet.



Accordingly, to emulate the Internet, RINA congestion control
would have to be instantiated as empty policies4 in the 1-DIFs
and the 2-DIF. This however, draws a very incomplete picture
of congestion control in the Internet; next, we will see how a
closer look can show us the way to a better design.

A. From the Internet...

Starting at the 1-DIFs (link layers), there is in fact usually
some form of overload (congestion) control implemented
there, called Medium Access Control (MAC). We need this in
today’s networks for various reasons, in addition to congestion
control at higher layers—this need is a testament to the
fact that, as recursive architectures tell us, the same basic
functionality is required at all layers. Without recognizing this
necessity as part of the architecture however, MAC mecha-
nisms are developed separately from upper-layer congestion
control, and there is no vertical information flow between
these controls; link layer developers make static design-time
assumptions about TCP running on top of their technology,
and vice versa. This narrows the design space on both ends, as
future mechanisms should be able to operate over (or under)
previously developed systems. MAC algorithms are usually
only concerned with the transmission of a single frame at a
time—but senders at that layer would be in a good position
to derive a longer-term average rate. Congestion control at the
2-DIF could benefit if each 1-DIF could tell it a sending rate,
but such interfaces are not available—and: is there even any
congestion control at the 2-DIF (i.e., the network layer) at all?

Internet congestion control operates at the transport layer
with the exception of Active Queue Management (AQM),
which is at the network layer. This layer split becomes
particularly clear with ECN, which uses two bits of the IP
header such that AQM algorithms can easily access them, yet
the “ECN Echo” bit, which routers do not need to access, is
in the TCP header. Every transport protocol that needs ECN
marks at the sender side must include this feedback as part of
its design; IP header space has become a too valuable resource
to be spent on information that routers do not need to see.

Because the control loops operate at the transport layer,
multiple connections between the same pair of hosts work in-
dependently, competing for resources in the network. Solutions
to this problem (such as the Congestion Manager [18] or other
congestion control coupling approaches [19, 20] and [21, 22])
have a hard time getting deployed because ECMP may put
transport connections on separate paths. Since congestion
control was primarily implemented into the transport layer,
there is no explicit interaction between congestion control
and ECMP—instead, again, static design-time assumptions are
made.

B. ... to RINA — “following the model”

As we have seen, an Internet-like configuration is quite
awkward in a RINA setting: in the example in Figure 1, there

4In RINA terminology, the general functions that exist at every layer are
“mechanisms”; mechanisms can be customized/programmed differently per
DIF; this is done via “policies”.

is no communication about congestion control between the 1-
DIFs and the 2-DIF, leading to static design assumptions (e.g.,
about the 2-DIF, by 1-DIF designers). The 2-DIF contains
policies (AQM) which make no sense on their own, but assume
a certain operation of the 3-DIF (TCP or similar).

RINA prescribes the same vertical interface between DIFs
everywhere, and DIFs do not make static assumptions about
upper or lower DIFs. Thus, each DIF should have congestion
control in a form that is suitable for its own specific environ-
ment. This means that we have multiple control loops along a
path from a sender to a receiver, and the number of these loops
is a matter of configuration—thus there is a need to consider
stability as these loops interact. Information can be handed
over vertically between DIFs to form a push-back signal.

In earlier work, we have carried out two preliminary analy-
ses of RINA congestion control. In [23], we investigated what
would happen if we would simply install TCP-like congestion
control in RINA—and found that some improvements happen
just as a result of network configuration: consecutive control
loops yield a behavior similar to a Performance Enhancing
Proxy (PEP),5 and if a DIF operates on aggregates coming
from DIFs above it, it can yield benefits similar to mecha-
nisms that couple congestion controls. In [25], we investigated
recursive feedback for a broad class of loss-based congestion
controls; this work showed that using overflowing queues as a
feedback method between DIFS can produce very large delays.
These delays occur in addition to the delays caused by the
congestion controls themselves (see the discussion of R1).

From these early works, we have concluded that installing
a control loop at every DIF has the potential to yield many
benefits, but a congestion control which uses implicit (loss-
or delay-based) feedback is not a recommendable approach at
all. Due to the multitude of queues that can individually be
pushed to the limit by each loop in a RINA network, the delay
from a TCP-like congestion control could in fact become far
worse than in the Internet. Therefore, any reasonable form of
RINA congestion control needs to use explicit feedback that
can be produced early, before queues grow.

Earlier approaches on explicit feedback congestion control
such as XCP [26] and RCP [27] require precisely the same
behavior in all routers and end systems, with no room for
flexibility, and they need several bits in packet headers. The
Internet’s notion of ECN as an indicator of congestion seems
more convenient—and the much more recent Data Center TCP
(DCTCP) has introduced the use of consecutive single-bit
ECN marks as a compound multi-bit congestion signal [28].
However, ECN cannot easily be used as a signal before the
capacity is exceeded. In the DCTCP way of using ECN, marks
are assumed to come from only one congested queue at a time,
and the marking probability reflects the degree of congestion

5PEPs are in-network mechanisms or devices which carry out operations
specific to transport layer protocols, typically TCP, to improve their perfor-
mance [24]. A TCP link splitter is a typical example: by spoofing IP addresses
and acting like a receiver towards the sender and like a sender towards the
receiver, two shorter, more reactive connections are created. This is often
beneficial, e.g. in the face of heavy packet loss on only one part of the path.
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Fig. 2: Pieces of the RINA congestion control puzzle.

at that queue. If we mark earlier, marking at multiple relays
is the norm and not the exception, and the result is distorted.

C. Elements of a solution

Making ECN additive is the first piece of the congestion
control puzzle (piece A in Figure 2) that we have developed
in the OCARINA project. Assume that each router i marks
packets of a flow with probability pi on their path towards the
destination. In this case, the end-to-end marking probability,
pr, is equal to 1−

∏
i(1− pi). If pi is much smaller than 1,

then
∑
i pi ≈ 1−

∏
i(1−pi) meaning that pr is approximately

additive, and this has been the justification behind using ECN
in the NUM framework in previous work (e.g. See [29]).
However, in modern congestion controllers such as DCTCP
that converge at higher marking probabilities, ECN does not
provide the additivity property. In [30], we have shown that,
by lower- and upper-bounding the marking probability at
each router and applying a logarithm when interpreting the
ECN signal in the end system, we can turn ECN into an
additive signal that conveys a useful measure of congestion
from multiple relays. Instead of pr, senders just need to use
− logφ(1−pr) as the congestion signal where φ is the system
parameter affecting the equilibrium marking probability.

As with DCTCP, this is even achievable with commodity
router hardware that supports the RED AQM algorithm. An
additive ECN signal can be related to an additive path cost—
this allows us to i) use ECN as a feedback signal before a
queue even grows, i.e. without any extra latency (R1), and
ii) implement NUM, which is based upon an additive path
cost signal (R3). We note that, while [30] proves the ability
to implement NUM, we have not yet validated our claim that
our additive ECN signal can indeed be used before a queue
grows; this is planned as one of our immediate next steps.

In [30], we configured RED in a special manner: we set
the minimum threshold to 1, maximum threshold to 220 KB,
and maxp to 1. This means that, similar to DCTCP, we
disable queue averaging, but different from DCTCP, we use a
marking probability that grows with the queue length instead

of a step function. This allows a wide range of marking
probabilities, from 0 to 1, and marking can start when there
is at least one backlogged packet in the queue to react faster
to congestion (DCTCP requires a larger value due to its step
function). Feeding the end-to-end marking probability into our
logarithmic function yields

− logφ(1− pr) = − logφ
(∏

i

(1− pi)
)
= −

∑
i

logφ(1− pi)

which is equal to the sum of the “cost” of routers in the path.
Next, connected to puzzle piece A, we need a congestion

control mechanism based on the additive ECN feedback that
can address R2 (quickly converging to full utilization of
the available capacity) and can be shown to be stable when
used with multiple consecutive or overlapping control loops—
piece B of our puzzle. We found Logistic Growth to provide
a suitable answer, and accordingly developed a congestion
control mechanism, “Logistic Growth Control” (LGC), which
we described and analyzed in [31]. Assuming rates are nor-
malized, LGC updates the send rate using

x = x+ xr(1− x− pr) (1)

where x and r denote the send rate and the growth rate,
respectively. Accordingly, in [30], we also discuss the applica-
tion of the additive ECN signal to LGC. Logistic growth has
long been considered in models involving multiple loops—
specifically, the Lotka-Volterra model which is commonly used
to describe the dynamics of competing animal species (each
growing according to LG). It is called “predator-prey” model
if some species (preys) have positive effects on the growth
of some other species (predators). Stability properties and
boundary conditions of this model have been established in
biology literature. On this basis, we are currently developing
a stability proof for our multi-loop LGC.

In (1), 1 is the normalized carrying capacity. Chaining an-
other LGC loop to (1), which also models a predator and prey
relationship, yields another rate update: y = y+yr(x−y−pr)
where y is the send rate of the flows using (eating) flows in
the next loop, and pr is the end-to-end marking probability
in the current loop, not the whole path. In this case, x is the
carrying capacity of flows (species) y.

One of the benefits of chaining LGC controllers is that each
loop can use the send rate of the next loop immediately in its
rate update dynamics. We performed a numerical evaluation:
in Fig. 3, we used a chain of Primal-Dual controllers with a
logarithmic utility function (see [30] for the definition of this
controller), and in Fig. 4, LGC was used instead. Both the con-
trollers were tuned for fastest convergence. In this evaluation,
we had 5 loops: in each loop, there are two competing flows,
which are aggregated in one flow in the next loop. This implies
that the send rate of each flow is (should be) divided fairly
between the two flows in the previous loop. Therefore, in the
last loop, the two flows compete for the bottleneck capacity,
and each one should get half of the capacity; in the previous
loop, the two flows that are aggregated in the next loop using
one of the flows should also get half of the send rate of that
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Fig. 3: Chaining 5 loops of a congestion controller with
logarithmic utility function

Loop 1
Loop 2
Loop 3
Loop 4
Loop 5

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Time step

M
ar
ki
ng
pr
ob
ab
ili
ty

(a) Normalized rate of flows

Loop 1
Loop 2
Loop 3
Loop 4
Loop 5

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Time step

M
ar
ki
ng
pr
ob
ab
ili
ty

(b) Marking probability of flows

Fig. 4: Chaining 5 loops of LGC

flow. If we assume a normalized capacity of 1 in the last
loop, then last-loop flows get 0.5, each flow in the previous
loop gets 0.25, and the values are 0.125, 0.0625, and 0.03125,
respectively for the flows in the previous loops. In the figures,
we only report the rate of one flow in each loop labeled with
“Loop i”. At step 200, we cut the capacity of the last loop to
0.5 to observe how fast the chain of congestion controllers can
converge. Here, the marking probability is the percentage of
marked packets of each flow at the start of the next loop: since
we aggregate the two flows of each loop into one flow in the
next loop, we assume that the incoming packets from the two
flows are queued and then aggregated. The queue, configured
with RED as introduced in [30], forms our basis of marking.
From the figures we observe that the chain of LGC, because
of the direct use of the send rate of the flow in the next loop,
can converge faster, and the same happens when the capacity
again changes to 1 at step 400.

At the time of writing, puzzle piece C (which will satisfy
R4) is still in early development, but it seems obvious that this
mechanism will be able to benefit greatly from piece A, i.e. the
additive ECN signal that we have developed: if we prescribe
symmetric routing for ACKs, then every relay in a DIF obtains
a complete picture of upstream (the path segment from the
sender to the relay) and downstream (the path segment from
the relay to the destination) congestion merely from looking at

S1 

S2 

R1 

R2 

Router2 Router3 Router4 Router5 Router1 

Fig. 5: Aggregate congestion control for two flows (S1 to R1

and S2 to R2), “flat” view.

ECN signals. A relay can obtain the total amount of congestion
on a path as follows: it monitors and averages the fraction of
ACKs from the receiver that carry “ECN Echo (ECE)” marks.
By subtracting the amount of upstream congestion (the average
fraction of incoming packets towards the same destination that
already are ECN-marked) from this value, the relay obtains
the amount of downstream congestion. Using this result, it
can make an informed decision about the outgoing links to
choose. This will allow us to go even beyond the in-network
resource pooling method in [15], which can only utilize each
load balancer’s immediate outgoing congestion levels as input.

Last but not least, we can also address R5 with puzzle piece
D: if we can obtain the currently available capacity from a link
layer, then, e.g., in Figure 1, IPCP L1 in 1-DIF #2 could tell N2

how fast it can transmit data towards N3. This rate is a slightly
longer-term estimate than MAC algorithms typically deal with;
in [32], we have documented preliminary investigation steps in
support of an idea to develop a Machine Learning (ML) model
which predicts the usable rate in a WiFi network. While this
rate may seem easy to obtain in a downstream single-Access
Point scenario, this is not always the case, and an ML model
also has use cases for upstream data transfers or wireless mesh
scenarios, where the usable rate is much less obvious.

The rate that our future WiFi ML model will give us may
oscillate wildly—and directly using the resulting value as
the sending rate on a longer network path is probably not
advisable. Again, LGC helps, because it converges towards a
definable carrying capacity (y), and thus it seems obvious to
feed the ML-derived WiFi rate into this variable as a way of
interconnecting WiFi links with a larger network.

D. Fan-out: a problem eliminated by recursion

Since congestion control would normally be used at every
layer (DIF) in RINA, at some lower DIFs it would operate
on aggregates of the flows between IPCPs at upper DIFs.
Such aggregation can be quite beneficial, e.g. by avoiding
unnecessary competition between flows—we have already
discussed some of these benefits in the context of Internet
congestion control coupling [18, 19, 21].

Here, we show how the recursive nature of RINA automat-
ically eliminates a potential problem that such per-aggregate
congestion control inside the network might have in a “flat”
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Fig. 6: Aggregate congestion control with RINA.

design. Consider Figure 5: here, the bent arrow indicates a per-
aggregate congestion control loop where feedback is sent back
from router 4 to router 2 such that router 2 could somehow
adjust the transmission rate of incoming traffic (e.g., reduce it
by dropping packets). This might work to react to congestion
between, e.g., routers 3 and 4—but what about congestion
happening between router 5 and receiver R1, e.g. because a
new flow is started? This case, which we call “fan-out”, seems
tricky: the aggregate control loop should only reduce traffic
from sender S1, but such per-flow operation is hardly scalable.

In Figure 6, we look at the same case in a RINA network.
Again, we use layers in a way that mimics the Internet, at
least to some degree: we have six “link layers” (L-DIFs),
a “network layer” (N-DIF) and two T-DIFs representing the
“transport layer”. For simplicity, we assume no congestion
control (empty policies) in the N-DIF but end-to-end conges-
tion control in the T-DIFs, just like in the Internet without
AQM algorithms. We also decided that relay 3 does not need
to participate in the N-DIF; translated to Internet terms, it
may be a device that operates purely on aggregates (like, e.g.,
MPLS switches) and does not need to have an IP address. To
consider the aggregate control loop from relay 2 to relay 4,
we add an “aggregation” DIF (A-DIF).

Like before, the first case of congestion between relay 3
and relay 4 can be handled directly by the A-DIF. In the
RINA diagram, it is clear that that the A-DIF is unaware
of congestion from relay 5 to receiver R1—it will only be
visible in the N-DIF, with the effect (packet loss in case of
a TCP-like control) being noticeable in T-DIF #1 above. In
fact, the T-DIFs are unnecessary in the RINA configuration
in Figure 6, and it would seem most natural to implement
congestion control directly in the N-DIF instead—giving us
congestion control at every layer.

To summarize: if congestion appears at a point that is out
of scope of the A-DIF, an upper DIF will manage to reduce
the rate of the correct flow (with the inevitable disadvantage
of having a longer control loop), and if congestion appears
within the scope of the A-DIF, the A-DIF will handle it

(with a shorter control loop and all its benefits). This shows
how congestion control should, indeed, be a “mechanism” in
RINA—a function that exists at all layers. We can also see that,
if a per-aggregate congestion control mechanism is introduced
in the Internet, it should operate in addition to TCP’s end-to-
end congestion control. In a way, we can consider the A-DIF
as a larger-scale multi-hop repetition of the function usually
carried out by MAC at the link layer, which is also unaware
of TCP connections but does not eliminate the need for TCP.

IV. CONCLUSION

We have seen that a whole host of Internet problems disap-
pear as we develop congestion control in the most obvious way
in RINA, almost as a by-product of necessary design decisions
in some cases—for example, latency is minimized because we
cannot reasonably rely on queuing delay and packet loss as
feedback signals. With so many problems being addressed by
this from-scratch design, one may wonder: is it inevitably the
case that, to become more efficient, congestion control must
move in the direction that we have outlined in this paper?

A recursive architecture is not only a different design
approach, but it changes how we think about networks. This
change of perspective indeed puts Internet developments in a
different light. In [23], we have seen that a PEP-like behavior
is natural in RINA. The IETF condemns PEPs as breaking the
Internet architecture, yet they yield benefits and they are there-
fore deployed. It is even common to split TCP connections—
despite the disadvantage of requiring full reliability per PEP
(hence producing buffering delay). In RINA, there is no reason
to always combine reliability and congestion control; it might
be worth considering a PEP design that divides control loops
without requiring full reliability at every PEP, too (this would
require changing the TCP standard).

As we have discussed in Section II, TCP does not work well
when its basic operation assumptions fail, e.g. when a link
layer drops packets for reasons other than congestion or when
a link’s capacity changes. Many older research papers tried to
solve such problems with ideas of cross-layering [16]—e.g., by
using information from the link layer inside TCP—, but none
of these ideas ever had any success in the IETF. One common
argument for rejection is that TCP must work everywhere, and
such a proposal would not work when the link layer that it is
designed for is not the bottleneck.

From a RINA-congestion-control perspective, this is an
obvious problem: we can only perform link-layer specific
congestion control if we apply a control loop that spans this
link layer and interconnect it with the layer above. For the
Internet, this calls for an IP-layer mechanism that interacts
with both the adjacent link layer and TCP. Of course, such
design will be limited by what link layer designers allow
to access or change on the one hand, and the rigidness of
the TCP standard on the other. As we have discussed, AQM
algorithms are the only part of the Internet’s congestion control
that is implemented at the network layer—and the quite recent
DOCSIS-PIE AQM algorithm indeed uses such lower-level
information [33]. Perhaps a PEP could do an even better job.



It seems worthwhile to nudge the Internet towards a more
efficient mode of operation that is (as we argue, by necessity)
more in line with RINA’s design. In the OCARINA project
however, we follow a vision of uncompromising, “real” RINA
deployment, using methods such as tunneling, gateways, or
even directly “switching-over” when a (presumably short)
Internet path is found to fully support RINA. Readers inter-
ested in transitioning possibilities may want to consult our
first publication on RINA deployment for measurements on
“switching over” and further discussion of this matter [34].
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