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Abstract—We consider the retransmission of packets inside the
network on a segment of an end-to-end path. Using a Markov
chain formulation of the problem, we evaluate the effect of the
loss probability in the network segment that is responsible for
retransmission as well as the ratio between the local RTT and
the end-to-end timeout. We also obtain the optimal cache size
required for retransmission depending on the packet loss and
cache blocking probabilities. Our study reveals that the local
RTT of the path segment for retransmission as a function of the
end-to-end timeout significantly influences the packet caching
time. We also observe that a small increment in the packet loss
probability above a threshold can severely affect the percentage of
cache filling irrespective of the cache size. Use cases to which our
findings apply include a recent IETF proposal called “LOOPS”,
recursive network architectures and proposals that use hop-
by-hop retransmissions in special network scenarios, e.g. for
Information-Centric Networking (ICN).

Index Terms—Packet Retransmission, LOOPS, Markov Chain,
RINA

I. INTRODUCTION

The famous paper that introduced the “end-to-end argu-
ment” [1]—a guideline which “suggests that functions placed
at low levels of a system may be redundant or of little value
when compared with the cost of providing them at that low
level”—begins with an example of a reliable file transfer. This
example concludes with the finding that reliability must be
carried out end-to-end in any case, and that it is therefore
pointless to try to implement it inside the network.

The end-to-end argument is one of the cornerstones of the
Internet’s design; strictly avoiding to place application-specific
functions inside the network has ensured scalability, allowing
for growth at an unprecedented rate. The Internet’s success,
and its designers’ reliance on the end-to-end argument, may
well be the reason why the possibility to retransmit packets
inside the network has not received much attention since
the early 1980’s (as stated in [1], in-network reliability was
a common proposal at that time). We posit that it is now
worthwhile to give such retransmissions a new consideration.

We do not contradict the argument: guaranteed reliability
must be taken care of end-to-end. However, when packets
are frequently dropped on path segments with a very short
round-trip time (RTT), and when the end-to-end RTT is very
long, retransmissions from on-path relays do help—they can
get packets to the receiver faster, reducing latency.

This benefit is well known to designers of wireless net-
work interfaces, which often carry out a form of link layer

Automatic Repeat Request (ARQ)—local retransmissions that
reduce the packet loss probability for the end-to-end control
loop. For example, 802.11 Access Points (APs) usually have
configurable retry limits to specify how often the AP should
try to re-send a frame in case of failure; 7 is a common default
value for short frames.

Fixed constants in APs and other link layer equipment are of
course not ideal; they are a result of the separate development
of Internet standards on one hand, and link layer standards
on the other. Also, APs carry out two functions, not one, as
part of their ARQ behavior: i) they retransmit lost frames for a
certain maximum number of times, and ii) they delay all other
incoming data during the retransmission procedure, thereby
ensuring in-sequence delivery. The latter decision is perhaps
inevitable when multiple frames make up an IP packet—
however, whenever there is a one-to-one correspondence be-
tween Internet packets and link layer frames, delaying data for
the sake of ordering is in conflict with the end-to-end argument
because applications are better placed to decide whether they
really need such ordering. Indeed, delaying frames for the
sake of ordering can be detrimental when it is done for frame
aggregates in case of 802.11n [2].

In this paper, we consider only retransmission, not ordering
at the expense of delay,1 and we ask: given the end-to-end
RTT, the RTT on a path segment, and the packet loss ratios
of the various parts of an end-to-end path, how long should
a system ideally store packets for retries? How large is the
potential benefit from in-network retransmission, depending
on the above factors? Our contributions are:

• We introduce a stochastic model that describes the re-
lationship between packet drop probabilities in different
path segments, RTT, and buffer size.

• We investigate the influence of a local loss recovery
mechanism: caching packets in an intermediate node
and loss detection before packets being arrived at the
destination using the above model. Moreover, we derive
the impact of each parameter on the system behavior.

1We make this decision to keep our model simple, but it could obviously
be extended to also capture ordering. In practice, out-of-order packets can be
problematic for TCP, which generally assumes that a re-ordering degree of
3 packets or more indicates congestion. Recent TCP versions have however
introduced spurious loss detection and recovery mechanisms such as Eifel [3],
[4] and F-RTO [5] which enable a TCP sender to undo the congestion reaction
in case it was found to be a misunderstanding. RACK [6], one of the latest
additions to TCP, lets TCP interpret time instead of sequence numbers, which
generally makes it more robust against re-ordering.



As we will discuss in the next section, some recent develop-
ments provide use cases for such in-network retransmissions,
for which it makes sense to ask these questions. After a
discussion of background work on in-network retransmission
and queuing models for related work in Section II, we de-
velop a mathematical formulation of our proposed system and
describe the results in Section III. In Section IV, we evaluate
the performance impact at end-systems. Section V summarizes
our findings.

II. BACKGROUND AND RELATED WORK

The scenario that we consider is shown in Figure 1: a sender
S emits packets with rate λ towards a receiver R, which ac-
knowledges their reception; acknowledgments (ACKs) arrive
at the sender after rtts. If packets are not acknowledged in
time, they are retransmitted after a retransmission timeout
rtos. Some real-life systems may use negative acknowledg-
ments (NACKs) too, but because they can be lost just like data
packets, NACKs must be combined with positive ACKs and a
timeout. Because that only makes them an optional mechanism
that can make the sender react earlier, we do not consider
NACKs for the sake of simplicity.

On their way towards the receiver, packets traverse a cache
C and a loss detector L. Both just forward packets that
they receive, but they carry out additional tasks: the cache
additionally stores a copy of them, and the loss detector
confirms the successful reception of each packet with an ACK
message to C (again, no NACKs). ACKs from L arrive at C
after rttc. If they do not arrive for a certain packet within a
timeout rtoc, they are retransmitted. Introducing a cache and
a loss detector divides the path into three segments, and there
is a certain loss probability on each of the path segments—p1,
p2 and p3.

This scenario very closely matches a recent proposal at the
Internet Engineering Task Force (IETF) called LOOPS [7].
LOOPS, which stands for “Local Optimizations on Path Seg-
ments”, is a proposal to form a Working Group, whose first
formal “Birds of a Feather” (BoF) meeting was held at the
105th IETF meeting in Montreal, Canada, in July 2019. The
envisioned operation of a LOOPS system, described in [8],
includes two modes. In tunnel mode, C in Figure 1 would
encapsulate packets in addition to caching them, so that they
can carry necessary LOOPS information such as sequence
numbers (LOOPS promises not to examine the header of
transport protocols, and therefore needs its own sequence
number space). In transparent mode, C would simply forward
packets and additionally cache them together with a hash
identifier that is calculated from immutable header fields.

In both cases, L sends ACKs to C, and L may or may
not re-sequence packets to ensure in-order delivery to the
destination at the expense of latency. Additional considera-
tions for LOOPS include the possible use of Forward Error
Correction (FEC) on the path from C to L instead of plain
retransmission, avoidance of congestion by limiting the rate
at which C retransmits packets when it sees that the delay
on the C-L path grows (ACKs from L include a timestamp
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Fig. 1: LOOP architecture

for this purpose), and methods to inform the receiver R of
congestion. Clearly, LOOPS systems could benefit from an
understanding of the impact of the various factors shown in
Figure 1—and some of them can be made available, e.g. to
C via measurement. For example, the “spin bit” [9] offers a
simple method for C to obtain rtts (which could be used to
estimate rtos) by monitoring packets.

We can see that the system that we investigate, depicted in
Figure 1, is a subset of the possibilities that are envisioned
for LOOPS: packets are not delayed for the sake of ordering,
there is no FEC, just the simplest case of L ACKing and C
retransmitting when it can. Thus, to indicate its relationship to
LOOPS, yet clarify that it is more general and only covers a
subset of LOOPS, we call our retransmission setup “LOOP”.

Recursive network architectures constitute a very different,
but no less fitting use case. These architectures—the Recursive
Internetworking Architecture (RINA) [10], the Recursive Net-
work Architecture (RNA) [11] and the RINA-based composi-
tional architecture described in [12]—all assume that all layers
have to carry out the the same basic functions (albeit possibly
instantiated in different ways, depending on the environment),
and that layers can be organized at will, in a way that is
suitable for a specific network scenario.

According to these architectures, the fact that both the link
layer and the transport layer retransmit lost frames or packets
is not an unnecessary duplication of functions, but it may
instead be an integral element of communication, just carried
out in slightly different ways at different scopes. In RINA,
it is quite unusual to consider retransmissions (or any other
function) only end-to-end; if C and L in Figure 1 would occur
at a layer below S and R, they are senders and receivers
in their own right, and it becomes natural to ask whether C
should retransmit too. But then, more generally, what is the
information that a sender should be given? E.g., for optimal
operation, would C need to be told about p1 or rtos? If a
sender is not at the topmost layer, how hard should it try to
retransmit—for how long should it cache data?

Caching is a core element of Information-Centric Network-
ing (ICN); it is therefore not surprising that proposals for
local retransmissions exist in an ICN context too. However,
also in an ICN context, the assurance of in-order delivery
creates latency, which is a problem of mechanisms such as
MFTP [13] or BELRP [14] that was addressed by the R2T
mechanism [15], making it the one that is closest to our model.

Irrespective of the use case, intuitively, the LOOP cache
is just a queue which can be analysed using various queuing
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TABLE I: Notations

Symbol Description
λ the packet send rate from S
µ the service rate of C
µs the service rate of S
ρ the load at the buffer, i.e., λ

µ

p1 the probability of a packet to be dropped from S to C
p2 the probability of a packet to be dropped from C to L
p3 the probability of a packet to be dropped from L to R
pb the blocking probability, i.e. the probability of not

caching the packet (the cache is full)
rtts the Round-Trip Time (RTT) between S to R
rttc the Round-Trip Time (RTT) between C to L
rtos the Retransmission Timeout (RTO) between S to R
rtoc the Retransmission Timeout (RTO) between C to L
N the maximum buffer size at C
k the number of backlogged packets in the buffer at C
X the random variable where X = k
T the random variable for waiting time
R the random variable for retransmission rate

models. Vishwanath et al. [16] used Markov chain analysis
to model an M/D/1/B queue for a network-on-chip output-
queuing router. They proposed the method to predict the
optimal buffer size using pre-defined design parameters. Barik
et al. [17] used a stochastic model for deciding an optimal
choice of the initial window of TCP flows depending on the
bottleneck router’s buffer size, number of active TCP connec-
tions, bottleneck router’s link capacity, RTT, and flow size.
Chandrayana et al. [18] proposed a mechanism to configure
RED parameters by analyzing of an MX/M/1/B queuing
model. Similarly, Dirnopoulos et al. [19] used a Markov model
for TCP and MX/M/1/B model for a bottleneck router’s
buffer to investigate the burstiness of TCP.

III. LOOP ANALYSIS

In this section, we present a Continuous-Time Markov
Chain (CTMC) with finite states to model the system illus-
trated in Fig. 1. The notations we use throughout the paper are
summarized in Table I. We assume that S transmits packets at
a rate following a Poisson distribution. Despite its simplicity,
it has been shown that congestion controllers such as TCP can
be modeled with this distribution, especially when there are
many long-lived TCP flows (usually in the core) competing
with each other [16]. This is also the case in LOOP, which
is placed in the network and many flows cross it. In addition,
flows originated from congestion controllers such as LGC [20]
that use packet pacing follow a Poisson process even from the
sender. It has also been shown that even with short-scale bursty
traffic, the use of fine-grained pacing timers can make TCP
almost as smooth as a Poisson stream [21]. These results form
our basis of utilizing Poisson and CTMC, and accordingly, we

do not re-validate our model with simulations from this point
of view. However, we focus on retransmissions, packet drops,
and where they happen to analytically study the efficacy of
LOOP.

The packet caching in LOOP can be modelled as an
M/D/1/N queuing model where the arrival is a Poisson pro-
cess and the service is a deterministic process. Fig. 2 presents
the Markov chain for a cache in LOOP where the chain has
N + 1 states, i.e., 0, 1, ..., N . The newly unacknowledged
packets arrive at C with the rate (1− p1)λ from S. Assuming
the lost packets in between C to L to be recovered by LOOP,
the end-to-end packet-loss probability measured by S is

pe2e = p1 + (1− p1)pbp2 + (1− p1)(1− pbp2)p3 .

The rate of retransmitted packets (sent by S) that appears at
C is (1 − p1)pe2ertos

. Thus the total arrival rate of packets that
grows the cache is given by

λ1 = (1− p1)(λ+
pe2e
rtos

) . (1)

The incoming packets at C are cached and forwarded. Once
these packets reach L, L acknowledges them, and when the
acknowledgements arrive at C, C removes them from the
cache. This occurs at a rate, i.e. the service rate of µ = 1−p2

rttc
.

Retransmissions in LOOP occur in a deterministic time period
of rtoc with probability p2, which means that the rate is p2

rtoc

at C.2 Therefore, the load at C can be computed as ρ = λ1

µ . To
obtain the steady state probabilities, this model follows similar
to an M/M/1/N queuing model (see [22] on how to obtain
the solution), where the service rate is µ:

π0 =
1− ρ

1− ρN+1
, (2)

πk = ρkπ0 , k = 1, · · · , N (3)

E[X] =
ρ

1− ρ
− (N + 1)ρN+1

1− ρN+1
, (4)

E[λ1] = λ1(1− πN ) , (5)

E[T ] =
E[X]

E[λ1]
, (6)

pb =
(1− ρ)ρN

1− ρN+1
, (7)

where πk is the steady state probability of state k, E[X] is
the expected number of packets in the cache, E[λ1] is the
expected arrival rate for caching (caching rate), and E[T ] is
the expected waiting time of packets in the cache. Since pb is
already in pe2e, fixed point iteration can be used with a given
initial pb to get the steady state blocking probability in (7).

We further divide our study into two parts depending on
whether the cache size is set based on p2 and pb or fixed. A
LOOP deployer can monitor the value of p2, and depending on
other parameters, (s)he can set a cache size for the LOOP, or
a fixed cache size independent of p2 and pb can be deployed.

2Self-transitions are not usually drawn in CTMC since not exiting a state
means staying in that state. However, we draw this special event to emphasize
retransmissions from C, and removing them does not affect the model.
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Fig. 3: Evaluating LOOP with p1 = 0.01, p3 = 0.01,
rtts = 0.1, rtos = 0.2, rttc = 0.05, rtoc = 0.1, pb = 0.01.

A. Sizing the Cache as a Function of p2 and pb
Here, we assume that for a given p2, we need to guarantee

a certain cache blocking probability. This actually answers
the question how much buffer we need if with probability
1− pb, packets should be successfully cached until they cross
the second segment. Apparently, with probability pb, a packet
cannot be cached, so in case of loss, S has to retransmit it,
not C. Solving (7) for a given pb and p2 yields

N =

⌈
logρ

pb
1− ρ+ ρ pb

⌉
(8)

where d.e denotes the ceiling function. We use fixed point
iteration to get the steady state blocking probability pb using
(8) and (7). Throughout the study, we set the initial pb to 0.01
(we iterate this to find its steady state value). Then for different
values of p2 and λ, we compute the cache size N as shown
in Fig. 3(a). The figure indicates that with larger values of
p2, larger cache sizes will be required to maintain the desired
blocking probability. A higher arrival rate also needs a larger
cache size. The cache size difference is larger as p2 grows.

Note that, in all of our performance evaluation, we investi-
gate the full range of loss ratios from 0 to 1 only to obtain a
better understanding of the system; this range is not necessarily
realistic. In most real-life settings, the link between C and
L will be a wired connection, where loss ratios in the order

of 0.5 or above are not to be expected (although special use
cases with high loss ratios may exist, e.g. in wireless sensor
networks).

Fig. 3(b) plots the filling percentage of the cache, i.e.
100E[X]

N %. We use (8) to obtain N for different values of
p2 and λ. When p2 increases, the network drops more packets
and the cache later retransmits the lost packets which in turn
increases the number of cached packets at C. A larger arrival
rate also increases the number of cached packets. Again, we
can observe that higher values of p2 affect higher rates more,
meaning that the difference becomes larger.

The RTT and RTO parameters that appear in the M/D/1/N
queuing model are rttc and rtos. rttc influences the ACK
rate, i.e. the service rate at C, whereas rtos affects the
retransmission rate from S. To evaluate how rttc affects the
caching time, we vary rttc/rtos in the range [0.0, 0.5] and
compute the expected waiting time of packets at C. Fig. 4
plots E[T ]

rttc
(the expected waiting time, in units of local RTTs)

for different values of rttc/rtos, p2, pb, and λ, and we use
(8) to obtain N . For a fixed value of p2 and λ, a higher value
of rttc increases the waiting time of packets. Similarly, larger
values of p2 and λ increase the expected waiting time. When
λ = 10 and p2 = 0.5, the plot is flattened after the ratio 0.25
because the cache is fully utilized and excess packets are not
cached, the expected waiting time does not increase.

B. Analysis of a Fixed Cache Size Independent of p2 and pb

In this analysis, we do not obtain the cache size based on p2
and pb. Instead, we set N to some fixed values and then, we
analyze the model for different values of λ, p2, and rttc/rtos.

Fig. 5 presents the filling percentage of the cache by varying
p2 for a set of N and λ. Obviously, pb, calculated by (7),
will be different for each value of N . A larger value of p2
fills the cache faster than a smaller one. Higher arrival rates
have larger impacts in filling the cache. From the figures, we
observe that the cache is almost empty up to a certain value
of p2. However, small increments of p2 can seriously affect
the percentage after that. This implies that the increase is not
linear, and one can expect almost full utilization with a slight
change of p2. The other finding from these figures is that the
cache size does not play a significant role when p2 exceeds a
certain value because the arrival rate and also the service rate
are fixed, and the cache, irrespective of its size, will become
almost fully utilized after a short time. This explains why the
plotted lines for different values of N are similar. Intuitively,
the size of the cache can only play a role when loss happens
intermittently (e.g., when loss increases to a certain value for
a brief period). This may well happen in practice. Our model,
however, considers the long-term behavior, where sustained
loss is either too large or not too large to temporarily cache
enough data, given a certain incoming rate.

We then study the influence of rttc/rtos on the waiting
time in the cache. Fig. 6 plots E[T ]

rttc
for packets in the cache.

Fig. 6(a) shows that the maximum cache size has the least
impact on the waiting time as all the lines overlap. A smaller
value of rttc favors a smaller waiting time. Fig. 6(b) shows
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Fig. 4: The expected number of local RTTs that packets will have to wait at C, E[T ]/rttc, with p1 = 0.01, p3 = 0.01,
rtts = 0.1, rtos = 0.2, pb = 0.01.

that a smaller value of p2 reduces the waiting time. We also
observe that when rttc/rtos ≤ 0.25, for moderate p2 values,
the waiting time is less than twice of rttc.

IV. END-SYSTEM ANALYSIS

The end-system’s buffer could be modelled as an
M/D/1/∞ queue where the arrival rate is the same as the
packet send rate λ and the load is given by ρ = λ

µs
where µs

is the deterministic service rate. The CTMC of the queuing
model is shown in Fig. 7 where the Markov chain has an
infinite number of states. In the absence of LOOP in the
network (i.e. S is solely responsible for retransmitting lost
packets), the packet-loss probability between C and L, p2,
appears at the sender side. The service rate is the rate at
which packets are removed from the buffer once they are
acknowledged by R (the transition rate from state k to k− 1).
The service rate and the retransmission rate of lost packets
(i.e. the transition rate from state k to k due to lost packets)
are given by

µs =
(1− p1)(1− p2)(1− p3)

rtts
, (9)

R =
1− (1− p1)(1− p2)(1− p3)

rtos
. (10)

However, with LOOP in the network and the blocking prob-
ability pb, we obtain µs and the expected retransmission rate
R as

µs =
1− pe2e
rtts

, (11)

R =
pe2e
rtos

. (12)

For both the cases, finding the steady state probabilities fol-
lows similar to an M/M/1/∞ queuing model. The difference
between the two cases are: in networks with LOOP, S sees
a packet loss probability of p2 pb between C and L whereas
without LOOP, S gets a packet loss probability of p2 from that
segment. Now, the expected waiting time is E[T ] = 1

µs−λ .
Fig. 8(a) plots the expected waiting time of packets at the
sender, i.e. the queuing time for different values of packet-loss
probability p2 with and without LOOP in the network. We set
λ = 5 and p2 varies up to 0.4; this assures the buffer at C is not
saturated to be able to compare the two cases. Without LOOP,
the waiting time at S increases with increasing p2. Similarly
the retransmission rate E[R] also increases linearly with an
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Fig. 5: The filling percentage of the cache as a function of
p2 with p1 = 0.01, p3 = 0.01, rtts = 0.1, rtos = 0.2,

rttc = 0.05, rtoc = 0.1.

increase in p2 as shown in Fig. 8(b). However, the increase in
these two metrics due to the increase in p2 is negligible; this is
the reason why the plots belonging to the LOOP analysis seem
almost invariant in these figures, confirming the importance of
such systems in the network compared to end-to-end systems.

V. CONCLUSIONS

We have used Markov chains to evaluate a simple reliability
improvement where a node along an end-to-end path caches
packets and retransmits them when another node on the path
does not acknowledge their reception within a timeout. The
efficacy of such a mechanism depends on the packet loss
probabilities of the path segment between the cache and loss
detector as well as the ratio between the RTT of the inner and
the RTO of the outer (end-to-end) control loop.

Using our model, we first obtained the required cache
size depending on the packet loss probability in LOOP and
cache blocking probability. We also observed the non-linear
dependence between filling the cache and the packet loss prob-
ability, which means that a small increment in the packet loss
probability above a certain value in LOOP can significantly
affect the percentage of cache filling. The study also revealed
that the configured cache size has the least long-term impact
on the percentage of cache filling because irrespective of the
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size, the cache can be fully utilized at higher packet loss
probabilities.

We also studied the influence of the RTT of the LOOP
segment on the packet caching time while the RTT is set as
a function of the end-to-end RTO of the sender. A higher
value of RTT increased the packet caching time while the
configured cache size has the least impact on it. With LOOP
in the network, an end-system gets a smaller retransmission
rate and expected caching time for packets than without LOOP
being deployed in the network.

As we have discussed in the outset, in-network retrans-
missions are often combined with a re-sequencing logic that
ensures that packets maintain the correct order. This operation
comes at the expense of added delay, and in a practical setting,
it can be advantageous or not, depending on the situation. E.g.,
modern TCP implementations are robust against some degree
of re-ordering. However, increased re-ordering robustness in
TCP is not an across-the-board benefit either, as it can come
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Fig. 8: Evaluating the sender with λ = 5, p1 = 0.01,
p3 = 0.01, rtts = 0.1, rtos = 0.2, pb = 0.01.

at the cost of an overall delayed congestion control response
(depending on the specific mechanism). There is an interesting
trade-off here: when packet loss is small and the inner loop’s
RTT is much smaller than the outer loop’s RTT, the negative
effect of re-sequencing can become tiny. Then, re-sequencing
can possibly outweigh the disadvantages of, e.g., an older TCP
implementation that might overreact to re-ordering.

In future work, we plan to extend our model such that
it describes the trade-offs involved in such re-sequencing.
Several other model extensions are also worth considering:
for example, our model is limited to positive ACKs and
timeouts—how will it change if we use NACKs that indicate
holes in the sequence number space before a timeout would
fire? Also, we have only considered a simple in-network
retransmission loop. In reality, these loops could be used in
sequence or even nested (such considerations have, in fact, al-
ready been brought forward in the IETF LOOPS proposal [7]).

Future work should also quantify the downsides of intro-
ducing LOOP: the higher network load caused by possible
duplicate packets that it may bring about, and the overhead
of the additional per-packet ACKs. Because of the additional
load produced by LOOP, there will also need to be some form
of congestion control between C and L, and a way to avoid
“hiding” congestion from the end systems.
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